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Abstract

We investigate the large-time behavior of classical solutions to the thin-film type equation
ut = −(uuxxx)x . It was shown in previous work of Carrillo and Toscani that for non-negative initial
data u0 that belongs to H 1(R) and also has a finite mass and second moment, the strong solutions relax in
the L1(R) norm at an explicit rate to the unique self-similar source type solution with the same mass. The
equation itself is gradient flow for an energy functional that controls the H 1(R) norm, and so it is natural
to expect that one should also have convergence in this norm. Carrillo and Toscani raised this question,
but their methods, using a different Lyapunov functions that arises in the theory of the porous medium
equation, do not directly address this since their Lyapunov functional does not involve derivatives of u.
Here we show that the solutions do indeed converge in the H 1(R) norm at an explicit, but slow, rate. The
key to establishing this convergence is an asymptotic equipartition of the excess energy. Roughly speaking,
the energy functional whose dissipation drives the evolution through gradient flow consists of two parts:
one involving derivatives of u, and one that does not. We show that these must decay at related rates—due
to the asymptotic equipartition—and then use the results of Carrillo and Toscani to control the rate for the
part that does not depend on derivatives. From this, one gets a rate on the dissipation for all of the excess
energy.
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1. Introduction

In this paper we study the asymptotic behavior of classical solutions u(x, t) to the thin-film
equation

ut = −(uuxxx)x, x ∈ R, t > 0, (1.1)

with

u(x,0) = u0(x) � 0, x ∈ R. (1.2)

Equation (1.1) is a special case of the so-called thin-film equation

ut = −(
unuxxx

)
x
, x ∈ R, t > 0, (1.3)

for n > 0. (1.3) has been derived from a lubrication approximation to model the surface tension
dominated motion of viscous liquid films and spreading droplets [1,3,7].

We show that for a fairly general class of initial data, the classical solutions of (1.1) converge
toward certain self-similar solutions in the H 1(R) norm. We also estimate the rate of conver-
gence. Previous work [6] had established this convergence in the L1(R), and while these authors
raised the question of H 1(R) convergence, which is natural for the equation, their methods did
not address the issue.

In what follows here, we make use of functionals involving higher-order derivatives, and to
justify the calculations we make, we must assume that the solutions with which we work are
classical. This is in contrast to the work in [6], where strong solutions were treated. The results
in [4], where the issue of finite time blow up of solutions for the thin-film type equations has
been discussed, show that in general it is possible for classical solutions to break down in finite
time. However, the equipartition mechanism that we introduce here provides a new perspective
on equilibration, and it may well be possible to establish it for a more general class of solutions.

Equation (1.1) is gradient flow for the energy E0(u) where

E0(u) = 1

2

∫
R

u2
x(x)dx,

in that

ut =
(

u

(
δE0(u)

δu

)
x

)
x

.

This has the consequence that for solutions u(·, t), E0(u(·, t)) is monotone decreasing in time.
Also, since the equation is also a conservation law, the total mass

M =
∫
R

u(x, t)dx

is conserved.
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Moreover, Eq. (1.1) has a scale invariance, and self-similar solutions. If one introduces

v(x, t) = α(t)u
(
α(t)x,β(t)

)
, (1.4)

where

α(t) = et and β(t) = e5t − 1

5
, (1.5)

it becomes

vt = (xv − vvxxx)x, x ∈ R, t > 0, (1.6)

v(x,0) = v0(x), x ∈ R. (1.7)

Equation (1.6) has a unique steady state, found by Smyth and Hill [8]:

v(∞)(x) = 1

24

(
C2 − x2)2

+, (1.8)

where g+ indicates the positive part of g, and where the constant C = C(M) is determined by
the requirement that

∫
R

v(∞)(x)dx = ∫
R

u0(x)dx. Source type solutions of the thin-film equa-
tion (1.3) have been studied in [2] and the uniqueness of the steady states of the rescaled equation
in the general case is derived from the uniqueness of source type solutions U(x, t) for (1.3), re-
quiring Ux(x, t) = 0 at the edge of the support.

Clearly, if a solution v(x, t) of (1.6) approaches v(∞), the corresponding solution u(x, t) of
(1.1) approaches to the corresponding self-similar solution. For the investigation of the rates at
which this takes place, it is important that (1.6) also describes a gradient flow: Introduce the
energy functional E(v) where

E(v) = 1

2

∫
R

(
v2
x(x) + x2v(x)

)
dx.

Then, (1.6) can be rewritten as

vt =
(

v

(
δE(v)

δv

)
x

)
x

.

Clearly then, for any solution v(x, t) of (1.6), E(v(·, t)) is non-increasing in t . Define

E
(
v|v(∞)

) = 1

2

∫
R

∣∣vx − v(∞)
x

∣∣2 dx,

where v(∞) is the stationary solution with the same mass as v. Our goal is to estimate the rate at
which E(v(·, t)|v(∞)) converges to zero. Indeed, our analysis will provide the first proof that for
general initial conditions this convergence does indeed take place. Note that this convergence is
exactly the convergence of v(·, t) to v(∞) in the H 1(R) norm.
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By using the explicit formula for the function v(∞) and proceeding as in the analysis of
second-order degenerate diffusion in [5] we obtain

E
(
v|v(∞)

) = 1

2

∫
R

∣∣vx − v(∞)
x

∣∣2 dx

= E(v) − E
(
v(∞)

) −
∫

{v(∞)=0}

x2

2
v dx − C2

6

∫
{v(∞)=0}

v dx

� E(v) − E
(
v(∞)

)
, (1.9)

where C is the constant appearing in the definition of v(∞).
To estimate the rate of convergence in H 1(R), it therefore suffices to prove that the excess

energy, E(v) − E(v∞), decreases to zero. Toward this end we define the energy dissipation,
DE(v), given by

DE

(
v(·, t)) = − d

dt

(
E(v) − E(v∞)

) = − d

dt
E(v).

It follows from (1.6) that DE(v) is given by

DE(v) :=
∫
R

v(vxxx − x)2 dx. (1.10)

Our object here is to prove a lower bound on DE(v(·, t)) in terms of E(v(·, t)|v(∞)) which
we shall use to prove that for a broad class of initial data, limt→∞ E(v(·, t)|v(∞)) = 0, and to
estimate the rate at which this convergence takes place.

In obtaining our energy dissipation bound, we shall make crucial use of an entropy dissipation
bound. Indeed, as shown in [6], Eq. (1.6) can be written as

vt = −
(

Φ(v)

[
x2

2
+ h(v)

]
xx

)
xx

+
(

v

[
x2

2
+ h(v)

]
x

)
x

,

with h(v) = √
6v1/2 and Φ(v) = vh′(v). This leads to the exact form of the entropy associated

to the unique steady state v(∞), given in (1.8), which is

H(v) =
∫
R

(
x2

2
v(x) + 2

√
2

3
v3/2(x)

)
dx.

One defines the relative entropy by

H
(
v|v(∞)

) = H(v) − H
(
v(∞)

)
.

As one can check, v(∞) minimizes H for given total mass. This relative entropy had already
been investigated earlier in the context of a second-order evolution equation, namely a special
case of the porous medium equation for which v(∞) is also a stationary solution. In fact, the



E.A. Carlen, S. Ulusoy / J. Differential Equations 241 (2007) 279–292 283
porous medium equation in question is simply the gradient flow for H(v) in the same way that
(1.6) is gradient flow for the energy E. A truly remarkable discovery [6] of Carrillo and Toscani
is that H(v(·, t)) is also monotone decreasing for solutions of (1.6), despite the fact that this
equation is gradient flow for the energy and not the entropy. Indeed, Carrillo and Toscani have
proved that

d

dt
H

(
v(·, t)|v(∞)

)
� −DH

(
v(·, t))

where the partial entropy dissipation DH (v) is given by

DH (v) :=
∫
R

v

(
x2

2
+ √

6v1/2
)2

x

dx. (1.11)

We use the term partial since full entropy dissipation is the sum of two positive terms, one
of which is DH . Interestingly enough, DH is the exact entropy dissipation for H(v|v(∞)) for
solutions of a porous medium equation. Moreover, as was already established in the investigation
of the porous medium equation, one has the entropy–entropy dissipation bound

H
(
v|v(∞)

)
� 1

2
DH (v). (1.12)

This has the consequence that for solution of (1.6)

H
(
v(·, t)|v(∞)

)
� e−2tH

(
v0|v(∞)

)
.

Unfortunately, DE is a much more complicated functional than DH , and we do not possess
a bound of this simple type relating E(v|v(∞)) and DE(v), and it is not even clear at this point
that E(v(·, t)|v(∞)) will generally tend to zero at all.

We shall show here that this convergence does occur, and estimate the rate, using an equipar-
tition theorem for solutions of (1.6).

To explain, consider any classical solution of (1.6) with finite energy E(v(·, t)). Define

α(v) = 1

2

∫
R

x2v(x)dx and β(v) = 1

2

∫
R

v2
x(x)dx

so that

E(v) = α(v) + β(v).

By a simple computation,

d

dt
α
(
v(·, t)) = −2α

(
v(·, t)) + 3β

(
v(·, t)).

It follows that

2α
(
v(∞)

) = 3β
(
v(∞)

)
. (1.13)
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Analogously to the way to we defined relative entropies and energies, we define α(v|v(∞)) and
β(v|v(∞)) respectively by

α
(
v|v(∞)

) = α
(
v(·, t)) − α

(
v(∞)

)
β
(
v|v(∞)

) = β
(
v(·, t)) − β

(
v(∞)

)
.

Then, by (1.13),

2α
(
v|v(∞)

) − 3β
(
v|v(∞)

) = 2α(v) − 3β(v). (1.14)

We shall prove here that for a general class of classical solutions to (1.6),

lim
t→∞

(
2α

(
v(·, t)) − 3β

(
v(·, t))) = 0. (1.15)

We refer to this as asymptotic equipartition for solutions of (1.6).
To employ this, we use the entropic convergence result of Carrillo and Toscani to show that

furthermore,

lim
t→∞

(
α
(
v(·, t)) − α

(
v(∞)

)) = 0. (1.16)

Combining (1.13), (1.15) and (1.16), we then have that

lim
t→∞

(
β
(
v(·, t)) − β

(
v(∞)

)) = 0. (1.17)

Combining (1.16) and (1.17), we then have that limt→∞ E(v(·, t)|v(∞)) = 0. In proving all
of this we shall keep track of the rate, so that our final result is quantitative.

The key to all of this is an identity expressing 2α(v) − 3β(v) in terms of a iterated integrals.
Suppose that v is a non-negative smooth function, then as we shall see,

2α(v) − 3β(v)

= 2

0∫
−∞

( x∫
−∞

v(z)
(
vzzz(z) − z

)
dz

)
dx − 2

∞∫
0

( ∞∫
x

v(z)
(
vzzz(z) − z

)
dz

)
dx. (1.18)

Comparing this with (1.10), one sees the possibility of estimating 2α(v) − 3β(v) in terms of
something involving DE(v). In fact, we shall show, under the condition the fourth moment of the
initial data is finite, that there is a finite constant K so that

∣∣2α(v) − 3β(v)
∣∣ � K

(
DE(v)

)1/2
. (1.19)

This shall be enough to deduce (1.16).
The paper is organized as follows. In Section 2, we prove some a priori bounds that we shall

use later on. In Section 3, we prove the general version of the iterated integral identity (1.18),
and then prove (1.19). In Section 4, we recall the results from [6] needed to prove (1.18), and to
estimate the rate of convergence. Finally, in Section 5, we put everything together, and prove the
main result, which is
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1.1. Theorem. For all classical solutions v(x, t) of (1.6) with smooth, non-negative initial data
v0 such that the mass M0(v0), the fourth moment M4(v0) and E(v0) are all finite, there is a
finite constant C, depending only on M0(v0), M4(v0) and E(v0), such that for all t > 0, v(x, t)

satisfies

E
(
v(·, t)|v(∞)

)
� C√

t
. (1.20)

As noted above, E(v(·, t)|v(∞)) = 1
2

∫
R

|vx(·, t) − v
(∞)
x |2 dx, so this explicitly estimates the

rate of convergence of v(·, t) to v(∞) in the H 1(R) norm. The fact that this is only power law
decay reflects the fact that our proof only gives a power law decay on the rate of equipartition. If
one could show the equipartition to take place exponentially fast, then one would get exponential
convergence in Theorem 1.1. But we do not, at present, know whether the equipartition will in
general take place exponentially fast. However, it is possible to get a slightly better rate with the
present methods: As we shall explain following the proof of Theorem 1.1, one can improve the
right-hand side to Cε/T 1−ε for any ε > 0.

2. Some a priori bounds

The main result in the section is the moment bound in Lemma 2.3. Its proof requires some
simpler bounds which we give in the first two lemmas.

2.1. Lemma. Any integrable non-negative function v on R for which E(v) < ∞ is bounded.
More precisely,

‖v‖∞ � M +
(∫

R

v2
x(x)dx

)1/2

� M + (
E(v)

)1/2

where M is the total mass
∫

R
v(x)dx.

Proof. For any x0, the average value of v over the interval [x0, x0 +1] is no greater than M since
the length of the interval is 1 and ∫

[x0,x0+1]
v(x)dx � M.

Hence there is a point y0 ∈ [x0, x0 + 1] such that v(y0) � M . But then

v(x0) = v(y0) −
y0∫

x0

vx(x)dx � M +
(∫

R

v2
x(x)dx

)1/2

. �

2.2. Lemma. Any integrable non-negative function v on R for which E(v) < ∞ and DE(v) < ∞
satisfies ∫

R

v−3/2v4
x dx � 2DE(v) + 36H(v).



286 E.A. Carlen, S. Ulusoy / J. Differential Equations 241 (2007) 279–292
Proof. By the Minkowskii inequality in L2(R, v(x)dx),

(∫
R

v(vxxx)
2dx

)1/2

=
(∫

R

v
(
(vxxx − x) + x

)2dx

)1/2

�
(
DE(v)

)1/2 +
(∫

R

vx2 dx

)1/2

.

Now, for A > 0 consider the following inequality:

∫
R

(
v1/2vxxx + Avx

)2 dx � 0.

Integrating this by parts, we deduce that

∫
R

v(vxxx)
2 dx + A2

∫
R

v2
x dx � A

6

∫
R

v−3/2v4
x dx + 2A

∫
R

v1/2v2
xx dx. (2.1)

Choosing A = 6, we deduce the result. �
We shall need certain moment bounds. For future use, let us define for all positive integers k,

Mk(v) =
∫
R

xkv(x)dx.

Since our goal is to show that a solution v(x, t) of (1.6) is tending towards a functions of com-
pact support, namely v(∞), one would expect to be able to show that Mk(v(·, t)) stays bounded
uniformly in t for all k. For k = 2, this is obvious since E(v) � M2(v), and E(v(·, t)) is non-
increasing. Our analysis shall require a bound in M4(v(·, t)).

2.3. Lemma. Let v(x, t) be any classical solution of (1.6) for which the initial data v0 is inte-
grable and non-negative, and satisfies M4(v0) < ∞ and E(v0) < ∞. Then

M4
(
v(·, t)) � 2DE(v) + 36E(v).

Proof. We first compute

d

dt
M4

(
v(·, t)) = d

dt

∫
R

x4v(x, t)dx =
∫
R

x4(xv − vvxxx)x dx

= −4
∫
R

x4v dx − 4
∫
R

v2 dx + 18
∫
R

x2v2
x dx. (2.2)

The next to last term on the right can be discarded, but the last term requires further analysis.
Using Lemmas 2.1 and 2.2, and the Cauchy–Schwarz inequality, we deduce that
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∫
R

x2v2
x dx =

∫
R

x2v3/4v−3/4v2
x dx

�
(∫

R

x4v3/2 dx

)1/2(∫
R

v4
x

v3/2
dx

)1/2

� C1
(
C2 + DE

(
v(·, t)))1/2(

M4
(
v(·, t)))1/2

, (2.3)

where C1 and C2 are constants depending only on E(v0) and the total mass of v0. Now, define

φ(t) = (
M4

(
v(·, t)))1/2 and f (t) = 18C1

(
C2 + DE

(
v(·, t)))1/2

.

Then we deduce from (2.2) and (2.3) that

d

dt
φ(t) � −4φ(t) + f (t).

Therefore,

φ(t) � φ(0) + e−4t

t∫
0

e4sf (s)ds.

Note that f (t) � f1(t) + f2(t) where

f1(t) = 18C1(C2)
1/2 and f2(t) = 18C1

(
D

(
v(·, t)))1/2

.

Note that f1 is bounded on R+, and f2 is square integrable on R+:

∞∫
0

f 2
2 (t)dt = (18C1)

2

∞∫
0

D
(
v(·, t))dt � (18C1)

2H(v0).

But clearly,

e−4t

t∫
0

e4sf1(s)ds � ‖f1‖∞e−4t

t∫
0

e4s ds � ‖f1‖∞
4

,

and

e−4t

t∫
0

e4sf1(s)ds � e−4t

(
e8t − 1

8

)1/2

‖f ‖2 � ‖f ‖2√
8

.

Hence we have

φ(t) � φ(0) + ‖f1‖∞ + ‖f ‖2√

4 8
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uniformly in t . The right-hand side is a constant depending only on M4(v0), E(v0), and the total
mass of v0, M0(v0). �
3. The iterated integral identity

The key to result in this section is an identity for 2α(v) − 3β(v) in terms of iterated integrals,
where the integrand is related the integrand in DE(v).

3.1. Lemma. For any smooth function v that vanishes at ±∞

2α(v) − 3β(v)

= 2

0∫
−∞

( x∫
−∞

v(z)
(
vzzz(z) − z

)
dz

)
dx − 2

∞∫
0

( ∞∫
x

v(z)
(
vzzz(z) − z

)
dz

)
dx. (3.1)

Proof. We first compute

J1 :=
0∫

−∞

( x∫
−∞

v(z)vzzz(z)dz

)
dx −

∞∫
0

( ∞∫
x

v(z)vzzz(z)dz

)
dx.

Integrating by parts in the inner integrals, we obtain respectively that

x∫
−∞

v(z)vzzz(z)dz = v(x)vxx(x) −
x∫

−∞
vz(z)vzz(z)dz

= v(x)vxx(x) −
x∫

−∞

(
vz(z)/2

)2
z

dz

= v(x)vxx(x) − (
vx(x)/2

)2
, (3.2)

∞∫
x

v(z)vzzz(z)dz = −v(x)vxx(x) −
∞∫

x

vz(z)vzz(z)dz

= −v(x)vxx(x) −
∞∫

x

(
vz(z)/2

)2
z

dz

= −v(x)vxx(x) + (
vx(x)/2

)2
. (3.3)

Therefore, integrating by parts once more,

J1 = −3

2

+∞∫
v2
x(x)dx.
−∞
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Next, we compute

J2 := −
0∫

−∞

( x∫
−∞

v(z)zdz

)
dx +

∞∫
0

( ∞∫
x

v(z)zdz

)
dx.

Changing the order of integration we easily find

J2 =
+∞∫

−∞
x2v(x)dx.

Combining the pieces, the identity is proved. �
3.2. Lemma. For any smooth, non-negative v such that M0(v), M4(v) and E(v) are all finite,
there is a finite constant K , depending only on M0(v), M4(v) and E(v), such that

∣∣2α(v) − 3β(v)
∣∣ � K

(
DE(v)

)1/2
. (3.4)

Proof. We first apply our uniform bound on the M4(v(·, t)) coming from Lemma 2.3 to conclude
respectively that

x∫
−∞

v dt �
x∫

−∞

(
t

x

)4

v(t)dt � 1

x4

0∫
−∞

t4v(t)dt � min

{
C2

x4
,M

}
� C3

1 + x4
, (3.5)

∞∫
x

v dt �
∞∫

x

(
t

x

)4

v(t)dt � 1

x4

∞∫
0

t4v(t)dt � min

{
C∗

2

x4
,M

}
�

C∗
3

1 + x4
. (3.6)

Hence, by Lemma 3.1 and the Cauchy–Schwarz inequality,

∣∣∣∣∣
0∫

−∞

( x∫
−∞

v(vxxx − t)dt

)
dx

∣∣∣∣∣ �
0∫

−∞

[( x∫
−∞

v dt

)1/2( x∫
−∞

v(vxxx − t)2 dt

)1/2]
dx

�
0∫

−∞

[( x∫
−∞

C3

1 + t4
dt

)1/2( 0∫
−∞

v(vxxx − t)2 dt

)1/2]
dx

�
[ 0∫

−∞

( x∫
−∞

C3

1 + t4
dt

)1/2

dx

](
DE(v)

)1/2
, (3.7)
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∣∣∣∣∣
∞∫

0

( ∞∫
x

v(vxxx − t)dt

)
dx

∣∣∣∣∣ �
∞∫

0

[( ∞∫
x

v dt

)1/2( ∞∫
x

v(vxxx − t)2 dt

)1/2]
dx

�
∞∫

0

[( ∞∫
x

C∗
3

1 + t4
dt

)1/2( 0∫
−∞

v(vxxx − t)2 dt

)1/2]
dx

�
[ ∞∫

0

( ∞∫
x

C∗
3

1 + t4
dt

)1/2

dx

](
DE(v)

)1/2
. (3.8)

The remaining iterated integrals in (3.7) and (3.8) are clearly finite. The result then follows by
the triangle inequality. �
4. Asymptotic equipartition

4.1. Lemma. Under the same conditions imposed in Lemma 3.2, with the same constant K , we
have that for all T > 0,

inf
T �t�2T

{∣∣2α
(
v(·, t)) − 3β

(
v(·, t))∣∣} � KE1/2(v0)√

T
. (4.1)

Proof. For any T > 0, we have from Lemma 3.2 that

1

T

2T∫
T

∣∣2α
(
v(·, t)) − 3β

(
v(·, t))∣∣dt � 1

T

2T∫
T

KD
1/2
E

(
v(·, t))dt.

By Cauchy–Schwarz inequality,

2T∫
T

D
1/2
E

(
v(·, t))dt �

√
T

( 2T∫
T

DE

(
v(·, t))dt

)1/2

�
√

T

( ∞∫
0

DE

(
v(·, t))dt

)1/2

�
√

T
(
E(v0)

)1/2
. (4.2)

Finally, infT �t�2T {|2α(v(·, t)) − 3β(v(·, t))|} is no greater than the average |2α(v(·, t)) −
3β(v(·, t))| over the interval [T ,2T ]. �
4.2. Lemma. Under the same conditions imposed in Lemma 3.2, for all t > 0,

∣∣β(
v(·, t)) − β

(
v(∞)

)∣∣ � Ce−t/2. (4.3)
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Proof. As Carrillo and Toscani [6] have shown, there is a constant C so that∥∥v(·, t) − v(∞)
∥∥

L1(R)
� CH

(
v(·, t)|v(∞)

)
,

and thus there is another constant C so that∥∥v(·, t) − v(∞)
∥∥

L1(R)
� Ce−t .

Now, for any R > 0,

∣∣β(
v(·, t)) − β

(
v(∞)

)∣∣
�

∫
|x|<R

x2
∣∣v(x, t) − v(∞)(x)

∣∣dx +
∫

|x|>R

x2
∣∣v(x, t) − v(∞)(x)

∣∣dx

� R2
∫

|x|<R

∣∣v(x, t) − v(∞)(x)
∣∣dx + 1

R2

∫
|x|>R

x4(∣∣v(x, t)
∣∣ + ∣∣v(∞)(x)

∣∣)dx

� c

(
R2s−t + 1

R2

)
. (4.4)

The optimal choice of R2 is R2 = et/2, which yields the result. �
Proof of Theorem 1.1. Since

2
(
α
(
v|v(∞)

) + β
(
v|v(∞)

)) = 5β
(
v|v(∞)

) + (
2α

(
v|v(∞)

) − 3β
(
v|v(∞)

))
� 5β

(
v|v(∞)

) + ∣∣2α
(
v|v(∞)

) − 3β
(
v|v(∞)

)∣∣,
it follows from the last two lemmas and (1.14) that for some t in the interval [T ,2T ],

2E
(
v|v(∞)

)
�

{
α
(
v|v(∞)

) + β
(
v|v(∞)

)}
� 5Ce−t/2 + KE1/2(v0)√

T
. (4.5)

Since E(v|v(∞)) is monotone decreasing, this implies that

E
(
v(·,2T )|v(∞)

)
� Ce−T/2 + KE1/2(v0)√

T
.

Now, possessing this bound, we can go back and use it to improve (4.2). Doing so will give
a bound in terms of T −3/4. Returning to (4.2) again and using this yields a bound in terms of
T −7/8. Continuing, we can obtain a bound in terms of T ε−1 for any ε > 0. �
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