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Abstract

The Ehrenfest dynamics, representing a quantum-classical mean-field type coupling, is a

widely used approximation in quantum molecular dynamics. In this paper, we propose a time-

splitting method for an Ehrenfest dynamics, in the form of a nonlinearly coupled Schrödinger-

Liouville system. We prove that our splitting scheme is stable uniformly with respect to

the semiclassical parameter, and, moreover, that it preserves a discrete semiclassical limit.

Thus one can accurately compute physical observables using time steps induced only by

the classical Liouville equation, i.e., independent of the small semiclassical parameter - in

addition to classical mesh sizes for the Liouville equation. Numerical examples illustrate the

validity of our meshing strategy.

1 Introduction

Ab initio methods have played a fundamental role in the numerical simulation of large quantum

systems, in particular in quantum molecular dynamics. Different from classical approaches based

on pre-defined potentials, the underlying idea of ab initio molecular dynamics is to compute the

forces acting on the nuclei as a feedback of the electronic structures. This procedure is also

known as the “on-the-fly” calculation in the chemistry literature (for detailed reviews, see, e.g.,

[4, 21, 20, 26]). One of the most widely used of these methods is the so-called Ehrenfest dynamics,

a mean-field treatment named in honor of Paul Ehrenfest who was among the first to address the

problem of how to derive classical dynamics from the underlying quantum mechanical equations

[8]. His idea is to separate the whole system into two parts: a fast varying, quantum mechanical

part (for, say, electrons) and a slowly varying part (for the much heavier nuclei) in which one

can pass to the (semi-)classical limit. In quantum chemistry, this is usually possible by taking

advantage of the large mass difference between electrons and nuclei.
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Typically, the Ehrenfest molecular dynamics refers to a Schrödinger equation, coupled with a

classical Newtonian flow, cf. [6, 7, 22, 24, 3, 26]. The simplest such model reads

(1.1)


ih∂tψ = −h

2

2
∆xψ + V (x, y(t))ψ, ψ(0, x) = ψin(x),

ẏ(t) = η(t), y(0) = y0,

η̇(t) = −∇yVE(y(t)), η(0) = η0.

Here, we denote by 0 < h � 1 a dimensionless rescaled Planck’s constant, and by ψ = ψ (x, t)

with x ∈ Rd, t ∈ R+, the wave function of the fast, quantum mechanical degrees of freedom,

which is assumed to be normalized such that ‖ψh(·, t)‖L2 = 1 for all t ≥ 0. In addition, the

slow degrees of freedom are described, for any time t ∈ R+, by their classical position y(t) ∈ Rn

and momentum η(t) ∈ Rn. We thereby allow for n ∈ N and d ∈ N to be not necessarily equal,

depending on the physical application. Finally, for a given coupling potential V = V (x, y) ∈ R,

the force describing the back-reaction of the quantum part onto the slow degrees of freedom is

given by the gradient in y ∈ Rn of the so-called Ehrenfest potential

VE(y, t) =

∫
Rd

V (x, y) |ψ(x, t)|2 dx.

Clearly, one obtains a version of Newton’s second law for y(t) by eliminating the momentum

variable η(t) and writing

ÿ(t) = −∇yVE(y(t)),

instead of the first order Hamiltonian system above.

Regarding the derivation of Ehrenfest dynamics, the majority of literature available today

invokes WKB asymptotics for the slow degrees of freedom, leading to a Hamilton-Jacobi equation

which suffers from the appearance of caustics, see, e.g., [6, 22]. To circumvent this problem and

derive a semiclassical limit which is valid globally in time, a, by now classical, tool is the Wigner

transform [27]. The latter gives rise to a Liouville equation for the associated semi-classical

phase-space measure (or, Wigner measure) which “unfolds the caustics”, see [9, 17, 19, 23]. In

the context of Ehrenfest dynamics, such an analysis was carried out in [13]. In there, the authors

start from a system of time-dependent, self-consistent field equations, motivated by [5, 14, 15, 18],

and derive (among other things) the following mixed quantum-classical system:

(1.2)

 ih∂tψ
h = −h

2

2
∆xψ

h + Υh (x, t)ψh, ψh(0, x) = ψhin(x)

∂tµ
h + η · ∇yµh + Fh (y, t) · ∇ηµh = 0, µh(0, x, η) = µin(y, η).

Here, µh(·, ·, t) ∈M+(Rny×Rnη ) denotes the phase-space probability density for the slowly varying

degrees of freedom at time t, Fh = −∇yVE, i.e., the force obtained from the Ehrenfest potential,

and

Υh (x, t) =

∫∫
R2n

V (x, y)µh (y, η, t) dy dη.(1.3)

We call this system the Schrödinger-Liouville-Ehrenfest (SLE) System and from now on represent

the dependence on the small semi-classical parameter h > 0 by superscripts. Note that the

dependence of µh on h stems purely from the forcing through the Ehrenfest potential appearing

2



in the Liouville equation. The latter is an Eulerian description of the classical Hamiltonian flow.

In particular, one formally obtains (1.1), from (1.2), in the case where µ corresponds to a single

particle distribution concentrated on the classical trajectories (y(t), η(t)), i.e.,

µ(t, y, η) = δ(y − y(t), η − η(t)).

Such kind of Wigner measures can be obtained as the classical limit of a particular type of wave

functions, called semi-classical wave packets, or coherent states, see [17].

Given the dispersive nature of Schrödinger’s equation, the main numerical difficulty for h� 1

is that one needs to resolve oscillations of frequency of order O(1/h) in both time and space, as

they are present in the solution ψh, see [12] for a broad review of this problem. Naively, this

requires one to use time-steps of order ∆t = o(h) as well as a spatial grid with ∆x = o(h). How-

ever, it was proved in [1], using a Wigner measure analysis, that for a single linear Schrödinger

equation, a time-splitting spectral method can still correctly capture physical observables, i.e.,

real-valued quadratic quantities in ψh, even for time-steps much larger than h. Thus one only

needs to resolve the high frequency oscillations spatially, which is a huge numerical advantage.

For nonlinear Schrödinger equations, in general, this is no longer true, as was numerically demon-

strated in [2]. The SLE system (1.2) is a nonlinearly coupled system, and one therefore expects

the same type of problem at first glance. Nevertheless, we shall in the following develop an effi-

cient numerical method for the SLE system which allows large (compared with h) computational

mesh-sizes in both y and η and a large time step for both the Schrödinger and the Liouville

equations, while still correctly capturing physical observables. While large meshes in y and η do

not seem so surprising, the possibility of large time steps for solving the Schrödinger equation is

far from obvious, due to the nonlinear nature of the SLE system.

Our numerical algorithm is inspired by, but different from the time-splitting method used in

[13]. Based on a spectral method for the Schrödinger equation and an upwind scheme for the

Liouville part of (1.2), we shall first prove stability for our algorithm, uniformly in h. Further-

more, by utilizing the Wigner analysis developed in [13] and adopting it to our particular setting,

we shall also prove that physical observables (which can be characterized by the moments of the

Wigner distribution), are captured correctly even if ∆y, ∆η and ∆t, i.e., the time step for the

entire SLE system, are O(1) and thus independent of h. To this end, we follow the strategy

of [1], and prove that the semi-discretized SLE-system, with ∆y, ∆η, ∆t fixed, converges to the

correct semiclassical limiting system, as h→ 0. In this analysis we shall, for simplicity, consider

x to be continuous, since, as already stated above, ∆x → 0, as h → 0, even for a single linear

Schrödinger equation. In summary, our scheme can be seen to be asymptotic-preserving in t, y,

and η, which is a well-established numerical concept for multi-scale kinetic equations, cf. [10, 11].

To our knowledge, this is the first work that proves the existence of a h-independent meshing

strategy for nonlinear Schrödinger-type system.

The rest of this paper is now organized as follows: In Section 2 we present the time-splitting

method for the SLE system and briefly discuss some of the inherent numerical difficulties. The

stability, uniformly in h, is then proved in Section 2.2 for the fully discretized system. In Section

3, we shall give a brief review of Wigner transformation methods and the classical limit of the SLE

system. The spatial meshing strategy announced above is then studied in Section 4 by deriving

the classical limit of a semi-discrete SLE system. In Section 5 we focus on the time-discretization
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and prove that our scheme allows for time-steps independent of h. Finally, Section 6 presents

some numerical examples illustrating our analytical results.

2 The time-splitting scheme and its basic properties

We shall, from now on, consider the Schrödinger-Liouville-Ehrenfest (SLE) System (1.2) with the

following assumption on the coupling potential V :

(A1) V ∈ C2
0

(
Rdx × Rny

)
and V (x, y) ≥ 0,∀ (x, y) ∈ Rdx × Rny ,

where C2
0 denotes the set of twice continuously differentiable functions which vanish at infinity

together with all their derivatives.

Remark 2.1. This is the same assumption as in [13], where it is used to furnish a rigorous

Wigner analysis of the self-consistent field equation. Note that, in particular, it implies V ∈
W 2,∞ (Rdx × Rny

)
. It is conceivable that the regularity requirement and the decay at infinity can

be lowered at the expense of more technicalities. The assumption V (x, y) ≥ 0 is in fact not very

restrictive for the potentials bounded from below. It corresponds to a proper choice of the zero

point of the potential axis.

We aim for an algorithm which fully utilizes the quantum-classical coupling. Thus, while it

makes sense to use a finer (i.e., smaller than h) spatial discretization in x to solve the Schrödinger

equation, we want to use much larger (than h) meshes in y and η when solving the Liouville

equation. That this is indeed possible is not obvious, since the potential Υh (x, t) appearing in

the Schrödinger equation is time-dependent, and moreover nonlinearly coupled to the Liouville

equation (hence it inherits the computational error obtained from discretizing in y and η).

Remark 2.2. In our discussion, we will only consider compactly supported initial data ψhin, µin,

in order to simulate the SLE system problem based on an infinitely large spatial domain within

a sufficiently large, but finite box with periodic boundary conditions.

2.1 A new time-splitting scheme for the SLE system

In order to describe our scheme, we henceforth assume that we are given a sufficiently small

∆x ∼ O(h), used to solve the quantum mechanical part of (1.2), while the larger grid meshes

∆y,∆η ∼ O (1) are applied for the classical part. With this in mind, let

J =
d− c
∆y

, K =
β − α

∆η
, M =

b− a
∆x

, yj = c+ j∆y, ηk = α+ k∆η, xj = a+ j∆x.

The time-splitting spectral scheme can then described as follows: From time t = tn = n∆t to

t = tn+1 = (n+ 1) ∆t, with ∆t given, the SLE system is solved in two steps. First, solve

(2.1)

 ih∂tψ
h = −h

2

2
∆xψ

h,

∂tµ
h = −η · ∇yµh − Fh (y, t) · ∇ηµh,

from t = tn to an intermediate time t∗. Then, solve

(2.2)

{
ih∂tψ

h = Υ (x, t)ψh,

∂tµ
h = 0,
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with initial data obtained from Step 1, to obtain the solution at time t = tn+1.

In (2.1), the Schrödinger equation will be discretized in space by a spectral method and

integrated in time exactly using a Fast Fourier Transform. The Liouville equation can be solved

either by a spectral method, or by a finite difference (e.g., upwind) scheme in space, and then

marching the corresponding ODE system forward in time. An advantage of our splitting method

is that in the second step, Υh (x, t) defined in (1.3) is indeed independent of time, since obviously

µh is. In view of this, the time integration in (2.2) can also be solved exactly, which yields

ψh,n+1
j = exp

(
− i
h

Υh (xj , t∗) ∆t

)
ψh,∗j .

For the convenience of our later discussions, we shall now state our numerical scheme using an

upwind spatial discretization of µ in more detail: The problem is solved in one spatial dimension

d = n = 1 from time t = tn to time t = tn+1 using the following two steps:

In the first step, we solve

(2.3)


ih∂tψ

h = −h
2

2
∂xxψ

h,

d

dt
µhjk = −ηk

(
Dyµ

h
)
jk
− Fhj

(
Dηµ

h
)
jk
,

where both Dyµ
h and Dηµ

h represent the numerical derivatives in our algorithm, which are

treated using a standard conservative (for example, the upwind type) discretization. To solve the

Liouville equation we shall we apply a forward-in-time Euler scheme for the time discretization.

Explicitly, we thus have

(2.4)


ψh,∗j =

1

N

N/2−1∑
l=−N/2

e−ihω
2
l /2ψ̂h,nl eiωl(xj−a), j = 0, . . . , N − 1,

µh,∗jk − µ
h,n
jk

∆t
= −ηk

(
Dyµ

h,n
)
jk
− Fh,nj

(
Dηµ

h,n
)
jk
,

where for the upwind spatial discretization,
ηk
(
Dyµ

h,n
)
jk

=
1

2
(ηk + |ηk|)

µh,njk − µ
h,n
j−1,k

∆y
+

1

2
(ηk − |ηk|)

µh,nj+1,k − µ
h,n
j,k

∆y
,

Fh,nj

(
Dηµ

h,n
)
jk

=
1

2
(Fh,nj +

∣∣∣Fh,nj

∣∣∣)µh,njk − µhj,k−1
∆η

+
1

2
(Fh,nj −

∣∣∣Fh,nj

∣∣∣)µh,nj,k+1 − µ
h,n
jk

∆η
.

The second step is then given by

(2.5)

 ih∂tψ
h = Υh

d (x, t)ψh,

d

dt
µhjk = 0,

where Υh
d (x, t) is the quadrature approximation of Υh (x, t). Thus, we explicitly have

ψh,n+1
j = exp

(
−iΥh,∗

d (xj) k/h
)
ψh,∗j , µh,n+1

jk = µh,∗jk(2.6)

where

Υh,∗
d (x) =

J−1∑
j=0

K−1∑
k=0

V (x, yj)µ
h,∗
jk ∆y∆η =

J−1∑
j=0

K−1∑
k=0

V (x, yj)µ
h,n+1
jk ∆y∆η.

Remark 2.3. It is straightforward to obtain an algorithm second order in time using the Strang

splitting, which is omitted here.
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2.2 Conservation property and stability of the scheme

We shall now prove the stability of the scheme given by (2.4) and (2.6). To this end, let

ψ = (ψ0, . . . , ψM−1)
T

. Let ‖·‖L2 and ‖·‖`2 be the usual L2 and `2 norm on the interval (a, b)

respectively, i.e.

(2.7) ‖ψ‖L2 =

(∫ b

a

|ψ (x)|2 dx

)1/2

, ‖ψ‖`2 =

b− a
M

M−1∑
j=0

|ψj |2
1/2

.

Notice that, for any periodic function f , the equality

(2.8) ‖fI‖2L2 = ‖f‖2`2 =
b− a
M

M−1∑
j=0

|f (xj)|2

holds, where fI denotes the trigonometric interpolant of f on {x0, x1, . . . , xM}, i.e.

fI (x) =
1

M

M
2 −1∑

̂=−M
2

f̂̂e
iω̂(x−a),

with ωĵ = 2πĵ
b−a . Using this we can prove the following theorem.

Theorem 2.4. The time-splitting spectral scheme conserves the mass. More precisely, it holds

‖ψh,n‖`2 = ‖ψhin‖`2 , ‖ψh,nI ‖L2 = ‖ψh,0I ‖L2 , for n = 1, 2, . . . ,

and also
J−1∑
j=0

K−1∑
k=0

µh,njk =

J−1∑
j=0

K−1∑
k=0

µh,0jk .

Proof. First note that the last identity for µh,njk is a straightforward consequence of the fact that

the discretized derivatives Dyµ and Dηµ are conservative.

It suffices to prove the first identity stated above due to (2.8). Noting our numerical algorithm

(2.4), (2.6) and the definition of the norms (2.7), one computes

1

b− a
∥∥ψh,n+1

∥∥2
`2

=
1

M

M−1∑
j=0

∣∣∣ψh,n+1
j

∣∣∣2 =
1

M

M−1∑
j=0

∣∣∣∣exp

(
− i
h

Υh
d (xj , t∗) ∆t

)
ψh,∗j

∣∣∣∣2

=
1

M

M−1∑
j=0

∣∣∣ψh,∗j ∣∣∣2 =
1

M

M−1∑
j=0

∣∣∣∣∣∣ 1

M

M
2 −1∑

̂=−M
2

e−ihkω
2
̂ /2ψ̂h,n̂ eiω̂(xj−a)

∣∣∣∣∣∣
2

=
1

M

M−1∑
j=0

 1

M2

M
2 −1∑

p=−M
2

M
2 −1∑

q=−M
2

eihk(ω
2
p−ω

2
q)/2ψ̂h,np ψ̂h,nq ei(ωq−ωp)(xj−a)

 .

Changing the order of summation, this is equal to

1

b− a
∥∥ψh,n+1

∥∥2
`2

=
1

M2

M
2 −1∑

p=−M
2

M
2 −1∑

q=−M
2

eihk(ω
2
p−ω

2
q)/2ψ̂h,np ψ̂h,nq

 1

M

M−1∑
j=0

ei(ωq−ωp)(xj−a)
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=
1

M2

M
2 −1∑

̂=−M
2

∣∣∣ψ̂h,n̂ ∣∣∣2 =
1

M2

M
2 −1∑

̂=−M
2

∣∣∣∣∣∣
M−1∑
j=0

ψh,nj e−iω̂(xj−a)

∣∣∣∣∣∣
2

=
1

M2

M
2 −1∑

̂=−M
2

(
M−1∑
p=0

M−1∑
q=0

ψh,np ψh,nq eiω̂(xq−xp)

)
,

where the second equality of the above follows from the fact that

1

M

M−1∑
j=0

ei(ωq−ωp)(xj−a) =
1

M

M−1∑
j=0

ei2π(q−p)j/M =

{
0, q − p 6= mM

1, q − p = mM
, m ∈ Z.

Similarly, by changing the order of summation again, we arrive at

1

b− a
∥∥ψh,n+1

∥∥2
`2

=
1

M

M−1∑
p=0

M−1∑
q=0

ψh,np ψh,nq

 1

M

M
2 −1∑

̂=−M
2

eiω̂(xq−xp)


=

1

M

M−1∑
j=0

∣∣∣ψh,nj ∣∣∣2 =
1

b− a
∥∥ψh,n∥∥2

`2
,

where the following identity has been used

1

M

M
2 −1∑

̂=−M
2

eiω̂(xq−xp) =
1

M

M
2 −1∑

̂=−M
2

ei2π(q−p)̂/M =

{
0, q − p 6= mM

1, q − p = mM
, m ∈ Z.

Remark 2.5. Theorem 2.4 implies that the scheme is stable uniformly in h, provided the posi-

tivity of µ under the following CFL condition, cf. [16]:

(2.9) max
k
|ηk|

∆t

∆y
+ ‖∂yV ‖L∞

∆t

∆η
≤ 1.

3 Classical limit of the SLE system

As a preparatory step to the discussion of Section 4, we will now briefly review the results of [13]

concerning the classical limit (via Wigner transforms) of the SLE system as h→ 0.

3.1 Wigner transform and Wigner measure

Let us first recall that h-scaled Wigner transform associated to any continuously parametrized

family fh ≡ {fh}0≤h≤1 ∈ L2
(
Rd
)

is given by, cf. [9, 17, 19, 23]:

wh[fh] (x, ξ) =
1

(2π)
d

∫
Rd

fh
(
x− h

2
y

)
fh
(
x+

h

2
y

)
eiξ·y dy.

By Plancherel’s Theorem and a change of variables one easily finds∥∥wh[fh]
∥∥
L2(R2d)

=
1

(2π)
d
2 hd

∥∥fh∥∥2
L2(Rd)

.
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The real-valued function wh(x, ξ) acts as a quantum mechanical analogue for classical phase-space

distributions. However, wh(x, ξ) 6≥ 0 in general.

It has been proved in [17], that if the family of functions fh = {fh}0≤h≤1 is uniformly bounded

in L2(Rd) as h→ 0+, i.e., if

sup
0<h≤1

‖fh‖L2
x
≤ C,

then the set of Wigner functions {wh}0<h≤1 is uniformly bounded in A′. The latter is the dual

of the following Banach space

A(Rdx × Rdξ) := {χ ∈ C0(Rdx × Rdξ) : (Fξχ)(x, z) ∈ L1(Rdz ;C0(Rdx))}

where C0(Rd) denotes the space of continuous functions vanishing at infinity. More precisely, one

finds that for any test function χ ∈ A(Rdx × Rdξ),

|〈wh, χ〉| ≤ 1

(2π)d
‖χ‖A‖f

h‖2L2 ≤ const.,

uniformly in h. Thus, up to extraction of sub-sequences {hn}n∈N, with hn → 0+ as n→∞, there

exists a limiting object w0 ≡ w ∈ A′(Rdx × Rdξ) such that

wh
h→0+−→ w in A′(Rdx × Rdξ)w − ∗.

It turns out that the limit is in fact a non-negative, bounded Borel measure on phase-space

w ∈M+(Rdx × Rdp), called the Wigner measure of fh.

3.2 The Classical limit of the SLE system

Let ψh and µh be the solution of the SLE system (1.2) and denote the Wigner function of ψh (x, t)

by

wh (x, ξ, t) = wh[ψh (·, t)] (x, ξ) .

A straightforward computation shows that the position density associated to ψh ∈ L2(Rd) can be

computed via

nh (x, t) :=
∣∣ψh (x, t)

∣∣2 =

∫
Rd

wh (x, ξ, t) dξ,

where we recall, that due to our normalization,∫
Rd

nh (x, t) dx =

∫∫
R2d

wh (x, ξ, t) dξ dx = 1.

Moreover, by taking higher order moments in ξ one (formally) finds the current density

jh (x, t) := h Im
(
ψh (x, t)∇ψh (x, t)

)
=

∫
Rd

ξwh (x, ξ, t) dξ,

and the kinetic energy density

κh (x, t) :=
h2

2

∣∣∇ψh (x, t)
∣∣2 =

∫
Rd

1

2
|ξ|2 wh (x, ξ, t) dξ.

Remark 3.1. In order to make these computations rigorous, the integrals on the r.h.s. have to

be understood in an appropriate sense, since wh 6∈ L1(Rmx × Rmξ ) in general, see [17] for more

details.
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After Wigner transforming the Schrödinger equation, one finds that wh (x, ξ, t) satisfies the

following nonlocal kinetic equation (see, e.g., [17]):

∂tw
h + ξ · ∇xwh + Θh[Υh]wh = 0, wh(0, x, ξ) = whin (x, ξ) ,

where whin ≡ wh[ψhin] and

(3.1)
(
Θh[Υh]wh

)
(x, ξ, t) =

i

h(2π)d

∫
Rd

(
Υh

(
x+

h

2
z, t

)
−Υh

(
x− h

2
z, t

))
ŵh(x, z, t)eiz·ξdz

with ŵh denoting the Fourier transformation of wh w.r.t. the second variable only.

Now, in order to utilize the weak-∗ compactness properties of the Wigner function, we shall

impose from now on that the the initial mass and the initial kinetic energy are uniformly bounded

with respect to h, i.e.,

(A2) sup
0<h≤1

(
nh (x, 0) + κh (x, 0)

)
≤ const.

Remark 3.2. In other words, we assume that

sup
0<h≤1

(∣∣ψhin(x)
∣∣2 +

h2

2

∣∣∇ψhin(x)
∣∣2) ≤ const.

This assumption is easily satisfied by initial data of WKB type, or by semi-classical wave packets.

It is proved in [13] that these uniform bounds on the initial mass and kinetic energy are

propagated by the SLE system (1.2), which in turn implies that for all times t ∈ R+, the wave

function ψh(·, t) is:

1. uniformly bounded in L2
(
Rd
)

as h→ 0+, i.e.

sup
0<h≤1

∥∥ψh(·, t)
∥∥
L2

x
≤ C1,

2. h-oscillatory, i.e.

sup
0<h≤1

∥∥h∇xψh(·, t)
∥∥
L2

x
≤ C2,

where C1 and C2 are some constants independent of 0 < h < 1.

In particular this implies the existence of a limiting Wigner measure ν(·, ·, t) ∈M+(Rdx×Rdξ),
such that for all T > 0

wh
[
ψh
] h→0+−→ ν in L∞([0, T ];A′

(
Rdx × Rdξ)

)
w–∗,

up to the extraction of subsequences. Moreover, on the same time-interval, one has∣∣ψh(x, t)
∣∣2 h→0+−→

∫
R
ν (x, ξ, t) dξ in M+

(
Rdx
)

w– ∗ .

Under our assumption (A1) on V , this can be used to prove that (see [13] for more details):

Fh (y, t)
h→0+−→ −

∫∫
R2d

∇yV (x, y) ν(x, ξ, t) dx dξ =: F 0 (y, t) ,

uniformly on compact intervals in y and t.
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Similarly, one can pass to the limit h→ 0+ in the equation for µh to find that there exists a

limiting measure µ0 ≡ µ ∈M+(Rny×Rnη ) which consequently solves (in the sense of distributions):

(3.2) ∂tµ+ η · ∇yµ+ F 0 (y, t) · ∇ηµ = 0.

Moreover, one can prove that

Υh (x, t)
h→0+−→

∫∫
R2n

V (x, y)µ (y, η, t) dy dη =: Υ0 (x, t) .

In view of the definition (3.1), one also finds that

Θh
[
Υh
]
wh

h→0+−→ −∇xΥ0 (x, t) · ∇ξν

and thus, the Wigner measure associated to ψh satisfies the following Liouville equation (in the

sense of distributions):

(3.3) ∂tν + ξ · ∇xν −∇xΥ0 (x, t) · ∇ξν = 0.

In summary, one finds a system of two coupled Liouville equations (3.2)–(3.3) in the classical

limit (we refer to [13] for a rigorous proof and further details).

4 The spatial meshing strategy

4.1 The semi-discretized SLE system and its energy

The analysis in this section will focus on the spatial meshing strategy. In order to show that

it is possible to use a grid with ∆y,∆η ∼ O(1), and thus, independent of h, we will consider a

semi-discretized version of the SLE system (1.2) in one spatial dimension d = n = 1 where the

Liouville is discretized using an upwind scheme:

(4.1)

 ih∂tψ
h = −h

2

2
∂xxψ

h + Υh
d (x, t)ψh, ψh(0, x) = ψhin(x),

∂tµ
h + ηDyµ

h + Fh (y, t)Dηµ
h = 0, µh(0, y, η) = µhin(y, η).

Here, Υh
d (x, t) stands for the trapezoidal quadrature approximation of Υh (x, t), as before, whereas

Fh (y, t) includes exact derivative of the known function V (x, y). We shall refer to (4.1) as the

semi-discretized SLE system (s-SLE) and show that it yields the “correct” classical limit, i.e., the

semi-discretized version of (3.2)–(3.3).

Before doing so, we will need to prove an a-priori estimate and the energy associated to (4.1).

To this end, we define the semi-discrete energy as

Ed (t) :=

∫
R

h2

2

∣∣∂xψh(x, t)
∣∣2 dx+

∫
R

Υh
d (x, t)

∣∣ψh∣∣2 dx+

J−1∑
j=0

K−1∑
k=0

η2k
2
µhjk∆y∆η.

Here, and in the following, because of the periodicity of µ, we shall use a cyclic index for µjk,

such that µjk = µj+J,k = µj−J,k = µj,k+K = µj,k−K .

Theorem 4.1. Under the assumptions (A1) and (A2), the energy Ed(t) is bounded by a constant

independent of h for all t ≥ 0.
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Proof. We start by showing that the initial energy is bounded. This is easily seen from

Ed (0) =

∫
R

h2

2

∣∣∂xψhin∣∣2 dx+

∫
R

Υh
d (x, 0)

∣∣ψhin∣∣2 dx+

J−1∑
j=0

K−1∑
k=0

(µin)jk ∆y∆η,

where the first two integrals are clearly bounded by assumptions (A1) and (A2) and the last term

is just a quadrature approximation of
∫∫

µin dy dη = 1, and hence bounded.

Next, we compute the time-derivative of Ed as

d

dt
Ed = (I) + (II) + (III) + (IV),

where

(I) :=

∫
R

h2

2

(
∂x∂tψ̄

h · ∂xψh + ∂xψ̄
h · ∂x∂tψh

)
dx,

(II) :=

∫
R

Υh
d (x, t)

(
∂tψ̄

hψh + ψ̄h∂tψ
h
)
dx,

(III) :=

∫
R
∂tΥ

h
d (x, t)

∣∣ψh∣∣2 dx,
(IV) :=

J−1∑
j=0

K−1∑
k=0

η2k
2

(
∂tµ

h
)
jk

∆y∆η.

First, a straightforward calculation shows (I) + (II) = 0, since

(I) + (II) = −
∫
R

h2

2

(
∂tψ̄

h∂xxψ
h + ∂xxψ̄

h∂tψ
h
)
dx+

∫
R

Υh
d

(
∂tψ̄

hψh + ψ̄h∂tψ
h
)
dx

=

∫
R
∂tψ̄

h

(
−h

2

2
∂xxψ

h + Υh
dψ

h

)
+

(
−h

2

2
∂xxψ̄

h + Υh
d ψ̄

h

)
∂tψ

hdx

=

∫
R
∂tψ̄

h
(
ih∂tψ

h
)

+
(
−ih∂tψ̄h

)
∂tψ

hdx = 0.

For simplicity we will, from now on, denote

Ghj (t) ≡ Gh (t, x, yj) =

∫
R
V (x, yj)

∣∣ψh(t, x)
∣∣2 dx ≥ 0,

as well as

Fhj (t) ≡ Fh (yj , t) = −
∫
R
∂yV (x, yj)

∣∣ψh∣∣2 dx.
A key observation is that Gh is in fact Lipschitz with a Lipschitz constant L > 0 independent of

h, since∣∣Ghj+1 −Ghj
∣∣ =

∣∣∣∣∫
R

[V (x, yj+1)− V (x, yj)]
∣∣ψh∣∣2 dx∣∣∣∣ ≤ ∫

R
|∂yV (x, ξ)| |yj+1 − yj |

∣∣ψh∣∣2 dx,
for some ξ ∈ (yj , yj+1). Thus∣∣Ghj+1 −Ghj

∣∣ ≤ ‖∂yV (x, ξ)‖L∞

∥∥ψh∥∥2
L2 |yj+1 − yj | = ‖∂yV (x, ξ)‖L∞ ∆y =: L∆y,

since
∥∥ψh∥∥

L2 =
∥∥ψhin∥∥L2 = 1, in view of mass conservation established in Theorem 2.4. In

addition, we have that Fhj is uniformly bounded, i.e.

(4.2)
∣∣Fhj ∣∣ =

∣∣∣∣∫
R
∂yV (x, yj)

∣∣ψh∣∣2 dx∣∣∣∣ ≤ ‖∂yV (x, ξ)‖L∞

∥∥ψh∥∥2
L2 = L.
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Coming back to (III), we first note

∂tΥ
h
d (x, t) =

J−1∑
j=0

K−1∑
k=0

V (x, yj)
(
∂tµ

h
)
jk

∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

V (x, yj)
[
ηk
(
Dyµ

h
)
jk

+ Fhj
(
Dηµ

h
)
jk

]
∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

V (x, yj) ηk
(
Dyµ

h
)
jk

∆y∆η.

Recalling (4.1), (III) can be written as

(III) = −
J−1∑
j=0

K−1∑
k=0

Ghj ηk
(
Dyµ

h
)
jk

∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

Ghj
ηk + |ηk|

2

(
µhjk − µhj−1,k

)
∆η −

J−1∑
j=0

K−1∑
k=0

Ghj
ηk − |ηk|

2

(
µhj+1,k − µhj,k

)
∆η

=

J−1∑
j=0

K−1∑
k=0

ηk + |ηk|
2

µhjk
(
Ghj+1 −Ghj

)
∆η +

J−1∑
j=0

K−1∑
k=0

|ηk| − ηk
2

µhjk
(
Ghj−1 −Ghj

)
∆η,

where summation by parts is used in the last equality. In view of the Lipschitz property above,

it is then straightforward to estimate (III) via

(III) ≤ L
J−1∑
j=0

K−1∑
k=0

|ηk|µhjk∆y∆η.

Similarly, one proves that

(IV) = −
J−1∑
j=0

K−1∑
k=0

η2k
2
Fhj
(
Dηµ

h
)
jk

∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

η2k
2

Fhj +
∣∣Fhj ∣∣

2

(
µhjk − µhj,k−1

)
∆y −

J−1∑
j=0

K−1∑
k=0

η2k
2

Fhj −
∣∣Fhj ∣∣

2

(
µhj,k+1 − µhjk

)
∆y

=

J−1∑
j=0

K−1∑
k=0

η2k+1 − η2k
2

Fhj +
∣∣Fhj ∣∣

2
µhjk∆y +

J−1∑
j=0

K−1∑
k=0

η2k − η2k−1
2

Fhj −
∣∣Fhj ∣∣

2
µhjk∆y

=

J−1∑
j=0

K−1∑
k=0

(
ηk +

∆η

2

)
∆η

Fhj +
∣∣Fhj ∣∣

2
µhjk∆y +

J−1∑
j=0

K−1∑
k=0

(
ηk −

∆η

2

)
∆η

Fhj −
∣∣Fhj ∣∣

2
µhjk∆y,

where summation by parts is used as before. Combining the coefficients of Fhj and
∣∣Fhj ∣∣ respec-

tively, this is equal to

(IV) =

J−1∑
j=0

K−1∑
k=0

ηkF
h
j µ

h
jk∆y∆η +

J−1∑
j=0

K−1∑
k=0

∆η

2

∣∣Fhj ∣∣µhjk∆y∆η

≤ L

J−1∑
j=0

K−1∑
k=0

|ηk|µhjk∆y∆η + L

J−1∑
j=0

K−1∑
k=0

∆η

2
µhjk∆y∆η.

12



In summary, we thus find

d

dt
Ed ≤ 2L

J−1∑
j=0

K−1∑
k=0

|ηk|µhjk∆y∆η + L

J−1∑
j=0

K−1∑
k=0

∆η

2
µhjk∆y∆η

≤ 2L

J−1∑
j=0

K−1∑
k=0

η2kµ
h
jk∆y∆η

 1
2
J−1∑
j=0

K−1∑
k=0

µhjk∆y∆η

 1
2

+ L

J−1∑
j=0

K−1∑
k=0

∆η

2
µhjk∆y∆η.

Using the fact that
J−1∑
j=0

K−1∑
k=0

µhjk∆y∆η = C

is a conserved quantity with respect to time, we consequently find the following estimate

d

dt
Ed (t) ≤ 2

3
2LC

1
2

√
Ed (t) +

LC

2
∆η

≤ Ed (t) + 2L2C +
LC

2
∆η ≡ Ed (t) + C1.

By Gronwall’s inequality, this yields

Ed (t) ≤ (C1 + Ed(0)) et − C1,

which gives the desired bound independent of h.

Remark 4.2. It is easy to find a sharper bound of the energy by considering times t ≤ e and

t > e, respectively, but the estimate above is sufficient for our purposes.

4.2 The classical limit of the s-SLE system

In this section, we shall perform the limit h→ 0+ of the s-SLE system (4.1). By proving that it

converges, as h→ 0+, to the semi-discretized version of the coupled Liouvielle-system (3.2)–(3.3),

we infer that it is possible to choose a spatial meshing strategy such that ∆y,∆η ∼ O(1).

To this end, we first note that the a-priori bounds on the mass and energy obtained in

Theorems 2.4 and 4.1, together with our assumptions on V ≥ 0 imply that the solution ψh of

(4.1) is uniformly bounded in L2 (R), and h−oscillatory. Thus, there exists an associated Wigner

measure ν(, ·, ·, t) ∈M+(Rx × Rξ) and we directly infer that

Fh (y, t)
h→0+−→ −

∫∫
R2

∂yV (x, y) ν(t, x, ξ) dx dξ =: F 0 (y, t) ,

by the same arguments as in [13] (recall that x, t are taken to be continuous in (4.1)). In the

following we shall use the short-hand notation Fhj (t) and F 0
j (t), respectively, as given in (4.1).

4.3 Convergence of µh

Next, we turn to the the solution µh within (4.1), which we recall to be discretized via an upwind

scheme. We shall prove the following result about its limiting behavior as h→ 0+.
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Proposition 4.3. Let µhjk (t) ∈ Cb (Rt) be a solution of

d

dt
µhjk (t) = −ηkDyµ

h
jk − Fhj (t)Dηµ

h
jk,

and µjk (t) ∈ Cb (Rt) be a solution of

d

dt
µjk (t) = −ηkDyµjk (t)− F 0

j (t)Dηµjk (t) ,

where j = 0, · · · , J − 1 and k = 0, · · · ,K − 1, such that initially µhjk (0) = µjk (0). Then for any

given T > 0,

µhjk
h→0+−→ µ0

jk ≡ µjk, as h→ 0+ in L∞ [0, T ] ,

up to the extraction of subsequences.

Proof. Denote the difference between µhjk and its limit by

ehjk (t) = µhjk(t)− µjk(t),

which solves the following system of equations:

d

dt
ehjk (t) = −ηkDye

h
jk − Fhj (t)Dηe

h
jk + F 0

j (t)Dηµjk − Fhj (t)Dηµjk

= − 1

2∆y
(ηk + |ηk|)

(
ehjk − ehj−1,k

)
− 1

2∆y
(ηk − |ηk|)

(
ehj+1,k − ehjk

)
− 1

2∆η
(Fhj (t) +

∣∣Fhj (t)
∣∣) (ehjk − ehj,k−1)− 1

2∆η
(Fhj (t)−

∣∣Fhj (t)
∣∣) (ehj,k+1 − ehjk

)
+

1

2∆η
(F 0
j (t) +

∣∣F 0
j (t)

∣∣− Fhj (t)−
∣∣Fhj (t)

∣∣) (µjk − µj,k−1)

+
1

2∆η
(F 0
j (t)−

∣∣F 0
j (t)

∣∣− Fhj (t) +
∣∣Fhj (t)

∣∣) (µj,k+1 − µjk) ,

subject to initial data ehjk (0) = 0, since µhjk(0) = µjk(0). For simplicity we shall write the system

above in vector form, i.e.,

(4.3)
d

dt
Eh(t) = Ah (t)Eh (t) + bh (t) , Eh (0) = 0.

Here Eh (t) and bh (t) are both JK-dimensional vectors, Ah (t) is a continuous JK×JK matrix-

valued function of t ∈ (0, T ], and

bh(j−1)K+k (t) =
1

2
(F 0
j (t) +

∣∣F 0
j (t)

∣∣− Fhj (t)−
∣∣Fhj (t)

∣∣)µjk − µj,k−1
∆y

+
1

2
(F 0
j (t)−

∣∣F 0
j (t)

∣∣− Fhj (t) +
∣∣Fhj (t)

∣∣)µj,k+1 − µjk
∆η

,

for j = 1, . . . , J , and k = 1, . . . ,K. Clearly,
∥∥Ah (t)

∥∥
∞ ≤ C, where C is a constant independent of

h, due to the fact that
∣∣Fhj (t)

∣∣ and
∣∣F 0
j (t)

∣∣ are both bounded by some constants independent of

h, see the proof of Theorem 4.1. Classical ODE theory then implies (see, e.g., [25]), that there is

a matrix-valued function Sh (t, s) such that the solution of (4.3) is given by Duhamel’s principle:

Eh (t) = Sh (t, 0)Eh (0) +

∫ t

0

Sh (t, s) bh (s) ds
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=

∫ t

0

Sh (t, s) bh (s) ds.

Moreover, there exists a bound on the propagator S of the

(4.4)
∥∥Sh (t, s)

∥∥
∞ ≤ C3,

where C3 is a constant independent of h.

Next, we recall that Fhj (t) = Fh (yj , t) is uniformly bounded, by equation (4.2), and

Fhj (t)
h→0+−→ F 0

j (t) = F 0 (yj , t) , as h→ 0+,

pointwise (up to the extraction of subsequences). In addition, Fhj (t) is easily seen to be equi-

continuous in time, by the same type of argument as in [13]. Namely, by using Schrödinger’s

equation, one finds

∣∣∂tFhj (t)
∣∣ =

∣∣∣∣∫
R
∂yV (x, yj)

(
∂tψ̄

hψh + ψ̄h∂tψ
h
)
dx

∣∣∣∣
=

∣∣∣∣∫
R

ih

2
∂yV (x, yj)

(
ψ̄h∂xxψ

h − ∂xxψ̄hψh
)
dx

∣∣∣∣ .
Integrating by parts, it reads

∣∣∂tFhj (t)
∣∣ =

h

2

∣∣∣∣∫
R
∂x
(
∂yV (x, yj) ψ̄

h
)
∂xψ

h − ∂xψ̄h∂x
(
∂yV (x, yj)ψ

h
)
dx

∣∣∣∣
=

h

2

∣∣∣∣∫
R
∂xyV (x, yj)

(
ψ̄h∂xψ

h − ∂xψ̄hψ
)
dx

∣∣∣∣
≤ h ‖∂xyV (x, y)‖L∞(R2) ‖ψ

h‖L2(R)‖∂xψh‖L2(R) ≤ C (t) ,

where the last inequality follows from the h−oscillatory nature of ψh.

This consequently implies that

bh (t)
h→0+−→ 0, as h→ 0+,

locally uniformly in t, up to extraction of some subsequence, which in turn yields convergence of

Eh (t) itself, as can be seen by considering its m-th component, for m = 1, . . . , JK:

∣∣Ehm (t)
∣∣ =

∣∣∣∣∣
∫ t

0

JK∑
n=1

Shmn (t, s) bhn (s) ds

∣∣∣∣∣
≤ C3

JK∑
n=1

∫ t

0

∣∣bhn (s)
∣∣ ds→ 0, as h→ 0+,

where we have used (4.4).

4.4 Equation for ν and the main result

With the convergence theorem of µh in hand, we can now state the following result, which

represents the final step in our analysis.
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Proposition 4.4. Assume (A1) and (A2) and let Θ[Υh
d ] be the pseudo-differential operator de-

fined in (3.1) applied to the trapezoidal quadrature approximation of Υh (x, t). Then it holds

Θ[Υh
d ]wh (x, ξ, t)

h→0+−→ −∂xΥ0
d (x, t) ∂ξν (x, ξ, t) in L∞ ([0, T ];A′ (Rx × Rξ) w–∗) ,

where

Υ0
d (x, t) =

J−1∑
j=0

K−1∑
k=0

V (x, yj)µ
0
jk∆y∆η.

The proof of this proposition follows from the same arguments as given in the proof of Lemma

4.5 in [13], and we therefore omit it here.

We are now in the position to state the main result of this section.

Theorem 4.5. Let Assumption (A1) and (A2) hold. Then, for any T > 0, the solution of

semi-discretized SLE system (4.1) satisfies, up to extraction of sub-sequences,

wh[ψh]
h→0+−→ ν in L∞([0, T ];A′ (Rx × Rξ)) w–∗, µhjk

h→0+−→ µ0
jk in L∞ [0, T ] ,

where j = 0, · · · , J − 1 and k = 0, · · · ,K − 1. In addition, ν and µjk solve the semi-discretized

Liouville-system  ∂tν + ξ∂xν − ∂xΥ0
d (x, t) ∂ξν = 0,

d

dt
µ0
jk + ηkDyµ

0
jk + F 0

j Dηµ
0
jk = 0.

Remark 4.6. Numerical experiments show that the same type of behavior is true not only for

mixed spectral-finite difference schemes, but also purely spectral schemes, see [13]. Our proof,

however, only works for the former case due to the required positivity of the energy.

5 Time-discretization

We finally turn to the time-discretization of our splitting scheme (in one dimension d = n = 1)

as given by (2.3), (2.5). In this section we want to show that it is asymptotic preserving in the

sense that in the limit h → 0+, it yields the corresponding time-splitting scheme of (3.2)–(3.3),

i.e.,  ∂tν + ξ∂xν = 0,

d

dt
µjk + ηk (Dyµ)jk + F 0

j (Dηµ)jk = 0,

and  ∂tν − ∂xΥ0
d (x, t) ∂ξν = 0,

d

dt
µjk = 0.

In turn, this shows that ∆t ∼ O(1) can be chosen independent of the small parameter h. To this

end, it suffices to show that in our time-spitting method ψh is h−oscillatory, i.e.

sup
0<h≤1

∥∥h∂xψh∥∥L2
x
≤ C,

where the constant C depends only on the final time T . Then, the desired result follows from the

arguments given in the previous section.
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We therefore consider the scheme (2.3), (2.5) and recall that in both splitting steps, the first

equation, i.e., the quantum part is solved exactly in time. A straightforward calculation then

shows that
∥∥h∂xψh∥∥2L2

x
is conserved in the first splitting step (2.3), i.e.

d

dt

∫
h2
∣∣∂xψh∣∣2 dx = h2

∫
∂txψh∂xψ

h + ∂xψh∂txψ
hdx

= −h2
∫
∂tψh∂xxψ

h + ∂xxψh∂tψ
hdx = −h2

∫
− ih

2
∂xxψh∂xxψ

h + ∂xxψh
ih

2
∂xxψ

hdx = 0.

Next, we shall show that
∥∥h∂xψh∥∥2L2

x
remains bounded during the second splitting step (2.5):

Recall that Υh
d (x, t) is in fact independent of t, due to the fact that d

dtµ
h
jk = 0 in this step. Since

∂txψ
h = − i

h
∂xΥh

d (x, t)ψh − i

h
Υh
d (x, t) ∂xψ

h,

we find

d

dt

∫
h2
∣∣∂xψh∣∣2 dx = h2

∫
∂txψh∂xψ

h + ∂xψh∂txψ
hdx

= h

∫
i
(
∂xΥh

d (x, t)ψh + Υh
d (x, t) ∂xψh

)
∂xψ

h − i∂xψh
(
∂xΥh

d (x, t)ψh + Υh
d (x, t) ∂xψ

h
)
dx

= −2h

∫
Im
(
∂xΥh

d (x, t)ψh∂xψ
h
)
dx ≤ 2

∥∥∂xΥh
d (x, t)

∥∥
L∞

x

∥∥ψh∥∥
L2

x

∥∥h∂xψh∥∥L2
x
,

where ∥∥∂xΥh
d (x, t)

∥∥
L∞

x
=

∥∥∥∥∥∥
J−1∑
j=0

K−1∑
k=0

∂xV (x, yj)µ
h
jk∆y∆η

∥∥∥∥∥∥
L∞

x

≤ ‖∂xV (x, y)‖L∞ .

Since
∥∥ψh∥∥

L2
x

= 1 is conserved by our scheme, we thus have

d

dt

∥∥h∂xψh∥∥L2
x
≤ C0,

where C0 = ‖∂xV (x, y)‖L∞ is some constant independent of h. Hence, in the second splitting

step (2.5) one has∥∥h∂xψh,n+1
∥∥
L2

x
≤
∥∥h∂xψh,∗∥∥L2

x
+ C0∆t =

∥∥h∂xψh,n∥∥L2
x

+ C0∆t,

where we used the fact that
∥∥h∂xψh∥∥L2

x
is conserved during (2.3). In summary, this yields∥∥h∂xψh,n∥∥L2

x
≤
∥∥h∂xψhin∥∥L2

x
+ C0tn ≤

∥∥h∂xψhin∥∥L2
x

+ C0T,

where the right hand side is some constant independent of h thanks to the assumption on initial

data (A2). This shows that ψh,n is h−oscillatory for any n ∈ N, with 0 ≤ tn ≤ T and the result

follows from the arguments in the previous section.

6 Numerical examples

In this final section, we shall report on a few numerical examples, which illustrate the validity of

our algorithm and meshing strategy. To this end, we choose an interaction potential of the form

V (x, y) =
(x+ y)

2

2
,
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and solve the one-dimensional SLE system on the interval x ∈ [−π, π] and y, η ∈ [−2π, 2π] with

periodic boundary conditions.

Example 6.1 (∆t independent of h). We choose initial conditions for the SLE system (1.2) as

follows:

ψin (x) = exp
(
−25 (x+ 0.2)

2
)

exp

(
−i ln (2 cosh (5 (x+ 0.2)))

5h

)
,

and

µin (y, η) =

{
CN exp

(
− 1

1−y2

)
exp

(
− 1

1−η2

)
, for |y| < 1, |η| < 1

0, otherwise.

Here, CN > 0 is the normalization factor such that
∫∫

R2 µindy dη=1. For h = 1
256 ,

1
1024 ,

1
4096 , we

fix the stopping time T = 0.5 and choose ∆x = 2πh
16 , ∆y = ∆η = 4π

128 . For each choice of h,

we shall solve the SLE system first with ∆t independent of h and, second, with ∆t = o (h). To

be more specific, we compare the two cases where ∆t = 0.01 and ∆t = h
10 . It can be observed

from Figure 1, that the macroscopic position and current densities associated to the solution of

Schrödinger’s equation agree well with each other.

In addition, we compare the numerical values of µ computed by ∆t = 0.01 and ∆t = h
10

(denoted as µ1 and µ2, respectively). As shown in Table 1, the error is insensitive in h, showing

a uniform in h convergence in ∆t.

h 1/256 1/1024 1/4096
‖µ1−µ2‖l2
‖µ2‖l2

1.65e-03 1.69e-03 1.70e-03

Table 1: The relative `2−difference (defined as
‖µ1−µ2‖l2
‖µ2‖l2

) for various h.

Example 6.2 (Numerical error as h decreases). In this example, we choose the same initial data

for µin as before and

ψin (x) = exp
(
−5 (x+ 0.1)

2
)

exp

(
i sinx

h

)
.

Now, we fix ∆t = 0.01, a stopping time T = 0.4, and ∆y = ∆η = 4π
128 . We choose ∆x = 2πh

16 , for

h = 1
64 ,

1
128 ,

1
256 ,

1
512 ,

1
1024 ,

1
2048 , respectively. The reference solution is computed with ∆t = h

10 .

From the `2-error plotted in Figure 2, one can see that although the error in the wave function

increases as h decreases, the error for the position density |ψh|2 as well as for the macroscopic

quantity µ does not change noticeably. This shows that h−independent time steps can be taken

to accurately obtain physical observables, but not the wave function ψh itself.

Example 6.3 (Convergence in time). Finally, to examine the convergence in time of our scheme,

let the initial data be as in the example before. Fix h = 1
8192 , a stopping time T = 0.4 and a

spatial discretization with ∆x = 2πh
16 , ∆y = ∆η = 4π

128 . Choose ∆t = 0.4
32 ,

0.4
64 ,

0.4
128 ,

0.4
256 ,

0.4
512 ,

0.4
1024 .

The reference solution is computed with ∆t = 0.4
81920 . The `2-error is plotted in Figure 3, which

shows first order accuracy in time of our scheme. Again, we see that the wave function exhibits

errors several orders of magnitude larger than the physical observable densities.
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Figure 1: Numerical solutions at T = 0.5 in Example 6.1 computed by the

spectral method using different meshing strategies. First row: h = 1
256 ;

Second row: h = 1
1024 ; Third row: h = 1

4096 .

19



δ
10

-4
10

-3
10

-2
10

-1

e
rr

o
r

10
-3

10
-2

10
-1

10
0

ψ

|ψ|
2

µ

Figure 2: Example 6.2: `2−errors of the wave function ψh, position density

|ψh|2 and µ for various h. Fix ∆t = 0.01. For h = 1
64 ,

1
128 ,

1
256 ,

1
512 ,

1
1024 ,

1
2048 ,

choose ∆x = 2πh
16 respectively. The reference solution is computed with

∆t = h
10 .
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Figure 3: Example 6.3: `2−errors of the numerical solutions for various ∆t

and fixed h = 1
8192 , ∆x = 2πh

16 , ∆y = ∆η = 4π
128 . It shows first order

convergence of the scheme in time. The reference solution is computed with

∆t = 0.4
81920 .
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