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Abstract

We consider the discrete Couzin-Vicsek algorithm (CVA) [1, 9, 19, 36], which
describes the interactions of individuals among animal societies such as fish schools.
In this article, we propose a kinetic (mean-field) version of the CVA model and
provide its formal macroscopic limit. The final macroscopic model involves a con-
servation equation for the density of the individuals and a non conservative equation
for the director of the mean velocity and is proved to be hyperbolic. The derivation
is based on the introduction of a non-conventional concept of a collisional invariant
of a collision operator.
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1 Introduction

The discrete Couzin-Vicsek algorithm (CVA) [1, 9, 19, 36] has been proposed as a model
for the interactions of individuals among animal societies such as fish schools. The in-
dividuals move with a velocity of constant magnitude. The CVA model describes in a
discrete way the time evolution of the positions of the individuals and of their velocity
angles measured from a reference direction. At each time step, the angle is updated to a
new value given by the director of the average velocity of the neighbouring particles, with
addition of noise. The positions are updated by adding the distance travelled during the
time step by the fish in the direction speficied by its velocity angle.

For the modeling of large fish schools which can reach up to several milion individuals,
it may be more efficient to look for continuum like models, which describe the fish society
by macroscopic variables (e.g. mean density, mean velocity and so on). Several such
phenomenological models exist (see e.g. [25, 34, 35]). Several attemps to derive continuum
models from the CVA model are also reported in the literature [23, 29, 30], but the
derivation and the mathematical ’qualities’ of the resulting models have not been fully
analyzed yet. One can also refer to [16, 26] for related models. An alternate model, the
Persistent Turning Walker model, has been proposed in [18] on the basis of experimental
measurements. Its large-scale dynamics is studied in [12]. Additional references on swarm
aggregation and fish schooling can be found in [7]. Among other types of animal societies,
ants have been the subject of numerous studies and the reader can refer (among other
references) to [21, 33], and references therein.

In this work, we propose a derivation of a continuum model from a kinetic version
of the CVA algorithm. For that purpose, we first rephrase the CVA model as a time
continuous dynamical system (see section 2). Then, we pass to a mean-field version of
this dynamical system (section 3). This mean field model consists of a kinetic equation of
Fokker-Planck type with a force term resulting from the alignement interactions between
the particles. More precisely, the mean-field model is written:

ε(∂tf
ε + ω · ∇xf

ε) = −∇ω · (F ε
0 f ε) + d∆ωf ε + O(ε2), (1.1)

F ε
0 (x, ω, t) = ν (Id − ω ⊗ ω)Ωε(x, t), (1.2)

Ωε(x, t) =
jε(x, t)

|jε(x, t)| , and jε(x, t) =

∫

υ∈S2

υ f ε(x, υ, t) dυ . (1.3)

Here f ε(x, ω, t) is the particle distribution function depending on the space variable x ∈
R

3, the velocity direction ω ∈ S
2 and the time t. d is a scaled diffusion constant and

F ε
0 (x, ω, t) is the mean-field interaction force between the particles which depends on an

interaction frequency ν. This force tends to align the particles to the direction Ωε which
is the director of the particle flux jε. the operators ∇ω· and ∆ω are respectively the
gradient and the Laplace-Beltrami operators on the sphere. The matrix (Id − ω ⊗ ω) is
the projection matrix onto the normal plane to ω. ε ≪ 1 is a small parameter measuring
the ratio of the microscopic length scale (the distance travelled between two interactions)
to the size of the observation domain. Here, the relevant scaling is a hydrodynamic scaling,
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which means that ε also equals the ratio of the microscopic time scale (the mean time
between interactions) to the macroscopic observation time.

The ’hydrodynamic limit’ ε → 0 provides the large-scale dynamics of the CVA model
(in its mean-field version (1.1)-(1.3)). The goal of this paper is to (formally) investigate
this limit. More precisely, the main result of this paper is the following theorem, which
is proved in section 4:

Theorem 1.1 (formal) The limit ε → 0 of f ε is given by f 0 = ρMΩ where ρ = ρ(x, t) ≥ 0
is the total mass of f 0 and Ω = Ω(x, t) ∈ S

2 is the director of its flux:

ρ(x, t) =

∫

ω∈S2

f 0(x, ω, t) dω, (1.4)

Ω =
j

|j| , j(x, t) =

∫

ω∈S2

f 0(x, ω, t) ω dω, (1.5)

and MΩ is a given function of ω · Ω only depending on ν and d which will be specified
later on (see (4.16)). Furthermore, ρ(x, t) and Ω(x, t) satisfy the following system of first
order partial differential equations:

∂tρ + ∇x · (c1ρΩ) = 0. (1.6)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (1.7)

where the convection speeds c1, c2 and the interaction constant λ will be specified in the
course of the paper (see (4.41) and (4.63)).

Hydrodynamic limits have first been developed in the framework of the Boltzmann
theory of rarefied gases. The reader can refer to [8, 11, 31] for recent viewpoints as well
as to [6, 15, 37] for major landmarks in its mathematical theory. Hydrodynamic limits
have been recently investigated in traffic flow modeling [4, 20] as well as in supply chain
research [3, 14].

From the viewpoint of hydrodynamic limits, the originality of theorem 1.1 lies in the
fact that the collision operator (i.e. the right-hand side of (1.1)) has a three dimensional
manifold of equilibria (parametrized by the density ρ and the velocity director Ω) but has
only a one-dimensional set of collisional invariants (corresponding to mass conservation).
Indeed, the interaction does not conserve momentum and one should not expect any
collisional invariant related to that conservation. The problem is solved by introducing a
broader class of collisional invariants, such that their integral (with respect to ω) against
the collision operator cancels only when the collision operator is applied to a subclass of
functions. Here, a generalized class of collision invariants is associated with each direction
Ω on the sphere and the corresponding subclass of functions have their flux in the direction
of Ω. We show that such generalized collision invariants exist and that they lead to (1.7).
In section 4.4, we show that this system is hyperbolic. The detailed qualitative study of
the system as well as numerical simulations will be the subject of future work. A summary
of this work can be found in [13].
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An important consequence of this result is that the large-scale dynamics of the CVA
model does not present any phase transition, in contrast with the observations of [36].
Indeed, the equilibrium is unique (for given density and velocity director). Therefore,
the model cannot exhibit any bi-stable behavior where shifts between two competing
equilibria would trigger abrupt phase transitions, like in rod-like polymers (see e.g. [24]
and references therein). Instead, the equilibrium gradually shifts from a collective one
where all particles point in the same direction to an isotropic one as the diffusion constant
d increases from 0 to infinity. Additionally, the hyperbolicity of the model does not allow
lines of faults across unstable elliptic regions, like in the case of multi-phase mixtures or
phase transitions in fluids or solids (see e.g. the review in [22] and references therein).

With these considerations in mind, a phenomenon qualitatively resembling a phase
transition could occur if the coefficients c1, c2 and λ have sharp variations in some small
range of values of the diffusion coefficient d. In this case, the model could undergo a rapid
change of its qualitative features which would be reminiscent of a phase transition. One
of our future goals is to verify or discard this possibility by numerically computing these
constants.

There are many questions which are left open. For instance, one question is about the
possible influence of a limited range of vision in the backwards direction. In this case, the
asymetry of the observation will bring more terms in the limit model. Similarly, one could
argue that the angular diffusion should produce some spatial dissipation. Indeed, such
dissipation phenomena are likely to occur if we retain the first order correction in the series
expansion in terms of the small parameter ε (the so-called Hilbert or Chapman-Enskog
expansions, see e.g. [11]). A deeper analysis is needed in order to determine the precise
form of these diffusion terms. Another question concerns the possibility of retaining some
of the non-local effects in the macroscopic model. It is likely that the absence of phase
transition in the present model is related to the fact that the large-scale limit cancels
most of the non-local effects (at least at leading order). The question whether retaining
some non-locality effects in the macroscopic limit would allow the appearence of phase
transitions at large scales would indeed reconcile the analytical result with the numerical
observations. A result in this direction obtained with methods from matrix recursions
can be found in [10]. Finally, the alignement interaction is only one of the aspects of the
Couzin model, which also involves repulsion at short scales and attraction at large scales.
The incorporation of these effects would allow to build a complete continuum model which
would account for all the important features of this kind of social interaction.

2 A time continuous version of the discrete Couzin-

Vicsek algorithm

The Couzin-Vicsek algorithm considers N point particles in R
3 labeled by k ∈ {1, . . . N}

with positions Xn
k at the discrete times tn = n∆t. The magnitude of the velocity is the

same for all particles and is constant in time denoted by c > 0. The velocity vector is
written c ωn

k where ωn
k belongs to the unit sphere S

2 = {ω s.t. |ω|2 = 1} of R
3.
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The Couzin-Vicsek algorithm is a time-discrete algorithm that updates the velocities
and positions of the particles at every time step ∆t according to the following rules.

(i) The particle position of the k-th particle at time n is evolved according to:

Xn+1
k = Xn

k + c ωn
k ∆t. (2.1)

(ii) The velocity director of the k-th particle, ωn
k , is changed to the director ω̄n

k of the
average velocity of the neighboring particles with addition of noise. This algorithm tries
to mimic the behaviour of some animal species like fish, which tend to align with their
neighbors. Noise accounts for the inaccuracies of the animal perception and cognitive
systems. The neighborhood of the k-th particle is the ball centered at Xn

k with radius
R > 0 and ω̄n

k is given by:

ω̄n
k =

Jn
k

|Jn
k |

, Jn
k =

∑

j, |Xn
j −Xn

k
|≤R

ωn
j . (2.2)

In the Couzin-Vicsek algorithm, the space is 2-dimensional and the orientations are vectors
belonging to the unit sphere S

1 in R
2. One can write ωn

k = eiθn
k with θn

k defined modulo
2π, and similarly ω̄n

k = eiθ̄n
k . In the original version of the algorithm, a uniform noise in

a small interval of angles [−α, α] is added, where α is a measure of the intensity of the
noise. This leads to the following update for the phases:

θn+1
k = θ̄n

k + θ̂n
k , (2.3)

where θ̂n
k are independent identically distributed random variables with uniform distri-

bution in [−α, α]. Then, ωn+1
k = eiθn+1

k . In [36], Vicsek et al analyze the dynamics of
this algorithm and experimentally demonstrate the existence of a threshold value α∗. For
α < α∗, a coherent dynamics appears after some time where all the particles are nearly
aligned. On the other hand, if α > α∗, disorder prevails at all times.

Here, we consider a three dimensional version of the Couzin-Vicsek algorithm, of which
the two-dimensional original version is a particular case. Of course, formula (2.2) for the
average remains the same in any dimension. For simplicity, we also consider a Gaussian
noise rather than a uniformly distributed noise as in the original version of the algorithm.
Therefore, our algorithm updates the velocity directors according to:

ωn+1
k = ω̂n

k , (2.4)

where ω̂n
k are random variables on the sphere centered at ω̄n

k with Gaussian distributions
of variance

√
2D∆t where D is a supposed given coefficient. If the Gaussian noise is

discarded, the evolution of the orientations is given by

ωn+1
k = ω̄n

k , (2.5)

where ω̄n
k is the average defined at (2.2).
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Now, we would like to take the limit ∆t → 0 and find a time-continuous dynamics. To
do so, we first consider the deterministic algorithm (2.1), (2.5) and following [29], make
some elementary remarks. First, because |ωn

k | = |ωn+1
k |, we have (ωn+1

k −ωn
k )(ωn+1

k +ωn
k ) =

0. Therefore, defining ω
n+1/2
k = (ωn+1

k + ωn
k )/2 and using (2.5), we have the obvious

relation:

ωn+1
k − ωn

k

∆t
=

1

∆t
(Id − ω

n+1/2
k ⊗ ω

n+1/2
k )(ω̄n

k − ωn
k ), (2.6)

where Id denotes the Identity matrix and the symbol ⊗ denotes the tensor product of
vectors. The matrix Id − ω

n+1/2
k ⊗ ω

n+1/2
k is the orthogonal projector onto the plane

orthogonal to ω
n+1/2
k . Relation (2.6) simply expresses that the vector ωn+1

k − ωn
k belongs

to that plane.
Now, we let ∆t → 0. Then, the positions Xk(t) and the orientations ωk(t) become

continuous functions of time. If we let ∆t → 0 in (2.6), the left-hand side obviously tends
to ∂ωk/∂t. The right hand side, however, does not seem to have an obvious limit. This
is due to an improper choice of time scale. Indeed, if we run the clock twice as fast, the
particles will interact twice as frequently. In the limit ∆t → 0, the number of interactions
per unit of time is infinite and we should not expect to find anything interesting if we do
not rescale the time. In order to have the proper time-scale for the model, we need to
replace the tick of the clock ∆t by a typical interaction frequency ν of the particles under
consideration. For instance, in the case of fish, ν−1 is the typical time-interval between
two successive changes in the fish trajectory to accomodate the presence of other fish in
the neighbourhood. Therefore, we start from a discrete algorithm defined by

ωn+1
k − ωn

k

∆t
= ν (Id − ω

n+1/2
k ⊗ ω

n+1/2
k )(ω̄n

k − ωn
k ), (2.7)

together with (2.1) and in the limit ∆t → 0, we find the following continuous dynamical
system:

dXk

dt
= c ωk, (2.8)

dωk

dt
= ν (Id − ωk ⊗ ωk)ω̄k, (2.9)

where we have used that (Id−ωk ⊗ωk)ωk = 0. If the Gaussian noise is retained, then, the
limit ∆t → 0 of the discrete algorithm is the following Stochastic Differential Equation:

dXk

dt
= c ωk, (2.10)

dωk = (Id − ωk ⊗ ωk)(ν ω̄k dt +
√

2D dBt), (2.11)

where dBt is a Brownian motion with intensity
√

2D. Of course, this ∆t → 0 limit is
formal but the convergence proof is outside the scope of the present paper.
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We slightly generalize this model by assuming that ν may depend on the angle between
ωk and ω̄k, namely ν = ν(cos θk), with cos θk = ωk · ω̄k. Indeed, it is legitimate to think
that the ability to turn is dependent on the target direction. If we are considering fish,
the ability to turn a large angle is likely to be reduced compared to small angles. We will
assume that ν(cos θ) is a smooth and bounded function of cos θ.

3 Mean-field model of the discrete Couzin-Vicsek al-

gorithm

We now consider the limit of a large number of particles N → ∞. We first consider
the case without Gaussian noise. For this derivation, we proceed e.g. like in [32]. We
introduce the so-called empirical distribution fN(x, ω, t) defined by:

fN(x, ω, t) =
1

N

N
∑

k=1

δ(x − Xk(t)) δ(ω, ωk(t)). (3.1)

Here, the distribution ω ∈ S
2 → δ(ω, ω′) is defined by duality against a smooth function

ϕ by the relation:
〈δ(ω, ω′), ϕ(ω)〉 = ϕ(ω′).

We note that δ(ω, ω′) 6= δ(ω − ω′) because the sphere S
2 is not left invariant by the

subtraction operation. However, we have similar properties of δ such as δ(ω, ω′) = δ(ω′, ω)
where this relation is interpreted as concerning a distribution on the product S

2 × S
2.

Then, it is an easy matter to see that fN satisfies the following kinetic equation

∂tf
N + cω · ∇xf

N + ∇ω · (FNfN) = 0, (3.2)

where FN(x, ω, t) is an interaction force defined by:

FN(x, ω, t) = ν(cos θN) (Id − ω ⊗ ω)ω̄N , (3.3)

with cos θN = ω · ω̄N and ω̄N(x, ω, t) is the average orientation around x, given by:

ω̄N(x, ω, t) =
JN(x, t)

|JN(x, t)| , JN(x, t) =
∑

j, |Xn
j −x|≤R

ωn
j . (3.4)

If, by any chance, JN is equal to zero, we decide to assign to ω̄N(x, ω, t) the value ω (which
is the only way by which ω̄N(x, ω, t) can depend on ω). In the sequel, this convention will
not be recalled but will be marked by showing the dependence of ω̄ upon ω

We recall the expressions of the gradient and divergence operator on the sphere. Let
x = (x1, x2, x3) be a cartesian coordinate system associated with an orthonormal basis
(e1, e2, e3) and let (θ, φ) be a spherical coordinate system associated with this basis, i.e.
x1 = sin θ cos φ, x2 = sin θ sin φ, x3 = cos θ. Let also (eθ, eφ) be the local basis associated
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with the spherical coordinate system ; the vectors eθ and eφ have the following coordinates
in the cartesian basis: eθ = (cos θ cos φ, cos θ sin φ,− sin θ), eφ = (− sin φ, cos φ, 0). Let
f(ω) be a scalar function and A = Aθeθ + Aφeφ be a tangent vector field. Then:

∇ωf = ∂θf eθ +
1

sin θ
∂φf eφ, ∇ω · A =

1

sin θ
∂θ(Aθ sin θ) +

1

sin θ
∂φAφ.

If the cartesian coordinate system is such that e3 = ω̄N , then

FN = −ν(cos θ) sin θ eθ. (3.5)

Back to system (3.2)-(3.4), we note that relation (3.4) can be written

ω̄N(x, ω, t) =
JN(x, t)

|JN(x, t)| , JN(x, t) =

∫

|y−x|≤R, υ∈S2

υfN(y, υ, t) dy dυ . (3.6)

We will slightly generalize this formula and consider ω̄N(x, ω, t) defined by the following
relation:

ω̄N(x, ω, t) =
JN(x, t)

|JN(x, t)| , JN(x, t) =

∫

y∈R3, υ∈S2

K(|x − y|) υ fN(y, υ, t) dy dυ , (3.7)

where K(|x|) is the ’observation kernel’ around each particle. Typically, in formula (3.6),
K(|x|) is the indicator function of the ball centered at the origin and of radius R but
we can imagine more general kernels modeling the fact that the influence of the particles
fades away with distance. We will assume that this function is smooth, bounded and
tends to zero at infinity.

Clearly, the formal mean-field limit of the particle system modeled by the kinetic
system (3.2), (3.3), (3.7) is given by the following system:

∂tf + cω · ∇xf + ∇ω · (Ff) = 0, (3.8)

F (x, ω, t) = ν(cos θ̄) (Id − ω ⊗ ω)ω̄(x, ω, t), (3.9)

ω̄(x, ω, t) =
J(x, t)

|J(x, t)| , J(x, t) =

∫

y∈R3, υ∈S2

K(|x − y|) υ f(y, υ, t) dy dυ , (3.10)

with cos θ̄ = ω · ω̄. It is an open problem to rigorously show that this convergence holds.
For interacting particle system, a typical result is as follows (see e.g. [32]). Suppose that
the empirical measure at time t = 0 converges in the weak star topology of bounded
measures towards a smooth function fI(x, ω). Then, fN(x, ω, t) converges to the solution
f of (3.8)-(3.10) with initial datum fI , in the topology of continous functions of time
on [0, T ] (for arbitrary T > 0) with values in the space of bounded measures endowed
with the weak star topology. We will admit that such a result is true (may be with some
modifid functinal setting) and leave a rigorous convergence proof to future work.

We will also admit that the mean-field limit of the stochastic particle system (2.10),
(2.11) consists of the following Kolmogorov-Fokker-Planck equation

∂tf + cω · ∇xf + ∇ω · (Ff) = D∆ωf, (3.11)

8



again coupled with (3.9), (3.10) for the definition of F and ω̄, and where ∆ω denotes the
Laplace-Belltrami operator on the sphere:

∆ωf = ∇ω · ∇ωf =
1

sin θ
∂θ(sin θ∂θf) +

1

sin2 θ
∂φφf.

4 Hydrodynamic limit of the Mean-field Couzin-Vicsek

model

4.1 Scaling

We are interested in the large time and space dynamics of the mean-field Fokker-Planck
equation (3.11), coupled with (3.9), (3.10).

So far, the various quantities appearing in the system have physical dimensions. We
first introduce the characteristic physical units associated with the problem and scale
the system to dimensionless variables. Let ν0 the typical interaction frequency scale.
This means that ν(cos θ) = ν0ν

′(cos θ) with ν ′(cos θ) = O(1) in most of the range of
cos θ. We now introduce related time and space scales t0 and x0 as follows: t0 = ν−1

0

and x0 = ct0 = c/ν0. This choice means that the time unit is the mean time between
interactions and the space unit is the mean distance traveled by the particles between
interactions. We introduce the dimensionless diffusion coefficient d = D/ν0. Note that
D has also the dimension of a frequency so that d is actually dimensionless. We also
introduce a scaled observation kernel K ′ such that K(x0|x′|) = K ′(|x′|). Typically, if K
is the indicator function of the ball of radius R, K ′ is the indicator of the ball of radius
R′ = R/x0. The assumption that the interaction is non local means that R′ = O(1). In
other words, the observation radius is of the same order as the mean distance travelled
by the particles between two interactions. This appears consistent with the behaviour of
a fish, but would probably require more justifications. In the present work, we shall take
this fact for granted.

Let now t′ = t/t0, x′ = x/x0 the associated dimensionless time and space variables.
Then, system (3.11), coupled with (3.9), (3.10) is written in this new system of units
(after dropping the primes for the sake of clarity):

∂tf + ω · ∇xf + ∇ω · (Ff) = d∆ωf, (4.1)

F (x, ω, t) = ν(cos θ̄) (Id − ω ⊗ ω)ω̄(x, ω, t), with cos θ̄ = ω · ω̄, (4.2)

ω̄(x, ω, t) =
J(x, t)

|J(x, t)| , J(x, t) =

∫

y∈R3, υ∈S2

K(|x − y|) υ f(y, υ, t) dy dυ , (4.3)

The system now depends on only one dimensionless parameter d and two dimensionless
functions which describe the behaviour of the fish: ν(cos θ̄) and K(x), which are all
supposed to be of order 1.

Up to now, the system has been written at the microscopic level, i.e. at time and
length scales which are characteristic of the dynamics of the individual particles. Our
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goal is now to investigate the dynamics of the system at large time and length scales
compared with the scales of the individuals. For this purpose, we adopt new time and
space units t̃0 = t0/ε, x̃0 = x0/ε with ε ≪ 1. Then, a set of new dimensionless variables
is introduced x̃ = εx, t̃ = εt. In this new set of variables, the system is written (again,
dropping the tildes for clarity):

ε(∂tf
ε + ω · ∇xf

ε) = −∇ω · (F εf ε) + d∆ωf ε, (4.4)

F ε(x, ω, t) = ν(ω · ω̄ε) (Id − ω ⊗ ω)ω̄ε(x, ω, t), (4.5)

ω̄ε(x, ω, t) =
Jε(x, t)

|Jε(x, t)| , Jε(x, t) =

∫

y∈R3, υ∈S2

K

(∣

∣

∣

∣

x − y

ε

∣

∣

∣

∣

)

υ f ε(y, υ, t) dy dυ , (4.6)

Our goal in this paper is to investigate the formal limit ε → 0 of this problem.
Our first task, performed in the following lemma, is to provide an expansion of ω̄ε in

terms of ε.

Lemma 4.1 We have the expansion:

ω̄ε(x, ω, t) = Ωε(x, t) + O(ε2) , (4.7)

where

Ωε(x, t) =
jε(x, t)

|jε(x, t)| , and jε(x, t) =

∫

υ∈S2

υ f ε(x, υ, t) dυ . (4.8)

The proof of this lemma is elementary, and is omitted. That the remainder in (4.7) is
of order ε2 is linked with the fact that the observation kernel is isotropic. If an anisotropic
kernel had been chosen, such as one favouring observations in the forward direction, then
a term of order ε would have been obtained. This additional term would substantially
change the dynamics. We leave this point to future work.

The quantity jε(x, t) is the particle flux. We will also use the density, which is defined
as a moment of f as well:

ρε(x, t) =

∫

υ∈S2

f ε(x, υ, t) dυ . (4.9)

Thanks to lemma 4.1, system (4.4)-(4.6) is written

ε(∂tf
ε + ω · ∇xf

ε) = −∇ω · (F ε
0 f ε) + d∆ωf ε + O(ε2), (4.10)

F ε
0 (x, ω, t) = ν(ω · Ωε) (Id − ω ⊗ ω)Ωε(x, t), (4.11)

Ωε(x, t) =
jε(x, t)

|jε(x, t)| , and jε(x, t) =

∫

υ∈S2

υ f ε(x, υ, t) dυ . (4.12)

We note that observing the system at large scales makes the interaction local and that
this interaction tends to align the particle velocity to the direction of the local particle

10



flux. This interaction term is balanced at leading order by the diffusion term which tends
to spread the particles isotropically on the sphere. Obviously, an equilibrium distribution
results from the balance of these two antogonist phenomena.

In the remainder of the paper, we write F [f ε] for F ε
0 . We introduce the operator

Q(f) = −∇ω · (F [f ]f) + d∆ωf, (4.13)

F [f ] = ν (Id − ω ⊗ ω)Ω[f ], (4.14)

Ω[f ] =
j[f ]

| j[f ] | , and j[f ] =

∫

ω∈S2

ω f dω . (4.15)

We note that Ω[f ] is a non linear operator of f , and so are F [f ] and Q(f). In the
remainder, we will always suppose that f is as smooth and integrable as necessary. We
leave the question of finding the appropriate functional framework to forthcoming work.

The operator Q acts on the angle variable ω only and leaves the other variables x and
t as parameters. Therefore, it is legitimate to study the properties of Q as an operator
acting on functions of ω only. This is the task performed in the following section.

4.2 Properties of Q

We begin by looking for the equilibrium solutions, i.e. the functions f which cancel Q.
Let µ = cos θ. We denote by σ(µ) an antiderivative of ν(µ), i.e. (dσ/dµ)(µ) = ν(µ). We
define

MΩ(ω) = C exp(
σ(ω · Ω)

d
),

∫

MΩ(ω) dω = 1 . (4.16)

The constant C is set by the normalization condition (second equality of (4.16)) ; it
depends only on d and on the function σ but not on Ω.

We have the following:

Lemma 4.2 (i) The operator Q can be written as

Q(f) = d ∇ω ·
[

MΩ[f ]∇ω

(

f

MΩ[f ]

)]

, (4.17)

and we have

H(f) :=

∫

ω∈S2

Q(f)
f

MΩ[f ]

dω = −d

∫

ω∈S2

MΩ[f ]

∣

∣

∣

∣

∇ω

(

f

MΩ[f ]

)∣

∣

∣

∣

2

dω ≤ 0. (4.18)

(ii) The equilibria, i.e. the functions f(ω) such that Q(f) = 0 form a three-dimensional
manifold E given by

E = {ρMΩ(ω) | ρ ∈ R+, Ω ∈ S
2} , (4.19)
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and ρ is the total mass while Ω is the director of the flux of ρMΩ(ω), i.e.

∫

ω∈S2

ρMΩ(ω) dω = ρ (4.20)

Ω =
j[ρMΩ]

| j[ρMΩ] | , j[ρMΩ] =

∫

ω∈S2

ρMΩ(ω) ω dω. (4.21)

Furthermore, H(f) = 0 if and only if f = ρMΩ for arbitrary ρ ∈ R+ and Ω ∈ S
2.

The function σ being an increasing function of µ (since ν > 0), MΩ is maximal for
ω ·Ω = 1, i.e. for ω pointing in the direction of Ω. Therefore, Ω plays the same role as the
average velocity of the classical Maxwellian of gas dynamics. The role of the temperature
is played by the normalized diffusion constant d : it measures the ’spreading’ of the
equilibrium about the average direction Ω. Here the temperature is fixed by the value of
the diffusion constant, in contrast with classical gas dynamics where the temperature is a
thermodynamical variable whose evolution is determined by the energy balance equation.

An elementary computation shows that the flux can be written

j[ρMΩ] = 〈cos θ〉M ρΩ, (4.22)

where for any function g(cos θ), the symbol 〈g(cos θ)〉M denotes the average of g over the
probability distribution MΩ, i.e.

〈g(cos θ)〉M =

∫

MΩ(ω)g(ω · Ω) dω =

∫ π

0
g(cos θ) exp(σ(cos θ)

d
) sin θ dθ

∫ π

0
exp(σ(cos θ)

d
) sin θ dθ

. (4.23)

We note that 〈g(cos θ)〉M does not depend on Ω but depends on d. In particular,
〈g(cos θ)〉M → g(1) when d → 0 while 〈g(cos θ)〉M → ḡ, the arithmetic average of g
over the sphere, when d → ∞ (with ḡ =

∫

g(ω ·Ω) dω = 1
2

∫ π

0
g(cos θ) sin θ dθ). Therefore,

〈cos θ〉M → 1 when d → 0 and 〈cos θ〉M → 0 when d → ∞. For a large diffusion, the
equilibrium is almost isotropic and the magnitude of the velocity tends to zero while for
a small diffusion, the distribution is strongly peaked in the forward direction and the
magnitude of the velocity tends to 1, which is the velocity of the individual particles.

Proof of lemma 4.2: To prove (i), we introduce a reference frame such that e3 = Ω[f ].
In spherical coordinates, we have

MΩ[f ](ω(θ, φ)) = C exp(d−1σ(cos θ)). (4.24)

Therefore,

∇ω(ln MΩ[f ]) = ∇ω[ ln{C exp(d−1σ(cos θ)) } ]

= d−1∇ω(σ(cos θ))

= −d−1ν(cos θ) sin θ eθ

= d−1F [f ] , (4.25)
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where ln denotes the logarithm and the last equality results from (3.5). Then, we deduce
that

d ∇ω ·
[

MΩ[f ]∇ω

(

f

MΩ[f ]

)]

= d ∇ω ·
[

∇ωf − f∇ω(ln MΩ[f ])
]

= d∆ωf −∇ω · (F [f ]f) = Q(f). (4.26)

(4.18) follows directly from (4.17) and Stokes theorem.
(ii) follows directly from (i). If Q(f) = 0, then H(f) = 0. But H(f) is the integral

of a non-negative quantity and can be zero only if this quantity is identically zero, which
means f = ρMΩ[f ] for a conveniently chosen ρ. Since Ω[f ] can be arbitrary, the result
follows. The remaining statements are obvious.

Our task now is to determine the collision invariants of Q, i.e. the functions ψ(ω) such
that

∫

ω∈S2

Q(f) ψ dω = 0, ∀f. (4.27)

Using (4.17), this equation can be rewritten as

∫

ω∈S2

f

MΩ[f ]

∇ω · (MΩ[f ]∇ωψ) dω = 0, ∀f. (4.28)

Clearly, if ψ = Constant, ψ is a collisional invariant. On the other hand, there is no
other obvious conservation relation, since momentum is not conserved by the interaction
operator. The constants span a one-dimensional function space, while the set of equilibria
is a three-dimensional manifold. So, we need to find some substitute to the notion of
collisional invariant, otherwise, in the limit ε → 0, the problem will be under-determined,
and in particular, we will lack an equation for Ω (appearing in the expression of the
equilibrium).

To solve the problem, we slightly change the viewpoint. We fix Ω ∈ S
2 arbitrarily,

and we ask the problem of finding all ψ’s which are collisional invariants of Q(f) for all f
with director Ω[f ] = Ω. Such a function ψ is not a collisional invariant in the strict sense,
because (4.27) is valid for all f but only for a subclass of f . But this weaker concept of
a collisional invariant is going to suffice for our purpose. So, for fixed Ω, we want to find
all ψ’s such that

∫

ω∈S2

f

MΩ

∇ω · (MΩ∇ωψ) dω = 0, ∀f such that Ω[f ] = Ω. (4.29)

Now, saying that Ω[f ] = Ω is equivalent to saying that j[f ] is aligned with Ω[f ], or again
to

0 = Ω × j[f ] =

∫

ω∈S2

f (Ω × ω) dω. (4.30)
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This last formula can be viewed as a linear constraint and, introducing the Lagrange
multiplier β of this constraint, β being a vector normal to Ω, we can restate the problem
of finding the ’generalized’ collisional invariants (4.29) as follows: Given Ω ∈ S

2, find all
ψ’s such that there exist β ∈ R

3 with Ω · β = 0, and
∫

ω∈S2

f

MΩ

{∇ω · (MΩ∇ωψ) − β · (Ω × ω)MΩ} dω = 0, ∀f. (4.31)

Now, (4.31) holds for all f without constraint and immediately leads to the following
problem for ψ:

∇ω · (MΩ∇ωψ) = β · (Ω × ω)MΩ. (4.32)

The problem defining ψ is obviously linear, so that the set CΩ of generalized collisional
invariants associated with the vector Ω is a vector space. It is convenient to introduce
a cartesian basis (e1, e2, Ω) and the associated spherical coordinates (θ, φ). Then β =
(β1, β2, 0) and β · (Ω × ω) = (−β1 sin φ + β2 cos φ) sin θ. Therefore, we can successively
solve for ψ1 and ψ2, the solutions of (4.32) with right-hand sides respectively equal to
− sin φ sin θMΩ and cos φ sin θMΩ.

We are naturally looking for solutions in an L2(S2) framework, since ψ is aimed at
constructing marcroscopic quantities by integration against f with respect to ω. There-
fore, one possible framework is to look for both f and ψ in L2(S2) to give a meaning to
these macroscopic quantities. We state the following lemma:

Lemma 4.3 Let χ ∈ L2(S2) such that
∫

χdω = 0. The problem

∇ω · (MΩ∇ωψ) = χ, (4.33)

has a unique weak solution in the space
◦

H1(S2), the quotient of the space H1(S2) by the
space spanned by the constant functions, endowed with the quotient norm.

Proof: We apply the Lax-Milgram theorem to the following variational formulation of
(4.33):

∫

ω∈S2

MΩ∇ωψ · ∇ωϕdω =

∫

ω∈S2

χϕdω, (4.34)

for all ϕ ∈
◦

H1(S2). The function MΩ is bounded from above and below on S
2, so the

bilinear form at the left-hand side is continous on
◦

H1(S2). The fact that the average of

χ over S
2 is zero ensures that the right-hand side is a continuous linear form on

◦

H1(S2).
The coercivity of the bilinear form is a consequence of the Poincare inequality: ∃C > 0

such that ∀ψ ∈
◦

H1(S2):

|ψ|H1 ≥ C||ψ|| ◦

L2
:= C min

K∈R

||ψ + K||L2 , (4.35)
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where |ψ|H1 is the H1 semi-norm. We note that the Poincare inequality would not hold
without taking the quotient.

So, to each of the right-hand sides χ = − sin φ sin θMΩ or χ = cos φ sin θMΩ which
have zero average on the sphere, there exist solutions ψ1 and ψ2 respectively (unique up
to constants) of problem (4.33). We single out unique solutions by requesting that ψ1 and
ψ2 have zero average on the sphere:

∫

ψk dω = 0, k = 1, 2. We can state the following
corollary to lemma 4.3:

Proposition 4.4 The set CΩ of generalized collisional invariants associated with the vec-
tor Ω which belong to H1(S2) is a three dimensional vector space CΩ = Span{1, ψ1, ψ2}

More explicit forms for ψ1 and ψ2 can be found. By expanding in Fourier series with
respect to φ, we easily see that

ψ1 = −g(cos θ) sin φ, ψ2 = g(cos θ) cos φ, (4.36)

where g(µ) is the unique solution of the elliptic problem on [−1, 1]:

−(1 − µ2)∂µ(eσ(µ)/d(1 − µ2)∂µg) + eσ(µ)/dg = −(1 − µ2)3/2eσ(µ)/d. (4.37)

We note that no boundary condition is needed to specify g uniquely since the operator
at the left-hand side of (4.37) is degenerate at the boundaries µ = ±1. Indeed, it is an
easy matter, using again Lax-Milgram theorem, to prove that problem (4.37) has a unique
solution in the weighted H1 space V defined by

V = {g | (1 − µ2)−1/2g ∈ L2(−1, 1), (1 − µ2)1/2∂µg ∈ L2(−1, 1)}.

Furthermore, the Maximum Principle shows that g is non-positive.
For convenience, we introduce h(µ) = (1 − µ2)−1/2g ∈ L2(−1, 1) or equivalently

h(cos θ) = g(cos θ)/ sin θ. We then define

~ψ(ω) = (Ω × ω) h(Ω · ω) = ψ1e1 + ψ2e2 . (4.38)

~ψ is the vector generalized collisional invariant associated with the direction Ω.

4.3 Limit ε → 0

The goal of this section is to prove theorem 1.1.
Again, we suppose that all functions are as regular as needed and that all convergences

are as strong as needed. The rigorous proof of this convergence result is outside the scope
of this article.

We start with eq. (4.10) which can be written

ε(∂tf
ε + ω · ∇xf

ε) = Q(f ε) + O(ε2). (4.39)
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We suppose that f ε → f when ε → 0. Then, from the previous equation, Q(f ε) = O(ε)
and we deduce that Q(f) = 0. By lemma 4.2, f = ρMΩ, with ρ ≥ 0 and Ω ∈ S

2. Now,
since Q operates on the variable ω only, this limit does not specify the dependence of f
on (x, t), and consequently, ρ and Ω are functions of (x, t).

To find this dependence, we use the generalized collisional invariants. First, we con-
sider the constant collisional invariants, which merely means that we integrate (4.39) with
respect to ω. We find the continuity equation

∂tρ
ε + ∇x · jε = 0, (4.40)

where ρε and jε are the density and flux as defined above. It is an easy matter to realize
that the right-hand side is exactly zero (and not O(ε2)). In the limit ε → 0, ρε → ρ and
jε → j = c1ρΩ with

c1 = 〈cos θ〉M , (4.41)

and we get

∂tρ + ∇x · (c1ρΩ) = 0. (4.42)

Now, we multiply (4.39) by ~ψε = h(ω · Ω[f ε]) (Ω[f ε] × ω), integrate with respect to

ω and take the limit ε → 0. We note that Ω[f ε] → Ω and that ~ψǫ is smooth enough

(given the functional spaces used for the existence theory), and consequently, ~ψε → ~ψ =
h(ω · Ω) (Ω × ω). Therefore, in the limit ε → 0, we get:

Ω × X = 0 , X :=

∫

ω∈S2

(∂t(ρMΩ) + ω · ∇x(ρMΩ)) h(ω · Ω) ω dω. (4.43)

Saying that Ω × X = 0 is equivalent to saying that the projection of X onto the plane
normal to Ω vanishes or in other words, that

(Id − Ω ⊗ Ω)X = 0 . (4.44)

This is the equation that we need to make explicit in order to find the evolution equation
for Ω.

Elementary differential geometry gives the derivative of MΩ with respect to Ω acting
on a tangent vector dΩ to the sphere as follows:

∂MΩ

∂Ω
(dΩ) = d−1ν(ω · Ω) (ω · dΩ) MΩ. (4.45)

We deduce that

∂t(ρMΩ) = MΩ (∂tρ + d−1ν ρ (ω · ∂tΩ)), (4.46)

(ω · ∇x)(ρMΩ) = MΩ ((ω · ∇x)ρ + d−1ν ρ ω · ((ω · ∇x)Ω)). (4.47)
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Combining these two identities, we get:

∂t(ρMΩ) + ω · ∇x(ρMΩ) =

= MΩ

[

∂tρ + ω · ∇xρ + d−1νρ( ω · ∂tΩ + (ω ⊗ ω) : ∇xΩ )
]

, (4.48)

where the symbol ’:’ denotes the contracted product of two tensors (if A = (Aij)i,j=1,...,3

and B = (Bij)i,j=1,...,3 are two tensors, then A : B =
∑

i,j=1,...,3 AijBij) and ∇xΩ is the
gradient tensor of the vector Ω: (∇xΩ)ij = ∂xi

Ωj . Therefore, the vector X, is given by:

X =

∫

ω∈S2

[

∂tρ + ω · ∇xρ + d−1νρ( ω · ∂tΩ + (ω ⊗ ω) : ∇xΩ )
]

ω h MΩ dω (4.49)

The four terms in this formula, denoted by X1 to X4, are computed successively using
spherical coordinates (θ, φ) associated with a cartesian basis (e1, e2, Ω) where e1 and e2 are
two vectors normal to Ω. In the integral (4.49), the functions h = h(cos θ), ν = ν(cos θ)

and MΩ = C exp(σ(cos θ)
d

) only depend on θ. Therefore, the integrals with respect to φ
only concern the repeated tensor products of ω.

We first have that
∫ 2π

0
ω dφ = 2π cos θ Ω, so that

X1 =

∫

ω∈S2

∂tρω h MΩ dω = 2π ∂tρ

∫ π

0

cos θ h(cos θ) MΩ(cos θ) sin θ dθ Ω, (4.50)

and (Id − Ω ⊗ Ω)X1 = 0.
Now, an easy computation shows that

∫ 2π

0

ω ⊗ ω dφ = π sin2 θ (Id − Ω ⊗ Ω) + 2π cos2 θ Ω ⊗ Ω. (4.51)

We deduce that

X2 =

∫

ω∈S2

((ω ⊗ ω)∇xρ) h MΩ dω =

= π

∫ π

0

sin2 θ h MΩ sin θ dθ (Id − Ω ⊗ Ω)∇xρ +

+ 2π

∫ π

0

cos2 θ h MΩ sin θ dθ (Ω · ∇xρ) Ω, (4.52)

which leads to:

(Id − Ω ⊗ Ω)X2 = π

∫ π

0

sin2 θ h MΩ sin θ dθ (Id − Ω ⊗ Ω)∇xρ, (4.53)

Using (4.51) again, we find:

X3 = d−1ρ

∫

ω∈S2

((ω ⊗ ω)∂tΩ) ν h MΩ dω =

= πd−1ρ

∫ π

0

sin2 θ ν h MΩ sin θ dθ (Id − Ω ⊗ Ω)∂tΩ +

+ 2πd−1ρ

∫ π

0

cos2 θ ν h MΩ sin θ dθ (Ω · ∂tΩ) Ω. (4.54)
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The second term at the r.h.s. of (4.54) vanishes since ∂tΩ is normal to Ω (Ω being a unit
vector). For the same reason, (Id − Ω ⊗ Ω)∂tΩ = ∂tΩ and we are left with:

(Id − Ω ⊗ Ω)X3 = πd−1ρ

∫ π

0

sin2 θ ν h MΩ sin θ dθ ∂tΩ. (4.55)

We now need to compute the integral with respect to φ of the third tensor power of
ω. After some computations, we are left with

∫ 2π

0

ω ⊗ ω ⊗ ω dφ = π sin2 θ cos θ ((Id − Ω ⊗ Ω) ⊗ Ω + Ω ⊗ (Id − Ω ⊗ Ω) +

+[(Id − Ω ⊗ Ω) ⊗ Ω ⊗ (Id − Ω ⊗ Ω)]:24)

+2π cos3 θ Ω ⊗ Ω ⊗ Ω, (4.56)

where the index ’: 24’ indicates contraction of the indices 2 and 4. In other words, the
tensor element (

∫ 2π

0
ω ⊗ ω ⊗ ω dφ)ijk equals π sin2 θ cos θ when (ij, k) equals any of the

triples (1, 1, 3), (2, 2, 3), (3, 1, 1), (3, 2, 2), (1, 3, 1), (2, 3, 2), equals 2π cos3 θ when (ij, k) =
(3, 3, 3) and is equal to 0 otherwise. Using Einstein’s summation convention, the following
formula follows:

(

∫ 2π

0

ω ⊗ ω ⊗ ω dφ)∇xΩ =

(∫ 2π

0

ω ⊗ ω ⊗ ω dφ

)

ijk

∂xj
Ωk =

= π sin2 θ cos θ ((Id − Ω ⊗ Ω)ijΩk∂xj
Ωk + Ωi(Id − Ω ⊗ Ω)jk∂xj

Ωk +

+(Id − Ω ⊗ Ω)ikΩj∂xj
Ωk)

+2π cos3 θ ΩiΩjΩk∂xj
Ωk, (4.57)

But since Ω is a unit vector, Ωk∂xj
Ωk = 1

2
∂xj

(|Ω|2) = 0 and the first and fourth terms in
the sum vanish. The expression simplifies into:

(

∫ 2π

0

ω ⊗ ω ⊗ ω dφ)∇xΩ = π sin2 θ cos θ ((Id − Ω ⊗ Ω) : (∇xΩ)) Ω +

+π sin2 θ cos θ (Id − Ω ⊗ Ω)((Ω · ∇)Ω), (4.58)

The first term is parallel to Ω. Besides, since Ω is a unit vector, (Ω · ∇)Ω is normal to Ω.
So, we finally get

(Id − Ω ⊗ Ω)((

∫ 2π

0

ω ⊗ ω ⊗ ω dφ)∇xΩ) = π sin2 θ cos θ (Ω · ∇)Ω, (4.59)

This leads to the following formula for X4:

(Id − Ω ⊗ Ω)X4 = d−1ρ (Id − Ω ⊗ Ω)

(∫

ω∈S2

(ω ⊗ ω ⊗ ω)(∇xΩ) ν h MΩ dω

)

= πd−1ρ

∫ π

0

sin2 θ cos θ ν h MΩ sin θ dθ (Ω · ∇)Ω (4.60)
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Now, we insert the expressions of X1 to X4 into (4.44). Using notation (4.23), we
finally find the evolution equation for Ω:

d−1ρ 〈sin2 θ ν h〉M ∂tΩ + d−1ρ〈sin2 θ cos θ ν h〉M (Ω · ∇)Ω +

+〈sin2 θ h〉M (Id − Ω ⊗ Ω)∇xρ = 0. (4.61)

By the maximum principle, the function h is non-positive. Therefore, we can define
similar averages as (4.23), substituting MΩ with sin2 θ ν h MΩ and we denote such averages
as 〈g〉(sin2 θ)νhM . With such a notation, (4.61) becomes:

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (4.62)

with

c2 = 〈cos θ〉(sin2 θ)νhM , λ = d

〈

1

ν

〉

(sin2 θ)νhM

(4.63)

Collecting the mass and momentum eqs (4.42) and (4.62), we find the final macroscopic
model of the Couzin-Vicsek algorithm:

∂tρ + ∇x · (c1ρΩ) = 0. (4.64)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (4.65)

with the coefficients c1, c2 and λ given by (4.41) and (4.63). This ends the proof of
theorem 1.1.

4.4 Hyperbolicity

The detailed study (both theoretical and numerical) of the properties of the continuum
model (1.4), (1.5), will be the subject of future work. As a preliminary step, we look at
the hyperbolicity of the model.

First, thanks to a temporal rescaling, t = t′/c1, we can replace c1 by 1, c2 by c := c2/c1

and λ by λ′ = λ/c1. We will omit the primes for simplicity. Then, the system reads:

∂tρ + ∇x · (ρΩ) = 0. (4.66)

ρ (∂tΩ + c(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (4.67)

This rescaling amounts to saying that the magnitude of the velocity of the individual
particles is equal to 1/c1 in the chosen system of units.

We choose an arbitrary fixed cartesian coordinate system (Ω1, Ω2, Ω3) and use spherical
coordinates (θ, φ) in this system (see section 3). Then, Ω = (sin θ cos φ, sin θ sin φ, cos θ).
A simple algebra shows that (ρ, θ, φ) satisfy the system

∂tρ + ∂x(ρ sin θ cos φ) + ∂y(ρ sin θ sin φ) + ∂z(ρ cos θ) = 0. (4.68)

∂tθ + c(sin θ cos φ ∂xθ + sin θ sin φ ∂yθ + cos θ∂zθ) +

+λ (cos θ cos φ ∂x ln ρ + cos θ sin φ ∂y ln ρ − sin θ ∂z ln ρ) = 0. (4.69)

∂tφ + c(sin θ cos φ ∂xφ + sin θ sin φ ∂yφ + cos θ∂zφ) +

+λ (− sin θ sin φ ∂x ln ρ + sin θ cos φ ∂y ln ρ) = 0. (4.70)
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Supposing that ρ, θ, φ are independent of x and y amounts to looking at waves which
propagate in the z direction at a solid angle (θ, φ) with the velocity director Ω. In this
geometry, the system reads:

∂tρ + cos θ ∂zρ − ρ sin θ ∂zθ = 0. (4.71)

∂tθ + c cos θ ∂zθ − λ sin θ ∂z ln ρ = 0. (4.72)

∂tφ + c cos θ ∂zφ = 0. (4.73)

This is a first order system of the form





∂tρ
∂tθ
∂tφ



 + A(ρ, θ, φ)





∂zρ
∂zθ
∂zφ



 = 0, (4.74)

with

A(ρ, θ, φ) =





cos θ −ρ sin θ 0
−λ sin θ

ρ
c cos θ 0

0 0 c cos θ



 , (4.75)

The eigenvalues γ± and γ0 of the matrix A(ρ, θ, φ) are readily computed and are given
by

γ0 = c cos θ, γ± =
1

2

[

(c + 1) cos θ ±
(

(c − 1)2 cos2 θ + 4λ sin2 θ
)1/2

]

. (4.76)

Two special cases are noteworthy. The case θ = 0 (modulo π) corresponds to waves
which propagate parallel to the velocity director. In this case, two eigenvalues are equal:
γ0 = γ+ = c and γ− = 1. The eigenvectors corresponding to these three eigenvalues are
respectively the density ρ, and the angles θ and φ. So far, the relative magnitude of c
and 1 are not known. But, whatever the situation (c bigger or smaller or even equal to
1), the matrix is diagonalizable and therefore the system is hyperbolic.

The case θ = π/2 (modulo π) corresponds to waves propagating normally to the
velocity director. In this case, γ± = ±2

√
λ are opposite and γ0 = 0. The system for

(ρ, θ) reduces to a special form of the nonlinear wave equation. The sound speed which
propagates in the medium due to the interactions between the particles has magnitude
equal to 2

√
λ.

If θ has an arbitrary value, then, a combination of these two phenomena occurs. For
the two waves associated with γ±, there is a net drift at velocity (c + 1) cos θ and two

sound waves with velocities ((c − 1)2 cos2 θ +4λ sin2 θ
)1/2

. However, the speed of the
wave associated with γ0, is not equal to the drift of the two sound waves. A disymmetry
appears which is not present in the usual gas dynamics equations. The resolution of the
Riemann problem is left to future work.
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5 Conclusion

In this paper, we have studied the large-scale dynamics of the Couzin-Vicsek algorithm.
For that purpose, we have rephrased the dynamics as a time-continuous one and have
formulated it in terms of a kinetic Fokker-Planck equation. Then, a hydrodynamic scaling
of this kinetic equation is introduced with small parameter ε and the limit when ε → 0 is
considered. We show that the macroscopic dynamics takes place on a three dimensional
manifold consisting of the density and director of the mean-velocity. Using a new concept
of generalized collision invariant, we are able to derive formally the set of equations
satisfied by the parameters and we prove that the resulting system is hyperbolic.

Possible future directions involve the investigation of a limited range of vision in the
backwards direction, the computation of the order ε diffusive corrections, the incorpo-
ration of more non-locality effects in the asymptotics and finally, the accounting of the
other types of interactions, being of repulsive or attractive type.
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