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Abstract

For the spatially homogeneous Boltzmann equation with cutoff hard po-

tentials it is shown that solutions remain bounded from above, uniformly

in time, by a Maxwellian distribution, provided the initial data have a

Maxwellian upper bound. The main technique is based on a comparison

principle that uses a certain dissipative property of the linear Boltzmann

equation. Implications of the technique to propagation of upper Maxwellian

bounds in the spatially-inhomogeneous case are discussed.

Key words. Boltzmann equation – long-time behavior – Maxwellian bounds

– comparison principle
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1. Introduction and main result

The nonlinear Boltzmann equation is a classical model for a gas at low

or moderate densities. The gas in a spatial domain Ω ⊆ Rd, d ≥ 2, is

modeled by the mass density function f(x, v, t), (x, v) ∈ Ω×Rd, where v is

the velocity variable, and t ∈ R is time. The equation for f reads

(∂t + v · ∇x)f = Q(f) , (1)

where Q(f) is a quadratic integral operator, expressing the change of f due

to instantaneous binary collisions of particles. The precise form of Q(f) will

be introduced below, cf. also [10,34].

Although some of our results deal with more general situations, we will

be mostly concerned with a special class of solutions that are independent

of the spatial variable (spatially homogeneous solutions). In this case f =

f(v, t) and one can study the initial-value problem

∂tf = Q(f), f |t=0 = f0, (2)
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where 0 ≤ f0 ∈ L1(Rd). The spatially homogeneous theory is very well

developed although not complete. In the present paper we shall solve one of

the most noticeable open problems remaining in the field, by establishing

the following result.

Theorem 1. Assume that 0 ≤ f0(v) ≤ M0(v), for a. a. v ∈ Rd, where

M0(v) = e−a0|v|2+c0 is the density of a Maxwellian distribution, a0 > 0,

c0 ∈ R. Let f(v, t), v ∈ Rd, t ≥ 0 be the unique solution of equation (2) for

hard potentials with the angular cutoff assumptions (5), (7), that preserves

the initial mass and energy (12). Then there are constants a > 0 and c ∈ R

such that f(v, t) ≤ M(v), for a. a. v ∈ Rd and for all t ≥ 0, where M(v) =

e−a|v|2+c.

Before going on, let us make a few comments about the interest of these

bounds. Maxwellian functions

M(v) = e−a|v|2+b·v+c, with a > 0, c ∈ R, b ∈ Rd constants,

are unique, within integrable functions, equilibrium solutions of (2), and

they provide global attractors for the time-evolution described by (2) (or (1),

with appropriate boundary conditions). Classes of functions bounded above

by Maxwellians provide a convenient analytical framework for the local exis-

tence theory of strong solutions for (1), see Grad [22] and Kaniel-Shinbrot [25].

Such bounds also play an important role in the proof of validation of the

Boltzmann equation by Lanford [27], see also [10]. However, establishing

the propagation of uniform bounds is generally a difficult problem, solved



4 I. M. Gamba, V. Panferov, C. Villani

only in the context of small solutions in an unbounded space, see Illner-

Shinbrot [24] and subsequent works [4, 21, 23, 29]. These results rely in a

crucial way on the decay of solutions for large |x| and on the dispersive

effect of the transport term, in order to control the nonlinearity. Dispersive

effects may not have such a strong influence in other physical situations,

and the spatially homogeneous problem presents the simplest example of

such a regime, in which case our results may be relevant.

In the spatially homogeneous case many additional properties of solu-

tions can be established. Upper bounds with polynomial decay for |v| large

hold uniformly in time, see Carleman [8, 9] and Arkeryd [2]. Solutions are

also known to have a lower Maxwellian bound for all positive times, even for

compactly supported initial data [32]. Many results have been established

that concern the behavior of the moments with respect to the velocity vari-

able, following the work by Povzner [31], see in particular [1, 6, 12, 15, 30].

The Carleman-type estimates [2, 8, 9] were crucial in the treatment of the

weakly inhomogeneous problem given in [3]. However, as also pointed out

in ref. [3], Maxwellian bounds of the local existence theory [22, 25] are not

known to hold on longer time-intervals, and it remains an open problem to

characterize the approach to the Maxwellian equilibrium in classes of func-

tions with exponential decay. The present work aims to at least partially

remedy this situation, and to develop a technique that could be used to

obtain further results in this direction.
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We will next introduce the notation and the necessary concepts to make

the statement of Theorem 1 more precise. We set in (2)

Q(f) (v, t) =
∫

Rd

∫

Sd−1
(f ′∗ f ′ − f∗ f)B(v − v∗, σ) dσ dv∗, (3)

where, adopting common shorthand notations, f = f(v, t), f ′ = f(v′, t),

f∗ = f(v∗, t), f ′∗ = f(v′∗, t). Here v, v∗ denote the velocities of two particles

either before or after a collision,

v′ =
v + v∗

2
+
|v − v∗|

2
σ , v′∗ =

v + v∗
2

− |v − v∗|
2

σ , (4)

are the transformed velocities, and σ ∈ Sd−1 is a parameter determining

the direction of the relative velocity v′−v′∗. In the more general case of (1),

the space variable x appears (similarly to t above) in each occurrence of f ,

f∗, f ′, f ′∗; we shall often omit the t and x variables from the notation for

brevity.

Many properties of the solutions of the Boltzmann equation depend cru-

cially on certain features of the kernel B in (3). Its physical meaning is the

product of the magnitude of the relative velocity by the effective scatter-

ing cross-section (see [26, §18] for terminology and explicit examples); this

quantity characterizes the relative frequency of collisions between particles.

Our assumptions on B fall in the category of “hard potentials with angular

cutoff”, cf. [34]. More precisely, we assume that

B(v − v∗, σ) = |v − v∗|β h(cos ϑ), cosϑ = (v−v∗)·σ
|v−v∗| , (5)
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where 0 < β ≤ 1 is a constant and h is a nonnegative function on (−1, 1)

such that

h(z) + h(−z) is nondecreasing on (0, 1) (6)

and

0 ≤ h(cos ϑ) sinα ϑ ≤ C, ϑ ∈ (0, π), (7)

where α < d− 1 and C is a constant. Assumption (7) implies in particular

that the integral
∫

Sd−1 h(cosϑ) dσ is finite; for convenience we normalize it

by setting

∫

Sd−1
h(cos ϑ) dσ = ωd−2

∫ 1

−1

h(z) (1− z2)
d−3
2 dz = 1, (8)

where ωd−2 is the measure of the (d− 2)-dimensional sphere. The classical

hard-sphere model in Rd, satisfies (5) with β = 1, (6) and (7) with α = d−3.

Notice that we can write Q(f) = Q+(f) − Q−(f), where Q+(f) is the

“gain” term, and Q−(f) is the “loss” term,

Q+(f) =
∫

Rd

∫

Sd−1
f ′f ′∗B(v − v∗, σ) dσ dv∗, Q−(f) = (f ∗ |v|β) f,

and ∗ denotes the convolution in v. Because of the symmetry σ 7→ −σ in

the integral defining Q+(f) we can restrict the σ-integration above to the

half-sphere {cos ϑ > 0} if we simultaneously replace B(v − v∗, σ) by

B(v − v∗, σ) := (B(v − v∗, σ) + B(v − v∗,−σ)) 1{cos ϑ>0}.

It will be convenient to introduce the following (nonsymmetric) bilinear

forms of the collision terms,

Q+(f, g) =
∫

Rd

∫

Sd−1
f ′∗ g′B(v−v∗, σ) dσ dv∗, Q−(f, g) = (f ∗|v|β) g, (9)
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for which obviously Q±(f) = Q±(f, f).

We say that a nonnegative function f ∈ C([0,∞); L1(Rd)), such that

(1+ |v|2)f ∈ L∞((0,∞); L1(Rd)), is a (mild) solution of (2) if for almost all

v ∈ Rd

f(v, 0) = f0(v); f(v, t)− f(v, s) =
∫ t

s

Q(f)(v, τ) dτ, (10)

for all 0 ≤ s < t. Notice that the conditions on f imply (in the spatially-

homogeneous case!) that

Q+(f), Q−(f) ∈ L∞((0,∞); L1(Rd)), (11)

so the integral form in (10) is well-defined. This also implies that f is weakly

differentiable with respect to t and that the differential equation (2) holds

in the sense of distributions on Rd × (0,∞).

The existence of a unique solution satisfying the conservations of mass

and energy,

∫

Rd

f(v, t) dv =
∫

Rd

f0(v) dv,

∫

Rd

f(v, t) |v|2 dv =
∫

Rd

f0(v) |v|2 dv

(12)

follows from a theorem by Mischler and Wennberg [30], for all f0 ≥ 0 for

which the above integrals are finite. The second condition in (12) is also

necessary for the uniqueness [35]. For the initial data with strong decay (as

in Theorem 1) one could also refer to the well-known results by Carleman,

Arkeryd and DiBlasio [1, 2, 13].
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The following theorem summarizes the main results about qualitative

properties of solutions in the case of “hard potentials with cutoff” known

before this work.

Theorem 2. Let f(v, t), v ∈ Rd, t ≥ 0, (n ≥ 2) be a solution of (2)

that satisfies (12), and let the kernel B in the Boltzmann operator (3) sat-

isfy (5), (7). Then

(i) if f0 ∈ L∞(Rd) then f(t, ·) ∈ L∞(Rd), t ≥ 0. Moreover, if (1 +

|v|)sf0 ∈ L∞(Rd
v) for some s > s0, then (1 + |v|)sf(v, t) ∈ L∞(Rd

v),

t ≥ 0. Here s0 is a constant dependent on the dimension d.

(ii) if the integral of f is nonzero, then for every t0 > 0 there is a

Maxwellian M(v) = Ke−κ|v|2 , K > 0, κ > 0 such that

f(v, t) ≥ M(v), t ≥ t0, for a. a. v ∈ Rd.

(iii) for all t0 > 0 and for all k > 1, the quantity mk(t) =

∫
Rd f(v, t) |v|2k dv is bounded uniformly for t ≥ t0; moreover, this bound

is uniform in t ≥ 0 if mk(0) < +∞.
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(iv) In the case d = 3 and B(v − v∗, σ) = c |v − v∗| (hard spheres) or

B(v − v∗, σ) = h( (v−v∗)·σ
|v−v∗| ), h ∈ L1(−1, 1) (pseudo-Maxwell particles) if

f0 satisfies

f0

M0
∈ L1(Rd)

for some Maxwellian M0(v) = e−a0|v|2 , a0 > 0, then there exists constants

a > 0, C such that
∫

Rd

f(v, t)
M(v)

dv ≤ C,

where M(v) = e−a|v|2 .

Part (i) of this theorem is due to Carleman [9] in the case of the hard

spheres; the general case was studied by Arkeryd in [2]. Part (ii) is due

to A. Pulvirenti and Wennberg [32]. Part (iii) is due to Desvillettes [12]

under the additional assumption that a moment mk0(t) of order k0 > 1 is

finite initially; this assumption was removed by Mischler and Wennberg [30].

Earlier result by Arkeryd [1] and Elmroth [15] state that all moments remain

bounded uniformly in time, once they are finite initially. Finally, part (iv)

is due to Bobylev [6]; we will give an extension of this result to the class of

Boltzmann kernels satisfying (5)–(7) in Section 2.

Our main contribution in the present work is to show that the estimates

for the spatially homogeneous Boltzmann equation (precisely, parts (i) and

(iv) of Theorem 2, together with the conservation of mass) imply Theorem 1.

Since we do not use other properties of the spatially-homogeneous problem

we can state our result in a more general, spatially inhomogeneous setting.
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We consider solutions of (1) with the spatial domain Ω = Td := Rd/Zd

(the unit hypercube with periodic boundary conditions), on an arbitrary

finite time interval [0, T ]. Spatially homogeneous solutions are then a special

subclass characterized by the constant dependence on the x variable. To

simplify the presentation, let us assume sufficient regularity (smoothness)

of the solutions f(x, v, t) with respect to the x and t variables; this is not a

restriction in the setting of Theorem 1, and the requirements of smoothness

will be relaxed significantly later on to include a sufficiently wide class of

weak solutions of the spatially inhomogeneous problem.

Theorem 3. Let T > 0 and let f ∈ C([0, T ];L1(Td × Rd)), f ≥ 0, be a

(sufficiently regular) solution of the Boltzmann equation (1), with the initial

condition

f(x, v, 0) = f0(x, v) ≤ M0(v), for a. a. (x, v) ∈ Td × Rd,

where M0(v) = e−a0|v|2+c0 , a0 > 0, c0 ∈ R. Assume that the solution

f(x, v, t) satisfies the estimates

∫

Rd

f(x, v, t) dv ≥ ρ0, (x, t) ∈ Td × [0, T ], (13)

and

sup
(x,t)∈Td×[0,T ]

‖f(x, v, t)‖L∞v ≤ C0, sup
(x,t)∈Td×[0,T ]

∫

Rd

f(x, v, t)
M1(v)

dv ≤ C1,

(14)

where M1(v) = e−a1|v|2+c1 and 0 < a1 < a0, c1, ρ0, C0, C1 are constants.

Then for any 0 < a < a1, for any t ∈ [0, T ]

f(x, v, t) ≤ M(v), for a. a. (x, v) ∈ Td × Rd,
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where M(v) = e−a|v|2+c, and the constant c depends on a, a0, c0, a1, c1,

ρ0, C0 and C1 only.

Remark 1. The regularity assumptions in Theorem 3 are not particularly

restrictive. The precise conditions in the spatially inhomogeneous case are

that f is a mild (renormalized) solution of (1) that is dissipative in the sense

of P.-L. Lions (see Definition 1 in Section 3). A sufficient condition that is

naturally satisfied in the spatially-homogeneous case is that (11) holds in

addition to (10).

The plan of the paper is as follows. In Section 2 we extend property

(iv) from Theorem 2 to the class of Boltzmann kernels satisfying (5)–(7).

This part uses properties specific to the spatially-homogeneous problem, and

develops the ideas from [5–7]. The result of Section 2 illustrates an important

point that the type of behavior described by Theorem 1 is not a particular

feature of the hard-sphere model, but rather a generic phenomenon that

holds for a wide class of collision kernels of “hard” type. The key step

occurs in Section 3: there we introduce the technique based on a comparison

principle which plays a crucial role in the derivation of pointwise estimates.

In Section 4 we prove a weighted bound for the collision term, based on

the Carleman representation of the gain operator, which is used in the

comparison argument. Finally, some classical results used throughout the

text are recalled in three Appendices.

Convention: Throughout the text, the function sign z is defined as 1 for

z > 0, −1 for z < 0 and an arbitrary fixed value in [−1, 1] for z = 0.
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2. Weighted L1 estimates of solutions

The aim of this section is to establish the following weighted integral

bound for the solution of the Boltzmann equation (2).

Theorem 4. Let f(v, t), v ∈ Rd, t ≥ 0 (n ≥ 2) be a solution of the spatially

homogeneous Boltzmann equation (2) with the collision kernel B satisfy-

ing (5)–(7) and with the initial datum f0 ≥ 0 such that

f0

M0
∈ L1(Rd) (15)

for a certain Maxwellian M0(v) = e−a0|v|2 , where a0 is a positive constant.

Then there exist constants D, a > 0, such that

∫

Rd

f(v, t)
M(v)

dv ≤ D, t ≥ 0, (16)

where M(v) = e−a|v|2 .

This result was obtained by Bobylev in the case of the “hard spheres”

and Maxwell molecules [5, 6]. Here we present a generalization to the case

of more general kernels B that satisfy (5)–(7). The basic approach that we

use is based on the method of moments. We introduce the central moments

of order 2k,

mk(t) =
∫

Rd

f(v, t) |v|2k dv, k = 0, 1 . . . , (17)

and use the Taylor expansion 1
M(v) = ea|v|2 =

∞∑
k=0

|v|2k

k! ak to obtain

∫

Rd

f(v, t)
M(v)

dv =
∞∑

k=0

mk(t)
k!

ak. (18)
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The series above converges if and only if the integral is finite. To establish

the estimate (16) it is then sufficient to show that the radius of convergence

of the power series in (18) remains positive, uniformly in time. To this end

we will look for an estimate

sup
t≥0

mk(t)
k!

≤ Cqk, (19)

for certain C > 0, q > 0 and for k large enough; that would imply that the

series (18) converges for a < q−1, and the estimate (16) then follows.

There are two important steps to our proof. The first one is a sharp

form of the Povzner lemma as presented by Bobylev [6] for hard spheres

in three dimensions and extended here for the more general class of kernels

satisfying (5)–(7). The next step is the study of the asymptotic behavior of

the constants in the moment inequalities in which a sharper control of the

constants is required for the case of the kernels with an integrable angular

singularity.

Multiplying the Boltzmann equation (2) by Ψ(|v|2) where Ψ : R+ → R is

a convex function and integrating with respect to v we obtain, after standard

changes of variables,

d

dt

∫

Rd

f(v, t) Ψ(|v|2) dv =
∫

Rd

∫

Rd

f(v, t) f(v∗, t) WΨ (v, v∗) dv dv∗, (20)

where

WΨ (v, v∗) = |v − v∗|β
(
GΨ (v, v∗)− LΨ (v, v∗)

)
,

GΨ (v, v∗) =
1
2

∫

Sd−1

(
Ψ(|v′∗|2) + Ψ(|v′|2))h

( (v−v∗)·σ
|v−v∗|

)
dσ,
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where h is as in (5), v′∗, v′ are defined in (4), and

LΨ (v, v∗) =
1
2

(
Ψ(|v|2) + Ψ(|v∗|2)

)
.

Since the expression for GΨ (v, v∗) is clearly the most complicated part

of (20) we look for a simpler upper bound. This is generally achieved by

Povzner-type inequalities; the present version has the advantage of yielding

an explicit constant for the moments of the “gain” term (the case Ψ(z) = zk)

with a “good” asymptotic behavior for k →∞.

Lemma 1. (Angular averaging lemma, [6], [7].) Let Ψ : R+ → R be convex

and assume that the function h̄(z) = 1
2 (h(z) + h(−z)) is nondecreasing on

(0, 1). Then

GΨ (v, v∗) ≤ ωd−2

∫ 1

−1

Ψ
((|v|2 + |v∗|2

) 1 + z

2

)
h̄(z) (1− z2)

d−3
2 dz,

where ωd−2 is the area of the unit sphere in Rd−1.

Proof. See [7, Lemma 1] for the case d = 3; the extension to general d is

straightforward.

The next step is to choose in (20) Ψ(z) = zk, k ≥ 1 to obtain the

time-evolution of the moments mk(t). By Lemma 1 we have in that case

GΨ (v, v∗) ≤ ak(|v|2 + |v∗|2)k,

where the constant ak is given by

ak = ωd−2

∫ 1

−1

(1 + z

2

)k

h̄(z) (1− z2)
d−3
2 dz, (21)
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Notice that a1 = 1, ak < 1 for k > 1 and ak is strictly decreasing with

increasing k. By (20) we then have

m′
k(t) ≤

∫

Rd

∫

Rd

f(v, t)f(v∗, t)Wk(v, v∗) dv dv∗, (22)

where

Wk =
1
2
|v − v∗|β

(
ak(|v|2 + |v∗|2)k − |v|2k − |v∗|2k

)

=− 1
2

(1− ak) |v − v∗|β
(|v|2k − |v∗|2k

)

+
1
2

ak |v − v∗|β
(
(|v|2 + |v∗|2)k − |v|2k − |v∗|2k

)
=: −Uk + Vk.

(23)

Since ak < 1 for k > 1, the leading term −Uk on the right-hand side is

non-positive, and the terms in Vk can be estimated using the inequalities

|v − v∗|β ≤ |v|β + |v∗|β ,

(|v|2 + |v∗|2)k − |v|2k − |v∗|2k ≤
[ k+1

2 ]∑

i=1

(
k

j

)
(|v|2j |v∗|2(k−j) + |v|2(k−j)|v∗|j),

where [ · ] denotes the integer part (cf. [7]). We then have

∫

Rd

∫

Rd

f(v, t)f(v∗, t) Vk(v, v∗) dv dv∗ ≤ akSk(t),

where

Sk(t) =
[ k+1

2 ]∑

j=1

(
k

j

)(
mj+ β

2
(t)mk−j(t) + mk−j+ β

2
(t) mj(t)

)
. (24)

and
∫

Rd

∫

Rd

f(v, t)f(v∗, t)Uk(v, v∗) dv dv∗

≥ (1− ak)
∫

Rd

∫

Rd

f(v, t)f(v∗, t) |v − v∗|β |v|2k dv dv∗

(25)

To estimate the last term we will use the following lower bound for the

moments of order s ∈ (0, 1].
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Lemma 2 (Cf. [6] for the case s = 1). The solution of (2) satisfies

∫

Rd

f(v∗, t) |v − v∗|s dv∗ ≥ cs

∫

Rd

f0(v∗) |v − v∗|s dv∗, v ∈ Rd,

for any s ∈ (0, 1].

Proof. By translating the solution f(v∗, t) in the velocity space, we can

reduce the proof to the case v = 0. We will establish the estimates

ms(t) ≥ cs ms(0), (26)

for 0 < s ≤ 1. Notice that Ψ(z) = −zs is a convex function. Then, by the

previous computation, and using Lemma 1,

m′
s(t) ≥

∫

Rd

∫

Rd

f(v, t) f(v∗, t) |v−v∗|β
(as

2
(|v|2+|v∗|2

)s−1
2

(|v|2s+|v∗|2s
))

dv dv∗

where as = ωd−2

∫ 1

−1
( 1+z

2 )s b̄(z) (1 − z2)
d−3
2 dz > 1. We shall estimate the

integrand above in order to obtain an expression involving ms(t) and similar

quantities. For this we notice that since (x + y)β ≤ xβ + yβ , for β ∈ [0, 1],

then

|v − v∗|β ≤ (|v|+ |v∗|)β ≤ |v|β + |v∗|β .

Also,

|v − v∗|β ≥
∣∣ |v|β − |v∗|β

∣∣ and (|v|2 + |v∗|2)s ≥ | |v|2s − |v∗|2s
∣∣.

Therefore

|v − v∗|β
(as

2
(|v|2 + |v∗|2

)s − 1
2

(|v|2s + |v∗|2s
))

≥ as

2
(|v|β − |v∗|β

)(|v|2s − |v∗|2s
)− 1

2
(|v|β + |v∗|β)

(|v|2s + |v∗|2s
)

=
as − 1

2
(|v|β+2s + |v∗|β+2s

)− as + 1
2

(|v|β |v∗|2s + |v|2s|v∗|β
)
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and we obtain

m′
s(t) ≥ (as − 1)m0 ms+ β

2
(t)− (as + 1) m β

2
(t)ms(t) .

In the particular case β = 1 we have

m′
1
2
(t) ≥ (a 1

2
− 1)m0m1 − (a 1

2
+ 1) m2

1
2
(t),

(m0 and m1 are constants, by the conservation of mass and energy). There-

fore,

m 1
2
(t) ≥ min

{
m 1

2
(0),

(
a 1

2
− 1

a 1
2

+ 1
m0 m1

) 1
2
}
≥ min

{
1,

(
a 1

2
− 1

a 1
2

+ 1

) 1
2
}

m 1
2
(0) ,

since m0m1 ≥ m 1
2
(0)2. (This is the argument of Bobylev.) To achieve the

proof for β < 1 we iterate this argument, applying it with s = jβ
2 , j = 1 . . .,

until (j+1)β
2 ≥ 1. Consider first the case of the terminal j, when

s0 =
jβ

2
< 1 ≤ (j + 1)β

2
.

In that case

m′
s0

(t) ≥ (as0 − 1)m0 ms0+
β
2
(t)− (as0 + 1) mβ/2(t)ms0(t)

≥ (as0 − 1)m
2−(s0+

β
2 )

0 m
s0+

β
2

1 − (as0 + 1) m
1− β

2s0
0 m

1+ β
2s0

s0 (t)

Therefore,

ms0(t) ≥ min
{

ms0(0),
(

as0 − 1
as0 + 1

m
( 1

s0
−1)(s0+

β
2 )

0 m
s0+

β
2

1

) 1
1+ β

2s0

}

≥ min
{

1,

(
as0 − 1
as0 + 1

) 1
1+ β

2s0

}
ms0(0) =

(
as0 − 1
as0 + 1

) 1
1+ β

2s0 ms0(0) .

Further, take s1 = s0 − β
2 > 0. Then

m′
s1

(t) ≥ (as1 − 1)m0 ms0(t)− (as1 + 1) m
1− β

2s1
0 m

1+ β
2s1

s1 (t),
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so

ms1(t) ≥ min
{

ms1(0),
((

as1 − 1
as1 + 1

)
m

β
2s1
0 ms0(t)

) 1
1+ β

2s1

}

≥ min
{

ms1(0),
((

as1 − 1
as1 + 1

)(
as0 − 1
as0 + 1

) s0
s0+ β

2 m
β

2s1
0 ms0(0)

) 1
1+ β

2s1

}

≥
(

as1 − 1
as1 + 1

) s1
s1+ β

2

(
as0 − 1
as0 + 1

) s1
s0+ β

2 ms1(0) .

The rest of the proof follows by induction.

As a consequence of Lemma 2 we have

∫

Rd

f(v∗, t) |v − v∗|β dv∗ ≥ cβ

∫

Rd

f0(v∗) |v − v∗|β dv∗ ≥ ν0 (1 + |v|β),

where ν0 is a constant depending on β and f0. Applying this estimate to (25)

we obtain
∫

Rd

∫

Rd

f(v, t)f(v∗, t)Uk(v, v∗) dv dv∗

≥ (1− ak) ν0

∫

Rd

∫

Rd

f(v, t)(1 + |v|β)|v|2k dv dv∗ ≥ (1− ak) ν0 mk+ β
2
(t)

Thus, we obtain for any k ≥ 1

m′
k(t) ≤ −(1− ak) ν0 mk+ β

2
(t) + ak Sk(t). (27)

From these inequalities we see that to characterize the behavior of the mo-

ments mk(t) with k integer we need to include the moments

mk(t) with k = j + β
2 l, j, l = 0, 1 . . . (28)

This property and this structure of the inequalities is due to the fact that the

kernel B in (5) has homogeneity |v−v∗|β . Since the total mass is conserved,

m0(t) = m0 = const; we shall enumerate the rest of the moments (28) by
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a single index kn, n = 1, 2 . . ., in the increasing order, and introduce the

notation

J = {kn : n = 1, 2 . . . }

for the index set.

The crucial next step is to obtain the control of the moments mk(t) using

(27) and (24) that would establish the geometric growth for the normalized

sequence (19). We introduce the normalized moments

zk(t) =
mk(t)

Γ (k + b)
, k ∈ J, (29)

where the constant b > 0 will be chosen below depending on α in (7). For

b = 1 and k nonnegative integer we have zk(t) = mk(t)/k! which is the

normalization appearing in (19).

Notice that by Stirling’s formula,

Γ (k + b) ∼ kb−1 Γ (k + 1), k →∞, (30)

so if (19) holds for a particular b > 0 then it holds for any other.

By the assumptions on the initial data f0, we have

zk(0) ≤ C0 qk
0 , k ∈ J, (31)

for any q0 > a−1
0 and C0 large enough, where a0 is the constant in (15).

Further, using (27) and (29) we obtain

z′k(t) ≤ −(1− ak) ν0 m
− β

2k
0 Γ (k + b)

β
2k z

1+ β
2

k (t) + ak
Sk(t)

Γ (k + b)
, (32)
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where the constant ak in (32) has been defined in (21) and we used the

interpolation inequality mk+ β
2
(t) ≥ m

− β
2k

0 mk(t)1+
β
2k , which is obtained as

a consequence of either Hölder or Jensen’s inequality.

An estimate the sum Sk(t) in (32), (24) is obtained by recalling the

following result.

Lemma 3. For b > 0 fixed set zk(t) = mk(t)/Γ (k + b), k ≥ 1. Then

Sk(t) ≤ Cb Γ (k +
β

2
+ 2b)Zk(t), k ≥ 1,

where

Zk(t) = max
1≤j≤[ k+1

2 ]
{zj+ β

2
(t) zk−j(t), zj(t) zk−j+ β

2
(t)} (33)

and Cb is a constant depending on b.

Proof. See [7, Lemma 4].

Using Lemma 3 the system of inequalities for the moments takes the

form

z′k(t) ≤ −(1− ak) ν0 m
− β

2k
0 Γ (k + b)

β
2k z

1+ β
2

k (t) + ak Cb

Γ (k + β
2 + 2b)

Γ (k + b)
Zk(t),

(34)

for k ∈ J . We have by Stirling’s formula,

Γ (k + b)
β
2k ∼

(k

e

)β/2

and
Γ (k + β

2 + 2b)
Γ (k + b)

∼ k
β
2 +b, k →∞. (35)

In order to estimate the constant ak we recall that by (7), h̄(z) ≤ C (1 −

z2)−α/2, α < d − 1. Hence, setting in (21) s = z+1
2 , ε = d− 1− α > 0 we
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have

ak = C 2−1+ε

∫ 1

0

sk−1+ ε
2 (1− s)−1+ ε

2 ds

= C 2−1+ε Γ (k + ε
2 ) Γ ( ε

2 )
Γ (k + ε)

∼ C 2−1+ε Γ ( ε
2 ) k−

ε
2 , k →∞.

(36)

Thus,

z′k(t) ≤ −Ak z
1+ β

2k

k (t) + Bk Zk(t), (37)

where Ak ∼ Ākβ/2, Bk ∼ B̄ kβ/2+b−ε/2, k →∞, and Ā and B̄ are explicitly

known constants. We fix 0 < b < ε/2; then for a certain c0 > 0, and for

k∗ > 0 large enough, we have

Ak

Bk
≥ c0, k ≥ k∗. (38)

We next introduce some notation. Given k = kn ∈ J we set

z̄(k)(t) = (zk1(t), . . . , zkn−1(t)), (39)

which is a vector with n − 1 components. We also notice that for k ∈ J ,

k > 1 + β
2 the term Zk(t) is of the form Fk(z̄(k)(t)), since the highest order

of moment entering (33) is k − 1 + β
2 . It is also clear the the function Fk

defined in this way is a continuous function of its arguments.

To complete the proof of Theorem 4 using the obtained estimates for the

moments we invoke the following lemma that gives sufficient conditions for

a solution of an infinite system of differential inequalities of the type (34)

to propagate the geometric growth of the sequence zk.

Lemma 4. Given k∗ > 0, let the sequence of nonnegative functions zk ∈

C1([0,∞)), k ∈ J , satisfy

z′k(t) ≤ −Ak z
1+ β

2k

k (t) + Bk Fk(z̄(k)(t)), k ∈ J, k ≥ k∗ (40)
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and

zk(t) ≤ C1 qk
1 , k ∈ J, k < k∗, (41)

where k∗ > β
2 , C1 and q1 are positive constants, Ak, Bk are positive se-

quences satisfying

Ak

Bk
≥ C

1− β
2k

1 , k ∈ J, k ≥ k∗, (42)

and Fk are continuous functions of their arguments such that

Fk(z̄(k)) ≤ C2 qk+ β
2 , whenever zk ≤ Cqk, k ∈ J, k ≥ k∗. (43)

We also assume that the initial sequence zk(0) satisfies (31).

Then

zk(t) ≤ Cqk, k ∈ J, t ≥ 0, (44)

where C = max{C0, C1} and q = max{q0, q1}.

Proof. We set C = max{C0, C1} and q = max{q0, q1}. The proof will be

achieved by induction on k ∈ J , k ≥ k∗. For k = k∗ conditions (41) and (43)

imply

z′k(t) ≤ −Ak z
1+ β

2k

k (t) + Bk C2 qk+ β
2 .

By a comparison argument for Bernoulli-type ordinary differential equations

(cf. [6]),

zk(t) ≤ max{zk(0), z∗k}, (45)

where z∗k is determined from the equation

Ak (z∗k)1+
β
2k = Bk C2 qk+ β

2
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Using condition (42) it is easy to verify that z∗k ≤ C qk, which in view

of (45) and (31) implies zk(t) ≤ Cqk, k = k∗. This provides the basis for

the induction. The induction step follows by repeating the same reasoning

for any k > k∗. So the proof of the Lemma is complete.

Proof (of Theorem 4). We will verify the assumptions of Lemma 4. It is

straighforward to check that the moments of the solution of the Boltzmann

equation (2) are continuously differentiable in time; we refer the reader to

Appendix B for the details. Based on the series expansion (18) and the as-

sumptions on the initial data (15) we can check that conditions (31) are sat-

isfied by zk(0) with q0 > a−1
0 . From the asymptotic equalities (35) and (36)

we can find k∗ > 1 + β
2 and c0 > 0 such that (38) holds. We then obtain

(42) if we take

log C1 ≤
(
1− β

2k∗

)−1

log c0.

By the results of Desvillettes [12], for each k ∈ J the moments mk(t) are

uniformly bounded in time, so the constant q1 in (41) can be taken as

q1 = max
β/2≤k<k∗

sup
t≥0

(zk(t)
C1

)1/k

.

It is straightforward to check (43) using the definition of the term Zk(t)

in (33). Applying Lemma 4 we we establish (44) with q = max{q0, q1} and

C = max{C0, C1}. By the Taylor series expansion (18) estimate (16) then

holds with and a < 1/q and the constant D depending on a, C and the

initial mass m0. This completes the proof.
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3. Comparison principle for the Boltzmann equation

In this section we discuss the important technique of comparison that

will allow us to obtain pointwise estimates of the solutions. The crucial

property of the Boltzmann equation used here is a certain monotonicity of

a linear Boltzmann semigroup. The argument is roughly as follows: if f is

a solution of (1), f |t=0 = f0, and g is sufficiently regular and satisfies

(∂t + v · ∇x) g ≥ Q(f, g), g|t=0 = g0, (46)

then u = f − g is a solution of

(∂t + v · ∇x)u ≤ Q(f, u), u|t=0 = u0, (47)

where u0 = f0 − g0. We will show that if f is nonnegative (and satisfies

certain minimal regularity conditions), then solutions of (47) satisfy the

order-preserving property,

if u0 ≤ 0 then u ≤ 0 (48)

(zero on the right-hand side can be replaced by any other solution ũ of (47)).

This translates into the following estimate (comparison principle):

if f0 ≤ g0 and g satisfies (46), then f ≤ g. (49)

By reversing all inequalities we obtain a similar comparison principle that

yields lower bounds of solutions.

Of course, the above scheme has to be implemented with suitable mod-

ifications. For instance, since apriori only limited information about f is
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available we will require that g satisfies (46) for a class of functions f (de-

fined by the available apriori estimates). Another important refinement is

to apply the estimate (49) locally (in the case of Theorem 3, to a “high-

velocity tail” {|v| ≥ R}) since global bounds in all of the (v, t)-space cannot

be generally obtained by this technique. We refer to Proposition 1 and the

proof of Theorem 3 given below for the necessary details. In Theorem 5 we

will give a rigorous statement of (49) in application to a general class of

weak solutions of (1) in the sense of DiPerna and Lions [14,28].

The basic approach leading to applications of (49) originated in the work

by one of the authors [34, Sec. 6.2] in the context of lower bounds for the

spatially-homogeneous equation without angular cutoff. It was also used

to obtain lower bounds for solutions in a model describing inelastic colli-

sions [18]. Compared to these earlier versions we do not require in (49) any

differentiability in the v-variable, and we make more precise the minimal

regularity conditions on f . It is interesting to compare the present technique

with other methods based on monotonicity applied to the Boltzmann equa-

tion, in particular the one by Kaniel and Shinbrot [25] (see also [21,24]) and

the pointwise estimates by Vedenjapin [33] (the result in the latter paper

follows from our approach using g = eC(1+t)). The monotonicity property

expressed by (48) has also an important relation to the concept of dissipative

solutions introduced by P.-L. Lions [28].
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We first explain the way to obtain (48). The bilinear form in (46), (47)

is defined by

Q(f, u)(x, v, t) =
∫

Rd

∫

Sd−1
(f ′∗u

′ − f∗u) B(v − v∗, σ) dσ dv∗, (50)

where as usual, f ′∗ = f(x, v′∗, t), u′ = u(x, v′, t), f∗ = f(x, v∗, t), u =

u(x, v, t). At this point we do not need to assume the kernel B to sat-

isfy (5)–(7); the argument goes through for a more general class of kernels

with the usual symmetries, as described in [14], for instance.

To illustrate the general principle, consider first the case of equality

in (47). Given T > 0 we fix the function f : Td × Rd × [0, T ] → R+, which

we assume to be smooth in (x, t), bounded and rapidly decaying for |v|

large. We also assume that for every u0 ∈ D ⊆ L1(Td×Rd) the initial-value

problem

(∂t + v · ∇x)u = Q(f, u), u|t=0 = u0, (51)

has a unique solution u ∈ C([0, T ];L1(Td ×Rd)), with enough regularity so

that

Q+(f, |u|), Q−(f, |u|) ∈ L1(Td × Rd × [0, T ]). (52)

Thus, we have a well-defined flow map (or a semigroup)

Φt : D 3 u0 7→ u(t, ·, ·) ∈ L1(Td × Rd), t ∈ [0, T ].

The map Φt can be seen to satisfy the following nonexpansive property:

for any u0, ũ0 ∈ D,

∫

Rd

∫

Rd

∣∣Φt(u0)−Φt(ũ0)
∣∣ dv dx ≤

∫

Rd

∫

Rd

|u0− ũ0| dv dx, t ∈ [0, T ]. (53)
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Indeed, set w = Φt(u0)− Φt(ũ0); then

(∂t + v · ∇x)w = Q(f, w) on Td × Rd × (0, T )

in the sense of distributions, and Q(f, w) ∈ L1 by our assumptions. By

a standard argument, ∀ t ∈ [0, T ], for a. a. (x, v) the function w] : s 7→

w(x − (t − s)v, v, s), s ∈ [0, T ], is absolutely continuous, and we can apply

the chain rule (see Appendix A) to obtain

d

ds
|w]| = Q(f, w)] sign w], s ∈ (0, T ), (54)

where Q(f, w)] is defined similarly to w]. Integrating with respect to s ∈

(0, t) and (x, v) ∈ Td × Rd we obtain, after standard changes of variables,

∫

Rd

∫

Rd

|w(x, v, t)| dv dx =
∫

Rd

∫

Rd

|w0| dv dx +
∫ t

0

∫

Rd

∫

Rd

Q(f, w) sign w dv dx ds

where w0 = u0 − ũ0. We further notice that the bilinear collision term (50)

satisfies
∫

Rd

Q(f, u) sign u dv ≤ 0, (55)

for every f ≥ 0 and every u so that Q+(f, |u|), Q−(f, |u|) ∈ L1. This follows

immediately from the weak form

∫

Rd

Q(f, u) sign u dv =
∫

Rd

∫

Rd

∫

Sd−1
f∗u (signu′ − sign u)B dσ dv∗dv

by noticing that u (sign u′ − sign u) ≤ 0.

The same approach can be followed to obtain (48). Indeed, we have

by (55) and the mass conservation

∫

Rd

Q(f, u) 1
2 (signu + 1) dv ≤ 0, (56)
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where 1
2 (signu+1) is the a. e. derivative of the Lipschitz-continuous function

u+ = max{u, 0}. We then have

d

ds
u]

+ = Q(f, u)] 1
2 (sign u + 1)], s ∈ (0, T ),

and the integration yields

∫

Rd

∫

Rd

u+(x, v, t) dv dx ≤
∫

Rd

∫

Rd

u0+ dv dx, t ∈ [0, T ],

which implies (48) for a. a. (x, v).

Remark 2. Relation (48) can be restated as the order-preserving property

of Φt:

∀ u0, ũ0 ∈ D, u0 ≤ ũ0 implies Φt(u0) ≤ Φt(ũ0), t ∈ [0, T ]. (57)

In fact, the equivalence of (57) and (53) follows from a general principle

applied to (nonlinear) maps that preserve integral, as described by Crandall

and Tartar [11]. Inequality (48) (or (57)) can then be seen as a consequence

of the results in [11], the preservation of the mass
∫
Rd

∫
Rd f dv dx along

solutions of (47), and (53).

The following localized version of the order-preserving property will be

useful for the comparison argument.

Proposition 1. Let f, u ∈ C([0, T ];L1(Td × Rd)) satisfy

f ≥ 0; ∂tu + v · ∇xu, Q+(f, u), Q−(f, u) ∈ L1; u|t=0 = u0 ≤ 0,

and assume that for a certain (measurable) set U ⊆ Td × Rd × (0, T ),

∂tu + v · ∇xu−Q(f, u) ≤ 0 on U,
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and

u ≤ 0 on U c :=
(
Td × Rd × (0, T )

) \ U.

Then u(t, ·, ·) ≤ 0 a. e. on Td × Rd, for every t ∈ [0, T ].

Proof. Let D(u) = ∂tu + v · ∇xu. We obtain by arguing as above,

∫

Rd

∫

Rd

u+(x, v, t) dv dx −
∫

Rd

∫

Rd

u+(x, v, 0) dv dx

=
∫ t

0

∫

Rd

∫

Rd

D(u) 1
2 (signu + 1) dx dv ds.

We have u+|t=0 = 0; also 1
2 (sign u + 1) = 0 whenever u < 0 and D(u) =

0 outside of a set of zero measure in {u = 0}. Therefore, setting Ut =

{(x, v, s) ∈ U : s ≤ t} we have

∫

Rd

∫

Rd

u+(x, v, t) dv dx =
∫∫∫

Ut

D(u) dx dv ds

≤
∫∫∫

Ut

Q(f, u) dx dv ds =
∫ t

0

∫

Rd

∫

Rd

Q(f, u) 1
2 (signu + 1) dx dv ds ≤ 0,

for every t ∈ [0, T ], where we used the dissipative property (56). This shows

that u(t, ·, ·) ≤ 0 almost everywhere.

Proposition 1 is sufficient to formulate the comparison principle in the

generality required for Theorem 1. We will, however, give a more general

statement that applies to weak solutions in the spatially inhomogeneous

case. In the definition of weak solutions one has to account for the fact that

the bound

Q(f) ∈ L1
loc(Td × Rd × (0, +∞))

is generally not available, and one has to define solutions in a sense that

is weaker than distributional. The simplest way to state the definition is
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to require that f ≥ 0, f ∈ C([0, T ];L1
xv), Q±(f)/(1 + f) ∈ L1

loc and the

renormalized form

(∂t + v · ∇x) log(1 + f) = Q(f)/(1 + f)

holds in the sense of distributions, cf. [14]. Such solutions are known as

renormalized. This concept can be further refined as follows, cf. [28].

Definition 1. We say that a renormalized solution f is dissipative if f |v|2 ∈

L∞([0, T ];L1
xv) and for every sufficiently regular function g : Td × Rd ×

[0, T ] → R,

∂t

∫

Rd

|f − g| dv + divx

∫

Rd

|f − g| v dv ≤
∫

Rd

(
Q(f, g)−D(g)

)
sign(f − g) dv,

(58)

in the sense of distributions, where D(g) = (∂t + v · ∇x)g, and sign(0) is

assigned an arbitrary value in [−1, 1].

Remark 3. In the above definition “sufficiently regular” precisely means

that g ∈ C([0, T ]; L1
xv), g|v|2 ∈ L∞t (L1

xv), D(g) ∈ L1
xvt and that for any

f ∈ C([0, T ];L1
xv) such that f |v|2 ∈ L∞t (L1

xv), Q+(f, |g|), Q−(f, |g|) ∈ L1
xvt

(these conditions can be made more explicit, see [28] for details).

The formal motivation for the definition of dissipative solutions is clear:

the right-hand side of the Boltzmann equation can be written as

Q(f) = Q(f, f − g) + Q(f, g),

so we have

(∂t + v · ∇x)(f − g) = Q(f, f − g) + Q(f, g)−D(g).
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Multiplying the above equation by sign(f −g) and using relation (55) (note

that f ≥ 0) we see that every sufficiently regular solution of (1) should

satisfy (58).

Dissipative solutions are known to exist globally in time, for a quite

general class of initial data. In fact, in [28] Lions established a large class

of “dissipation inequalities” similar to (58) that hold for renormalized solu-

tions of (1). Such solutions can also be constructed so that the local mass

conservation law,

∂t

∫

Rd

f dv + divx

∫

Rd

f v dv = 0, (59)

holds in the sense of distributions. However they need not generally satisfy

the conditions Q+(f), Q−(f) ∈ L1
loc.

Using the order-preserving property of Proposition 1 we establish the fol-

lowing comparison principle for dissipative solutions of the nonlinear Boltz-

mann equation.

Theorem 5. Let f ∈ C([0, T ]; L1(Td×Rd)) be a dissipative solution of (1)

and let g be a sufficiently regular function, such that f |t=0 ≤ g|t=0,

∂tg + v · ∇xg −Q(f, g) ≥ 0 on U

and f ≤ g on U c, where U is a measurable subset of Td×Rd× [0, T ]. Then

f ≤ g almost everywhere on Td × Rd, for every t ∈ [0, T ].

Remark 4. It is natural to call g a (localized) upper barrier. By revers-

ing all inequalities in the above formulation one can also obtain a similar

comparison principle for the lower barrier.
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Proof. We use the notation D(g) = ∂tg + v · ∇xg, so that

∂t

∫

Rd

g dv + divx

∫

Rd

g v dv =
∫

Rd

D(g) dv,

in the sense of distributions. Using the mass conservation (59) and the

identity

(f − g)+ = 1
2

(|f − g|+ (f − g)
)

we obtain, by combining the above relations with (58),

∂t

∫

Rd

(f − g)+ dv + divx

∫

Rd

(f − g)+ v dv

≤ 1
2

∫

Rd

(
Q(f, g)−D(g)

)
sign(f − g) dv − 1

2

∫

Rd

D(g) dv.

Since Q±(f, |g|) are integrable, we have
∫
Rd Q(f, g) dv = 0, a. e. (x, t), and

therefore,

∂t

∫

Rd

(f − g)+ dv + divx

∫

Rd

(f − g)+ v dv

≤
∫

Rd

(
Q(f, g)−D(g)

)
1
2 (sign(f − g) + 1) dv.

(60)

We can choose sign(0) = −1 in (60) to avoid estimating the integral over

the set {f = g}. Since (f − g)+ v ∈ L1(Td × Rd × [0, T ]) we can integrate

over x and t to obtain
∫

Rd

∫

Rd

(f − g)+(x, v, t) dv dx ≤
∫

Rd

∫

Rd

(f − g)+(x, v, 0) dv dx

+
∫∫∫

Ut

(
Q(f, g)−D(g)

)
dx dv ds ≤ 0,

(61)

where Ut = {(x, v, s) ∈ U : s ≤ t} and we used that 1
2 (sign(f − g) + 1)

vanishes for f ≤ g and that Q(f, g) − D(g) ≤ 0 on Ut. The inequality in

(61) implies that f ≤ g, a. e. (x, v) ∈ Td × Rd, for every t ∈ [0, T ].
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Theorem 5 is a crucial ingredient in the proof of Theorem 3, which we

give below.

Proof (of Theorem 3). To apply Theorem 5 we set U = {(x, v, t) : |v| >

R}, where R will be chosen large enough, and g(x, v, t) = M(v), where

M(v) = e−a|v|2+c, 0 < a < a1 is fixed and c > c0 will be chosen sufficiently

large, depending on R. To prove that g can be used as a barrier for the

solution on U we need to verify the inequality

Q+(f, g)(x, v, t) ≤ Q−(f, g)(x, v, t), (x, t) ∈ Td × [0, T ], |v| > R. (62)

First notice that, by elementary inequalities,

Q−(f, g)(x, v, t) = M(v)
∫

Rd

f(x, v∗, t) |v − v∗|β dv∗

≥ M(v)
(
ρ0|v|β −

∫

Rd

f(x, v∗, t) |v∗|β dv∗
)
,

where ρ0 is the constant in (13). The last term can be controlled using the

estimate for the integral of f/M1 from (14) as follows,

∫

Rd

f(x, v∗, t) |v∗|β dv∗ ≤ L

∫

Rd

f(x, v∗, t)
M1(v∗)

dv∗ ≤ LC1,

where L = max
y≥0

yβ e−a1y2+c1 . Thus, we have

Q−(f, g)(x, v, t) ≥ M(v)
(
ρ0|v|β − LC1

)
.

The control of the “gain” term is more technical; we establish below in

Lemma 5 the estimate

Q+(f, g)(x, v, t) ≤ C (1 + |v|β−ε)M(v), (63)
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where ε = min{β, n − 1 − α} > 0. This implies that (62) holds if we set R

to be the largest root of the equation

C + LC1 + Cyβ−ε − ρ0y
β = 0.

Finally, we take c = aR2 + log C0, where C0 is the constant in (14); then it

is easy to verify that

f(x, v, t) ≤ C0 ≤ M(v), (x, t) ∈ Td × [0, T ], |v| ≤ R. (64)

The conditions 0 < a < a1 < a0 and c ≥ c0 guarantee that we have

f(x, v, 0) ≤ M(v). Together with the inequalities (62) and (64) this allows

us to use Theorem 5 to conclude.

4. A weighted estimate for the “gain” operator

To complete the proof of Theorem 3 we prove the following weighted

estimate of the linear “gain” operator. The main technique is based on

Carleman’s form of the “gain” term (see Appendix C).

Lemma 5. Let B : Rd × Sd−1 → R+, n ≥ 2, be a measurable function that

satisfies

B(u, σ) ≤ C (1 + |u|β)
1

| sin ϑ|α 1{cos ϑ≥0}, cosϑ = u·σ
|u| ,

where β > 0 and α < n− 1. Define

Q+(f, g)(v) =
∫

Rd

∫

Sd−1
f ′∗ g′B(v − v∗, σ) dσ dv∗,
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and set M(v) = e−a|v|2 , a > 0; wε(v) = 1 + |v|β−ε, where ε = min{β, n −

1− α} > 0. Then

∥∥∥ Q+(f,M)
wε M

∥∥∥
L∞(Rd)

≤ C
∥∥∥ f wε

M

∥∥∥
L1(Rd)

, (65)

where C is an explicitly computable constant depending on n, α, β and a.

Remark 5. For B satisfying the estimate with α = 0 (for example, the

kernel B̄ for hard spheres in three dimensions) we have ε = β for all β ≤ d−1

and the weight wε(v) is constant. The estimate of the Lemma then takes a

particularly simple form,

∥∥∥ Q+(f, M)
M

∥∥∥
L∞v

≤ C
∥∥∥ f

M

∥∥∥
L1

v

.

For the quadratic “gain” term this implies the estimate

∥∥∥ Q+(f)
M

∥∥∥
L∞v

≤ C
∥∥∥ f

M

∥∥∥
L∞v

∥∥∥ f

M

∥∥∥
L1

v

.

Proof. By the Carleman representation formula (Appendix C),

Q+(f, M)(v) = 2d−1

∫

Rd

f(v′∗)
|v − v′∗|

∫

Evv′∗

M(v′)
B(v − v∗, σ)
|v − v∗|n−2

dπv′ dv′∗ ,

where Evv′∗ is the hyperplane

{v′ ∈ Rd : (v − v′) · (v − v′∗) = 0},

and dπv′ denotes the usual Lebesgue measure on Evv′∗ . We then have

Q+(f,M)(v)
M(v)

=
∫

Rd

f(v′∗)
M(v′∗)

K(v, v′∗) dv′∗, (66)

where

K(v, v′∗) =
2d−1

|v − v′∗|
∫

Evv′∗

M(v∗)
B(v − v∗, σ)
|v − v∗|n−2

dπv′ , (67)
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and we used that, by the energy conservation,

M(v′) M(v′∗)
M(v)

= M(v∗).

Note that in (67) the variables v∗ and σ are expressed through v, v′∗ and v′

as follows,

v∗ = v′∗ + v′ − v, σ =
v′ − v′∗
|v′ − v′∗|

.

Now to establish the Lemma it suffices to verify the inequality

K(v, v′∗) ≤ C (1 + |v − v′∗|β−ε). (68)

Indeed, since

1 + |v − v′∗|β−ε ≤ (1 + |v|β−ε) (1 + |v′∗|β−ε),

then (66) and (68) imply

Q+(f, M)(v) ≤ C (1 + |v|β−ε)M(v)
∫

Rd

f(v′∗)
M(v′∗)

(1 + |v′∗|β−ε) dv′∗

which is equivalent to (65).

In the remainder of the proof we will therefore verify (68). Using the

identity

(v − v∗) · (v′ − v∗) = |v − v′∗|2 − |v − v′|2

for v′ ∈ Evv′∗ and recalling that B(v− v∗, σ) vanishes for (v− v∗) ·σ < 0 we

see that the integration in (67) can be restricted to the disk

Dvv′∗ = Evv′∗ ∩ {v′ ∈ Rd : |v − v′| ≤ |v − v′∗|}.

We notice that for v′ ∈ Dvv′∗ ,

∣∣ tan
ϑ

2

∣∣ =
|v′∗ − v∗|
|v − v′∗|

, |ϑ| ≤ π

2
,
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where ϑ is the angle between the vectors v − v∗ and σ. This implies

1
| sin ϑ | ≤

1
2
|v − v′∗|
|v′∗ − v∗|

Thus, K(v, v′∗) ≤ CK̃(v, v′∗) , where

K̃(v, v′∗) =
2d−1−α

|v − v′∗|1−α

∫

Dvv′∗

M(v∗)
1 + |v − v∗|β
|v − v∗|n−2

1
|v′∗ − v∗|α dπv′ .

To estimate the above expression we consider two cases.

Case a) |v − v′∗| ≤ 1. Since for v′ ∈ Dvv′∗

|v − v′∗| ≤ |v − v∗| ≤
√

2 |v − v′∗|

we have 1 + |v − v∗|β ≤ 1 + 2β/2 and

|v − v∗|2−n ≤ |v − v′∗|2−n.

Therefore,

K̃(v, v′∗) ≤
2d−1−α(1 + 2β/2)
|v − v′∗|n−1−α

∫

Dvv′∗

M(v∗)
1

|v′∗ − v∗|α dπv′ .

Since M(v∗) ≤ 1 the last integral is estimated above by

∫

Dvv′∗

1
|v′∗ − v∗|α dπv′ =

∫

{w∈Rd−1 : |w|≤|v−v′∗|}

1
|w|α dw = ωd−2

d−1−α |v−v′∗|d−1−α,

if d − 1 − α > 0, i. e. α < d − 1. Here ωd−2 is the measure of the (n − 2)-

dimensional unit sphere. This implies the estimate

K̃(v, v′∗) ≤
2d−1−α(1 + 2β/2)ωd−2

d− 1− α
, |v − v′∗| ≤ 1.

Case b) |v − v′∗| > 1. Then

1 + |v − v∗|β ≤ 2 |v − v∗|β ≤ 21+ β
2 |v − v′∗|β ,
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and we obtain, similarly to the previous case,

K̃(v, v′∗) ≤
2d−α+ β

2

|v − v′∗|n−1−α−β

∫

Dvv′∗

M(v∗)
1

|v′∗ − v∗|α dπv′ .

Since M(v∗) is a radially decreasing function of v∗ ∈ Rd, and so is |v∗|−α,
∫

Dvv′∗

M(v∗) |v′∗ − v∗|−α dπv′ ≤
∫

Rd−1
M̄(w) |w|−α dw

≤
∫

|w|≤1

|w|−α dw +
∫

Rd−1
M̄(w) dw =

ωd−2

d− 1− α
+

(π

a

) d−1
2

,

where M̄(w) = e−a|w|2 , w ∈ Rd−1. Since |v− v′∗|β+α−n+1 ≤ |v− v∗|β−ε this

establishes the required estimate for Case b).

Appendix A: Some properties of weakly differentiable functions

Let AC[a, b] denote the class of absolutely continuous real-valued func-

tions defined on an interval [a, b]. Given f ∈ AC[a, b] we set [c, d] = f([a, b])

and use the notation Lip[c, d] for the class of all Lipschitz continuous func-

tions defined on [c, d]. Every function β ∈ Lip[c, d] is differentiable (in the

classical sense) almost everywhere on (c, d); we agree to extend this deriva-

tive to a function β′ defined everywhere on [c, d] by assigning arbitrary

finite values at the points where β is not differentiable. The function β′ also

coincides with the weak derivative of β almost everywhere on (c, d) The

following chain rule was used in the arguments in Section 3.

Proposition 2. Let f ∈ AC[a, b] and β ∈ Lip[c, d]. Then β ◦ f ∈ AC[a, b]

and

(β ◦ f)′ = (β′ ◦ f) f ′,

almost everywhere on (a, b).
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Remark 6. 1) The seeming ambiguity in the above formulation occuring

since β′◦f can assume arbitrarily assigned values on a set of positive measure

is resolved by observing that whenever this happens then f ′ vanishes, except

on a set of measure zero (see the proof below). 2) For the purposes of

Section 3 we only need the chain rule for β(y) = |y| and β(y) = y+; these

cases are covered in [17], and the proof for the case of piecewise-C1 functions

β can be found in [20]. We include a short proof that applies to the general

case to make the presentation in Section 3 self-contained.

Proof. By the definition of absolutely continuous functions,

∀ ε > 0 ∃ δ > 0 such that ∀n ∈ N, ∀ {(xj , yj) ⊆ [a, b] : j = 1, . . . , n},

a disjoint family,

n∑

j=1

|yj − xj | < δ ⇒
n∑

j=1

|f(yj)− f(xj)| < ε.

Clearly then, since

|β(f(yj))− β(f(xj)) | ≤ L |f(yj)− f(xj)|,

where L is the Lipschitz constant of β, the composition β ◦ f is absolutely

continuous on [a, b]. By Lebesgue’s differentiation theorem, f and β ◦ f are

differentiable in the classical sense on a set with complement of measure zero

in (a, b). Pick x ∈ (a, b) from this set. We will consider two cases, depending

on whether β is differentiable at f(x) or not. In the first case we have

(β ◦ f)′(x) = lim
h→0

β(f(x + h))− β(f(x))
h

= lim
h→0

β(f(x + h))− β(f(x))
f(x + h)− f(x)

lim
h→0

f(x + h)− f(x)
h

= β′(f(x))f ′(x).
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Let us further take A to be the set of y such that β is not differentiable at

f(y). We claim that f ′(x) vanishes for x ∈ A, except perhaps on a set of

zero Lebesgue measure. Indeed, let B = {y ∈ A : |f ′(y)| > 0}; then

B =
∞∪

n=1
Bn, Bn = {y ∈ B : |f(z)− f(y)| ≥ |z−y|

n for |z − y| < 1
n }.

We prove the claim by showing that every set Bn has zero measure.

Fix an n ∈ N. Since β is Lipschitz, we know that f(A) is a set of measure

zero. Given ε > 0 we can then choose the intervals Ij , j = 1, . . ., such that

f(A) ⊆ ∞∪
j=1

Ij and
∞∑

j=1

|Ij | < ε.

Let J be an interval of length 1
n , and let D = Bn ∩ J , Dj = f−1(Ij) ∩D.

Then, from the definition of Bn, |Dj | ≤ n|Ij |; therefore, |D| ≤ nε and

|Bn| ≤ n2|b− a|ε. Since ε is arbitrary this shows that |Bn| = 0.

We now have that for a. a. x ∈ A

∣∣∣β(f(x + h))− β(f(x))
h

∣∣∣ ≤ L
∣∣∣f(x + h)− f(x)

h

∣∣∣

for |h| small enough, so (β ◦ f)′(x) = 0 and β′(f(x))f ′(x) = 0. This proves

the claim of the Lemma for a. a. x ∈ (a, b).

Appendix B: Time regularity for the spatially homogeneous

Boltzmann equation

We show that the solution of the Boltzmann equation (2) under the

conditions of Theorem 1 is smooth with respect to time, together with its

moments of any order.
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For k ≥ 0 we introduce the following weighted Lebesgue spaces

L1
k(Rd) =

{
f ∈ L1(Rn) :

∫

Rd

|f | (1 + |v|2)k dv < +∞
}

(.69)

with the norms defined by the integrals appearing in (.69). The regularity

result that we used in Section 2 is the following.

Proposition 3. Let f be the unique solution of the Boltzmann equation (2)

that preserves the total mass and energy. Assume that f0 ∈ L1
k(Rd), k >

1 + β
2 . Then f ∈ C1

(
[0, +∞); L1

p(Rd)
)

for any p < k − β
2 .

The proof of Proposition 3 depends on the following continuity property

of the nonlinear operator Q(f).

Lemma 6. Let the pair of positive numbers (k, p) satisfy k > p + β
2 . Then

Q(f) is continuous on L1
k(Rd) as a mapping L1

k(Rd) → L1
p(Rd). Moreover,

we have the following Hölder estimate for any f, g ∈ L1
k(Rd)

‖Q(f)−Q(g)‖L1
p
≤ Cp

(
‖f − g‖1−

p+ β
2

k

L1 + ‖f − g‖L1

)
,

where the constant Cp depends on p and on the upper bound of the L1
k-norms

of f and g.

Proof. Using the weak form of Q(f) and Q(g) we compute
∫

Rd

|Q(f)−Q(g)| (1 + |v|2)p dv

=
∫

Rd

∫

Rd

∫

Sn−1
(ff∗ − gg∗) B(v − v∗, σ)

(
sign

(
Q(f)′ −Q(g)′

)
(1 + |v′|2)p

− sign
(
Q(f)−Q(g)

)
(1 + |v|2)p

)
dσ dv dv∗

≤ 2p+1

∫

Rd

∫

Rd

|ff∗ − gg∗| |v − v∗|β
(
(1 + |v|2)p + (1 + |v∗|2)p

)
dv dv∗
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Since

|v − v∗|β (1 + |v|2)p ≤ (1 + |v∗|2)
β
2 (1 + |v|2)p + (1 + |v|2)p+ β

2

≤ 2
(
(1 + |v|2)p+ β

2 + (1 + |v∗|2)p+ β
2
)

and |ff∗ − gg∗| ≤ 1
2 |f − g| |f∗ + g∗|+ 1

2 |f + g| |f∗ − g∗|, we obtain

‖Q(f)−Q(g)‖L1
p

≤ 2p+3

∫

Rd

∫

Rd

|f + g| |f∗ − g∗|
(
(1 + |v|2)p+ β

2 + (1 + |v∗|2)p+ β
2
)
dv dv∗

≤ 2p+3 ‖f + g‖L1
k

(‖f − g‖L1
p+ β

2

+ ‖f − g‖L1

)
.

We use the interpolation inequality

(
mk1 (t)

m0

) 1
k1 ≤

(
mk(t)

m0

) 1
k ≤

(
mk2 (t)

m0

) 1
k2

, k1 ≤ k ≤ k2, (.70)

with k1 = p + β
2 to get

‖f − g‖L1
p+ β

2

≤ ‖f − g‖1−
p+ β

2
k

L1 ‖f − g‖
p+ β

2
k

L1
k

≤ (‖f‖L1
k

+ ‖g‖L1
k

) p+ β
2

k ‖f − g‖1−
p+ β

2
k

L1 .

Substituting this bound into the previous estimate we obtain the Hölder

estimate stated in the Lemma. This completes the proof.

Proof (Proposition 3). We fix T > 0. By the results of Arkeryd and Elm-

roth [1,15] (see part (iii) of Theorem 2), f belongs to L∞([0, +∞); L1
k(Rd)).

By Lemma 6,

(1 + |v|2)p Q(f) ∈ L1((0, T )× Rd), for p < k − β

2
(.71)

The mild form of (2), together with the regularity condition (.71) imply

that f is weakly differentiable and ∂tf = Q(f) in the sense of distributions
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on (0, T )× Rd. Hence,

f ∈ W 1,1((0, T ); L1
p(Rd))

and therefore (cf. [16, p. 286]), f ∈ C
(
[0, T ]; L1

p(Rd)
)
. By the continuity of

Q(f) established in Lemma 6 it follows that ∂tf ∈ C
(
[0, T ];L1

p(Rd)
)
, where

∂tf is the weak time-derivative of f . It is then easy to verify directly that f

is strongly differentiable on (0, T ) with values in L1
p(Rd), and its derivative

is continuous on [0, T ]. Since T is arbitrary, we obtain the conclusion of the

Lemma.

Remark 7. As a consequence of Proposition 3, if the moments of all orders

are finite initially then they are continuously differentiable functions of time.

By iterating the argument we used in the proof above one can show that in

fact then f ∈ C∞([0,∞); L1
k(Rd)), for any k ≥ 0.

Appendix C: Carleman’s representation

Lemma 7. Let Q+(f, g) be defined by (9) and let f = f(v) and g = g(v),

v ∈ Rd be smooth functions, decaying rapidly at infinity. Then

Q+(f, g)(v) = 2d−1

∫

Rd

f(v′∗)
|v − v′∗|

∫

Ev,v′∗

g(v′)B(2v − v′ − v′∗,
v′−v′∗
|v′−v′∗| )

|2v − v′ − v′∗|d−2
dπv′ dv′∗,

where Ev,v′∗ is the hyperplane {v′ ∈ Rd | (v′ − v) · (v′∗ − v) = 0} and dπv′

denotes the Lebesgue measure on this hyperplane.

Proof. Using the change of variables u = v−v∗, and recalling the definition

of the delta function of a quadratic form, see [19], we have

Q+(f, g)(v) =
∫

Rd

∫

Rd

f(v′∗) g(v′)B(u, k) δ
( |k|2−1

2

)
dk du, (.72)
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where v′ = v − u + 1
2 (u + |u|k) and v′∗ = v − 1

2 (u + |u|k). We further set

z = − 1
2 (u + |u|k); for every u fixed this defines a linear map k 7→ z with

determinant
( |u|

2

)d. We also have

k = −2z + u

|u| and
|k|2 − 1

2
=
|2z + u|2 − |u|2

2|u|2 =
2z · (z + u)

|u|2 .

With this change of variables the integral in (.72) can be written as

∫

Rd

∫

Rd

(
2
|u|

)d
f(v + z) g(v − u− z)B(u,− 2z+u

|u| ) δ
( 2z·(z+u)

|u|2
)
dz du.

We set y = −z − u; then |u| = |y + z| and δ
( 2z·(z+u)

|u|2
)

= |y+z|2
2 δ(z · y).

Further, for any test function ϕ,

∫

Rd

δ(z · y)ϕ(y) dy = |z|−1

∫

z·y=0

ϕ(y) dπy,

where dπy is the Lebesgue measure on the hyperplane {y : z · y = 0}. This

yields

Q+(f, g)(v)

= 2d−1

∫

z∈Rd

∫

y·z=0

f(v + z)g(v + y) |z|−1|y + z|n−2 B(−y − z, y−z
|y+z| ) dπy dz

We now return to the original notations v′∗ = v + z, v′ = v + y and perform

the corresponding changes of variables to obtain the expression for Q+(f, g)

stated in the Lemma.

Remark 8. The above result takes a particularly simple form in the case

of the hard-sphere model in R3; in that case B(v − v∗, σ) = 1
4π |v − v∗| and

Q+(f, g)(v) =
∫

R3

f(v′∗)
π|v − v′|

∫

Ev,v′∗

g(v′) dπv′dv′∗.
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