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In this paper we consider the equation

ht + (p− 1)
[
hn[(

h2
x

) p
2 −1

hxx
]

x

]
x = 0,

which was first derived in (Ulusoy, Nonlinearity 20 (2007): 685–712). We prove results

on the regularity of non-negative solutions. In Ulusoy, an entropy dissipation–entropy

estimate was provided for the p = 3 and n = 2 case using the energy functional Kq :=∫ h2
x

hq dx. Here, we extend our calculations to include various other p and n values. After

establishing some results on the support properties of solutions, we finally complete the

analysis of the long-time behavior of non-negative weak solutions.

1 Introduction

Diffusion processes are modeled by a parabolic evolution equation of the form

ht =
(

M(h)
(

δH

δh

)
x

)
x

. (1.1)
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Here M(h) is called the mobility term and H is an energy functional, so that δH
δh is the

chemical potential.

Recently, the first-order energy functional of the form

H2(h) := 1

2

∫
h2

x dx (1.2)

was employed. For example, the following equation

ht + (M(h)hxxx)x = 0, −a ≤ x ≤ a, (1.3)

with either periodic or “no flux” boundary conditions; i.e. hx(t , ±a) = hxxx(t , ±a) = 0; is

called the thin-film equation and here the mobility term is given by M(h) = hn and the

energy functional is given by (1.2).

Different mobility terms represent different physical situations. For instance in

(1.3), when n = 1, or equivalently M(h) = h, the equation describes the evolution of the

thickness of a thin bridge between two masses of fluid in a Hele–Show cell. M(h) = h3 case

is used in the modeling of capillary-driven flow. More precisely, here h is the thickness

of a fluid film on a substrate where the film is evolving under the influence of the surface

tension, but not gravity. Finally, when M(h) = h2, it is used for the presence of the slip

length to allow the contact line to move at the fluid–substrate interface. See [6, 7, 9, 19,

21, 22] for more information and derivations for the thin-film equation.

We also remark here that the thin-film equation is a special case (the m = 2 case)

of the so-called “doubly nonlinear thin film equation” considered in [1]. The equation

reads as follows:

ht + [|h|n|hxxx|m−2hxxx]x = 0, (1.4)

where n > 0 and m ≥ 2 are real constants. Equation (1.4) describes the evolution of the

height h(t , x) of a surface-tension-driven thin liquid film on a solid surface in lubrica-

tion approximation [1, 17, 21, 27]. The m = 2 case in (1.4) corresponds to a Newtonian

fluid, and m �= 2 occurs when considering “power-law” liquids. In [1] the authors prove

the existence of solutions to the problem (1.4), and obtain sharp upper bounds for the

propagation of their support. They also derive a necessary condition for the occurrence

of waiting-time phenomenon.

On the other hand, another example is the problem of relaxation of axisymmetric

crystal surfaces with a single facet below the roughening transition. In [20] (and also the
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references therein) this problem is analyzed via a continuum approach that accounts for

step energy g1 and step–step interaction energy g2 > 0. We point out that the evolution

of the surface morphology here is caused by the motion of steps. The energy functional

used for this problem is

H3(h) :=
∫ (

g0 + g1|∇h| + 1
3 g2|∇h|3) dx, (1.5)

where the g0 term represents the surface free energy of the reference plane, g1 is the

step energy, and g2 includes entropic repulsions due to fluctuations at the step edges

and pairwise energetic interactions between adjacent steps. We will omit details and,

moreover, we will not analyze the equation obtained closely. We mention this problem to

show that there are situations in which different power law surface energy functionals

are used. Readers who are interested in this problem may see [20] and the references

therein.

Motivated by recent investigations, different energy functionals of the form (1.6)

as given by

Hp(h(t , x)) := 1

p

∫
|hx(t , x)|p dx, (1.6)

have been employed very recently [20, 25, 26]. In [26], we derived the following initial

boundary value problem:

ht + (p− 1)
[
hn[(

h2
x

) p
2 −1

hxx
]

x

]
x = 0 (1.7)

in QT := (0, T ) × �, where T > 0 and � is the bounded interval

� = {−a < x < a},

with initial conditions

h(0, x) = h0(x), h0 ∈ H p(�) (1.8)

and with no-flux boundary conditions

hx = hn((
h2

x

) p
2 −1

hxx
)

x = 0 for x ∈ {−a, a}. (1.9)
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Remark. The boundary conditions considered in [26] should be replaced by (1.9). We

thank the referees for pointing this out.

Our first result is on the regularity and long-time behavior of solutions. As

pointed out in [26], we were unable to deduce a result related to higher regularity of

solutions. Here, by the help of integral estimates of [26], we prove in particular that

h(t , ·) ∈ C 1([−a, a]) for almost every t > 0. Actually, we obtain a sharper result. Setting

bn =
⎧⎨
⎩

p
(p−1) if 0 < n ≤ 3 (p−1)

p

3
n if 3 (p−1)

p ≤ n < 3,

we show that h1/b(t , ·) ∈ C 1([−a, a]) for almost every t > 0, for any b ∈ (0, bn). We show

that the solution eventually relaxes to a constant and as a consequence there exists a

time after which the solution stays positive. For n ≥ 2 + p
p−1 we deduce also that the

support of the solution is a constant. In [26] an entropy dissipation–entropy estimate,

using the functional Kq, was provided for the special case p = 3, n = 2. Here we extend

our calculations to include various other values of p and n. The case 1 ≤ n ≤ 2 in the

proof of long-time behavior of non-negative weak solutions was postponed in [26]. Here

we complete that missing part.

To facilitate the reading of this paper, we briefly introduce our main results and

their main proof techniques in the following.

1.1 Regularity and large-time behavior

We prove the following result related to the regularity properties of solutions.

Theorem 1 (regularity). Assume 0 < n < 3 and let h0 satisfy

n ∈ (0, ∞), h0 ∈ H p((−a, a)), h0 ≥ 0, h0 �≡ 0 in [−a, a]. (1.10)

Let hε be the solution of the problem:

ht + (p− 1)
[
Pε (h)

((
h2

x

)p/2−1
hxx

)
x

]
x = 0, in Q := (0, ∞) × (−a, a), (1.11)

with initial condition

hε (0, x) = h0ε (x) ≥ h0(x) + εθ , θ ∈ (0, 2/5],



Family of Degenerate Parabolic Equations 5

where h0ε satisfies

h0ε ∈ C ∞([−a, a]), h0ε > 0, for x ∈ [−a, a], h0ε → h0 in H p((−a, a)) as ε → 0 (1.12)

and boundary conditions (1.9), for Pε (s) given by

Pε (s) := s2+p/(p−1)sn

εsn + s2+p/(p−1)
. (1.13)

Let h be a solution of Equation (1.7) with initial and boundary conditions (1.8)

and (1.9) obtained by

hεk → h in Cloc(Q̄) as εk → 0. (1.14)

Set

bn =
⎧⎨
⎩

p
(p−1) if 0 < n ≤ 3 (p−1)

p

3
n if 3 (p−1)

p ≤ n < 3.

Then, for any b ∈ (0, bn),

h1/b(t , ·) ∈ C 1([−a, a]), for almost every t > 0. (1.15)

�

Remark. Since bn > 1 for 0 < n < 3, we may substitute bn = 1 in (1.15) and obtain that

h(t , ·) ∈ C 1([−a, a]) for almost every t > 0.

Theorem 2 (large-time behavior). Let h and h0 be as in Theorem 1, then the following

convergence result holds:

h(t , ·) → 1

2a

∫ a

−a
h0(x) dx uniformly in [−a, a] as t → ∞. (1.16)

�

1.2 Support properties

For solutions of Equation (1.7) with initial and boundary conditions (1.8) and (1.9), we

prove that for n ≥ 2 + p
p−1 the support of the solution remains constant. In the proof of
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this result, we employ some of the integral estimates derived in [26]. On the other hand,

as a consequence of (1.16) we deduce that there exists a time, depending on the initial

data, such that for later times the solution stays positive.

Theorem 3 (support properties)

Let h and h0 be as in Theorem 1, then the following results hold.

(i) If 0 < n < 3 and h0ε satisfies (1.12), then there exists T = Th0 ≥ 0 such that

h(t , x) > 0 for |x| ≤ a, t > T. (1.17)

(ii) If n ≥ 2 + p
(p−1) , then

supp h(t , ·) = supp h0, for t > 0. (1.18)

�

1.3 Entropy dissipation–entropy estimate

We prove that the functional Kq(h(t , x)) := ∫
�

h2
x

hq dx is an entropy functional for positive

smooth solutions of (1.1) for various physical p, q, and n values. That is, we prove that

we can bound the rate of decrease of Kq in terms of itself along any smooth positive

solution for (1.1). More precisely, we prove that there exists a constant C > 0 such that

Kq(t ) ≤
[

2

5
(
Ct + 2

5 [Kq(0)]−5/2
)
]2/5

, (1.19)

where for the sake of completeness we also include the p = 2 case.

This clearly gives an initial polynomial decay (like t−2/5) of positive smooth solu-

tions to the equilibrium.

1.4 Long-time behavior of non-negative weak solutions

In [26], we used the energy functional (1.6) appropriately to deduce the long-time behav-

ior of non-negative weak solutions in the case 0 < n < 1, n > 2 and we postponed the

remaining case. Here we complete the missing part. The idea of the method, similar to

[24], is to bound the rate of change of the derivative of the energy functional (for the

solution of the approximate problems) from below in terms of itself. Another useful fact
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is the finiteness of a space–time integral, which is obtained by the dissipation of an en-

tropy functional. Finally, we let ε → 0 and deduce the long-time behavior of non-negative

weak solutions.

2 Preliminaries

In [26] the existence of non-negative weak solutions of the problem (1.7), (1.8), and (1.9)

has been established.

Definition: A function h ∈ C (Q̄) ∩ L∞
loc([0, ∞); H−p((−a, a))) is a weak solution of the prob-

lem (1.7), (1.8), and (1.9) if

h ∈ C 1,4(P ), hn/2((h2
x

)p/2−1
hxx

)
x ∈ L2(P ), (2.1)

where P denotes the positivity set

P = {(t , x) ∈ R
+ × [−a, a] : h(t , x) > 0},

and h satisfies the integral identity

∫∫
Q

hψt dx dt +
∫∫

P
hn((

h2
x

)p/2−1
hxx

)
xψx dx dt = 0, (2.2)

for all ψ ∈ Lip(Q̄) with compact support in R
+ × [−a, a], and h satisfies the initial and

boundary conditions

h(0, x) = h0(x), x ∈ (−a, a),

hx(t , ±a) = 0 if h(t , ±a) > 0 for t > 0.

Following the ideas of Bernis and Friedman [6]. I introduced a procedure to

construct a non-negative solution of the problem (1.7), (1.8), and (1.9) in [26]. I also use

this construction here so we briefly recall its main steps.

If n ≥ 2 + p
p−1 and h0 > 0 in [−a, a], then the problem (1.7), (1.8), and (1.9) has a

unique positive and classical solution, and this suggests the following approximation
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for hn

Pε (s) := s2+p/(p−1)sn

εsn + s2+p/(p−1)
. (2.3)

Then, for any fixed ε > 0

Pε(s)

s2+p/(p−1)
= O(1), as s → 0,

and there exists a unique, positive smooth solution hε of the following equation:

ht + (p− 1)
[
Pε (h)

((
h2

x

)p/2−1
hxx

)
x

]
x = 0, in Q, (2.4)

combined with the no-flux boundary conditions (1.9) and

h(0, x) = h0ε (x), for x ∈ (−a, a), (2.5)

where h0ε satisfies

h0ε ∈ C ∞([−a, a]), h0ε > 0, for x ∈ [−a, a], h0ε → h0 in H p((−a, a)) as ε → 0. (2.6)

Formally, one has that

1

p

∫ a

−a
|hεx|p(T , x) dx + (p− 1)2

∫∫
QT

Pε (hε )
((

h2
εx

)p/2−1
hεxx

)2
x dx dt = 1

p

∫ a

−a
|h0εx|p(x) dx,

(2.7)

where QT := (0, T ) × (−a, a). Combining (2.7) with

∫ a

−a
|h0εx|p dx ≤ C < ∞, (2.8)

we deduce that

|hε (t , x) − hε (t , y)| ≤ K|x − y|(p−1)/p, (2.9)

in Q for some constant K independent of ε and

∫∫
Q

Pε (hε )
((

h2
εx

)p/2−1
hεxx

)2
x dx dt ≤ C < ∞.
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One can also show that [25]

|hε (t1, x) − hε (t2, x)| ≤ M|t1 − t2|τ , (2.10)

where τ = p−1
5p−2 and M is some constant independent of ε. Integrating the equation (2.4)

over QT we find, by employing the initial and boundary conditions too, also that

∫ a

−a
hε (t , x) dx =

∫ a

−a
h0ε (x) dx. (2.11)

Using (2.11), (2.8), and Poincaré inequality [14], one obtains a uniform bound for

the L∞ bound of hε . Hence, we obtain an upper bound on the C
τ , p−1

p
t ,x (Q̄T )-norm of hε that is

independent of ε and T. By the Arzela–Ascoli theorem [16] there exists a function h ∈ C (Q̄)

and a sequence εk such that

hεk → h in Cloc(Q̄) as k → ∞, (2.12)

and as in [26] any limit function h obtained by (2.12) is a weak solution of the problem

(1.7), (1.8), and (1.9).

Proposition. Let h0 satisfy

n ∈ (0, ∞), h0 ∈ H p((−a, a)), h0 ≥ 0, h0 �≡ 0 in [−a, a]. (2.13)

Then, the function h defined by (2.12) is a non-negative solution of the problem (1.7), (1.8),

and (1.9). In addition, h ∈ C τ ,(p−1)/p
t ,x (Q̄) and h satisfies

∫ a

−a
h(t , x) dx =

∫ a

−a
h0(x) dx for t > 0. (2.14)

�

Remark. In the p = 2 case the uniqueness of positive weak solutions was proved in [6].

It turns out that when p �= 2 the method used in [6] does not work anymore. On the other

hand, we conjecture that such a solution is unique and leave the proof of this claim to

an upcoming paper.

We also recall here some of the useful integral estimates derived in [26] for a

non-negative solution of the problem (1.7), (1.8), and (1.9). These estimates will be useful

in proving results on regularity and support properties of solutions. Let α �= 0 and n > 0
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satisfy

p− 1

p
< α + n < 2.

Then,

∫ ∞

0

∫
�

hα+n−3h4
x

(
h2

x

)p/2−1
dx dt < ∞, (2.15)

and for almost every t > 0 there exists a constant C (t ) < ∞ such that

if h(t , y) = 0 for some y ∈ [−a, a], then

|h(t , x)| ≤ C (t )|x − y|m, for x ∈ [−a, a], (2.16)

where

m := p+ 1

α + n + p− 1
.

We now provide the details of our analysis on the problem (1.7), (1.8), and (1.9).

We restate the theorems so that one can easily follow the proofs. �

3 Regularity and Large-Time Behavior of Solutions

Theorem 1. Assume 0 < n < 3 and let h0 satisfy

n ∈ (0, ∞), h0 ∈ H p((−a, a)), h0 ≥ 0, h0 �≡ 0 in [−a, a]. (3.1)

Let hε be the solution of the problem

ht + (p− 1)
[
Pε (h)

((
h2

x

)p/2−1
hxx

)
x

]
x = 0, in Q := (0, ∞) × (−a, a), (3.2)

with initial condition

hε (0, x) = h0ε (x) ≥ h0(x) + εθ , θ ∈ (0, 2/5],
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where h0ε satisfies

h0ε ∈ C ∞([−a, a]), h0ε > 0, for x ∈ [−a, a], h0ε → h0 in H p((−a, a)) as ε → 0 (3.3)

and boundary conditions (1.9), for Pε (s) given by

Pε (s) := s2+p/(p−1)sn

εsn + s2+p/(p−1)
. (3.4)

Let h be a solution of Equation (1.7) with initial and boundary conditions (1.8)

and (1.9) obtained by

hεk → h in Cloc(Q̄) as εk → 0. (3.5)

Set

bn =
⎧⎨
⎩

p
(p−1) if 0 < n ≤ 3 (p−1)

p

3
n if 3 (p−1)

p ≤ n < 3.

Then, for any b ∈ (0, bn),

h1/b(t , ·) ∈ C 1([−a, a]), for almost every t > 0. (3.6)

�

Proof. We note that since 0 < n < 3 we may choose α > −1(α �= 0) satisfying the condi-

tions necessary for the integral estimates proved in [26]. Moreover, it is enough to show

that if 0 < b < bn, then there is a constant τ > 0 such that for almost every t > 0 there

exists C (t ) < ∞ such that if h(t , y) = 0, then

∣∣(h1/b)
x(t , x)

∣∣ ≤ C (t )|x − y|τ , x ∈ �. (3.7)

By the integral estimates of [26] for the solution h of the problem (1.7), (1.8), and

(1.9) we deduce that if h(t , y) = 0, then for some finite constant C , we have that

|h(t , x)| ≤ C (t )|x − y| p+1
α+n+p−1 , (3.8)
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where p−1
p < α + n < 2. We also have from the proof of Lemma 6.1 of [26] that if h(t , y) = 0,

then

|(hr)x| ≤ C (t )|x − y| q−1
bq , (3.9)

where

b = p+ 2 − q

q
, r = 1 +

(
1 − 1

γ

)
(α + n + 1)

p+ 2 − q
.

Here γ is a positive constant, used in [26], satisfying

γ1 ≤ γ ≤ γ2, (3.10)

where

γ1 := (α + n + p− 1) − √
(α + n − 2)(p− 1 − p(α + n))

(p+ 1)
, (3.11)

and

γ2 := (α + n + p− 1) + √
(α + n − 2)(p− 1 − p(α + n))

(p+ 1)
, (3.12)

and it will be chosen below. q is given by

q = 4γ − (α + n + 1)

γ
∈ (1, 2). (3.13)

Combining (3.8) and (3.9) and assuming br < 1, we deduce that

∣∣(h1/b)∣∣ ≤ C (t )|x − y|( 1
br −1) r(p+1)

α+n+p−1 |x − y| q−1
p+2−q

≤ C (t )|x − y| 1
b ( p+1

α+n+p−1 )−1
. (3.14)

Therefore, to proceed, we have to prove that

Given 0 < n < 3 and 0 < b < bn, we can choose α > −1(α �= 0) and γ satisfying

(i) br < 1,

(ii) p−1
p < α + n < 2,
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(iii) α + n + p− 1 < 3γ < α + n + p− 1 + √
(α + n − 2)(p− 1 − p(α + n)).

Notice that once we prove these, then (3.7) follows with τ = 1
b

p+1
α+n+p−1 − 1. We

begin by choosing γ by

γ = 1

bn
+ ν =

⎧⎨
⎩

p−1
p + ν if 0 < n ≤ 3 (p−1)

p

n
3 + ν if 3 (p−1)

p ≤ n < 3.

Note that (i) is satisfied if

0 < ν < dn := min(ν1, ν2),

where

ν1 := α + n + 1

(α + n + 1)b − p+ 2
− p− 1

p
, ν2 := α + n + 1

(α + n + 1)b − p+ 2
− n

3
.

We now fix ν ∈ (0, dn) and choose α by

α = 3

bn
− n − 1 + µ =

⎧⎨
⎩

3 p−1
p − n − 1 + µ if 0 < n ≤ 3 (p−1)

p

−1 + µ if 3 (p−1)
p ≤ n < 3,

where µ > 0 so that α �= 0. Clearly, α > −1. α + n >
p−1

p is satisfied as p ≥ 2. On the

other hand, α + n + p− 1 < 3γ is satisfied if µ < 3ν + 2 − p. As p ≥ 2 this says µ < 3ν =
3(1 − 1

bn
). Thus, α + n < 2. Finally, we note that the last inequality in (iii) is valid if

0 < µ < 3ν + 2 − p such that 3ν + 2 − p− µ is small enough.

This completes the proof. �

Theorem 2. Let h and h0 be as in Theorem 1, then the following convergence result

holds.

h(t , ·) → 1

2a

∫ a

−a
h0(x) dx uniformly in [−a, a] as t → ∞. (3.15)

�

Proof. From the integral estimate (2.15), we deduce that

∫ T

0

∫ a

−a
|(hM)x|R dx dt < ∞, (3.16)
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where

M := α + n − 3

p+ 2
+ 1, R := p+ 2.

Using this, if we define

K(t ) := max
[−a,a]

h
α+n+p−1

p+2 (t , ·) − min
[−a,a]

h
α+n+p−1

p+2 (t , ·),

we deduce that K ∈ L1(R). Thus, K(t ) → 0 as t → ∞ because K(t ) is uniformly continuous

in R
+ (by uniform Hölder continuity of h). Hence, we conclude that

max
[−a,a]

h(t , ·) − min
[−a,a]

h(t , ·) → 0 as t → ∞. (3.17)

Combining (3.17) with the mass conservation, we finish the proof. �

4 Support Properties

Theorem 1. Let h and h0 be as in Theorem 1, then the following results hold.

(i) If 0 < n < 3 and h0ε satisfies (1.12), then there exists T = Th0 ≥ 0 such that

h(t , x) > 0 for |x| ≤ a, t > T. (4.1)

(ii) If n ≥ 2 + p
(p−1) , then

supp h(t , ·) = supp h0, for t > 0. (4.2)

�

Proof.

(i)—This follows from (1.16).

(ii)—In order to prove (4.2) we need to show that for n ≥ 2 + p/(p− 1), one has

supp h(t , ·) ⊆ supp h0, t > 0, (4.3)

as the other side of the inclusion follows from (i) of Theorem 2 in [26].
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To prove (4.3) we suppose on the contrary that there exists a time t > 0, a constant

δ > 0 and a smooth function φ with support in � satisfying

h(t , x) > δ > 0 for x ∈ supp φ,

supp φ ∩ supp h0 = ∅.

Let c > 0 be a constant. By (2.1) and (2.2) we may take, as in [2], ψ = φ

h+c as a test

function in (2.2). This gives us

∫
�

φ(x) ln(h(t , x) + c) −
∫

�

φ(x) ln(h0(x) + c)

=
∫∫

P∩Qt

((
h2

x

)p/2−1
hxx

)
x

φ′hn

h + c
dx dt −

∫∫
P∩Qt

((
h2

x

)p/2−1
hxx

)
x

φhxhn

(h + c)2
dx dt =: L1 + L2.

(4.4)

By the choice of φ, we know that

∫
�

φ(x) ln(h(t , x) + c) −
∫

�

φ(x) ln(h0(x) + c) → ∞ as c → 0. (4.5)

Since n ≥ 2 + p/(p− 1), hn/2((h2
x)p/2−1hxx)x ∈ L2(P ∩ Qt ), hx ∈ L2(Qt ) and h is

bounded in Qt . Now, to get a contradiction, we will try to bound the last two terms

in (4.4) uniformly. Let Pt := P ∩ Qt . By Cauchy–Schwarz inequality [23] we have

|L1| ≤
(∫∫

Pt

hn((
h2

x

)p/2−1
hxx

)2
x dx dt

)1/2
(∫∫

Pt

hn−2

(
φ′h

h + c

)2
)1/2

≤ C1. (4.6)

|L2| ≤
(∫∫

Pt

hn((
h2

x

)p/2−1
hxx

)2
x dx dt

)1/2
(∫∫

Pt

hn−(2+p/(p−1))

(
φ2h2

xh2+p/(p−1)

h + c

)4
)1/2

≤ C2.

(4.7)

Since C1 and C2 are constants independent of c, we get a contradiction. �

5 An Entropy Dissipation–Entropy Estimate for (1.7)

The term “entropy” is used frequently for a Lyapunov functional whose rate of decrease

can be bounded in terms of itself. That is, if H ( f ) is some functional of f , and along the
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flow of some evolution we have

d

dt
H ( f ) ≤ −�(H ( f )), (5.1)

with � some continuous strictly monotone increasing function on R+, then the functional

H ( f ) is called an entropy, and the inequality (5.1) is called an entropy dissipation–entropy

inequality. The point is that (5.1) can be used to quantitatively estimate the rate of decay

of H ( f ).

Consider again a smooth solution of (1.7) and define the functional Kq by,

Kq(h(t , x)) :=
∫

�

h2
x

hq
dx. (5.2)

We note that this functional has been discovered by Laugesen [18] for the thin-film

equation. Laugesen showed that Kq is a Lyapunov functional for the thin-film equation

provided that q ∈ [0, 1/2]. Moreover, Kq was used in [10] to prove an entropy dissipation–

entropy estimate for a thin-film-type equation. Recently, the special case n = 2 and p = 3

has been considered in [26], where it was noted that the same kind of calculations work

for a wider range of p and n values.

Differentiating Kq along a smooth, positive solution of (1.7) yields that (integrals

below are over the set �)

dKq(h)

dt
= −2

∫
hx

hq

[
hn(

(p− 1)(p− 2)
(
h2

x

) p
2 −2

hxh2
xx + (p− 1)

(
h2

x

) p
2 −1

hxxx
)]

xx dx

+ q
∫

h2
x

hq+1

[
hn(

(p− 1)(p− 2)
(
h2

x

) p
2 −2

hxh2
xx + (p− 1)

(
u2

x

) p
2 −1

hxxx
)]

x dx. (5.3)

We apply integration by parts twice to the first term and once to the second term, so that

hxxx is the highest order derivative appearing in the calculations.

dKq(h)

dt
= 2

3 (p− 1)(p− 2)(p− 3)
∫ (

h2
x

) p
2 −2

h4
xx

hq−n
dx

+ [
2
3 (p− 2)(5q + n)(q − n + 1) − q(q + 1)(p− 1)(p− 2)

] ∫ (
h2

x

) p
2 −1

h2
xh2

xx

uq−n+2
dx

+ 4
[
q(p− 1) − 1

3 (p− 2)(5q + n)
] ∫ (

h2
x

) p
2 −1

hxhxxhxxx

hq−n+1
dx

− 2(p− 1)
∫ (

h2
x

) p
2 −1

h2
xxx

hq−n
dx − q(q + 1)(p− 1)

∫ (
h2

x

) p
2 −1

h3
xhxxx

hq−n+2
dx. (5.4)
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For future reference we define

I1 =
∫ (

h2
x

)p/2−1 h2
xxx

hq−n
dx, I2 =

∫ (
h2

x

)p/2−1 h2
xh2

xx

hq−n+2
dx, I3 =

∫ (
h2

x

)p/2−1 h6
x

hq−n+4
dx; (5.5)

J12 =
∫ (

h2
x

)p/2−1 hxhxxhxxx

hq−n+1
dx, J13 =

∫ (
h2

x

)p/2−1 h3
xhxxx

hq−n+2
dx, J23 =

∫ (
h2

x

)p/2−1 h4
xhxx

hq−n+3
dx.

(5.6)

Keeping the same order and defining the coefficients of the integrals accordingly,

we rewrite (5.4) as

dKq(h)

dt
=: c0T1 + c1 I2 + c2 J12 + c3 J13 + c4 I1. (5.7)

We focus on the case p ≥ 2 in this paper, which is realistic as the first nonconstant

term appearing in the Taylor polynomial approximation for
√

1 + x2 is 1
2 x2. Note that for

2 ≤ p ≤ 3 the first term, c0T1, in (5.4) is nonpositive so that it can be neglected in the

procedure. In the case p > 3, the first term becomes non-negative and it does not appear

in (5.5) or (5.6). Thus, to proceed further in this case, one needs to bound this term in

terms of the integrals in the lists (5.5) and (5.6). For the moment such a bound is not

available to us, so we focus on the case 2 ≤ p ≤ 3 here and leave the other cases for a

forthcoming paper of mine. In this case we have

d

dt
Kq(h) ≤ c1 I2 + c2 J12 + c3 J13 + c4 I1, (5.8)

where ci, i = 1, 2, 3, 4 are the coefficients of the integrals in (5.4) and I1, J12, J13, and I2 are

given in (5.5) and (5.6).

Step 1: We show that

dKq(h)

dt
≤ −C pqn I3, (5.9)

where C pqn is a positive constant, which depends on p, q, and n, and I3 is given in (5.5).

Proof of Step 1. To show that the right-hand side of (5.4) is negative, we will try to write

it as a sum of negative squares. To do this, define the non-negative quantity A by,

A :=
∫ [

αhxxx + β
hxhxx

h
+ γ

h3
x

h2

]2 (
h2

x

) p
2 −1

hn−q dx, (5.10)
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where the numbers α, β, and γ will be chosen. (5.10) can be written as

A = α2 I1 + β2 I2 + γ 2 I3 + 2αβ J12 + 2αγ J13 + 2βγ J13, (5.11)

of which I1, I2, I3, J12, J13, J23 are given in (5.5) and (5.6).

Lemma 1. Integration by parts yields the following relations:

I2 = − 1

(p+ 1)
J13 + q − n + 2

(p+ 1)
J23 (5.12)

J23 = (q − n + 3)

p+ 3
I3. (5.13)

�

Proof. This is straightforward computation. �

Since there are no useful integration by parts identities for I1 and J12, we use the

definition of A appropriately to eliminate these terms.

−α2 I1 − 2αβ J12 = −A+ β2 I2 + γ 2 I3 + 2αγ J13 + 2βγ J23. (5.14)

We use (5.14) in (5.7) appropriately.

For p = 2 or p = 3: In this case we have to choose

α := √−c4, β = − c2

2
√−c4

. (5.15)

Using (5.15) in (5.14) and plugging this into (5.4), we obtain

d

dt
Kq(h) ≤

(
c1 − c2

2

4c4

)
I2 + γ 2 I3 + (c3 + 2

√−c4γ )J13 − c2√−c4
γ J23. (5.16)

Using the integration by parts relation (5.12) to eliminate I2 term in (5.16), we

obtain

d

dt
Kq(h) ≤

[
c3 + 2

√−c4γ − 1

(p+ 1)

(
c1 − c2

2

4c4

)]
J13

+
[(

q − n + 2

p+ 1

) (
c1 − c2

2

4c4

)
− c2√−c4

γ

]
J23 + γ 2 I3. (5.17)
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Note that J13 can have either sign. Thus, we choose γ so that the multiple of it vanishes.

This leads to the following choice of γ.

γ :=
1

(p+1)

(
c1 − c2

2
4c4

) − c3

2
√−c4

. (5.18)

Plugging this choice of γ in (5.17) and also using the integration by parts identity (5.13),

to eliminate J23 term, we finally have

d

dt
Kq(h) ≤ C (p, q, n)I3, (5.19)

where C (p, q, n) is a constant defined by

C (p, q, n) :=
((

q − n + 2

p+ 1

(
c1 − c2

2

4c4

))
− c2√−c4

(
q − n + 2

p+ 1

(
c1 − c2

2

4c4

)))(
q − n + 3

p+ 3

)

+
⎛
⎝ 1

(p+1)

(
c1 − c2

2
4c4

) − c3

2
√−c4

⎞
⎠

2

. (5.20)

A simple calculation yields that if p = 2 and n = 1 then

C1 := C (2, q, 1) = − q2

360
(3 + 18q − 53q2),

which exactly obeys the calculations in [10]. On the other hand, for p = 2, n = 2 we have

C2 := C (2, q, 2) = − q2

360
(18 − 6q − 53q2),

which works well. If 0 ≤ q < 9+4
√

15
53 then C1 ≤ 0 and for 0 ≤ q < 3

√
107−3
53 then C2 < 0.

Hence, for the thin film equation, i.e. p = 2 case in (1.7), we can show an entropy

dissipation–entropy estimate for the physical cases n = 1 and n = 2. On the other hand,

we note that numerical calculations suggest that this can be done for a wider range

of noninteger values too. For the physical case n = 3 we do not expect to have such an

estimate by the results of [18].

Unfortunately for p = 3 case, it seems that we can include only the physical case

n = 2 and we slightly miss the n = 1 case. We note that noninteger values can be included
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in this case too but we do not analyze these at the moment. I have given the calculations

in [26] for p = 3, n = 2 case. In this case

C3 := C (3, q, 2) = 2371

6912
q4 + 77

432
q3 − 11

144
q2 − 1

54
q − 1

108
.

In this case for a critical value q∗ ∈ (0.4, 0.5), we have C3 ≤ 0 for q ∈ [0, q∗].

Step 2: Now, we show that

I3 ≥ Nq Kq(h), (5.21)

where Nq is a positive constant.

Proof of Step 2. Notice that

I3 ≥
∫ |hx|7

hq−n+4
dx =

∫ (
h2

x

hq

)7/2 1

hr
dx.

Letting z = h2
x

hq , and letting v = h, we have that

I3 ≥
∫

z7/2v−r dx. (5.22)

The function (v, s) → v7/2s−r is jointly convex if r ≤ 5/2, so that by Jensen’s inequality

[23],

1

2a

∫ a

−a
z7/2v−rdx ≥

(
1

2a

∫ a

−a
h dx

)7/2 (
1

2a

∫ a

−a
v dx

)−r

= 1

2a
(∫ a

−a h0(x) dx
)r (Kq(h))7/2. (5.23)

Combination of (5.22) and (5.23) gives the result. Note that we have the following restric-

tion on n

r = −5

2
q − n + 4 ≤ 5

2
⇐⇒ n ≥ 3

2
− 5

2
q. (5.24)



Family of Degenerate Parabolic Equations 21

Step 3: Consequence

For the physical cases (p, n) ∈ {(2, 1), (2, 2), (3, 2)} one can deduce using the preced-

ing calculations that

Kq(t ) ≤
[

2

5
(
Ct + 2

5 [Kq(0)]−5/2
)
]2/5

. (5.25)

This clearly gives an initial polynomial decay (like t−2/5) of positive smooth so-

lutions to the equilibrium, and once Kq(h) is small enough, we can use linearization to

obtain an exponential decay. Note that such an explicit linearization has been employed

in [10]. We do not give the details here.

6 Long-Time Behavior of Weak Solutions: The Case 1 ≤ n ≤ 2

As pointed out in Section 1, here we employ the energy functional Hp to deduce the long-

time behavior of non-negative weak solutions. The idea, same as the one in [24], is to

bound the time derivative of the energy from below in terms of itself. This can rigorously

be done for the approximate solutions hε , as they are smooth positive solutions. At the

end, one should show that the result also holds for the limit function, which we call the

weak solution. Here is the main result of this section.

Theorem 4. Assume 0 < n ≤ 2 and h0 ∈ H p(�) has finite mass and satisfies J[h0] < ∞.

Then, there exists a constant C > 0 such that

J[h(t , ·)] ≤ J[h0(·)] exp(−C t ), (6.1)

where J[h(t , x)] := 1
p

∫
�

|hx|p dx. �

Proof. Now we shall introduce the notation. For t ≥ 0 we define

Jε (t ) := 1

p

∫
�

|hεx|p dx,

and

Iε (t ) := (p− 1)
∫

�

Pε (hε )
[(

h2
εx

)p/2−1
hεxx

]2
x dx,
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where Pε is given in (2.3). It is easy to see that

−
∫

�

P 1/2
ε (hε )

[(
h2

εx

)p/2−1
hεxx

]
xhεx dx ≤ (C Iε Jε )

1/2,

where C is a positive constant depending on p, |�|, ||h0x||L p(�). We also use the following

notation gε (s) := P 1/2
ε (s). For future reference we compute

gε (s) = s(2+p/(p−1))/2(ε + s2+p/(p−1)−n)−1/2

and from this, one easily gets

g′′
ε (s) = (ε + sm)−5/2[C1εsα+m−2 + C2ε

2sα−2 + C3s2m+α−2],

where

α := p

2(p− 1)
+ 1, m := 2 + p

p− 1
− n, (6.2)

C1 := ( − 3
2αm + α(α − 1) + (α − 1

2 m)(α + m − 1)
)
,

C2 := α(α − 1),

C3 := (
α − 1

2 m
)
(α + m − 1) − 3

2 m
(
α − 1

2 m
)
.

Note that for n ∈ [1, 2]

p

(p− 1)
≤ m ≤ 1 + p

(p− 1)
< 2 + p

(p− 1)

which is the analogous inequality for our case. Note that this actually works for

0 < n < 2 + p
(p−1) . We observe that the coefficients C1 and C3 are non-negative and hence

we can eliminate the terms involving C1 and C3. This leads to

(C Iε Jε )
1/2 ≥

∫
�

gε (hε )
(
h2

εx

)p/2−1
h2

εxx dx− ε2 α(α − 1)

(p+ 1)

∫
�

(
ε + hm

ε

)−5/2
hα−2

ε

(
h2

εx

)p/2−1
h4

εx dx

=: I1 − 1

(p+ 1)
C2ε

2 I2,2. (6.3)
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It is also not difficult to obtain an upper bound for the L∞ norm of hε (t , ·) uniformly in t.

Let Mε be the upper bound for |hε |L∞(�). Also, we can easily deduce

gε (hε ) ≥ (
ε + Mm

ε

)−1/2
(ε + Mε )

−(p−2)/(2(p−1))h2
ε .

Using this, we have

(C Iε Jε )
1/2 ≥ (

ε + Mm
ε

)−1/2
(ε + Mε )

−(p−2)/(2(p−1))
∫

�

h2
ε

(
h2

εx

)p/2−1
h2

εxx dx

− 1

(p+ 1)
C2ε

2 I2,2 =: Lε J1 − 1

(p+ 1)
C2ε

2 I2,2. (6.4)

For the second term in (6.4), using the idea of Lemma 2 in [24], we obtain

(C Iε Jε )
1/2 ≥ Lε J1 − Sεε

w

∫
�

h−2
ε

(
h2

εx

)p/2−1
h4

εx dx

= Lε J1 − Sεε
w J2. (6.5)

We note that the constants can be determined explicitly and, moreover, Sε is a finite

constant with Sε → S as ε → 0 and S is finite. On the other hand, Lε → L, where L is

finite constant, as ε → 0.

To proceed further we recall the following lemma from [26].

Lemma 2. One has the following inequality for 0 ≤ h ∈ H3(�) and hx(±a) = 0;

∫
�

hβ
(
h2

x

)p/2−1
h2

xx dx ≥ (1 − β)2

(p+ 1)2

∫
�

hβ−(
h2

x

)p/2−1
h4

x dx. (6.6)

For our purposes we also need the following result, analogous to Lemma 4 of [24].�

Lemma 3. Let hε be the solution of (2.4). Then there exists constants C and α such that

∫
�

h2
ε

(
h2

εx

)p/2−1
h2

εxx dx ≥ Crα

∫
�

|hεx|p dx, (6.7)

where r := ∫
�

hε dx > 0. �

Proof of Lemma 3. Note that an integration by parts yields

∫
�

|hεx|p dx = −(p− 3)
∫

�

hε

(
h2

εx

)p/2−1
hεxx dx.
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Note also that by Cauchy–Schwarz inequality [23]

Jε (hε ) ≤ C (Mε , m)
(∫

�

h1+p/(2(p−1))
ε

(
h2

εx

)p/2−1
h2

εxx dx
)1/2

Jε (hε )
(p−2)/p|�|4/p.

Letting J∗
1 := ∫

�
h1+p/(2(p−1))

ε (h2
εx)p/2−1h2

εxx dx we get

J∗
1 ≥ A(Mε , m, p, |�|)J4/p

ε , (6.8)

where A is a finite constant. For any 0 < λ < ( r
|�|C1

)p, where C1 is a constant given below,

we have J∗
1 ≥ Cλ4/p−1(

∫
�

|hεx|pdx), if
∫
�

|hεx|p dx ≥ λ. On the other hand, by using Sobolev

and Poincaré inequalities, we also have

J∗
1 ≥ C

(
r

|�| − C1λ
1/p

)p (∫
�

|hεx|p dx
)

,

whenever
∫
�

|hεx|pdx ≤ λ. It follows, as in [24], that

J∗
1 ≥ min

{
Cλ4/p−1, C ′

(
r

|�| − C1λ
1/p

)p}∫
�

|hεx|p dx

for 0 < λ < ( r
|�|C1

)p. It follows that

J∗
1 ≥ C Jε , (6.9)

where the finite constant C can be obtained explicitly, and it depends on m, p, |�|, ∫
�

hε dx

and constants of the Sobolev and Poincaré inequalities [14]. �

Combining what we have so far, we deduce that

Cε Jε − (C Iε Jε )
1/2 ≤ C pCεε

w

∫
�

(
h2

εx

)p/2−1
h2

εxx dx, (6.10)

from which we obtain

C 2
pε Jε ≤ Iε + C pCεε

w

∫
�

(
h2

εx

)p/2−1
h2

εxx dx. (6.11)
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Noting that Iε = d
dt Jε , we obtain from (6.11)

d

dt
Jε ≤ −C ∗

pC 2
ε Jε + C pCεε

w

∫
�

(
h2

εx

)p/2−1
h2

εxx dx, (6.12)

where C ∗
p, Cε , C p, w are all positive. Applying a version of the Gronwall’s inequality [12],

we deduce that

Jε (t ) ≤ e−C pC 2
ε t

[
Jε (0) + C pCεε

w

∫ t

0

∫
�

(
h2

εx

)p/2−1
h2

εxx dx dt
]

≤ e−C pC 2
ε t Jε (0) + C pCεε

w

∫ t

0

∫
�

(
h2

εx

)p/2−1
h2

εxx dx dt. (6.13)

Noting that w > 0,
∫ t

0

∫
�

(h2
εx)p/2−1h2

εxx dx dt < ∞ by the energy dissipation and Cε → C0 < ∞
as ε → 0 and

∫
�

|hx|p dx ≤ lim inf
ε↘0

∫
�

|hεx|p dx, ∀ t > 0,

we pass to the limit as ε ↘ 0 and deduce finally that

J[h(t , ·)] ≤ J[h0(·)] exp(−C t ),

where C is a finite positive constant. This concludes the proof of Theorem 4. �

Remark. The approach of [24, 26] can be employed to similar equations. Consider the

so called “modified thin film equation” [3–5, 8] given by

ht = −hnhxxxx, x ∈ � = (−a, a), a > 0 (6.14)

under periodic or no-flux boundary conditions. Here if one considers the energy func-

tional E [h(t , x)] := ∫
�

h2
xx dx then the following dissipation result holds for positive

smooth solutions of (6.14).

d

dt

∫
�

h2
xx dx = −

∫
�

hnh2
xxxx dx.
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On the other hand, we also have by Cauchy–Schwarz inequality that

∫
�

hhxxxx dx ≤
(∫

�

hnh2
xxxx

)1/2 (∫
�

h2−n

)1/2

.

This yields after integration by parts, and using the boundary conditions that

D[h(t , x)] :=
∫

�

hnh2
xxxx dx ≥ E2[h(t , x)]∫

�
h2−n dx

. (6.15)

Thus, if n ≤ 2 then we have

D[h(t , x)] ≥ C E2[h(t , x)].

Finally, we deduce that

E [h(t , x)] ≤ E [h0]

1 + C E [h0]t
, (6.16)

where h0(x) = h(0, x). Note that (6.16) gives a polynomial decay of positive smooth solu-

tions of (6.14).
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