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Abstract. We study a distance between shapes defined by minimizing the integral of kinetic
energy along transport paths constrained to measures with characteristic-function densities.
The formal geodesic equations for this shape distance are Euler equations for incompressible,
inviscid potential flow of fluid with zero pressure and surface tension on the free boundary.
The minimization problem exhibits an instability associated with microdroplet formation,
with the following outcomes: Shape distance is equal to Wasserstein distance. Further-
more, any two shapes of equal volume can be approximately connected by an Euler spray—a
countable superposition of ellipsoidal droplet solutions of incompressible Euler equations.
Every Wasserstein geodesic between shape densities is a weak limit of Euler sprays. Each
Wasserstein geodesic is also the unique minimizer of a relaxed least-action principle for a
fluid-vacuum mixture.

1. Introduction

In general, the problem of finding good ways to compare two signals (such as time se-
ries, images, or shapes) is important in a number of application areas, including computer
vision, machine learning, and computational anatomy. Methods which endow the space of
signals with the metric structure of a Riemannian manifold are of particular interest, as
they facilitate a variety of image processing tasks. This geometric viewpoint, pioneered by
Dupuis, Grenander & Miller [20, 26], Trouvé [44], Younes [50] and collaborators, has moti-
vated the study of a variety of metrics on spaces of shapes and images over a number of years
[13, 20, 25, 28, 34, 35, 41, 51, 52].

In a related development, distances derived from optimal transport theory (known as
Monge-Kantorovich, Wasserstein, or earth-mover’s distance) have been found useful in ana-
lyzing images [23, 27, 38, 42, 47, 48]. The transport distance with quadratic cost (Wasserstein
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distance) is special as it provides a (formal) Riemannian structure on spaces of measures with
fixed total mass [2, 37, 45].

In this paper we regard shapes as arbitrary bounded measurable sets in Rd. To each shape
Ω ⊂ Rd we associate a measure in a natural way, namely the one whose density is the char-
acteristic function 1Ω of the shape. The Wasserstein distance between two such measures
induces a distance between corresponding shapes of equal volume. But this induced dis-
tance does not immediately yield an induced notion of Wasserstein geometry, due to the fact
that measures along Wasserstein geodesic paths typically do not have characteristic-functions
densities, and thus do not correspond to shapes.

Hence we find it natural to investigate the geometry of a “submanifold” of the Wasserstein
space consisting of measures corresponding to shapes. A similar idea was proposed recently
by Schmitzer and Schnörr [41], who discussed restricting the Wasserstein metric to smooth
paths of shape measures consisting of uniform distributions on bounded open sets in R2 with
connected smooth boundary. In our present investigation, the only smoothness properties of
shapes and paths that we require are those intrinsically associated with Wasserstein distance.
We restrict our attention to paths of shapes of fixed volume in order to focus on morphology
change and due to interesting relations of such paths to incompressible fluid flow. We return
to indicate how our results apply to shape distance in the sense of [41] in the Extensions
section at the end of this paper.

To be precise, we consider a distance between two shapes Ω0 and Ω1 (bounded measurable
sets in Rd) of equal volume, defined by minimizing an action that measures a cost for deforming
one shape into the other:

(1.1) ds(Ω0,Ω1)2 = inf A , A =

∫ 1

0

∫
Rd

ρ|v|2 dx dt ,

where ρ = (ρt)t∈[0,1] is a path of shape densities transported by a velocity field v ∈ L2(ρ dx dt)
according to the continuity equation

(1.2) ∂tρ+∇ · (ρv) = 0 ,

with the endpoint conditions

(1.3) ρ0 = 1Ω0 , ρ1 = 1Ω1 .

Here, saying that ρt is a shape density means that ρt is constrained to be a characteristic
function for a shape Ωt:

(1.4) ρt = 1Ωt , t ∈ [0, 1].

Naturally, then, the velocity field must be divergence free in the interior of Ωt, satisfying
∇ · v = 0 there. Equation (1.2) holds in the sense of distributions in Rd × [0, 1], interpreting
ρv as 0 wherever ρ = 0.

Let us write dW (1Ω0 ,1Ω1) to denote the usual Wasserstein distance (Monge-Kanotorvich
distance with quadratic cost) between the measures with densities 1Ω0 and 1Ω1 . By the well-
known result of Benamou and Brenier [4], dW (1Ω0 ,1Ω1)2 is characterized as the infimum in
(1.1) subject to the same transport and endpoint constraints as in (1.2)–(1.3), but without
the constraint (1.4) that makes ρ a characteristic function. One expects that by restricting
attention to paths of shape densities, the infimum in (1.1)-(1.4) should typically be larger—
thus it is clear that

(1.5) ds(Ω0,Ω1) ≥ dW (1Ω0 ,1Ω1).
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The first objective of the present work is to show that the volume-constrained optimal
transport problem in (1.1)-(1.4) is subject to an instability associated with microdroplet for-
mation. The infimum is typically not attained, and the value of the infimum itself is the same
with or without the characteristic-function constraint. That is, the infimum yields squared
Wasserstein distance unchanged:

Theorem 1.1. For every pair of shapes (bounded measurable sets) in Rd of equal volume,

ds(Ω0,Ω1) = dW (1Ω0 ,1Ω1).

The proof of this theorem, which we carry out in section 5, proceeds first in the case
when both Ω0 and Ω1 are open sets. We decompose the source domain Ω0, up to a set of
measure zero, as a countable union of tiny disjoint open balls using a Vitali covering lemma.
These ‘microdroplets’ are transported by a velocity field that is divergence-free and close to
constant on each component. The droplets remain disjoint, and the total action or cost along
the resulting path of ‘spray’ shape densities is then shown to be close to that attained by
the displacement interpolant of the Monge-Kantorovich distance, which produces straight-
line transport of points from the source Ω0 to the target Ω1. Figure 1 illustrates the result
of a computation that illustrates these ideas. ‘Microdroplet’ subdomains of the source disk
Ω0 are transported by an incompressible flow to reach targets inside the hour-glass shape Ω1

determined by the Brenier optimal transport map as described in section 2. (The Brenier
map was computed using a method from [36]. In this example, it appears to be discontinuous
along two line segments in Ω0.)

(a) Source disk Ω0 decomposed
into microdroplets at t = 0.

(b) Microdroplets at t = 1
2
. Gray

background is the support of the
midpoint of Wasserstein geodesic
from 1Ω0 to 1Ω1 .

(c) Target shape Ω1 with micro-
droplet images at t = 1.

Figure 1. Illustration of microdroplet volume-conserving flow from Ω0 to Ω1.
Source Ω0 is decomposed into countably many small balls, few of which are
shown. Matching shades indicate corresponding droplets transported by flow.
For t ∈ (0, 1), droplets are contained in the linear interpolant of their source
and target, and remain disjoint.

It is natural to ask next about the existence of geodesic paths connecting source to target.
As it turns out (see Remarks 2.2–2.4), usually there is no length-minimizing path of shape
densities for the problem (1.1)-(1.4), except in dimension d = 1, as a consequence of the
uniqueness of the displacement interpolant as providing minimizing geodesic paths (action
minimizers) for Monge-Kantorovich distance.
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Nevertheless, it is interesting to study what targets can be reached from the source by
following formal geodesics, which may not be length-minimizers but are critical paths for the
variational problem in (1.1)–(1.4). This volume-constrained least-action principle is reminis-
cent of the ideas of V. I. Arnold that tie smooth paths of volume-preserving diffeomorphisms
to incompressible fluid flow. In light of this connection, it is not surprising that the formal
equations for geodesics of (1.1)–(1.4) should correspond to fluid equations of some kind.

As we show in section 3 below, it turns out that these geodesic equations are precisely
the Euler equations for incompressible, inviscid, potential flow of fluid occupying domain Ωt,
with zero surface tension and zero pressure on the free boundary ∂Ωt. In short, the geodesic
equations are classic water wave equations with zero gravity and surface tension. The initial-
value problem for these equations has recently been studied in detail—the works [31, 15, 16]
establish short-time existence and uniqueness for sufficiently smooth initial data.

A particular, simple solution will play a special role in our analysis. Namely, we observe
(see Proposition 3.4) that a path t 7→ Ωt of ellipsoids is a critical point of the constrained
action if and only if the d-dimensional vector a(t) = (a1(t), . . . , ad(t)), formed by the principal
axis lengths, follows a geodesic curve on the hyperboloid-like surface in Rd determined by the
constraint that corresponds to constant volume,

(1.6) a1a2 · · · ad = const.

While the question of determining which targets and sources are connected is difficult to
answer in general, we find that for open sets, there exist solutions comprised of microdroplets
(which we call Euler sprays) that approximately reach an arbitrary target as closely as desired.

Theorem 1.2. Let Ω0, Ω1 be a pair of bounded open sets in Rd with equal volume. For any
ε > 0, there is an Euler spray which transports the source Ω0 (up to a null set) to a target Ωε

1

whose L∞ transportation distance from Ω1 is less than ε. The action Aε of the spray satisfies

ds(Ω0,Ω
ε
1)2 ≤ Aε ≤ dW (1Ω0 ,1Ω1)2 + ε .

The precise definition of an Euler spray and the proof of this result will be provided in
section 4. However, it is significant that the Euler sprays given by this theorem provide a
family of weak solutions (ρε, vε, pε) to the following Euler system:

∂tρ+∇ · (ρv) = 0,(1.7)

∂t(ρv) +∇ · (ρv ⊗ v) +∇p = 0,(1.8)

with the constraint that ρε is a shape density, meaning it is a characteristic function as in
(1.4). Both of these equations hold in the sense of distributions on Rd×[0, 1], which means the
following: For any smooth test functions q ∈ C∞c (Rd × [0, 1],R) and ṽ ∈ C∞c (Rd × [0, 1],Rd),∫ 1

0

∫
Rd
ρ(∂tq + v · ∇q) dx dt =

∫
Rd
ρq dx

∣∣∣∣t=1

t=0

,(1.9) ∫ 1

0

∫
Rd
ρv · (∂tṽ + v · ∇ṽ) + p∇ · ṽ dx dt =

∫
Rd
ρv · ṽ dx

∣∣∣∣t=1

t=0

.(1.10)

The limit as ε→ 0 for the sprays constructed in Theorem 1.2 can be characterized in terms
of Wasserstein geodesics, as follows.
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Theorem 1.3. As ε → 0, the weak solutions (ρε, vε, pε) associated to the Euler sprays of
Theorem 1.2 converge to (ρ, v, 0), where (ρ, v) is the weak solution

∂tρ+∇ · (ρv) = 0,(1.11)

∂t(ρv) +∇ · (ρv ⊗ v) = 0,(1.12)

provided by the Wasserstein geodesic (displacement interpolant) that connects the uniform
measures on Ω0 and Ω1 as described in section 2. The convergence holds in the the following
sense: pε → 0 uniformly, and

(1.13) ρε
?−⇀ ρ, ρεvε

?−⇀ ρv, ρεvε ⊗ vε ?−⇀ ρv ⊗ v,

weak-? in L∞ on Rd × [0, 1].

The convergence in (1.13) can be strengthened in terms of the TLp topology introduced
in [24] to compare two functions that are absolutely continuous with respect to different
probability measures—see Remark 4.7.

One further striking connection between Wasserstein geodesics and least-action principles
for incompressible fluid flow will be developed in this paper. In particular this relates to
work of Brenier on relaxations of Arnold’s least-action principle for incompressible flow [5,
7, 8, 9, 10, 11]. We will describe a relaxed least-action principle for incompressible flow of
two-fluid mixtures that is a variant of Brenier’s model for homogenized vortex sheets [8], and
is related to the variable-density model studied by Lopes et al. [32]. Our model, however,
also allows one fluid to have zero density, corresponding to a fluid-vacuum mixture. In this
degenerate case, we show that the Wasserstein geodesic provides the unique minimizer of the
relaxed least-action principle—see Theorem 6.2. Moreover, the smooth sprays constructed
in Theorem 5.2 provide a minimizing sequence consisting of unmixed paths—paths of shape
densities.

The plan of this paper is as follows. In section 2 we collect some basic facts and estimates
that concern geodesics for Monge-Kantorovich/Wasserstein distance. In section 3 we derive
formally the geodesic equations for paths of shape densities and describe the special class of
ellipsoidal solutions. The construction of Euler sprays and the proof of Theorem 1.2 is carried
out in section 4. Theorem 1.1 is proved in section 5. The connection between Wasserstein
geodesics and relaxed least-action priniciple motivated by Brenier’s work is developed in
section 6.

The paper concludes in section 7 with a discussion of the notion of shape distance examined
by Schmitzer and Schnörr in [41]. In particular, we extend the result of Theorem 1.1, for
volume-constrained paths of shapes, to show that a shape distance determined by paths of
uniform measures again agrees with the Wasserstein distance between the endpoints. The
proof involves a displacement convexity argument that makes use of the well-known fact that
ρ−1/d is concave along particle paths of Wasserstein geodesics.

1.1. Related work on the geometry of image and shape space. The idea to use defor-
mations as a means of comparing images goes back to pioneering work of D’Arcy Thompson
[43]. Dupuis, Grenander, Miller [20, 26], Trouvé [44], and Younes [50] introduced the con-
cepts of differential geometry to study spaces of images and shapes. The main thrust of
these works is to study Riemannian metrics and the resulting distances in the space of image
and shape deformations. Connections with Arnold viewpoint of fluid mechanics were noted
from the outset [50], and have been further explored by Holm, Trouvé, Younes and others
[25, 28, 51]. This work has led to the Euler-Poincaré theory of metamorphosis [28], which sets
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up a formalism for analyzing least-action principles based on Lie-group symmetries generated
by diffeomorphism groups.

To obtain regularity of the minimizing paths and resulting diffeomorphisms, the Riemann-
ian metrics considered often penalize the integrals of second-order derivatives of velocities, as
in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) approach of [3]. Metrics
based on conservative transport which penalize only one derivative of the velocity field are
connected with viscous dissipation in fluids and have been considered by Rumpf, Wirth and
collaborators [39, 49], as well as by Brenier, Otto, and Seis [12], who established a connection
to optimal transport. As we mentioned at the beginning, metrics which penalize only L2

norm of the velocity have strong connections to optimal transportation.
A different way to consider shapes is to study them only via their boundary, and consider

metrics which are based on penalizing normal velocity of the boundary. Such a point of view
has been taken by Michor, Mumford and collaborators [13, 34, 35, 52]. As they show in [34],
penalizing only the L2 norm of normal velocity does not lead to a viable geometry, as any two
states can be connected by an arbitrarily short curve. On the other hand it is shown in [13]
that if two or more derivatives of the normal velocity are penalized, then the resulting metric
on the shape space is geodesically complete.

In this context, we note that what our work shows is that if the L2 norm of the transport
velocity is considered in the bulk, then the global metric distance is not zero, but that it is still
degenerate in the sense that a length-minimizing geodesic does not exist in the shape space.
We speculate that to create a shape distance that (even locally) admits length-minimizing
paths in the space of shapes, one needs to prevent the creation a large perimeter at negligible
cost. This is somewhat analogous to the motivation for the metrics on the space of curves
considered by Michor and Mumford [34]. Possibilities include introducing a term in the metric
which penalizes deforming the boundary, or a term which enforces greater regularity for the
vector fields considered.

2. Preliminaries: Wasserstein geodesics between shapes

In this section we recall some basic properties of the standard minimizing geodesic paths
(displacement interpolants) for the Wasserstein or Monge-Kantorovich distance between shape
densities, and establish some basic estimates. A property that is key in the sequel is that the
density ρ is convex along the corresponding particle paths, see Lemma 2.1.

2.1. Standard Wasserstein geodesics. Let Ω0 and Ω1 be two shapes in Rd (bounded
open sets) with equal volume. Let µ0 and µ1 be measures with densities ρ0 = 1Ω0 and
ρ1 = 1Ω1 , respectively. As is well known [6, 30], there exists a convex function ψ such that
T = ∇ψ (called the Brenier map in [45]) is the optimal transportation map between Ω0 and
Ω1 corresponding to the quadratic cost. Moreover, this map is unique a.e. in Ω0; see [6] or
[45, Thm. 2.32].

McCann [33] later introduced a natural curve t 7→ µt that interpolates between µ0 and
µ1, called the displacement interpolant, which can be described as the push-forward of the
measure µ0 by the interpolation map Tt given by

(2.1) Tt(z) = (1− t)z + t∇ψ(z), 0 ≤ t ≤ 1.

Note that particle paths z 7→ Tt(z) follow straight lines with constant velocity:

(2.2) v(Tt(z), t) = ∇ψ(z)− z.
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Furthermore µt has density ρt that satisfies the continuity equation

(2.3) ∂tρ+ div(ρv) = 0.

In terms of these quantities, the Wasserstein distance satisfies

dW (µ0, µ1) =

∫
Ω0

|∇ψ(z)− z|2 dz =

∫ 1

0

∫
Ωt

ρ|v|2 dx dt ,

and the displacement interpolant has the property that

(2.4) dW (µs, µt) = (t− s)dW (µ0, µ1), 0 ≤ s ≤ t ≤ 1.

The property (2.4) implies that the displacement interpolant is a constant-speed geodesic
(length-minimizing path) with respect to Wasserstein distance. The displacement interpolant
t 7→ µt is the unique constant-speed geodesic connecting µ0 and µ1, due to the uniqueness of
the Brenier map and Proposition 5.32 of [40] (or see [1, Thm. 3.10]]). For brevity the path
t 7→ µt is called the Wasserstein geodesic from µ0 to µ1.

Extending the regularity theory of Caffarelli [14], Figalli [21] and Figalli & Kim [22] have
shown (see Theorem 3.4 in [17] and also [18]) that the optimal transportation potential ψ is
smooth away form a set of measure zero. More precisely, there exist relatively closed sets of
measure zero, Σi ⊂ Ωi for i = 0, 1 such that T : Ω0\Σ0 → Ω1\Σ1 is a smooth diffeomorphism
between two open sets.

Let λ1(z), . . . , λd(z) be the eigenvalues of Hessψ(z) for z ∈ Ω0\Σ0. Due to convexity and
regularity of ψ, λi > 0 for all i = 1, . . . , n. Furthermore, because ∇ψ is a map that pushes
forward the Lebesgue measure on Ω0 to that on Ω1, it follows that the Jacobian of T has
value 1 and thus λ1 · · ·λd = 1.

Along the particle paths of displacement interpolation starting from any z ∈ Ω0 \ Σ0, the
mass density satisfies

(2.5) ρ(Tt(z), t)
−1 = det

∂Tt
∂z

= det((1− t)I + t∇2ψ(z)) =
d∏
j=1

(1− t+ tλj(z))

We now show that the density ρ is convex along these paths. The stronger fact that ρ−1/d

is concave along particle paths follows from more general classical results stated in [33] and
related to a well-known proof of the Brunn-Minkowski inequality by Hadwiger and Ohmann.
Since a simple proof is available for our case, we present it here for completeness.

Lemma 2.1. Along the particle paths t 7→ Tt(z) of displacement interpolation between the

measures µ0 and µ1 with respective densities 1Ω0 and Ω1 as above, the map t 7→ ρ(Tt(z), t)
−1/d

is concave. Further, the map t 7→ ρ(Tt(z), t) is convex. Moreover, ρ ≤ 1.

Proof. Fix z and let g(t) = ρ(Tt(z), t)
−1/d. We compute

g′

g
=

1

d

d∑
j=1

λj − 1

1− t+ tλj
,

(2.6)
g′′

g
=

1

d

d∑
j=1

λj − 1

1− t+ tλj

2

− 1

d

d∑
j=1

(
λj − 1

1− t+ tλj

)2

≤ 0

due to the Cauchy-Schwartz (or Jensen’s) inequality. This shows g is concave. That t 7→
ρ(Tt(z), t) is convex follows directly. Because ρ equals 1 when t = 0 and t = 1, we infer ρ ≤ 1
along particle paths. �
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We also note that computations above and continuity equation (2.2) imply

(2.7) div v = −1

ρ

(
dρ

dt

)
= − d

dt
log ρ =

d∑
j=1

λj − 1

1− t+ tλj
.

Another well-known fact about the Eulerian velocity that we will use (in Lemma 5.5) is that
v(·, t) is a spatial gradient for t ∈ (0, 1). Namely, note Tt = ∇ψt where ψt(z) = 1

2(1− t)|z|2 +
tψ(z) is strictly convex, with Legendre transform ψ∗t which satisfies

(2.8) ψ∗t (∇ψt(z)) = 〈z,∇ψt(z)〉 − ψt(z), ∇ψ∗t ◦ ∇ψt(z) = z.

(The latter identity is a classical fact easily checked by differentiation for z in the nonsingular
set.) Then by combining this with (2.1)–(2.2) we find (for x = ∇ψt(z))
(2.9) ∇ψ∗t (x) + tv(x, t) = x = ∇|x|2/2.
As an alternative expression, one can check that

(2.10) v(x, t) = ∇φt(x), φt(x) = ψ(z)− z +
t

2
|∇ψ(z)− z|2.

Remark 2.2. It is interesting to ask when it is possible that ρ(Tt(z), t) ≡ 1 for all z in the
non-singular set Ω0 \Σ0, for this is the case if and only if there exists some action minimizing
path of shape densities for the problem (1.1)–(1.4). (To establish the equivalence, one shows
that necessarily Ωt = Tt(Ω0 \ Σ0) up to a set of measure zero, by invoking the uniqueness
of the Wasserstein geodesic as discussed above. For this to hold, clearly it is a necessary
consequence of (2.6) that λj ≡ 1 everywhere in Ω0 \ Σ0. This means T is a rigid translation
on each component of Ω0 \ Σ0.

Remark 2.3. As a nontrivial example in the case of one dimension (d = 1), let C ⊂ [0, 1] be
the standard Cantor set, and let Ω0 = (0, 1). Define the Brenier map T (x) = x+ c(x) with c
given by the Cantor function, increasing and continuous on [0, 1] with c(0) = 0, c(1) = 1 and
c′ = 0 on (0, 1) \ C. Then T (Ω0) = (0, 2), but the pushforward of uniform measure on Ω0 is
the uniform measure on the set Ω1 = T (Ω0 \ C), which has countably many components, and
total length |Ω1| = 1.

Remark 2.4. Actually, in the case d = 1 it is always the case that ρ(Tt(z), t) ≡ 1 for all z
in the non-singular set. This is so because the diffeomorphism T : Ω0\Σ0 → Ω1\Σ1 must be
a rigid translation on each component, as it pushes forward Lebesgue measure to Lebesgue
measure.

2.2. Local linear approximation and estimates. Let λ1, . . . , λd be the eigenvalues of
Hessψ(x), as before. Recall that λi > 0 for all i = 1, . . . , n and λ1 · · ·λd = 1. Let λ(x) and
λ(x) be the minimal and maximal eigenvalues of Hessψ(x) = DT (x) respectively. We define,
for any U ⊂ Ω0\Σ0,

(2.11) λU = inf{λ(x) : x ∈ U}, λU = sup{λ(x) : x ∈ U},
and note that for any x ∈ U and x̂ ∈ Rd,
(2.12) λU |x̂| ≤ |DT (x)x̂| ≤ λU |x̂|.
For U ∈ Ω0\Σ0 we also let

(2.13) ‖D3ψ‖U := sup
x∈U

max
|u|=|v|=|w|=1

∣∣∣∣∣∣
d∑

i,j,k=1

∂3ψ(x)

∂xi∂xj∂xk
uivjwk

∣∣∣∣∣∣ .
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Taylor expansion provides a basic estimate on the difference between the optimal transport
map and its linearization: Whenever B(x0, r) ⊂ Ω0 \ Σ0 and x ∈ B(x0, r),

(2.14) |T (x)− T (x0)−DT (x0)(x− x0)| < 1

2
‖D3ψ‖B(x0,r) r

2.

3. Geodesics and incompressible fluid flow

3.1. Incompressible Euler equations for smooth critical paths. In this subsection,
for completeness we derive the Euler fluid equations that formally describe smooth geodesics
(paths with stationary action) for the shape distance in (1.1)-(1.4). To cope with the problem
of moving domains we work in a Lagrangian framework, computing variations with respect
to flow maps that preserve density and the endpoint shapes Ω0 and Ω1.

Toward this end, suppose that

(3.1) Q =
⋃

t∈[0,1]

Ωt × {t} ⊂ Rd × [0, 1]

is a space-time domain generated by smooth deformation of Ω0 due to a smooth velocity field
v : Q̄→ Rd. That is, the t-cross section of Q is given by

(3.2) Ωt = X(Ω0, t),

where X is the Lagrangian flow map associated to v, satisfying

(3.3) Ẋ(z, t) = v(X(z, t), t), X(z, 0) = z,

for all (z, t) ∈ Ω0 × [0, 1].
For any (smooth) extension of v to Rd × [0, 1], the solution of the mass-transport equation

in (1.2) with given initial density ρ0 supported in Ω̄0 is

ρ(x, t) = ρ0(z) det

(
∂X

∂z
(z, t)

)−1

, x = X(z, t) ∈ Ωt,

with ρ = 0 outside Q.
Considering a smooth family X = Xε of flow maps defined for all small values of a varia-

tional parameter ε, the variation δX = (∂X/∂ε)|ε=0 induces a variation in density satisfying

(3.4) − δρ

ρ
= δ log det

(
∂X

∂z
(z, t)

)
= tr

(
∂δX

∂z

(
∂X

∂z

)−1
)

Introducing ṽ(x, t) = δX(z, t), x = X(z, t), it follows

(3.5) − δρ

ρ
= ∇ · ṽ.

For variations that leave the density invariant, necessarily ∇ · ṽ = 0.
We now turn to consider the variation of the action or transport cost as expressed in terms

of the flow map:

(3.6) A =

∫ 1

0

∫
Rd
ρ|v|2dx dt =

∫ 1

0

∫
Ω0

|Ẋ(z, t)|2dz dt .
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For flows preserving ρ = 1 in Q, of course ∇· v = 0. Computing the first variation of A about
such a flow, after an integration by parts in t and changing to Eulerian variables, we find

δA
2

=

∫ 1

0

∫
Ω0

Ẋ · δẊ dz dt

=

∫
Ω0

Ẋ · δX dz

∣∣∣∣
t=1

−
∫ 1

0

∫
Ω0

Ẍ · δX dz dt

=

∫
Ωt

v · ṽ dx
∣∣∣∣
t=1

−
∫ 1

0

∫
Ωt

(∂tv + v · ∇v) · ṽ dx dt.(3.7)

Recall that any L2 vector field u on Ωt has a unique Helmholtz decomposition as the sum
of a gradient and a field L2-orthogonal to all gradients, which is divergence-free with zero
normal component at the boundary:

(3.8) u = ∇p+ w, ∇ · w = 0 in Ωt, w · n = 0 on ∂Ωt.

If we loosen the requirement that w · n = 0 on the boundary, it is still the case that∫
∂Ωt

w · ndS =

∫
Ωt

∇ · w dx = 0,

It follows that the space orthogonal to all divergence-free fields on Ωt is the space of gradients
∇p such that p is constant on the boundary, and we may take this constant to be zero:

(3.9) p = 0 on ∂Ωt.

Requiring δA = 0 for arbitrary virtual displacements having ∇ · ṽ = 0 (and ṽ = 0 at t = 1 at
first), we find that necessarily u = −(∂tv+v ·∇v) is such a gradient. Thus the incompressible
Euler equations hold in Q:

(3.10) ∂tv + v · ∇v +∇p = 0 , ∇ · v = 0 in Q,

where p : Q̄→ R is smooth and satisfies (3.9).
Finally, we may consider variations ṽ that do not vanish at t = 1. However, we require

ṽ · n = 0 on ∂Ω1 in this case because the target domain Ω1 should be fixed. That is, the
allowed variations in the flow map X must fix the image at t = 1:

(3.11) Ω1 = X(Ω0, 1).

The vanishing of the integral term at t = 1 in (3.7) then leads to the requirement that v is a
gradient at t = 1. For t = 1 we must have

(3.12) v = ∇φ in Ωt.

We claim this gradient representation actually must hold for all t ∈ [0, 1]. Let v = ∇φ+w be
the Helmholtz decomposition of v, and for small ε consider the family of flow maps generated
by

(3.13) Ẋ(z, t) = (v + εw)(X(z, t), t) X(z, 0) = z.

Corresponding to this family, the action from (3.6) takes the form

(3.14) A =

∫ 1

0

∫
Ω0

|Ẋ(z, t)|2dz dt =

∫ 1

0

∫
Ωt

|∇φ|2 + |(1 + ε)w|2 dx dt



EULER SPRAYS AND WASSERSTEIN GEOMETRY OF THE SPACE OF SHAPES 11

Because w · n = 0 on ∂Ωt, the domains Ωt do not depend on ε, and the same is true of ∇φ
and w, so this expression is a simple quadratic polynomial in ε. Thus

(3.15)
1

2

dA
dε

∣∣∣∣
ε=0

=

∫ 1

0

∫
Ωt

|w|2 dx dt

and consequently it is necessary that w = 0 if δA = 0. This proves the claim.
The Euler equation in (3.10) is now a spatial gradient, and one can add a function of t

alone to φ to ensure that

(3.16) ∂tφ+
1

2
|∇φ|2 + p = 0, ∆φ = 0 in Ωt.

The equations boxed above, including (3.16) together with the zero-pressure boundary con-
dition (3.9) and the kinematic condition that the boundary of Ωt moves with normal velocity
v · n (coming from (3.2)-(3.3)), comprise what we shall call the Euler droplet equations, for
incompressible, inviscid, potential flow of fluid with zero surface tension and zero pressure at
the boundary.

Definition 3.1. A smooth solution of the Euler droplet equations is a triple (Q,φ, p) such
that φ, p : Q̄ → R are smooth and the equations (3.1), (3.2), (3.3), (3.12), (3.16), (3.9) all
hold.

Proposition 3.2. For smooth flows X that deform Ω0 as above, that respect the density
constraint ρ = 1 and fix Ω1 = X(Ω0, 1), the action A in (3.6) is critical with respect to
smooth variations if and only if X corresponds to a smooth solution of the Euler droplet
equations.

3.2. Weak solutions and Galilean boost. Here we record a couple of simple basic prop-
erties of solutions of the Euler droplet equations.

Proposition 3.3. Let (Q,φ, p) be a smooth solution of the Euler droplet equations. Let
ρ = 1Q and v = 1Q∇φ, and extend p as zero outside Q.

(a) The Euler equations (1.7)-(1.8) hold in the sense of distributions on Rd × [0, 1].
(b) The mean velocity

(3.17) v̄ =
1

|Ωt|

∫
Ωt

v(x, t) dx

is constant in time, and the action decomposes as

(3.18) A =

∫ 1

0

∫
Ωt

|v − v̄|2dx dt+ |Ω0||v̄|2 .

(c) Given any constant vector b ∈ Rd, another smooth solution (Q̂, φ̂, p̂) of the Euler droplet
equations is given by a Galilean boost, via

Q̂ =
⋃

t∈[0,1]

(Ωt + bt)× {t} ,(3.19)

φ̂(x+ bt, t) = φ(x, t) + b · x+
1

2
|b|2t , p̂(x+ bt, t) = p(x, t) .(3.20)
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Proof. To prove (a), what we must show is the following: For any smooth test functions
q ∈ C∞c (Rd × [0, 1],R) and ṽ ∈ C∞c (Rd × [0, 1],Rd),∫

Q
(∂tq + v · ∇q) dx dt =

∫
Ωt

q dx

∣∣∣∣t=1

t=0

(3.21) ∫
Q
v · (∂tṽ + v · ∇ṽ) + p∇ · ṽ dx dt =

∫
Ωt

ṽ · v dx
∣∣∣∣t=1

t=0

(3.22)

Changing to Lagrangian variables via x = X(z, t), writing q̂(z, t) = q(x, t), and using incom-
pressibility, equation (3.21) is equivalent to∫ 1

0

∫
Ω0

d

dt
q̂(z, t) dz dt =

∫
Ω0

q̂(z, t) dz

∣∣∣∣t=1

t=0

.(3.23)

Evidently this holds. In (3.22), we integrate the pressure term by parts, and treat the rest as
in (3.7) to find that (3.22) is equivalent to∫

Q
(∂tv + v · ∇v +∇p) · ṽ dx dt = 0.(3.24)

Then (a) follows. The proof of parts (b) and (c) is straightforward. �

3.3. Ellipsoidal Euler droplets. The intial-value problem for the Euler droplet equations
is a difficult fluid free boundary problem. For flows with vorticity and smooth enough intial
data, smooth solutions for short time have been shown to exist in [31, 15, 16].

In this section, we describe simple, particular Euler droplet solutions for which the fluid
domain Ωt remains ellipsoidal for all t. Our main result is the following.

Proposition 3.4. Given a constant r > 0, let a(t) = (a1(t), . . . , ad(t)) be any constant-speed
geodesic on the surface in Rd+ determined by the relation

(3.25) a1 · · · ad = rd.

Then this determines an Euler droplet solution (Q,φ, p) with Ωt equal to the ellipsoid Ea(t)

given by

(3.26) Ea =
{
x ∈ Rd :

∑
j

(xj/aj)
2 < 1

}
,

and potential and pressure given by

(3.27) φ(x, t) =
1

2

∑
j

ȧjx
2
j

aj
− β(t) , p(x, t) = β̇

1−
∑
j

x2
j

a2
j

 ,

with

(3.28) β̇(t) =
1

2

∑
j ȧ

2
j/a

2
j∑

j 1/a2
j

.

For clarity, we first derive the result in the planar case, then treat the case of general
dimension d ≥ 2.
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3.3.1. Droplets in dimension d = 2. We seek incompressible flows inside a time-dependent
elliptical domain where

(3.29)
x2

a(t)2
+

y2

b(t)2
< 1,

with the geometric mean r = (ab)1/2 constant in time for volume conservation. We will find
such flows as time-stretched straining flows (X,Y ), satisfying

(Ẋ, Ẏ ) = v(X,Y, t) = α(t)(X,−Y ) .

Such flows have velocity potential satisfying v = ∇φ, with

(3.30) φ(x, y, t) =
1

2
α(t)(x2 − y2)− β(t),

∂tφ =
1

2
α̇(x2 − y2)− β̇, 1

2
|∇φ|2 =

1

2
α2(x2 + y2) .

To satisfy the Bernoulli equation we require ∂tφ+ 1
2 |∇φ|

2 = 0 on the boundary of the ellipse
(x, y) = (a cos θ, b sin θ), or

(α̇+ α2)a2 cos2 θ + (−α̇+ α2)b2 sin2 θ = 2β̇

In order for this to hold independent of θ, we require

(α̇+ α2)a2 = −(α̇− α2)b2 = 2β̇.

Due to the motion of the boundary points (a, 0), (0, b) we need

ȧ = αa, ḃ = −αb,
whence

2β̇ = aä =
2b2ȧ2

(a2 + b2)
=

2r4ȧ2

(a4 + r4)

because r2 = ab is constant. Notice ä > 0 in all cases. There is a first integral (because
kinetic energy is conserved) which we can find by writing

ä

ȧ
= 2ȧ

(
1

a
− a3

r4 + a4

)
,

whence we find that a(t) and b(t) are determined by solving

(3.31)
ȧ

a
=

c√
a2 + b2

= − ḃ
b

= α(t).

for some real constant c. From the derivation of the Bernoulli equation, inside the ellipse the
pressure is

(3.32) p = −∂tφ−
1

2
|∇φ|2 = β̇

(
1− x2

a2
− y2

b2

)
.

where β̇ is recovered from the equation

(3.33) β̇(t) =

(
cab

a2 + b2

)2

.

To summarize, an elliptical Euler droplet solution (Q,φ, p) is determined in terms of any
solution (a(t), b(t)) of (3.31) (with any real c) by (3.29), (3.30), (3.32), and (3.33). We note
that the speed of motion of the point (a, b) on the hyperbola ab = r2 is constant: by (3.31),

(3.34) ȧ2 + ḃ2 = c2.
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In the context of the fixed-endpoint problem, then, |c| is the distance along the hyperbola
betweeen (a(0), b(0)) and (a(1), b(1)).

3.3.2. Droplets in dimension d ≥ 2. Let us now derive the result stated in Proposition 3.4.
The flow X associated with a velocity potential of the form in (3.27) must satisfy

(3.35) Ẋj = αj(t)Xj , αj =
ȧj
aj
, j = 1, . . . , d.

Then (Xj/aj)˙ = 0 for all j, so the flow is purely dilational along each axis and consequently
ellipsoids are deformed to ellipsoids as claimed. Note that incompressibility corresponds to
the relation

∆φ =
∑
j

αj =
∑
j

ȧj
aj

=
d

dt
log(a1 · · · ad) = 0.

From (3.27) we next compute

∂tφt +
1

2
|∇φ|2 = −β̇ +

1

2

∑
j

(α̇j + α2
j )x

2
j = −β̇ +

1

2

∑
j

äjx
2
j

aj
.

This must equal zero on the boundary where xj = ajsj with s ∈ Sd−1 arbitrary. We infer
that for all j,

(3.36) aj äj = 2β̇ .

The expression for pressure in (3.27) in terms of β̇ then follows from (3.16), and p = 0 on
∂Ωt.

We recover β̇ by differentiating the constraint twice in time. We find

0 =
∑
j

(∑
k

a1 · · · ad
ȧk
ak

ȧj
aj

+ a1 . . . ad
aj äj − ȧ2

j

a2
j

)

= 0 +
∑
j

2β̇ − ȧ2
j

a2
j

whence (3.28) holds.
To get the first integral that corresponds to kinetic energy, multiply (3.36) by 2ȧj/aj and

sum to find

0 =
∑
j

ȧj äj , whence
∑
j

ȧ2
j = c2

and we see that c = |ȧ(t)| is the constant speed of motion.
It remains to see that (3.36) are the geodesic equations on the constraint surface. To see

this, recall that geodesic flow on the constraint surface corresponds to a stationary point for
the augmented action ∫ 1

0

1

2
|ȧ|2 + λ(t)

∏
j

aj − rd
 dt

which leads to the Euler-Lagrange equations

−äj +
λ(t)rd

aj
= 0.

Correspondingly, λrd = 2β̇. This finishes the demonstration of Proposition 3.4.
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Remark 3.5. For later reference, we note that äj > 0 for all t, due to (3.36) and (3.28).

Remark 3.6. Given any two points on the surface described by the constraint (3.25), there
exists a constant-speed geodesic connecting them. This fact is a straightforward consequence
of the Hopf-Rinow theorem [29, Theorem 1.7.1], because all closed and bounded subsets on
the surface are compact.

Remark 3.7. The Euclidean metric on the hyperboloid-like surface arises, in fact, as the
metric induced by the Wasserstein distance [46, Chap. 15], because, given any dilational flow
satisfying (3.35) with a1 · · · ad = rd,∫

Ωt

|v|2 dx =

∫
Ωt

∑
j

α2
jx

2
j dx =

∑
j

ȧ2
j

∫
|z|≤1

z2
j dz r

d =
ωdr

d

d+ 2

∑
j

ȧ2
j ,

where ωd = |B(0, 1)| is the volume of the unit ball in Rd. For a geodesic, this expression is
constant for t ∈ [0, 1] and equals the action Aa in (3.6) for the ellipsoidal Euler droplet.

3.4. Ellipsoidal Wasserstein droplets. Let (Q,φ, p) be an ellipsoidal Euler droplet solu-
tion as given by Proposition 3.4, so that Ω0 = Ea(0) and Ω1 = Ea(1) are co-axial ellipsoids.
We will call the optimal transport map T between these co-axial ellipsoids an ellipsoidal
Wasserstein droplet. This is described and related to the Euler droplet as follows.

Given A ∈ Rd, let DA = diag(A1, . . . , Ad) denote the diagonal matrix with diagonal A.
Then, given Ω0 = Ea(0), Ω1 = Ea(1) as above, the particle paths for the Wasserstein geodesic
between the corresponding shape densities are given by linear interpolation via

(3.37) Tt(z) = DA(t)D
−1
A(0)z , A(t) = (1− t)a(0) + ta(1) .

Note that a point z ∈ EA if and only if D−1
A z lies in the unit ball B(0, 1) in Rd. Thus the

Wasserstein geodesic flow takes ellipsoids to ellipsoids:

Tt(Ω0) = EA(t) , t ∈ [0, 1].

Let a(t), t ∈ [0, 1], be the geodesic on the hyperboloid-like surface that corresponds to the
Euler droplet that we started with. Recall that Ωt = Ea(t) from Proposition 3.4. Because
each component t 7→ aj(t) is convex by Remark 3.5, it follows that for each j = 1, . . . , d,

(3.38) aj(t) ≤ Aj(t), t ∈ [0, 1].

Because EA = DAB(0, 1), we deduce from this the following important nesting property,
which is illustrated in Figure 2 (where for visibility the ellipses at times t = 1

2 and t = 1 are

offset horizontally by b
2 and b respectively).

Proposition 3.8. Given any corresponding elliptical Euler droplet and Wasserstein droplet
that deform one ellipsoid Ω0 = Ea(0) to another Ω1 = Ea(1), the Euler domains remain nested
inside their Wasserstein counterparts, with

(3.39) X(Ω0, t) = Ωt ⊂ Tt(Ω0), t ∈ [0, 1].

Remark 3.9. In terms of the notation of this subsection, the straining flow X associated with
the Euler droplet is given by X(z, t) = Da(t)D

−1
a(0)z in terms of the constant-speed geodesic

a(t) of Proposition 3.4. Due to (3.38), this flow satisfies, for each j = 1, . . . , d and z ∈ Rd,

|Xj(z, t)| =
aj(t)

aj(0)
|zj | ≤

Aj(t)

Aj(0)
|zj | = |Tt(z)j |.
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Ω0 Ω 1
2

Ω1

0
b
2 b

T 1
2
(Ω0)

@@I

Figure 2. Euler droplet (light blue) deforming a circle to an ellipse, nested
inside a Wasserstein droplet (dark orange). Tracks of the center and endpoints
of vertical major axis are indicated for both droplets.

For the nesting property X(Ω̂, t) ⊂ Tt(Ω̂) to hold, convexity of Ω̂ is not sufficient in general.
However, a sufficient condition is that whenever αj ∈ [0, 1] for j = 1, . . . , d,

x = (x1, . . . , xd) ∈ Ω̂ implies Dαx = (α1x1, . . . , αnxn) ∈ Ω̂.

For later use below, we describe how to bound the action for a boosted elliptical Euler
droplet in terms of action for the corresponding boosted elliptical Wasserstein droplet, in the
case when the source and target domains are respectively a ball and translated ellipse:

Lemma 3.10. Given r > 0, â ∈ Rd+ with â1 · · · âd = rd, and b ∈ Rd, let

Ω0 = B(0, r), Ω1 = Eâ + b .

Let a(t), t ∈ [0, 1], be the minimizing geodesic on the surface (3.25) with

a(0) = r̂ = (r, . . . , r), a(1) = â = (â1, . . . , âd) .

Let (Q,φ, p) be the elliptical Euler droplet solution corresponding to the geodesic a, and let Aa
denote the corresponding action. Then

(3.40) dW (1Ω0 ,1Ω1)2 ≤ Aa ≤ dW (1Ω0 ,1Ω1)2 +
λ

4

λ2 ωdr
d+2 ,

where

(3.41) λ = min
âi
r
, λ = max

âi
r
.

Proof. First, consider the transport cost for mapping Ω0 to Ω1. The (constant) velocity of
particle paths starting at x ∈ B(0, r) is

u(x) = (r−1Dâ − I)x+ b,
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and the squared transport cost or action is (substituting x = rz)

dW (1Ω0 ,1Ω1)2 =

∫
B(0,r)

|u(x)|2 dx =
∑
j

∫
B(0,r)

(
âj
r
− 1

)2

z2
j + b2j dz

= ωdr
d

(
|b|2 +

|Ȧ|2

d+ 2

)
,(3.42)

where A(t) = (1− t)r̂ + tâ is the straight-line path from r̂ to â.
The mass density inside the transported ellipsoid Tt(Ω0) is constant in space, given by

ρ(t) = detDT−1
t =

∏
i

r

Ai(t)
=
∏
i

(
1− t+ t

âi
r

)−1

.

Due to Remark 3.7, the corresponding action for the Euler droplet is bounded by that of the
constant-volume path found by dilating the elliptical Wasserstein droplet: Let

γj(t) = ρ(t)1/dAj(t) .

Then the flow St(z) = r−1Dγ(t)z is dilational and volume-preserving (with
∏
j γj(t) ≡ rd) and

has zero mean velocity. The flow z 7→ St(z) + tb takes Ω0 to Ω1, as on Figure 2, with action

Aγ =

∫ 1

0

∫
B(0,r)

∑
j

(
bj +

γ̇jzj
r

)2

dz dt

= ωdr
d

(
|b|2 +

1

d+ 2

∫ 1

0
|γ̇|2 dt

)
.(3.43)

Note that
∑

j(γ̇j/γj)
2 ≤

∑
j(Ȧj/Aj)

2, because

γ̇j
γj

=
Ȧj
Aj

+
ρ̇

dρ
=
Ȧj
Aj
− 1

d

∑
i

Ȧi
Ai
.

Because ρ is convex we have ρ ≤ 1, hence γ2
j ≤ maxA2

i . Thus

(3.44) |γ̇|2 ≤ (maxA2
i )
∑
j

Ȧ2
j

A2
j

≤
(

maxA2
i

minA2
i

)
|Ȧ|2 ≤

(
max â2

i

min â2
i

)
|â− r̂|2 .

Plugging this back into (3.43) and using (3.42), we deduce that

(3.45) Aγ ≤ dW (1Ω0 ,1Ω1)2 +
ωdr

d

d+ 2

(
max â2

i

min â2
i

)
|â− r̂|2 .

With the notation in (3.41), λ and λ respectively are the maximum and minimum eigenvalues
of DTt, and this estimate implies

(3.46) Aa ≤ Aγ ≤ dW (1Ω0 ,1Ω1)2 +
λ

4

λ2 ωdr
d+2 .

�



18 JIAN-GUO LIU, ROBERT L. PEGO AND DEJAN SLEPČEV

3.5. Velocity and pressure estimates. Lastly in this section we provide bounds on the
velocity v = ∇φ and pressure p for the ellipsoidal Euler droplet solutions. Note that because
1/a2

j ≤
∑

i(1/a
2
i ),

0 ≤ p ≤ β̇ ≤ 1

2

∑
j

ȧ2
j ≤

1

2

∫ 1

0
|γ̇|2 dt

Using (3.44) and the notation in (3.41), it follows

(3.47) 0 ≤ p ≤ λ
4

λ2 r
2 .

For the velocity, it suffices to note that in (3.35), |Xj/aj | ≤ 1 hence |Ẋ|2 ≤
∑

j ȧ
2
j . Thus the

same bounds as above apply and we find

(3.48) |∇φ| ≤ λ
4

λ2 r
2.

Finally, for a boosted elliptical Euler droplet, with velocity boosted as in (3.20) by a
constant vector b ∈ Rd, the same pressure bound as above in (3.47) applies, and the same
bound on velocity becomes

(3.49) |∇φ̂− b| ≤ λ
4

λ2 r
2.

4. Euler sprays

Heuristically, an Euler spray is a countable disjoint superposition of solutions of the Euler
droplet equations. Recall that the notation tnΩn means the union of disjoint sets Ωn.

Definition 4.1. An Euler spray is a triple (Q,φ, p), with Q a bounded open subset of
Rd × [0, 1] and φ, p : Q → R, such that there is a sequence {(Qn, φn, pn)}n∈N of smooth
solutions of the Euler droplet equations, such that Q = t∞n=1Qn is a disjoint union of the sets
Qn, and for each n ∈ N, φn = φ|Ωn and pn = p|Ωn.

With each Euler spray that satisfies appropriate bounds we may associate a weak solution
(ρ, v, p) of the Euler system (1.7)-(1.8). The following result is a simple consequence of
the weak formulation in (1.9)-(1.10) together with Proposition 3.3(a) and the dominated
convergence theorem.

Proposition 4.2. Suppose (Q,φ, p) is an Euler spray such that |∇φ|2 and p are integrable
on Q. Then with ρ = 1Q and v = 1Q∇φ and with p extended as zero outside Q, the triple

(ρ, v, p) satisfies the Euler system (1.7)-(1.8) in the sense of distributions on Rd × [0, 1].

Our main goal in this section is to prove Theorem 1.2. The strategy of the proof is simple
to outline: We will approximate the optimal transport map T : Ω0 → Ω1 for the Monge-
Kantorovich distance, up to a null set, by an ‘ellipsoidal transport spray’ built from a countable
collection of ellipsoidal Wasserstein droplets. The spray maps Ω0 to a target Ωε

1 whose shape
distance from Ω1 is as small as desired. Then from the corresponding ellipsoidal Euler droplets
nested inside, we construct the desired Euler spray that connects Ω0 to Ωε

1.
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4.1. Approximating optimal transport by an ellipsoidal transport spray. Heuristi-
cally, an ellipsoidal transport spray is a countable disjoint superposition of transport maps on
ellipsoids, whose particle trajectories do not intersect.

Definition 4.3. An ellipsoidal transport spray on Ω0 is a map S : Ω0 → Rd, such that

Ω0 =
⊔
n∈N

Ωn
0

is a disjoint union of ellipsoids, the restriction of S to Ωn
0 is an ellipsoidal Wasserstein droplet,

and the linear interpolants St defined by

St(z) = (1− t)z + tS(z), z ∈ Ω0,

remain injections for each t ∈ [0, 1].

Proposition 4.4. Let Ω0, Ω1 be a pair of shapes in Rd of equal volume, and let T : Ω0 → Ω1

be the optimal transport map for the Monge-Kantorovich distance with quadratic cost. For
any ε > 0, there is an ellipsoidal transport spray Sε : Ωε

0 → Rd such that

(i) Ωε
0 is a countable union of balls in the non-singular set Ω0 \Σ0 with |Ω0 \Ωε

0| = 0, and

(ii) sup
z∈Ωε0

|T (z)− Sε(z)| < 5

8
εdiam Ω1 .

(iii) The L∞ transportation distance between the uniform distributions on Ωε
1 and Ω1 is

less than 5
8εdiam Ω1.

The proof of this result will comprise the remainder of this subsection. The strategy is as
follows. The set Ωε

0 is chosen to be the union of a suitable Vitali covering of Ω0 a.e. by balls.
The map T is approximated on each ball by an affine map which takes the ball center xi to
(1 + ε)T (xi). The dilation by 1 + ε grants each ellipsoidal image sufficient ‘personal space’ to
ensure the injectivity of the piecewise affine approximation.

4.1.1. Vitali covering. We suppose 0 < ε < 1. The first step in the proof of the proof of
Proposition 4.4 is to produce a suitable Vitali covering of Ω0, up to a null set, by a countable
disjoint union of balls. By a simple tranlation of source and target, if necessary, we may
assume that |T (x)| ≤ 1

2 diam Ω1 for all x ∈ Ω0.
Recall that there is a relatively closed null set Σ0 ⊂ Ω0 such that T = ∇ψ is a smooth

diffeomorphism from Ω0 \ Σ0 to its image. Then for every x ∈ Ω0\Σ0, there exists r(x, ε) ∈
(0, diam Ω1) such that whenever 0 < r < r̄, then B(x, r) ⊂ Ω0\Σ0 and both

(4.1)
ε

4
>

r‖D3ψ‖B(x,r)

λB(x,r)

,
ε

8
>

(
λ

2
B(x,r)

λB(x,r)

r

diam Ω1

)2

,

where λU and λU are defined by (2.11) and ‖D3ψ‖U is defined by (2.13). This follows by
noting that the right-hand sides are continuous functions of r with value 0 when r = 0. The
family of balls

{B(x, r) : x ∈ Ω0\Σ0, 0 < r < r(x, ε)}
forms a Vitali cover of Ω0\Σ0. Therefore, by Vitali’s covering theorem [19, Theorem III.12.3],
there is a countable family of mutually disjoint balls B(xi, ri), with xi ∈ Ω0\Σ0 and 0 < ri <
r(xi, ε), such that

|(Ω0\Σ0)\ ∪i∈N B(xi, ri)| = 0 .



20 JIAN-GUO LIU, ROBERT L. PEGO AND DEJAN SLEPČEV

We let

(4.2) Ωε
0 =

⋃
i∈N

Bi , Bi = B(xi, ri).

For further use below, we note that λi ≤ 1 ≤ λi for all i, where

(4.3) λi = λB(xi,ri) , λi = λB(xi,ri) , i ∈ N.

We observe that from (4.1) follows

(4.4) ‖D3ψ‖Bi ri <
ε

4
λi .

4.1.2. An approximating ellipsoidal transport spray. We shall approximate the optimal trans-
port map T on Ωε

0 through linear approximation on each ball Bi, combined with a homothetic
expansion of the ball centers to maintain injectivity.

For each i ∈ N, we denote the linear approximation to T on Bi by

(4.5) Ai(x) = T (xi) +DT (xi)(x− xi).
Then we define Sε : Ωε

0 → Rd by setting, whenever x ∈ Bi,

(4.6) Sε(x) = (1 + ε)T (xi) +DT (xi)(x− xi) = Ai(x) + εT (xi) .

Because each Bi is a ball and DT (xi) = Hessψ(xi) whose determinant is 1, the affine map
Ai is an ellipsoidal Wasserstein droplet, so the same is true for the restriction of Sε to Bi.

For every x ∈ Bi, note that we have the estimate by Taylor’s theorem

|T (x)− Sε(x)| ≤ |T (x)−Ai(x)|+ ε|T (xi)|

≤ 1

2
‖D3ψ‖Bir2

i +
ε

2
diam Ω1

≤ 1

8
ελiri +

ε

2
diam Ω1 <

5

8
εdiam Ω1 .(4.7)

In order to show that Sε is an ellipsoidal transport spray and complete the proof of Proposi-
tion 4.4, it remains to show that the interpolants Sεt defined as in Definition 4.3 are injections
for each t ∈ [0, 1].

Lemma 4.5 (Injectivity of interpolants). For each t ∈ [0, 1], the interpolant Sεt = (1−t)I+tSε

is an injection. Its image is a union of the disjoint ellipsoids Sεt (Bi), i ∈ N, separated according
to

(4.8) dist(Sεt (Bi), S
ε
t (Bj)) ≥

εt

4
(λiri + λjrj), i 6= j.

Proof. Step 1. Fix t ∈ [0, 1]. For each k ∈ N, define

Akt = (1− t)I + tAk, zk = Tt(xk), Ek = Akt (Bk),

and note Sεt = Akt + εtT (xk) on Bk. We first identify controlled ‘central’ subsets Ck of the
ellipsoids Ek. Note that z = Akt (x) if and only if

(4.9) z − zk = DTt(xk)(x− xk).
If |z − zk| < 1

2λkrk then |x − xk| < 1
2rk due to (2.12). Further, if ẑ = Akt (x̂) /∈ Ek then

|x̂− xk| ≥ rk and thus |x̂− x| > 1
2rk and

|z − ẑ| = |DTt(xk)(x− x̂)| > 1

2
λkrk .
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Now let us define

(4.10) δk = ‖D2Tt‖Bkr
2
k = t‖D3ψ‖Bkr

2
k ,

and put

(4.11) Ck = {z ∈ Ek : dist(z, ∂Ek) ≥ δk} .

We deduce from (4.4) that

(4.12) δk <
εt

4
λkrk <

1

4
λkrk ,

and we infer from the estimate on |z − ẑ| above that

(4.13) B

(
zk,

1

2
λkrk

)
⊂ Ck .

Thus the set Ck is nonempty, and it is convex since it is the intersection of a family of closed
half-spaces. Note that

(4.14) dist(z, Ck) ≤ δk for all z ∈ Ek.

We claim that Ck is contained in Tt(Bk). First we show that Ck does not intersect ∂Tt(Bk).
For by (2.14), z ∈ Ck and x ∈ ∂Bk imply Akt (x) ∈ ∂Ek and

|z − Tt(x)| ≥ |z −Akt (x)| − |Akt (x)− Tt(x)| ≥ δk −
1

2
δk > 0 .

Thus z /∈ ∂Tt(Bk). Now, by a path-continuation argument passing from Tt(xk) to z along a
ray, it follows Ck ⊂ Tt(Bk).

Step 2. Let i 6= j. We estimate the overlap of the ellipsoids Ei = Ait(Bi) and Ej = Ajt (Bj)
in a suitable direction. Note that because Tt(Bi) is disjoint from Tt(Bj), there is a hyperplane
H that separates the disjoint convex sets Ci and Cj . Let Hi be the open half-space bounded

by H containing zi = Tt(xi); then Hj := Rd\(Hi ∪H) contains zj = Tt(xj). Let ν be the unit
normal to H pointing from Hi to Hj .

Because Ci ⊂ Hi, by (4.14) we have

(4.15) Ei = Ait(Bi) ⊂ Hi + δiν , Ej = Ajt (Bj) ⊂ Hj − δjν .

Step 3. Finally, we prove the injectivity of Sεt . Note that

Sεt (Bi) ⊂ Hi + δiν + εtT (xi) ,(4.16)

Sεt (Bj) ⊂ Hj − δjν + εtT (xi) + εt(T (xj)− T (xi))

= Hj − δjν + εtT (xi) + εtν ν · (T (xj)− T (xi)) .(4.17)

Let zH be the point of intersection of the hyperplane H with the line passing through zi and
zj . Then due to (4.13), necessarily we have

(4.18)
1

2
λiri ≤ ν · (zH − zi) ,

1

2
λjrj ≤ ν · (zj − zH) ,

Multiply these inequalities by εt, add them and substitute into (4.17). Using (4.12) we deduce

(4.19) Sεt (Bj) ⊂ Hj + δiν + εtzi + ν
εt

4
(λiri + λjrj) .

Therefore it follows that Sεt (Bi) and Sεt (Bj) belong to distinct hyperplanes and are separated
by the distance asserted in the Lemma. �
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This completes the proof of parts (i) and (ii) of Proposition 4.4. For part (iii), we note that
the set Ωε

0 = (Sε)−1(Ωε
1) has full measure in Ω0 \Σ0, and T is a smooth diffeomorphism from

this set to Ω1 \Σ1 so maps null sets to null sets. It follows T ◦ (Sε)−1 maps Ωε
0 to a set of full

measure in Ω1, satisfies

sup
x∈Ωε1

|T ◦ (Sε)−1(x)− x| < 5

8
εdiam Ω1,

and pushes forward uniform measure to uniform measure. The result claimed in part (iii)
follows.

4.2. Action estimate for Euler spray. Each of the ellipsoidal Wasserstein droplets that
make up the ellipsoidal transport spray Sε is associated with a boosted ellipsoidal Euler droplet
nested inside, due to the nesting property in Proposition 3.8. The disjoint superposition of
these Euler droplets make up an Euler spray that deforms Ωε

0 to the same set Ωε
1.

In order to complete the proof of Theorem 1.2, it remains to bound the action of this
Euler spray in terms of the Wasserstein distance between the uniform measures on Ω0 and
Ω1. Toward this goal, we first note that because the maps T and Sε are volume-preserving,
due to the estimate in part (ii) of Proposition 4.4 we have

dW (T (Bi), S
ε(Bi))

2 ≤
(

5ε

8
K1

)2

|Bi| , K1 = diam Ω1.

(One obtains this by bounding the transport cost of straight-line motion from T (z) to Sε(z)
using the Lagrangian form of the action in (3.6).) Now by the triangle inequality,

dW (Bi, S
ε(Bi))

2 ≤
(
dW (Bi, T (Bi)) +

5

8
εK1|Bi|1/2

)2

≤ dW (Bi, T (Bi))
2(1 + ε) + 2ε

(
5

8
K1

)2

|Bi|(4.20)

Recall that by inequality (3.40) of Lemma 3.10, the action of the ith ellipsoidal Euler
droplet, denoted by Ai, satisfies

Ai ≤ dW (Bi, S
ε(Bi))

2 +
λ

4
i

λ2
i

r2
i |Bi|

≤ dW (Bi, T (Bi))
2(1 + ε) + εK2

1 |Bi| ,(4.21)

where we make use of the second constraint in (4.1).
By summing over all i, we obtain the required bound,

Aε =
∑
i

Ai ≤ dW (1Ω0 ,1Ω1)2 +Kε

where

K = dW (1Ω0 ,1Ω1)2 + |Ω0|(diam Ω1)2.

This concludes the proof of Theorem 1.2.
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4.3. Displacement interpolants as weak limits. Next we supply the proof of Theo-
rem 1.3. First we describe the bounds on pressure and velocity that come from the con-
struction of the Euler sprays constructed above, for any given ε ∈ (0, 1).

Lemma 4.6. Let (Qε, φε, pε), 0 < ε < 1, denote the Euler sprays constructed in the proof of
Theorem 1.2, and let Xε : Ωε

0 × [0, 1]→ Rd denote the associated flow maps, which satisfy

Ẋε(z, t) = ∇φε(Xε(z, t), t), (z, t) ∈ Ωε
0 × [0, 1],

with Xε(z, 0) = z. Then for some K̂ > 0 independent of ε, we have

(4.22) 0 ≤ pε(x, t) ≤ K̂ε
for all (x, t) ∈ Qε, and

(4.23) |Xε(z, t)− Tt(z)|+ |Ẋε(z, t)− Ṫt(z)| ≤ K̂
√
ε

for all (z, t) ∈ Ωε
0× [0, 1], where (z, t) 7→ Tt(z) is the flow map from (2.1) for the Wasserstein

geodesic.

Proof. By the pressure bound for individual droplets in (3.47) together with the second con-
dition in (4.1), we have the pointwise bound

(4.24) 0 ≤ pε ≤ K0ε , K0 =
1

8
K2

1 .

Next consider the velocity. The boosted elliptical Euler droplet that transports Bi to Sε(Bi)
is translated by xi, and boosted by the vector

(4.25) bi := (1 + ε)T (xi)− xi = Ṫt(xi) + εT (xi) .

In this “ith droplet,” the velocity satisfies, by the estimate (3.49),

(4.26) |∇φε − bi| = |vε − bi| ≤ K0ε .

Now the particle velocity for the Euler spray compares to that of the Wasserstein geodesic
according to

|Ẋε(z, t)− Ṫt(z)| ≤ |Ẋε − bi|+ |bi − Ṫt(z)|
≤ K0ε+ ε|T (xi)|+ ri max

j
|λj(z)− 1|

≤ K0ε+K1ε+
√
K0ε ≤ K2

√
ε .(4.27)

(Here λj(z) denote the eigenvalues of DT (z) = ∇ψ(z), and we use the fact that |λj(z)−1| ≤ λi
together with (4.1).) Upon integration in time we obtain both bounds in (4.23). �

Proof of Theorem 1.3. Now, let (ρ, v) be the density and velocity of the particle paths for the

Wasserstein geodesic, from (2.5) and (2.3). To prove ρε
?−⇀ ρ weak-? in L∞, it suffices to show

that as ε→ 0,

(4.28)

∫ 1

0

∫
Rd

(ρε − ρ)q dx dt→ 0 ,

for every smooth test functions q ∈ C∞c (Rd × [0, 1],R). Changing to Lagrangian variables
using Xε for the term with ρε = 1Qε and Tt for the term with ρ, the left-hand side becomes

(4.29)

∫ 1

0

∫
Ω0

(q(Xε(z, t), t)− q(Tt(z), t)) dz dt .

Evidently this does approach zero as ε→ 0, due to (4.23).
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Next, we claim ρεvε
?−⇀ ρv weak-? in L∞. Because these quantities are uniformly bounded,

it suffices to show that as ε→ 0,

(4.30)

∫ 1

0

∫
Rd

(ρεvε − ρv) · ṽ dx dt→ 0

for each ṽ ∈ C∞c (Rd × [0, 1],Rd). Changing variables in the same way, the left-hand side
becomes

(4.31)

∫ 1

0

∫
Ω0

(
Ẋε(z, t) · ṽ(Xε(z, t), t)− Ṫt(z) · ṽ(Tt(z), t)

)
dz dt .

But because ṽ is smooth and due to the bounds in (4.23), this also tends to zero as ε→ 0.

It remains to prove ρεvε⊗vε ?−⇀ ρv⊗v weak-? in L∞. Considering the terms componentwise,
the proof is extremely similar to the previous steps. This finishes the proof of Theorem 1.3. �

Remark 4.7. In [24] the authors introduced a way to measure differences between functions
defined with respect to different measures, which extends the notion of Lp convergence. The
associated metric on the space of ordered pairs (µ, g) where µ is a probability measure and
g ∈ Lp(µ) is the TLp metric: For 1 ≤ p <∞,

dTLp((µ0, g0), (µ1, g1)) = inf
π∈Π(µ0,µ1)

∫∫
|x− y|p + |g0(x)− g1(y)|pdπ(x, y)

and
dTL∞((µ0, g0), (µ1, g1)) = inf

π∈Π(µ0,µ1)
ess sup

π
(|x− y|+ |g0(x)− g0(y)|)

where Π(µ0, µ1) is the set of transportation plans between µ0 and µ1.
From Lemma 4.6 follows that for 1 ≤ p ≤ ∞,

(4.32) (ρε, vε)
TLp−−→ (ρ, v) and (ρε, vε ⊗ vε)

TLp−−→ (ρ, v ⊗ v)

as ε→ 0, uniformly for t ∈ [0, 1]. Namely, using the transport plan given in terms of the map
Tt by

π = (Xε( · , t)× Tt)]ρ0 ,

the estimate (4.23) implies that for π-a.e. (x, y),

|x− y|+ |vε(x, t)− v(y, t)| ≤ K̂
√
ε

for all t ∈ [0, 1]. This implies a somewhat stronger convergence of approximate velocities to v
than was used in the proof of Theorem 1.3 above.

5. Smooth sprays and shape distance between open sets

Our main goal in this section is to prove Theorem 1.1. We first treat the case when both
Ω0 and Ω1 are bounded open sets (in subsections 5.1 and 5.2). This will be done by con-
structing a collection of paths of shape densities connecting the source Ω0 to the exact target
Ω1, which approximate Wasserstein geodesics in some sense. The key idea is to decompose
Ω0 as a countable collection of ‘microdroplets,’ and transport them separately by smooth in-
compressible flows to their targets under the Brenier map T . That this can be done without
overlaps is due to the fact that the displacement interpolants Tt expand volume.

Let us say that a path of shape densities ρ = (ρt)t∈[0,1] is smooth if the support of ρt is a
set with smooth boundary for each t and ρ is transported by a velocity field v that is smooth
on the support of ρ. Heuristically, a smooth spray is a countable disjoint superposition of
smooth paths of shape densities.
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Definition 5.1. A smooth spray is a path of shape densities ρ = (ρt)t∈[0,1] which is a disjoint
superposition of a countable collection of smooth paths of shape densities ρn = (ρnt )t∈[0,1],
satisfying

ρ =
∑
n

ρn a.e.

We note that, by superposition, if ρn is transported by velocity field un for each n, then ρ
is transported by the velocity field u =

∑
n u

n if ρu is integrable.

Theorem 5.2. Let Ω0, Ω1 be open shapes in Rd of equal volume. For any ε > 0, there exists
a smooth spray ρ = (ρt) connecting ρ0 = 1Ω0 to ρ1 = 1Ω1, which is transported by a velocity
field u satisfying

(5.1) dw(1Ω0 ,1Ω1)2 ≤
∫ 1

0

∫
Rd
ρ|u|2 dx dt ≤ dw(1Ω0 ,1Ω1)2 + ε.

The conclusion of Theorem 1.1 in case Ω0 and Ω1 are open follows as a direct consequence of
Theorem 5.2. Note that the path of measures t 7→ σt = ρt dx is necessarily weak-? continuous,
as a consequence of [2, Theorem 8.3.1].

5.1. Incompressible deformation of balls. Let T = ∇ψ be the optimal transport map
between Ω0 and Ω1 as before. Our first goal is to produce, for any given open ball O0 =
B(x0, r) with compact closure in the regular set Ω0\Σ0 of T , an incompressible velocity field
u that deforms this ball exactly onto its image T (O0). For small enough r, the cost will be
close to the Wasserstein optimal cost, and the incompressible flow will keep the ball inside its
image under the displacement interpolant.

Let v0(x) = T (x)−x be the (constant) velocity along the Wasserstein particle path starting
at x, given by the displacement interpolant

Tt(x) = x+ tv0(x) .

As a preliminary step, we dilate the image Tt(O0) about the point Tt(x0) to maintain constant
volume. After that we adjust the velocity field to obtain an incompressible flow. Define a
‘shrunken’ flow map for x ∈ O0 by

(5.2) St(x) = a(t)Tt(x) + (1− a(t))Tt(x0) , a(t) =

(
|Tt(O0)|
|O0|

)−1/d

.

The image Ot = St(O0) has constant volume |Ot| = |O0|. Note that a(0) = a(1) = 1, and
0 < a(t) ≤ 1 for all t ∈ [0, 1], because

|Tt(O0)| =
∫
Tt(O0)

dz =

∫
O0

1

ρ(Tt(x), t)
dx ≥ |O0|.

The map (x, t) 7→ St(x) is smooth in the space-time domain Q̄ where

Q =
⋃

t∈[0,1]

Ot × {t} ⊂ Rd × [0, 1].

Figure 3 illustrates the volume preserving path from a single ball O0 to its image T (O0) = O1,
with a snapshot of Tt(O0) and Ot = St(O0) at t = 1

2 .
The Eulerian velocity field associated with St is given by

(5.3) w(St(x), t) =
d

dt
St(x) .
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O0
O 1

2

O1

T 1
2
(O0)

x0
T 1

2
(x0) T1(x0)

Figure 3. Illustration of the volume preserving flow from a ball O0, centered
at x0, to its image under the transport map, T (O0) = O1. Slices at t = 0, 1

2 ,
and 1 are shown in light blue. The domain at time t, Ot is obtained by the
dilating the displacement interpolant Tt(O0) (shown in dark orange) about
Tt(x0). (Dilation is enhanced to improve visibility.)

This velocity field need not be divergence-free. We find a divergence-free velocity field whose
flow map induces the same family of images Ot by setting

u = ∇φ

where

(5.4) ∆φ = 0 in Ot , ∇φ · ν = w · ν on ∂Ot .

Note that compatibiility holds:
∫
∂Ot

w · ν = (d/dt)|Ot| = 0, so a zero-mean solution φ to this

boundary-value problem exists, and provides a smooth function on Q̄.
For use below, we note that w is a spatial gradient: Writing z0(t) = (1 − a(t))Tt(x0), we

have

w(St(x), t) = a′Tt(x) + av(Tt(x), t) + z′0(t)

whence it follows that with z = St(x),

(5.5) w(z, t) =
a′

a
(z − z0) + a v

(
z − z0

a
, t

)
+ z′0

Due to 2.9, evidently this is spatially a gradient.
Recalling that Oo = B(x0, r), for simplicity we write

(5.6) λr = λO0
, λr = λO0 ,

where λU and λU are defined in (2.11).

Proposition 5.3. Let x0 ∈ Ω0\Σ0 and r ∈ (0, 1) such that O0 := B(x0, r) has compact
closure in Ω0\Σ0. Then, with Ot = St(O0) and u determined as above, the path in the space
of measures given by

t 7→ σt , dσt = 1Otdx ,

is absolutely continuous, the vector field u is smooth on Q̄, and we have

∂tσ +∇ · (σu) = 0, ∇ · u = 0 ,

and for all t ∈ [0, 1],

(5.7)

∫
Ot

|u(y, t)− v0(x0)|2dy ≤ C(λr, λr) r
d+2 ,
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and

(5.8)

∫
Ot

|u(y, t)|2dy ≤ (1 + r)

∫
O0

|v0(x)|2dx+ C(λr, λr) r
d+1.

Furthermore, Ot ⊆ Tt(O0) for all t ∈ [0, 1], provided r > 0 is so small that

(5.9) r‖D3ψ‖B(x0,r) < λr.

The proof of this proposition is broken into several lemmas, and will be concluded at the
end of this subsection. We begin with a few basic notions and estimates.

Below, given O0 = B(x0, r) ⊂ Ω0\Σ0 we will write

Ut = Tt(O0).

Recall Tt = ∇ψt in terms of the corresponding transportation potential

ψt(x) = (1− t) |x|
2

2
+ tψ(x) .

Note that the eigenvalues of Hessψt on O0 are bounded by λr and λr respectively from below
and above. For all y ∈ O0, t ∈ [0, 1] and z ∈ Rd,

(5.10) λr|z| ≤ |DTt(y)z| ≤ λr|z| .

Lemma 5.4. The divergence of the velocity w in (5.3) is uniformly bounded, with

(5.11) sup
t∈[0,1]

sup
Ot

|∇ · w| ≤ C = C(λr, λr).

Moreover

(5.12) |w(St(x), t)− v0(x0)| ≤ Cλr r .

Proof. After recalling that

v(Tt(x), t) =
d

dt
Tt(x) = v0(x),

we can write

w(St(x), t) = v0(x0) + a(t)(v0(x)− v0(x0)) + a′(t)(Tt(x)− Tt(x0)) .

Noting Tt(x)− Tt(x0) = (St(x)− St(x0))/a(t) and changing to Eulerian variables z = St(x),
because ∇ · z = d we find that the Eulerian divergence

∇ · w = ∇ · v(Tt(x), t) +
a′(t)d

a(t)
= − d

dt
log(ρ|Ut|)(5.13)

due to Eq. (2.7) and the definition of a(t). From (2.7) we have the bound∣∣∣∣1ρ dρdt
∣∣∣∣ ≤ dmax

(
1− λr
λr

, λr − 1

)
=: C1 .

Because

(5.14) |Ut| =
∫
O0

1

ρ(Tt(x), t)
dx ,

we have ∣∣∣∣a′(t)da(t)

∣∣∣∣ =
1

|Ut|

∣∣∣∣ ddt |Ut|
∣∣∣∣ ≤ 1

|Ut|

∫
O0

1

ρ

∣∣∣∣1ρ dρdt
∣∣∣∣ dx ≤ C1 .(5.15)

Hence |∇ · w| ≤ 2C1.
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Clearly

(5.16) |v0(x)− v0(x0)| ≤ λrr .

Because |a′d/a| ≤ C1 and a ≤ 1, by (5.10) we infer (5.12). �

Lemma 5.5. Let u = ∇φ be determined from w by (5.4). Then

(5.17)

∫
Ot

|u− w|2dx ≤ C(λr, λr)r
d+2 ,

and

(5.18) ‖u‖Ot :=

(∫
Ot

|u|2dx
)1/2

≤ ‖w‖Ot + C(λr, λr)r
(d+2)/2.

Proof. Recall from (5.5) that for fixed t, w is a spatial gradient, which we write as w = ∇p
for simplicity. Let q = φ− p (with φ from (5.4)) have zero mean. Then q ∈ H1(Ot) satisfies

(5.19) ∆q = −∇ · w in Ot, ∇q · ν = 0 on ∂Ot.

We now estimate ∇q = u− w using (5.11) and the Poincaré inequality (5.21) in the Lemma
below, finding that ∫

Ot

|∇q|2dx = −
∫
Ot

q∆q dx =

∫
Ot

q(∇ · w) dx

≤
(∫

Ot

q2dx

)1/2(∫
Ot

(∇ · w)2

)1/2

≤ C(λr, λr)r

(∫
Ot

|∇q|2dx
)1/2

rd/2.

Therefore

(5.20)

∫
Ot

|∇q|2dx ≤ C(λr, λr) r
d+2.

This yields the bound (5.17), and (5.18) follows directly. �

Lemma 5.6. There exists C = C(λr) such that for all t ∈ [0, 1] and all g ∈ H1(Ot) with
mean ḡ,

(5.21)

∫
Ot

|g − ḡ|2dx ≤ Cr2

∫
Ot

|∇g|2dx.

Proof. Let g ∈ H1(Ot) ∩ C∞(Ot) and let f = g ◦ Tt. Then for x ∈ O0 = B(x0, r),

∇f(x) = DTt(x)∇g(Tt(x)),

and thus by (5.10) for y = Tt(x)

|∇g(y)| = |DTt(x)−1∇f(x)| ≥ (λr)
−1|∇f(x)|.
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Let us also recall from (2.5) that 1 ≤ detDTt(x) ≤ λ
d
r . Therefore by the usual Poincaré

inequality on B(x0, r),∫
Ot

|∇g(y)|2dy =

∫
B(x0,r)

|DTt(x)−1∇f(x)|2 detDTt(x) dx

≥ (λr)
−2

∫
B(x0,r)

|∇f(x)|2dx

≥ r−2(λr)
−2

∫
B(x0,r)

|f(x)− f̄ |2dx

≥ r−2(λr)
−d−2

∫
Ot

|g(y)− f̄ |2dy

≥ r−2(λr)
−d−2

∫
Ot

|g(y)− ḡ|2dy .

�

Proof of the Proposition. Note ∇ · u = 0 and u · ν = w · ν on ∂Ot. Thus ∂tσ +∇ · (σu) = 0.
The inequality (5.7) follows by the triangle inequality from (5.17) and (5.12). Using (5.12)

and (5.16) and the fact that |Ot| = |O0| = ωdr
d, we find

‖w‖Ot ≤ ‖v0(x0)‖O0 + Cr|O0|1/2 ≤ ‖v0‖O0 + Cr1+d/2 .

Using this in (5.18), because Cαr1+d/2 ≤ α2r + 4C2rd+1, the desired inequality (5.8) follows
after squaring.

We now prove that for each x0 fixed, if r > 0 is small enough, then

Ot = St(O0) ⊆ Ut = Tt(O0)

for all t ∈ [0, 1]. Because a(t) ∈ (0, 1], It suffices to show that Ut is star-shaped about Tt(x0).
Because Tt is a diffeomorphism on a neighborhood of Ō0, for this it suffices to show that for
each boundary point x ∈ ∂O0,

α(x) := (Tt(x)− Tt(x0)) · ν(x) > 0 ,

where ν(x) is the outside unit normal to ∂Ut at Tt(x). (For, when moving away from Tt(x0)
along any ray, one must then leave Ut at any boundary point encountered, and cannot re-
enter.) Note that α(x) > 0 at points where |Tt(x) − Tt(x0)| is maximized, because ν(x) is
parallel to Tt(x)−Tt(x0). Thus, to show α(x) > 0 everywhere it suffices to show that α(x) 6= 0
on ∂Ut.

Suppose instead α(x) = 0 where |x− x0| = r. Then the vector Tt(x)− Tt(x0) is tangent to
∂Ut, and there must exist a tangent vector z to ∂O0 at x such that

DTt(x)z = Tt(x)− Tt(x0) = (DTt(x) + E(x))(x− x0),

where E(x) (=
∫ 1

0 (DTt(xτ )−DTt(x)) dτ with xτ = x0 + τ(x− x0)) satisfies the bound

|E(x)| ≤Mr|x− x0|, Mr = ‖D3ψ‖B(x0,r) .

Now z ⊥ x− x0, so r = |x− x0| ≤ |x− x0 − z|, and we infer by (5.10) that

λrr ≤ |DTt(x)(x− x0 − z)| ≤Mrr
2

hence Mrr/λr ≥ 1. But this contradicts the stated condition. �
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5.2. Proof of Theorem 5.2.

Proof. Let ε > 0 and D = dw(1Ω0 ,1Ω1)2. We can assume that D > 0. For any x0 ∈ Ω0\Σ0 let
r̄(x0) > 0 be small enough for condition (5.9) of the Proposition to hold. Let 0 < r0(x, ε) <
r̄(x) be such that

(5.22) r0(x, ε) ≤ min

{
1

D + 1
,

ωd

|Ω0|C(λr̄, λr̄)

}
ε

2
.

By the Vitali covering theorem, there is a countable family of disjoint balls B(xi, ri) contained
in Ω0\Σ0 such that ri < r0(xi, ε) and

|(Ω0\Σ0)\ ∪∞i=1 B(xi, ri)| = 0 .

Let Oxi,t be the sets constructed in Proposition 5.3 corresponding to x0 = xi, r = ri, and let
uxi be the corresponding divergence-free velocity field described in Proposition 5.3. Then let

Ot =
⋃
i∈N

Oxi,t , ρt = 1Ot , u =
∞∑
i=1

uxi1Oxi,t .

Because ρu = u dx, the continuity equation for ρ holds by linearity.
To prove (5.1) we note that the first inequality follows form the characterization of Wasser-

stein distance by Benamou and Brenier [4]. To obtain the second inequality we estimate using
Proposition 5.3 ∫ 1

0

∫
Ot

|u(y, t)|2dy dt =
∞∑
i=1

∫ 1

0

∫
Oxi,t

|u(y, t)|2dy dt(5.23)

≤ (1 + max
i
ri)

∫
Ω0

|v0(x)|2dx+
∞∑
i=1

C(λr̄(xi), λr̄(xi)) r
d+1
i

≤ D +
ε

2
+
ε

2
.

It follows that the path t 7→ ρt is a smooth spray transported by the velocity field u satisfying
(5.1), as claimed. �

5.3. Shape distance for arbitrary measurable shapes. Our objective in this subsection
is to finish the proof of Theorem 1.1 by treating the case when Ω0 and Ω1 are arbitrary
bounded measurable sets with positive, equal volume. It will suffice to treat the case when
one of sets, say Ω0, is open.

Lemma 5.7. Let Ω1 be a bounded measurable set. There is a sequence of uniformly bounded
open sets Ω̂k, k = 1, 2, . . ., such that the volume |Ω̂k| = |Ω1| for all k and dW (1Ω̂k

,1Ω1) → 0

as k →∞.

Proof of Theorem 1.1. We postpone the proof of this lemma and first finish the proof of
Theorem 1.1. Let ε ∈ (0, 1

2) and put ρ0 = 1Ω0 , ρ1 = 1Ω1 . Using Lemma 5.7 and passing to a
subsequence, writing ρ̂k = 1Ω̂k

we may assume that

dW (ρ̂k, ρ1) < ε2−k−1 , k = 1, 2, . . . ,

so that dW (ρ̂k, ρ̂k+1) < ε2−k for k = 1, 2, . . ..
Concatenation of paths. We will construct a path of shape densities ρ = (ρt)t∈[0,1] connect-

ing ρ0 to ρ1 by concatenating smooth sprays that connect ρ̂k to ρ̂k+1 for k = 0, 1, . . ..
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For k = 0, 1, . . ., let ρk = (ρkt )t∈[0,1] be a smooth spray as given by Theorem 5.2 that

connects ρ̂k to ρ̂k+1, with vk the corresponding velocity field, such that

(5.24)

∫ 1

0

∫
Rd
ρ0
t |v0|2 dx dt ≤ dW (ρ0, ρ̂1)2 + ε,

and for k = 1, 2, . . .,

(5.25)

∫ 1

0

∫
Rd
ρkt |vk|2 dx dt ≤ dW (ρ̂k, ρ̂k+1)2 + (ε2−k−1)2 < (ε2−k)2.

Now, for k = 1, 2 . . . , let τk = ε2−k, so
∑

k≥1 τk = ε. Put τ0 = 1− ε, and

t0 = 0, tk+1 = tk + τk for k ≥ 0.

Define ρt and v(·, t) for t ∈ [0, 1] by setting ρt for t ∈ [tk, tk+1) as

ρt = ρks , v(·, t) = τ−1
k vk(·, s) for t = tk + sτk, s ∈ [0, 1).

Evidently we have t 7→ ρt continuous with respect to Wasserstein distance on [0, 1], which
implies weak-? continuity [45, Thm. 7.12]. Moreover, ρt is transported by the velocity field v,
satisfying the continuity equation, and∫ 1

0

∫
Rd
ρt|v|2 dx dt =

∞∑
k=0

∫ tk+1

tk

∫
Rd
ρt|v|2 dx dt

=
∞∑
k=0

∫ 1

0

∫
Rd
ρks |vk|2 dx ds τ−1

k

≤ (dW (ρ0, ρ̂1)2 + ε)τ−1
0 +

∞∑
k=1

(ε2−k)2τ−1
k

≤ dW (ρ0, ρ1)2 +Kε.(5.26)

This completes the proof of Theorem 1.1. �

Proof of Lemma 5.7. We recall that weak-? convergence of probability measures supported in
a fixed compact set is equivalent to convergence in Wasserstein distance. Given Ω1 bounded
and (Lebesgue) measurable, due to outer regularity there is a sequence of uniformly bounded

open sets Ok ⊃ Ω1 such that |Ok \ Ω1| → 0. We define Ω̂k by dilation:

Ω̂k = Okck, ck =
|Ω1|1/d

|Ok|1/d
.

Then |Ω̂k| = 1 for all k, ck → 1, and the characteristic functions ρ̂k = 1Ω̂k
converge weak-?

to ρ1 = 1Ω1 , because for any continuous test function f on Rd, as k →∞ we have∫
Ω̂k

f(x) dx =

∫
Ok

f(cky) dy cdk →
∫

Ω1

f(y) dy.

�
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6. Relaxed least-action principles for two-fluid incompressible flow and
displacement interpolation

In a series of papers that includes [5, 7, 8, 9, 10, 11], Brenier studied Arnold’s least-action
principles for incompressible Euler flows by introducing relaxed versions that involve con-
vex minimization problems, for which duality principles yield information about minimizers
and/or minimizing sequences.

In this section, we describe a simple variant of Brenier’s theories that provides a relaxed
least-action principle for a two-fluid incompressible flow in which one fluid can be taken as
vacuum. For this degenerate case we show that the displacement interpolant (Wasserstein
geodesic) provides the unique minimizer. Moreover, the ‘incompressible transport sprays’ that
we constructed in section 5 provide a minimizing sequence for the relaxed problem.

We remark that Lopes Filho et al. [32] studied a variant of Brenier’s relaxed least-action
principles for variable density incompressible flows. As we indicate below, their formulation
is closely related to ours, but it requires fluid density to be positive everywhere.

6.1. Kinetic energy and least-action principle for two fluids. We recall that a key idea
behind Brenier’s work is that kinetic energy can be reformulated in terms of convex duality,
based on the idea that kinetic energy is a jointly convex function of density and momentum.
In order to handle possible vacuum, we extend this idea in the following way. Let %̂ ≥ 0 be a
constant (representing the density of one fluid). We define K̂%̂ as the Legendre transform of
the indicator function of the paraboloid

(6.1) P%̂ = {(a, b) ∈ R× Rd : a+
1

2
%̂|b|2 ≤ 0},

given for (x, y) ∈ R× Rd by

(6.2) K̂%̂(x, y) = sup
(a,b)∈Pρ̂

ax+ b · y.

We find the following.

Lemma 6.1. Let %̂ ≥ 0 and define K̂ by (6.2). Then K̂%̂ is convex, and

(6.3) K̂%̂(x, y) =


1

2

|y|2

%̂x
if y 6= 0 and %̂x > 0,

0 if y = 0 and x ≥ 0,

+∞ else.

In case %̂ > 0, we have the scaling property

(6.4) K̂%̂(%̂x, %̂y) = K̂1(x, y).

The proof of this lemma is a straightforward calculation based on cases that we leave to the
reader. We emphasize that %̂ = 0 is allowed. Indeed, for %̂ = 0, K̂0 reduces to the indicator
function for the closed half-line

{(x, y) : y = 0, x ≥ 0}.

Suppose c ∈ R represents the ‘concentration’ of one fluid and m ∈ Rd represents the
‘momentum’ of this fluid, at some point in the flow. If K̂%̂(c,m) < +∞, then c ≥ 0 and

m = %̂cv for some ‘velocity’ v ∈ Rd which satisfies

(6.5) K̂%̂(c,m) =
1

2
%̂c|v|2.
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Next we begin to describe our relaxed least-action principle for two-fluid incompressible
flow. Consider fluid flow inside a large box for unit time, with

Ω = [−L,L]d , Q = Ω× [0, 1] .

Let %̂i, i = 0, 1, be constants representing the densities of two fluids, with %̂1 > %̂0 ≥ 0. (More
fluids could be considered, but we have no reason to do so at this point.) Next we let ci(x, t),
i = 0, 1, represent the concentration of fluid i at the point (x, t) ∈ Q. For classical flows, the
fluids should occupy non-overlapping regions of space-time, meaning that the concentrations
are characteristic functions ci = 1Qi with

(6.6) Qi =
⋃

t∈[0,1]

Ωi,t × {t} , Q =
⊔
i

Qi .

The requirement ci(x, t) ∈ {0, 1} will be relaxed, however, to the requirement ci(x, t) ∈ [0, 1].
This provides a convex restriction that heuristically allows ‘mixtures’ to form (by taking weak
limits, say).

Writing mi(x, t) for the momentum of fluid i at (x, t) ∈ Q, the action to be minimized is
the total kinetic energy

(6.7) K(c,m) =
∑
i

∫
Q
K̂%̂i(ci,mi) dx dt ,

subject to three types of constraints—incompressibility, transport that conserves the total
mass of each fluid, and endpoint conditions. We require

(6.8)
∑
i

ci = 1 a.e. in Q,

(6.9) %̂i∂tci +∇ ·mi = 0 in Q for all i,

(6.10)
d

dt

∫
Ω
%̂ici = 0 for t ∈ [0, 1] for all i,

and fixed endpoint conditions at t = 0, 1:

(6.11) ci(x, 0) = 1Ωi,0 ci(x, 1) = 1Ωi,1 ,

where Ωi,0, Ωi,1 are prescribed for each i.
These constraints are more properly written and collected in the following weak form,

required to hold for all test functions p, φi in the space C0(Q) of continuous functions on Q,
having ∂tφi, ∇xφi also continuous on Q, for i = 0, 1:

0 =

∫
Q
p−

∑
i

∫
Q

(
(p+ %̂i∂tφi) ci +∇xφi ·mi

)
−
∑
i

%̂i

(∫
Ωi,1

φi(x, 1) dx−
∫

Ωi,0

φi(x, 0) dx

)
.(6.12)

Let us now describe precisely the set AK of functions (c,m) that we take as admissible for
the relaxed least-action principle. We require ci ∈ L∞(Q, [0, 1]). As we shall see below, it is
natural to require that the path

t 7→ ci(·, t) dx
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is weak-? continuous into the space of signed Radon measures on Ω, and that mi = %̂icivi
with vi ∈ L2(Q, ci) if %̂i > 0. Then the action in (6.7) becomes

(6.13) K(c,m) =
∑
i

∫
Q

1

2
%̂ici|vi|2 .

When %̂0 = 0, we require m0 = 0 a.e., since this condition is necessary to have K(c,m) <∞
in (6.7). In this case we have

(6.14) K(c,m) =

∫
Q

1

2
%̂1c1|v1|2 ,

and the constraints on c0 from (6.12) reduce simply to the requirement that c0 = 1− c1.
We let AK denote the set of functions (c,m) that have the properties required in the

previous paragraph and satisfy the weak-form constraints (6.12). Our relaxed least-action
two-fluid problem is to find (c̄, m̄) ∈ AK with

(6.15) K(c̄, m̄) = inf
(c,m)∈AK

K(c,m).

A formal description of classical critical points of the action in (6.15), subject to the con-
straints in (6.12), and with each ci a characteristic function of smoothly deforming sets as in
(6.6), will lead to classical Euler equations for two-fluid incompressible flow, along the lines
of our calculation in section 3, which applies in the case %̂0 = 0.

We will discuss in subsection 6.3 below how the least-action problem (6.15) is equivalent
to a weaker formulation in which (ci,mi) are only taken to be signed Radon measures on Q.
When %̂0 > 0, this weaker formulation may be compared directly to the variant of Brenier’s
least-action principle for variable-density flows, as treated by Lopes Filho et al. [32], in the
two-fluid special case.

6.2. Wasserstein geodesics are minimizers of relaxed action. We focus now on the
case %̂0 = 0, and take %̂1 = 1 for convenience.

Theorem 6.2. Suppose %̂0 = 0, and Ω0, Ω1 are open sets with equal volume and with compact
closure in (−L,L)d. Then the relaxed least-action problem in (6.15), with Ω1,t = Ωt for
t = 0, 1, has a unique solution (c̄, m̄) given inside Q by

(6.16) c̄1 = ρ, m̄1 = ρv, c̄0 = 1− ρ, m̄0 = 0,

in terms of the displacement interpolant (ρ, v) (described in section 2) between the measures
µ0 and µ1 with densities 1Ω0 and 1Ω1.

Proof. It is clear from the description of section 2 that (c̄, m̄) as defined in (6.16) belongs to
the admissible set AK , due to the facts that (i) 0 ≤ ρ ≤ 1 by Lemma 2.1 and (ii) the support
of (ρ, v) is compactly contained in Ω due to (2.1). We then have, since %̂0 = 0,

K(c̄, m̄) =

∫
Q

1

2
ρ|v|2 =

∫ 1

0

∫
Rd

1

2
ρ|v|2 dx dt

because the pair (ρ, v) is defined on Rd × [0, 1] and is zero outside Q. But similarly, for any
admissible pair (c,m) ∈ AK , if we extend (c1, v1) by zero outside Q, we have

K(c,m) =

∫ 1

0

∫
Rd

1

2
c1|v1|2 dx dt

and (c1, v1) determines a narrowly continuous path of measures t 7→ µt = c1 dx on Rd with
v ∈ L2(µ) that satisfies the continuity equation. It is known that (ρ, v) minimizes this
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expression over this wider class of paths of measures, due to the characterization of Wasserstein
distance by Benamou and Brenier [4], see [45, Thm. 8.1]. By consequence we obtain that
(c̄, m̄) as defined by (6.16) is indeed a minimizer of the relaxed least-action problem (6.15).

Because the Wasserstein minimizing path is unique (as discussed in section 2), it follows
that any minimizer in (6.15) must be given as in (6.16). �

Proposition 6.3. The family of incompressible flows given for all small ε > 0 by Theorem 5.2
determine a minimizing family (cε,mε) for the relaxed least-action principle (6.15) according
to

cε1 = 1Ot , mε
1 = 1Otu, cε0 = 1− 1Ot , mε

0 = 0.

That is, (cε,mε) ∈ AK and limε→0K(cε,mε) = infAK K(c,m).

We remark that we are not able to use the Euler sprays that we construct for the proof
of Theorem 1.2 to obtain a similar result. The reason is that the target set Ω1,1 = Ω1 is
not hit exactly by our Euler sprays, and this means that the corresponding concentration-
momentum pair (cε,mε) /∈ AK because it would not satisfy the constraint (6.12) as required.
We conjecture, however, that for small enough ε > 0, Euler sprays can be constructed that
hit an arbitrary target shape Ω1 (up to a set of measure zero). If that is the case, these Euler
sprays would similarly provide a minimizing family for the relaxed least-action principle (6.15).

6.3. Extended relaxed least-action principle. In this subsection we discuss an extenstion
of the least-action principle (6.15) which facilitates comparison with previous works. Our
extension involves expanding the class of admissible concentration-momentum pairs, and is
a kind of hybrid of Brenier’s ‘homogenized vortex sheet’ formulation in [8] and the variable-
density formulation in [32] for geodesic flow in the diffeomorphism group. The extended
formulation reduces, however, to the formulation in (6.15) whenever the action is finite—see
Proposition 6.5 below.

The formulations of [8, 9, 32] were designed to make it possible to establish existence of
minimizers through convex analysis. The key is to express kinetic energy through duality.
We start with the space C0(Q) of continuous functions on Q = [−L,L]d × [0, 1], whose dual
is the space M(Q) of signed Radon measures. The duality pairing is

〈F, c〉 =

∫
Q
F dc for F ∈ C0(Q), c ∈M(Q).

Similarly we write 〈G,m〉 =
∫
QG · dm for G ∈ C0(Q)d and m ∈M(Q)d.

Next, let %̂ ≥ 0 be a constant representing fluid density. We let

Ê = C0(Q)× C0(Q)d, Ê∗ =M(Q)×M(Q)d,

and define K̂%̂ : Ê∗ → R as the Legendre transform of the indicator function of the parabolic
set

(6.17) P%̂ = {(F,G) ∈ E : F +
1

2
ρ̂|G|2 ≤ 0 in Q},

given for (c,m) ∈ Ê∗ by

(6.18) K̂%̂(c,m) = sup
(F,G)∈P%̂

〈F, c〉+ 〈G,m〉.

(To compare with [32, eq. (3.8)] it may help to note %̂P%̂ = P1 when %̂ > 0.)
The following result follows from [8, Proposition 3.4] in the case %̂ > 0, and is straightfor-

ward to show in the case %̂ = 0, when the conclusion entails m = 0.
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Proposition 6.4. Let %̂ ≥ 0, and let (c,m) ∈ Ê∗. If K̂%̂(c,m) <∞, then c is a nonnegative
measure and m is absolutely continuous with respect to c, with Radon-Nikodým derivative %̂v
where v ∈ L2(Q, c), and

K̂%̂(c,m) =

∫
Q

1

2
%̂|v|2 dc.

Our reformulated least-action problem may now be specified, as follows. Let %̂1 > %̂0 ≥ 0.
For (c,m) ∈ E∗ = Ê∗ × Ê∗ we write

c = (c0, c1), m = (m0,m1),

and we define

(6.19) K(c,m) =
∑
i

K%̂i(ci,mi).

We introduce the class ÂK of admissible pairs (c,m) ∈ E∗ that satisfy the same weak-form
constraints (6.12) as before (with ci, mi replaced respectively by dci, dmi). The extended

relaxed least-action problem is to find (ĉ, m̂) ∈ ÂK such that

(6.20) K(ĉ, m̂) = inf
(c,m)∈ÂK

K(c,m).

This form of the relaxed least-action problem may be compared rather directly with the
homogenized vortex sheet model of Brenier [8] and with the variable-density model of Lopes
Filho et al. [32]. Both of these models deal with the endpoint problem for diffeomorphisms
rather than mass distributions as is done here. Brenier’s model involves a sum over ‘phases’
as in our model (6.19), but the fluid density in each phase is the same. The variable-density
model of [32] allows for mixture density (called c, corresponding to %̂c here) to depend upon
both Eulerian and Lagrangian spatial coordinates (called x and a respectively), similar to the
formulation in [9].

In both [8] and [32] as well as related works for relaxed least-action principles formulated in
a space of measures, the existence of minimizers is established by using the Fenchel-Rockafellar
theorem from convex analysis. One expresses the objective function corresponding to K(c,m)
as a sum of Legendre transforms of indicator functions of two sets, corresponding here to the
set P%̂ in (6.17) and to another set that accounts for the constraints in (6.12). We do not
pursue this analysis as it is outside the scope of this paper. In any case, for the degenerate
case %̂0 = 0 that is most relevant to the rest of this paper, existence of a unique minimizer
follows from Theorem 6.2 above and Proposition 6.5 below.

We claim that the relaxed least-action problem (6.20) always reduces to the previous prob-
lem (6.15), due to the following fact.

Proposition 6.5. Suppose (c,m) ∈ ÂK and K(c,m) < ∞. Then for some (c̄, m̄) ∈ AK we
have K(c,m) = K(c̄, m̄) and

(6.21) dci = c̄i dx dt, dmi = m̄i dx dt, i = 0, 1.

Consequently, the infimum in (6.20) is the same as that in (6.15).

Proof. To prove this result, we first invoke Proposition 6.4 to infer that ci is a nonnegative
measure and mi is absolutely continuous with respect to ci for i = 0, 1. Next we note that∑

i ci = 1 by taking φi = 0 and p arbitrary in (6.12). Hence the representation in (6.21) holds
with c̄i ∈ L∞(Q, [0, 1]) and mi = %̂ic̄ivi with vi ∈ L2(Q, c̄i).

Finally, we claim t 7→ c̄i(·, t) is weak-? continuous into M(Q). By choosing p = 0 and φi
to depend only on t in (6.12) we infer that

∫
Ω c̄i(x, t) dx is independent of t. Thus, because Ω
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is compact, we can invoke Lemma 8.1.2 of [2] to conclude that t 7→ c̄i(·, t) is narrowly, hence
weak-?, continuous.

It is clear that the infimum in (6.15) is greater or equal to that in (6.20), because the

admissible set AK is naturally embedded in ÂK, and the two are equal if either is finite.
Recalling that inf ∅ = +∞, equality follows in general. �

Remark 6.6. As a last comment, we note that for variable-density flow with strictly positive
density, the relaxed least-action problem studied by Lopes et al. [32] was shown to be consistent
with the classical Euler equations, in the sense that classical solutions of the Euler system
induce weak solutions of relaxed Euler equations, and for sufficiently short time the induced
solution is the unique minimizer of the relaxed problem. In the case that we consider with
ρ̂0 = 0, however, this consistency property is unlikely to hold in general when the space
dimension d > 1, for the reason that in general we can expect the Wasserstein density ρ < 1
in Theorem 6.2, while necessarily ρ ∈ {0, 1} for any classical solution of the incompressible
Euler equations.

7. Extensions

Theorem 1.1 establishes that restricting the Wasserstein metric to paths of shapes of fixed
volume does not provide a new notion of distance on the space of such shapes. Namely it
shows that for paths in the space of shapes of fixed volume, the infimum of the length of paths
between two given shapes is the Wasserstein distance.

Volume change. It is of interest to consider a more general space of shapes in order to
compare shapes of different volumes. In particular, the Schmitzer and Schnörr [41] considered
a space that corresponds to the set of bounded, simply connected domains in R2 with smooth
boundary and arbitrary positive area. To each such shape Ω one associates as its corresponding
shape measure the probability measure having uniform density on Ω, denoted by

(7.1) UΩ =
1

|Ω|
1Ω.

We consider here this same association between sets and shape measures, but allow for more
general shapes. Namely for fixed dimension d, let us consider shapes as bounded measurable
subsets of Rd with positive volume. Let C be the set of all shape measures corresponding to
such shapes. Thus C is the set of all uniform probability distributions of bounded support.

One can formally consider C as a submanifold of the space of probability measures of finite
second moment, endowed with Wasserstein distance. Then we define a distance between
shapes as we did in (1.1):

(7.2) dC(Ω0,Ω1) = inf A , A =

∫ 1

0

∫
Rd

ρ|v|2 dx dt ,

where ρ = (ρt) is now required to be a path of shape measures in C, with endpoints

(7.3) ρ0 = UΩ0 , ρ1 = UΩ1 ,

and transported according to the continuity equation (1.2) with a velocity field v ∈ L2(ρ dx dt).
Because the characteristic-function restriction (1.4) is replaced by the weaker requirement

that ρt has a uniform density, for any two shapes of equal volume scaled to unity for conve-
nience, it is clear that

(7.4) ds(Ω0,Ω1) ≥ dC(Ω0,Ω1) ≥ dW (1Ω0 ,1Ω1).
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Then as a direct consequence of Theorem 1.1, we have

(7.5) dC(Ω0,Ω1) = dW (1Ω0 ,1Ω1) .

By a minor modification of the arguments of section 5, in general we have the following.

Theorem 7.1. Let Ω0 and Ω1 be any two shapes of positive volume. Then

dC(Ω0,Ω1) = dW (UΩ0 ,UΩ1).

The proof, provided in subsection 7.1 below, makes use of a displacement convexity argu-
ment closely related to McCann’s well-known proof of the Brunn-Minkowski inequality using
mass transportation, see [45, p. 186].

Smoothness. For dimension d = 2, Theorem 7.1 does not apply to describe distance in the
space of shapes considered by Schmitzer and Schnörr in [41], however, for as we have men-
tioned, they consider shapes to be bounded simply connected domains with smooth boundary.

One point of view on this issue is that it is nowadays reasonable for many purposes to
consider ‘pixelated’ images and shapes, made up of fine-grained discrete elements, to be valid
approximations to smooth ones. Thus the microdroplet constructions considered in this paper,
which fit with the mathematically natural regularity conditions inherent in the definition of
Wasserstein distance, need not be thought unnatural from the point of view of applications.

Nevertheless one may ask whether the infimum of path length in the space of smooth
simply connected shapes is still the Wasserstein distance, as in Theorem 7.1. Our proof of
Theorem 1.1 in Section 5 does not provide paths in this space because the union of droplets is
disconnected. However, the main mechanism by which we efficiently transport mass, namely
by “dividing” the domain into small pieces (droplets) which almost follow the Wasserstein
geodesics, is still available. In particular, by creating many deep creases in the domain it
might be effectively ‘divided’ into such pieces while still remaining connected and smooth.
Thus we conjecture that even in the class of smooth sets considered in [41], the geodesic
distance is the Wasserstein distance between uniform distributions as in Theorem 7.1.

Geodesic equations. It is also interesting to compare our Euler droplet equations from
subsection 3.1 with the formal geodesic equations for smooth critical paths of the action A
in the space C of uniform distributions. These equations correspond to equation (4.12) of
Schmitzer and Schnörr in [41].

These geodesic equations may be derived in a manner almost identical to the treatment
in subsection 3.1 above. The principal difference is that due to (3.4), the divergence of the
Eulerian velocity may be a nonzero function of time, constant in space:

∇ · v = c(t),

and the same is true of virtual displacements ṽ. The variation of action now satisfies

(7.6)
δA
2

=

∫
Ωt

v · ṽ ρ dx
∣∣∣∣
t=1

−
∫ 1

0

∫
Ωt

(∂tv + v · ∇v) · ṽ ρ dx dt.

Now, the space of vector fields orthogonal to all constant-divergence fields on Ωt is the space
of gradients ∇p such that p vanishes on the boundary and has average zero in Ωt, satisfying

(7.7) p = 0 on ∂Ωt,

∫
Ωt

p dx = 0.

Because ρ is spatially constant and ṽ can be (locally in time) arbitrary with spatially constant
divergence, necessarily u = −(∂tv + v · ∇v) is such a gradient. The remaining considerations
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in section 3.1 apply almost without change, and we conclude that v = ∇φ where

(7.8) ∂tφ+
1

2
|∇φ|2 + p = 0, ∆φ = c(t),

where c(t) is spatially constant in Ωt.
These fluid equations differ from those in section 3.1 in that φ gains one degree of freedom

(a multiple of the solution of ∆φ = 1 in Ωt with Dirichlet boundary condition) while the
pressure p loses one degree of freedom (as its integral is constrained).

They have elliptical droplet solutions given by displacement interpolation of elliptical
Wasserstein droplets as in subsection 3.4, because pressure vanishes and density is indeed
spatially constant for these interpolants. Because they are Wasserstein geodesics, these par-
ticular solutions are also length-minimizing geodesics in the shape space C. It seems likely
that length minimizing paths in C will not generally exist even locally, but we have no proof
at present.

7.1. Proof of Theorem 7.1. We assume at first that the source Ω0 and target Ω1 are
bounded open sets. (This extends to the general case of measurable sets as before in subsec-
tion 5.3.) The general idea of the proof is to make use of the ‘incompressible’ smooth sprays
constructed in section 5, dilating their flow maps in a suitable way.

We may assume that Ω0 has unit volume without loss of generality. As in section 2, the
displacement interpolant provides the Wasserstein geodesic path between the uniform densities
UΩ0 and UΩ1 , with straight-line particle paths coming from the Brenier map T = ∇ψ via

Tt(x) = (1− t)x+ tT (x) .

Along each particle path starting in the non-singular set Ω0 \Σ0, the density ρ is smooth and

the function ρ−1/d is concave, just as shown in Lemma 2.1, satisfying

(7.9) ρ(Tt(x), t)−1/d ≥ (1− t)ρ−1/d
0 + tρ

−1/d
1 =: b(t).

Let ε > 0 and D = dW (UΩ0 ,UΩ1)2. We will cover the non-singular set up to a null set by a
disjoint union of balls

(7.10) O0 =
⊔
i

Oi,0, Oi,0 := B(xi, ri),

determined by a Vitali covering argument in the same way as at the beginning of the proof
of Theorem 5.2 so that (5.9) holds. Just as shown at the end of the proof of Proposition 5.3,
the images Tt(Oi,0) remain star-shaped with respect to Tt(xi) for all t ∈ [0, 1].

To create a path in the shape space, we will rearrange the mass pushed forward by Tt from
Oi,0 to form a patch supported on a subset of the image Tt(Oi,0), with constant density ρ̃t
the same for all balls. To do this, we first dilate Tt(Oi,0) about the point Tt(xi) to maintain
the key property that its expansion factor, the ratio of its volume at time t to that at time 0,
is independent of i. We will set

(7.11) St(x) = Tt(xi) + ai(t)(Tt(x)− Tt(xi)) for x ∈ B(xi, ri),

where we desire ai(0) = ai(1) = 1 and 0 < ai(t) ≤ 1 to ensure that

(7.12) Oi,t := St(Oi,0) ⊂ Tt(Oi,0).

This is needed to guarantee the dilated images Oi,t remain disjoint.
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To see how to determine ai(t), we recall that the uniform measures on Ω0 and Ω1 have
respective densities ρ0 = |Ω0|−1 = 1 and ρ1 = |Ω1|−1. Because we have∫

Tt(Oi,0)
ρ(z, t) dz =

∫
Oi,0

dx = |Oi,0|

by the change of variables z = Tt(x), integration of (7.9) and use of Hölder’s inequality yields

b(t) ≤
∫
Oi,0

ρ(Tt(x), t)−1/d dx

|Oi,0|
=

∫
Tt(Oi,0)

ρ(z, t)−1/d ρ(z, t) dz

|Oi,0|
(7.13)

≤

(∫
Tt(Oi,0)

1

ρ(z, t)

ρ(z, t) dz

|Oi,0|

)1/d

=

(
|Tt(Oi,0)|
|Oi,0|

)1/d

with left-hand side independent of i.
Next, similar to the definition in (5.2), define

(7.14) S̃t(x) = Tt(xi) + ãi(t)(Tt(x)− Tt(xi)) for x ∈ B(xi, ri),

where

ãi(t) =

(
|Tt(Oi,0)|
|Oi,0|

)−1/d

.

As in section 5, this scaling preserves the volume of ball images: With Õi,t = S̃t(Oi,0) we have

|Õi,t| = |Oi,0| for all t ∈ [0, 1] and all i. (These images may overlap, but we will consider them
separately below.) We choose ai(t) to satisfy

(7.15) ai(t) = b(t)ãi(t).

We indeed find ai(0) = ai(1) = 1 and 0 < ai(t) ≤ 1 due to (7.13), and also that the ball
images dilated by St satisfy

(7.16) |Oi,t| = b(t)dãi(t)
d|Tt(Oi,0)| = b(t)d|Oi,0|

with expansion factor b(t)d independent of i.

We follow the procedure in section 5.1 to modify the velocity field for the flow S̃t on each
individual ball and obtain divergence-free velocity fields ũi on the space-time domains

Q̃i =
⋃

t∈[0,1]

Õi,t × {t}.

The velocity field ũi determines a Lagrangian flow map X̃i(x, t) on Õi,0 × [0, 1] satisfying

∂tX̃i(x, t) = ũi(X̃i(x, t), t), X̃i(Oi,0, t) = Õi,t for all t ∈ [0, 1] and all i.

This map is volume-preserving with det ∂X̃i/∂x ≡ 1 in its domain. Because

X̃i(x, t) = x+

∫ t

0
ũ(X̃i(x, s)) ds, Tt(xi) = xi + tv0(xi),

due to estimate (5.7) from Proposition 5.3 we find

(7.17) ‖X̃i(·, t)− Tt(xi)‖O0,i ≤ ‖x− xi‖O0,i +

∫ t

0
‖ũ(X̃i(·, s))− v0(xi)‖O0,i ≤ Cir

(d+2)/2
i .

Here and below Ci denote constants C(λri , λri), whose values are used to determine the Vitali
covering as in subsection 5.2 according to (5.22).
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Finally we can define our dilated flow map on O0 × [0, 1] via

(7.18) X(x, t) = Tt(xi) + b(t)(X̃i(x, t)− Tt(xi)), x ∈ B(xi, ri).

This flow map has spatially constant Jacobian det ∂X/∂x = b(t)d the same on all balls.
Moreover, this map carries the ball Oi,0 = B(xi, ri) to the set

X(Oi,0, t) = Tt(xi) + b(t)(Õi,t − Tt(xi))(7.19)

= Tt(xi) + b(t)ãi(t)(Tt(Oi,0)− Tt(xi))
= Oi,t ⊂ Tt(Oi,0)

The last inclusion is due to (7.12) and implies that these images remain disjoint for all t ∈ [0, 1].
The flow map X induces an Eulerian velocity field u on the space-time domain

Q =
⊔
i

Oi,t × {t}

with spatially constant divergence. The density ρ = b−d1Q is a probability density for each
time t, and is transported by u according to the continuity equation.

Thus we get an admissible path of shape measures in the shape space C. The action in
(7.2) takes the following form after pulling back using Lagrangian variables:

(7.20) A =
∑
i

∫ 1

0

∫
Oi,0

|∂tX(x, t)|2 dx dt =
∑
i

∫ 1

0
‖∂tX(·, t)‖2Oi,0 dt .

Note that by (7.18) and the uniform boundedness of b(t) and b′(t),

‖∂tX − v0(xi)‖Oi,0 ≤ |b′(t)|‖X̃i(·, t)− Tt(xi)‖Oi,0 + |b(t)|‖ũi(X̃i(·, t))− v0(xi)‖Oi,0(7.21)

≤ Cir(d+2)/2
i

Because

D := dW (UΩ0 ,UΩ1)2 =

∫
Ω0

|v0(x)|2 dx =
∑
i

‖v0‖2Oi,0

and ‖v0 − v0(xi)‖Oi,0 ≤ Cir
(d+2)/2
i , we find

A ≤
∑
i

(
‖v0‖Oi,0 + Cir

(d+2)/2
i

)2
(7.22)

≤
∑
i

(
(1 + ri)‖v0‖2Oi,0 + Cir

d+1
i

)
≤ D + ε

as in the proof of Theorem 5.2.
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