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Abstract

We propose a new spectral Lagrangian based deterministic solver for the non-linear
Boltzmann Transport Equation (BTE) in d-dimensions for variable hard sphere
(VHS) collision kernels with conservative or non-conservative binary interactions.
The method is based on symmetries of the Fourier transform of the collision in-
tegral, where the complexity in its computation is reduced to a separate integral
over the unit sphere Sd−1. The conservation of moments is enforced by Lagrangian
constraints. The resulting scheme, implemented in free space, is very versatile and
adjusts in a very simple manner to several cases that involve energy dissipation
due to local micro-reversibility (inelastic interactions) or elastic models of slowing
down process. Our simulations are benchmarked with available exact self-similar
solutions, exact moment equations and analytical estimates for the homogeneous
Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmark-
ing of the simulations involves the selection of a time self-similar rescaling of the
numerical distribution function which is performed using the continuous spectrum
of the equation for Maxwell molecules as studied first in [13] and generalized to a
wide range of related models in [12]. The method also produces accurate results in
the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic col-
lisions under thermal bath), where overpopulated non-Gaussian exponential tails
have been conjectured in computations by stochastic methods [50; 26; 47; 35] and
rigorously proven in [34] and [15].
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1 Introduction

In a microscopic description of a rarefied gas, all particles are assumed to be
traveling in a straight line with a fixed velocity until they enter into a colli-
sion. In such dilute flows, binary collisions are often assumed to be the main
mechanism of particle interactions. The statistical effect of such collisions can
be modeled by collision terms of the Boltzmann or Enskog transport equation
type, where the kinetic dynamics of the gas are subject to the molecular chaos
assumption. The nature of these interactions could be elastic, inelastic or co-
alescing and collision rates may either be isotropic or anisotropic depending
on a function of the scattering angle. Usually these interactions are described
in terms of inter-particle potentials and their interaction rate is modeled as
a product of power laws for the relative speed and the differential cross (an-
gular) section. When such rates are independent of the relative speed, the
interaction is called of Maxwell type and when the rates depends on the rel-
ative speed they are modeled by a power law with exponents depending on
those of the intramolecular potentials and the space dimension as well Rates
proportional to positive powers of the relative speed between zero and one are
called variable hard potentials interactions, and when the rate is proportional
to the relative speed, it is referred to as hard spheres (HS). We point out that
the current common taxonomy of particle interactions in the computational
physics community denominates variable hard potential interactions by vari-
able hard sphere (VHS) interactions. We shall use this nomenclature in the
present manuscript.

The Boltzmann transport equation (BTE), or simply stated by the Boltzmann
equation, is an integro-differential transport equation that describes the evo-
lution of a single point probability distribution function f(x, v, t) defined as
the probability of finding a particle at a position x with a velocity (kinetic) v
at a time t. The mathematical and computational difficulties associated to the
Boltzmann equation are due to the non local - non linear nature of the inte-
gral operator accounting for their interactions. This integral form, called the
collision operator, is usually modeled as a multilinear form in d-dimensional
velocity space and the unit sphere Sd−1, accounting for the velocity interaction
law that characterizes the model, as well as by interaction rates as described
above.

From the computational point of view, one of the well-known and well-studied
methods developed in order to solve this equation is an stochastic based
method called ”Direct Simulation Monte-Carlo” (DSMC) developed initially
by Bird [2] and Nanbu [49] and more recently by Rjasanow and Wagner
[55; 56]. This method is usually employed as an alternative to hydrodynamic
solvers to model the evolution of moments or hydrodynamic quantities. In par-
ticular, this method has been shown to converge to the solution of the classical
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Boltzmann equation in the case of monatomic rarefied gases [58]. One of the
main drawbacks of such methods is the inherent statistical fluctuations in the
numerical results, which become very expensive or unreliable in presence of
non-stationary flows or non-equilibrium statistical states. Recent efforts on
extensive work done mainly by Rjasanow and Wagner in order to determine
from DSMC data the high-velocity tail behavior of the distribution functions
can be found in [56] and references therein. Further, implementations for mi-
cro irreversible interactions, such as inelastic collisions, have been carefully
studied in [35].

In contrast, a deterministic method computes approximations of the prob-
ability distribution function using the Boltzmann equation, as well as approx-
imations to the observables like density, momentum, energy, etcetera. There
are currently two deterministic approaches to numerically solve the non-linear
Boltzmann equation, one is the well-known discrete velocity models and the
second a spectral based method, both implemented for simulations of elastic
interactions i.e. energy conservative evolution. Discrete velocity models were
developed by Broadwell [20] and mathematically studied by Illner, Cabannes,
Kawashima among many authors [42; 43; 21]. More recently, these models
have been studied for many other applications on kinetic elastic theory in
[7; 24; 45; 60; 40]. To the best of our knowledge these approximating tech-
niques have not been adapted to inelastic collisional problems up to this point.

Spectral based models, which are the ones of our choice in this work, have
been developed by Pareschi, Gabetta and Toscani [32], and later by Bobylev
and Rjasanow [17] and Pareschi and Russo [53]. These methods are supported
by the groundbreaking work of Bobylev [4] using the Fourier Transformed
Boltzmann equation to analyze its solutions in the case of Maxwell type of
interactions. After the introduction of the inelastic Boltzmann equation for
Maxwell type interactions and the use of the Fourier transform for its anal-
ysis by Bobylev, Carrillo and one of the authors here [6], the spectral based
approach is perhaps becoming the most suitable tool to deal with determinis-
tic computations of kinetic models associated with Boltzmann non-linear bi-
nary collisional integral, both for elastic or inelastic interactions. More recent
implementations of spectral methods for the non-linear Boltzmann equation
are due to Bobylev and Rjasanow [19] who developed a method using the
Fast Fourier Transform (FFT) for Maxwell type of interactions and then for
hard sphere interactions [18] using generalized Radon and X-ray transforms
via FFT. Simultaneously, L. Pareschi and B. Perthame [52] developed similar
scheme using FFT for Maxwell type of interactions. Later, I. Ibragimov and S.
Rjasanow [41] developed a numerical method to solve the space homogeneous
Boltzmann equation on a uniform spectral grid for a variable hard shpere
interactions with elastic collisions. This particular work has been a great in-
spiration for our current work and was one of the first initiating steps in the
direction of a new numerical method.
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We mention that, most recently, Filbet and Russo [27], [28] implemented a
method to solve the space inhomogeneous Boltzmann equation using the pre-
viously developed spectral methods in [53; 52]. They develop deterministic
solvers for non-linear Boltzmann equations have been restricted to elastic in-
teractions. Finally, Mouhot and Pareschi [48] are currently studying the ap-
proximation properties of the schemes. Part of the difficulties in their strategy
arises from the constraint that the numerical solution has to satisfy conserva-
tion of the initial mass. To this end, the authors propose the use of a periodic
representation of the distribution function to avoid aliasing and there is no
conservation of momentum and energy. Both methods ( [28], [27], [48]),
which are developed in 2 and 3 dimensions, do not guarantee the positivity of
the solution due to the fact that the truncation of the velocity domain com-
bined with the Fourier method makes the distribution function negative at
times. This last is a shortcoming of the spectral approach that also is present
in our proposed technique. However we are able to handle conservation in a
very natural way by means of Lagrange multipliers. We also want to credit
an unpublished calculation of V. Panferov and S. Rjasanow [51] who wrote
a method to calculate the particle distribution function for inelastic collisions
in the case of hard spheres, but there were no numerical results to corrobo-
rate the efficiency of the proposed method. Our proposed approach is slightly
different that theirs and it takes a less number of operations to compute the
collision integral.

Our current approach, based on a modified version from the one in [17] and
[41], works for elastic or inelastic collisions and energy dissipative non-linear
Boltzmann type models for variable hard shperes. We do not use periodic rep-
resentations for the distribution function. The only restriction of the current
method is that requires the distribution function to be Fourier transformable
at any time step. The necessary conservation properties associated to this
distribution function are enforced through a Lagrange multiplier constrained
optimization problem with the conservation quantities set as the constraints.
these corrections, that make the distribution function conservative, are very
small but necessary for the accurate evolution of the computed probability
distribution function according to the approximated Boltzmann equation.

In addition, the Lagrange optimization problem gives the freedom of not con-
serving the energy, independently of the collision mechanism, as long as mo-
mentum is conserved. Such technique plays a major role as it gives an option
for computing energy dissipative solutions by just eliminating one constraint
in the corresponding optimization problem. The current method can be easily
implemented in any dimension.

A novel aspect of the approach presented here lays on a new method that
uses the Fourier Transform as a tool to simplify the computation of the col-
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lision operator that works for both elastic and inelastic collisions, which is
based on an integral representation of the Fourier Transform of the collision
kernel as used in [17]. If N is the number of discretizations in one direction of
the velocity domain in d-dimensions, the total number of operations required
to compute the collision integral is of the order of N2dlog(N) + O(N2d). And
this number of operations remains the same for elastic or inelastic, isotropic or
anisotropic VHS type of interactions. However, when the differential cross sec-
tion is independent of the scattering angle, the integral representation kernel
is further reduced by an exact closed integrated form that is used to save in
computational number of operations to O(Ndlog(N)). This reduction is possi-
ble when computing hard spheres in 3-dimensions or Maxwell type models in 2
dimensions. Nevertheless, the method can be employed without many changes
for the other case and becomes O(P d−1 Ndlog(N)), where P , the number of
each angular discretizations is expected to be much smaller than N used for
energy discretizations. Such reduction in number of operations was also re-
ported in [28] with O(Nlog(N)) number of operations, where the authors
are assuming N to be the total number of discretizations in the d-dimensional
space (i.e. our Nd and P of order of unity).

Our numerical study is performed for several examples of well-established
behavior associated to solutions of energy dissipative space homogeneous col-
lisional models under heating sources that secure existence of stationary states
with positive and finite energy. We shall consider heating sources correspond-
ing to randomly heated inelastic particles in a heat bath, with and without
friction; elastic or inelastic collisional forms with anti-divergence terms due to
dynamically (self-similar) energy scaled solutions [34; 15] and a particularly
interesting example of inelastic collisions added to a slow down linear pro-
cess that can be derived as a weakly coupled heavy and light binary mixture.
For this particular case, when Maxwell type interactions are considered, it is
shown that [13; 14; 12], on one hand dynamically energy scaled solutions exist,
and, for a particular choice of parameters, they have a close, explicit formula
in Fourier space, and their corresponding anti Fourier transform in probability
space exhibits a singularity at the origin and power law high energy tails, while
remaining integrable with finite energy. In addition, they are stable within a
large class of initial states. We used this particular example to benchmark
our computations by spectral methods by comparing the dynamically scaled
computed solutions to the explicit one self-similar one.

Convergence and error results of the spectral Lagrangian method, locally in
time, are currently being developed by the authors [36], and it is expected
that the proposed spectral approximation of the free space problem will have
optimal algorithm complexity using the non-equispaced FFT as obtained by
Greengard and Lin [39] for spectral approximation of the free space heat ker-
nel, or self-similar solution of the heat equation. We point out that in our
approach the approximation is done by non-equispaced time steps using the
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spectral properties of the solution of the problem. This is possible since the
self-similar variable is proportional to the quotient of the spectral over time
variables, as in the case of the linear heat equation.

Finally we point out that implementations of the space inhomogeneous cases
for spacial boundary value problems are also being considered and will be
reported in forthcoming work by the authors [37]. The spectral-Lagrangian
scheme methodology proposed here can be extended to cases of Pareto tails,
opinion dynamics and N player games, where the evolution and asymptotic
behavior of probabilities are also well studied in Fourier space [54; 12].

The paper is organized as follows. In the next section we present some prelim-
inaries and description of the various approximated models associated with
the elastic or inelastic Boltzmann equation. In section 3, the actual numerical
method is discussed with a small discussion on its discretization. We consider
in section 4 the special case of the spatially homogeneous collisional model
for a slow down process derived from a weakly coupled binary problem with
isotropic elastic Maxwell type interactions, where the derivation of explicit
solutions for the case of a cold thermostat problem is revisited and shown to
have power-like tails. Section 5 deals with the numerical results and examples.
Finally in section 6, we discuss and propose directions of future work along
with a summary of the proposed numerical method.

2 Preliminaries

The initial value problem associated to the space homogeneous Boltzmann
transport equation (BTE) modeling the statistical (kinetic) evolution of a
single point probability distribution function f(v, t) for variable hard sphere
(VHS) interactions is given by

∂

∂t
f(v, t) = Q(f, f)(v, t)

f(v, 0) = f0(v) ,
(2.1)

In all cases the initial probability distribution f0(v) is assumed to be in-
tegrable. However the problem may or may not have finite initial energy
E0 =

∫
Rd

f0(v)|v|2dv

The collision or interaction operator Q(f, f) is a bi-linear integral form that
can be defined in weak or strong form. The classical Boltzmann formulation
is given in strong form is classically given in three space dimensions for hard
spheres by
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Q(f, f)(v, t) =
∫

w∈R3,η∈S2

[
1
′e ′J

f(′v, t)f(′w, t)− f(v, t)f(w, t)] |u · η| dηdw

(2.2)

where the integration over the sphere is done with respect to η, the direction
the direction that contains the two centers at the time of the interaction, also
referred as the impact direction. We denote by ′v and ′w the pre-collisional
velocities corresponding to v and w. In the case of micro-reversible (elastic)
collisions one can replace ′v and ′w with v′ and w′ respectively in the integral
part of (2.1). The exchange of velocities law is given by

u = v − w relative velocity

v′ = v − 1 + e

2
(u · η)η, w′ = w +

1 + e

2
(u · η)η .

(2.3)

This collisional law is equivalent to u′ · η = −eu · η and u′ ∧ η = u ∧ η.
The parameter e = e(|u · η|) ∈ [0, 1] is the restitution coefficient covering
the range from sticky to elastic interactions, so ′e = e(|′u · η|), with ′u the

pre-collisional relative velocity. The Jacobian J =| ∂(v′,w′)
∂(v,w)

| of post-collisional
velocities with respect to pre-collisional velocities depends also on the local
energy dissipation [22]. In particular, ′J =| ∂(′v,′w)

∂(v,w)
|. In addition, it can be seen

in general that it is a function of the quotient of relative velocities and the
restitution coefficient as well. For example and in the particular case of hard
spheres interactions

J(e(z)) = e(z) + z e(z) = (z e(z))z with z = |u · η| .
When e = 1 then the collision law is equivalent to specular reflection with re-
spect to the plane containing η, orthogonal to the corresponding tangent plane
to the sphere of influence. The direction η is also called the impact direction.
We note that J = 1 when e = 1, that is, for elastic hard sphere interactions.
The corresponding weak formulation of the collisional form becomes more
transparent and crucial in order to write the inelastic equation in higher di-
mensions or for more general collision kernels. Such formulation, originally due
to Maxwell for the space homogeneous form, and is often call the Maxwell form
of the Boltzmann equation. The integration is parametrized in terms of the
center of mass and relative velocity, and the on the n−1 dimensional spherical
integration is done with respect to the unit direction σ given by the elastic
post collisional relative velocity, that is

∫

v∈Rd

Q(f, f)(v, t) φ(v) dv =

∫

v,w∈R2d,σ∈Sd−1

f(v, t)f(w, t)[φ(v′)− φ(v)] B(|u|, µ) dσdwdv ,
(2.4)

7



where the corresponding velocity interaction law is now given by

v′ = v +
β

2
(|u|σ − u), w′ = w − β

2
(|u|σ − u) ,

u′ = (1− β)u + β|u|σ (inelastic relative velocity) ,

µ = cos(θ) =
u · σ
|u| (cosine of the elastic scattering angle) ,

B(|u|, µ) = |u|λ b(cos θ) with 0 ≤ λ ≤ 1 ,

ωd−2

∫ π

0

b(cos θ) sind−2 θdθ < K (Grad cut-off assumption) ,

β =
1 + e

2
(energy dissipation parameter) .

(2.5)

We assume the differential cross section function b(u·σ
|u| ) is integrable with

respect to the post-collisional specular reflection direction σ in the d − 1-
dimensional sphere, referred to as the Grad cut-off assumption, and that
b(cos θ) is renormalized such that

∫

Sd−1
b(

u · σ
|u| ) dσ = ωd−2

∫ π

0

b(cos θ) sind−2 θ dθ

= ωd−2

∫ 1

−1

b(µ)(1− µ2)(d−3)/2dµ = 1 , (2.6)

where the constant ωd−2 is the measure of the d− 2-dimensional sphere.
The parameter λ regulates the collision frequency as a function of the relative
speed |u|. It accounts for inter-particle potentials defining the collisional ker-
nel and they are referred to as variable hard spheres (VHS) model whenever
0 < λ < 1, Maxwell molecules type interactions (MM) for λ = 0 and hard
spheres (HS) for λ = 1.

In the case of elastic hard spheres (β = 1, λ = 1) in 3 dimensions, colli-
sion kernel B(|u|, µ) = a2/4, where a is the particle diameter. For Maxwell
type elastic interactions (β = 1, λ = 0), B(|u|, µ) = 1

4π
b(θ). For inelastic in-

teractions, even in the case of hard spheres, the angular part of the collision
kernel depends on β (see [15]).
For the classical case of elastic collisions, it has been established that the
Cauchy problem for the space homogeneous Boltzmann equation has a unique
solution in the class of integrable functions with finite energy (i.e. C1(L1

2(Rd))),
it is regular if initially so, and f(., t) converges in L1

2(Rd) to the Maxwellian
distribution Mρ,V,E(v) associated to the d + 2 moments of the initial state
f(v, 0) = f0(v) ∈ L1

2(Rd). In addition, if the initial state has Maxwellian de-
cay, this property is preserved with the Maxwellian decay globally bounded in
time ([33]), and if any derivative of the initial state has a Maxwellian decay,
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this behavior will be preserved as well (see [1]).

In all problems under consideration, collisions either conserve density, mo-
mentum and energy (elastic), or just density and momentum (inelastic) or
density (elastic - linear Boltzmann operator), depending on the number of
collision invariants of the operator Q(f, f)(t, v). In the case of the classical
Boltzmann equation for rarefied elastic, monatomic gases, the collision invari-
ants are exactly d+2, that is, according to the Boltzmann theorem, the number
of polynomials in velocity space v that generate φ(v) = A + B · v + C|v|2,
with C ≤ 0. In particular, one obtains the following conserved quantities

density ρ(t) =
∫

v∈Rd

f(v, t)dv ,

momentum m(t) =
∫

v∈Rd

vf(v, t)dv ,

kinetic energy E(t) =
1

2ρ(t)

∫

v∈Rd

|v|2f(v, t)dv .

(2.7)

Of significant interest from the statistical view point are the evolutions of
moments or observables, at all orders. They are defined by the dynamics of
the corresponding time evolution equation for the velocity averages, given by

∂

∂t
Mj(t) =

∂

∂t

∫

v∈Rd

f(v, t)v©∨ jdv =
∫

v∈Rd

Q(f, f)(v, t)v©∨ jdv , (2.8)

where v©∨ j = standard symmetric tensor product of v with itself, j times.
Thus, according to (2.7), for the classical elastic Boltzmann equation, the first
d + 2 moments are conserved, meaning, Mj(t) = M0,j =

∫
v∈Rd

f0(v)v©∨ jdv for

j = 0, 1; and E(t) = tr(M2)(t) = E0 =
∫

v∈Rd
f0(v)|v|2dv. This can be eas-

ily computed from a symmetrized weak formulation (2.4) with test functions
which are constant, linear and quadratic of their variable magnitude (these
are the so called collision invariants).

Higher order moments or observables of interest are
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Momentum Flow M2(t) =
∫

Rd

vvT f(v, t)dv ,

Energy Flow r(t) =
1

2ρ(t)

∫

Rd

v|v|2f(v, t)dv ,

Bulk Velocity V (t) =
m(t)

ρ(t)
,

Internal Energy E(t) =
1

2ρ
(tr(M2)− ρ|V |2) ,

Temperature T (t) =
2E(t)

kd
, with k the Boltzmann constant.

(2.9)

In particular, for the case of Maxwell molecules (λ = 0), it is possible to write
recursion formulas for higher order moments of all orders ([5] for the elastic
case, and [6] in the inelastic case) which, in the case of isotropic solutions
depending only on |v|2/2, take the form

mn(t) =
∫

Rd
|v|2n f(v, t)dv = e−λntmn(0)+

n−1∑

k=1

1

2(n + 1)

(
2n + 2

2k + 1

)
Bβ(k, n− k)

∫ t

0
mk(τ) mn−k(τ) e−λn(t−τ) dτ ;

with

λn = 1− 1

n + 1
[β2n +

n∑

k=0

(1− β)2k] ,

Bβ(k, n− k) = β2k
∫ 1

0
sk(1− β(2− β)s)n−kds ,

(2.10)

for n ≥ 1, 0 ≤ β ≤ 1, where λ0 = 0, m0(t) = 1, and mn(0) =
∫
Rd
|v|2n f0(v)dv.

These recursion formulas are also obtained using the weak formulation (2.4)
with polynomial, in the square of the magnitude, test functions.

2.1 Boltzmann collisional models with heating sources

A collisional model associated to the space homogeneous Boltzmann transport
equation (2.1) with Grad cutoff assumption (2.5), can be modified in order
to accommodate for an energy or ‘heat source’ like term G(f(t, v)), where G
is a differential or integral operator. In these cases, it is possible to obtain
stationary states with finite energy as for the case of inelastic interactions. In
such a general framework, the corresponding initial value problem model is
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∂

∂t
f(v, t) = ζ(t) Q(f, f)(v, t) + G(f(t, v)) ,

f(v, 0) = f0(v) ,
(2.11)

where the collision operator Q(f, f)(v, t) is as in (2.4-2.5) and G(f(t, v)) mod-
els a ‘heating source’ due to different phenomena to be specified below. The
term ζ(t) may represent a mean field approximation that allows for proper
time rescaling. See [6] and [15] for several examples for these type of models
and additional references.

Following the analytical work initiated in [15] and [14] on Non-Equilibrium
Stationary States (NESS), we study several computational simulations of non-
conservative models for either elastic or inelastic collisions associated to (2.11).
In all cases we have addressed, the model have admissible stationary states
with finite energy but they may not be Maxwellian distributions. Among sev-
eral models with non-Maxwellian equilibrium state with finite energy, we study
a computational output for three of the possible cases. The first one is a pure
diffusion thermal bath due to a randomly heated background [59; 50; 34],
where

G1(f) = µ ∆f, (2.12)

where µ > 0 is a constant. The second example relates to self-similar solutions
of equation (2.11) for G(f) = 0 [46; 25], but dynamically rescaled by

f(v, t) =
1

vd
0(t)

f̃
(
ṽ(v, t), t̃(t)

)
, ṽ =

v

v0(t)
, (2.13)

where

v0(t) = (a + ηt)−1, t̃(t) =
1

η
ln(1 +

η

a
t), a, η > 0. (2.14)

Then, the equation for f̃(ṽ, t̃) coincides (after omitting the tildes) with equa-
tion (2.11), for

G2(f) = −η div(vf), η > 0 . (2.15)

Of particular interest is the case for dynamically time-thermal speed self-
similar rescaling corresponding to Maxwell type of interactions. Since the sec-
ond moment of the collisional integral is a linear function of the energy, the
energy evolves exponentially with a rate proportional to the energy production
rate, that is

d

dt
E(t) = λ0 E(t), or equivalently E(t) = E(0) eλ0 t , (2.16)

with λ0 being the energy production rate. Therefore the corresponding rescaled
variables on equations (2.13) and (2.11),(2.15) for the study of long time be-
havior of rescaled solutions are

f(v, t) = E− d
2 (t) f̃

( v

E 1
2 (t)

)
= (E(0)eλ0 t)−

d
2 f̃(v (E(0)eλ0 t)−

1
2 ) , (2.17)
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and f̃ satisfies the self-similar equation (2.11) and

G2′(f) = −λ0xfx, (2.18)

where x = vE− 1
2 (t) is the self-similar variable.

It has been shown that these dynamically scaled self-similar states are sta-
ble under very specific scaling for a large class of initial states [12], and we
will use this analysis in order to adapt our scheme to compute the approxi-
mation to these self-similar states.

The last source type we consider is given by a model, related to a weakly cou-
pled mixture modeling a slowdown or cooling process [14] for elastic Maxwell
type of interactions of particles with mass m in the presence of a thermostat
given by the Maxwellian distribution

MT (v) =
m

(2πT )d/2
e
−m|v|2

2T ,

with a constant reference background or thermostat temperature T (i.e. the
average of

∫
MT dv = 1 and

∫ |v|2MT dv = T ). We define

QL(f)(v, t)
.
=

∫

w∈Rd,σ∈Sd−1
BL(|u|, µ)f(′v, t)MT (′w)− f(v, t)MT (w)] dσdw .

(2.19)
Then, the corresponding initial value problem associated to f(v, t) is given by

∂

∂t
f(v, t) = Q(f, f)(v, t) + ΘQL(f)(v, t)

f(v, 0) = f0(v) . (2.20)

where Q(f, f) as defined in (2.4-2.5), is the classical collision integral for elastic
interactions (i.e. β = 1) in weak form, so it conserves density, momentum
and energy. The second integral term in (2.20) is a linear collision integral
which conserves just the density (but not momentum or energy). The particle
interaction law is given by

u = v − w the relative velocity

v′ = v +
m

m + 1
(|u|σ − u), w′ = w − 1

m + 1
(|u|σ − u) .

(2.21)

The coupling constant Θ depends on the initial density, the coupling constants
and on m. The collision kernel BL of the linear part may not be the same as
the one for the non-linear part of the collision integral, however we assume that
the Grad cut-off assumption (2.6) is satisfied and that, in order to secure mass
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preservation, the corresponding differential cross section functions bN and bL,
the non-linear and linear collision kernels respectively, satisfy the renormalized
condition

∫

Sd−1

bN(
u · σ
|u| ) + ΘbL(

u · σ
|u| ) dσ = 1 + Θ . (2.22)

This last model describes the evolution of binary interactions of two sets of
particles, heavy and light, in a weakly coupled limit, where the heavy particles
have reached equilibrium. The heavy particle set constitutes the background
or thermostat for the lighter set of particles. It is the light particle distribution
that is modeled by (2.20), so Q(f, f) corresponds to all collisions that light
particles have with each other, and the second linear integral term corresponds
to collisions between light and heavy particles, where the heavy particles are
at equilibrium with a distribution given by the classical Maxwellian MT (v).
Even though the local interactions are reversible (elastic), it does not conserve
the total energy. In this binary 3-dimensional, mixture scenario, collisions are
assumed to be isotropic, elastic and the interactions kernels of Maxwell type.

When considering the case of Maxwell type of interactions in three dimen-
sions i.e. B(|u|, µ) = b(θ) with a cooling background process corresponding to
a time temperature transformation, T = T (t) such that T (t) → 0 as t → 0,
the models have self-similar asymptotics [14; 12] for a large class of initial
states. Such long time asymptotics corresponding to dynamically scaled solu-
tions of (2.20), in the form of (2.18), yields interesting behavior in f(v, t) for
large time, converging to states with power like decay tails in v. In particular,
such a solution f(v, t) of (2.20) will lose moments as time grows, even if the
initial state has all moments bounded. (see [14; 12] for the analytical proofs).

In the case of equal mass (i.e. m = 1), the model is of particular interest
for the development of numerical schemes and benchmarking of simulations.
In such a case, there exists a special set of explicit self-similar solutions, in
spectral space, which are attractors for a large class of initial states (see Sec-
tion 4 for details).

2.2 Collision Integral Representation

One of the pivotal points in the derivation of the spectral numerical method
for the computation of the non-linear Boltzmann equation lays in the repre-
sentation of the collision integral in Fourier space by means of its weak form
(2.4-2.5). In particular, taking ψ(v) = e−iζ·v/(

√
2π)d, where ζ is the Fourier

variable, we get the Fourier transform of the collision integral as
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Q̂(ζ) =
1

(
√

2π)d

∫

v∈Rd

Q(f, f)e−iζ·vdv

=
∫

(w,v)∈Rd×Rd, σ∈Sd−1

f(v)f(w)
B(|u|, µ)

(
√

2π)d
[e−iζ·v′ − e−iζ·v]dσdwdv . (2.23)

We use the notation .̂ = F(.) - the Fourier transform and F−1 for the clas-
sical inverse Fourier transform. Plugging in the definitions of collision kernel
B(|u|, µ) = bλ,β(σ)|u|λ (which in the case of isotropic collisions would just be
the variable hard sphere collision kernel) and of post-collisional velocity v′

Q̂(ζ) =
1

(
√

2π)d

∫

u∈Rd
Gλ,β(u, ζ)

∫

v∈Rd
f(v)f(v − u)e−iζ·vdvdu

=
∫

u∈Rd
Gλ,β(u, ζ)F [f(v)f(v − u)]du , (2.24)

where

Gλ,β(u, ζ) =
∫

σ∈Sd−1

bλ,β(σ)|u|λ[e−i β
2
ζ·(|u|σ−u)) − 1]dσ

= |u|λ
[
ei β

2
ζ·u

∫

σ∈Sd−1

bλ,β(σ)e−i β
2
|u|ζ·σdσ − ω2

]
. (2.25)

Note that (2.25) is valid for both isotropic and anisotropic interactions. For the
former type, a simplification ensues due to the fact the bλ,β(σ) is independent
of σ ∈ Sd−1:

Gλ,β(u, ζ) = bλ,βωd−2 |u|λ
[
ei β

2
ζ.usinc(

β|u||ζ|
2

)− 1

]
. (2.26)

Thus, in the case of isotropic interaction the angular integration is given by
the closed form above. In the case of anisotropic collisions, the dependence
of bλ,β(σ) is calculated into a separate integral over the unit sphere Sd−1 as
given in (2.25). The above expression can be transformed for elastic collisions
β = 1 into a form suggested by Rjasanow and Ibragimov in their paper [41].
The corresponding expression for anisotropic collisions is given by (2.25).

Further simplification of (2.24) is possible by observing that the Fourier trans-
form inside the integral can be written in terms of the Fourier transform of
f(v) since it can also be written as a convolution of the Fourier transforms.
Let fu(v) = f(v − u)
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Q̂(ζ) =
∫

u∈Rd

Gλ,β(u, ζ)F(f fu)(ζ)du

=
∫

u∈Rd
Gλ,β(u, ζ)

1

(
√

2π)d
(f̂ ∗ f̂u)(ζ)du

=
∫

u∈Rd
Gλ,β(u, ζ)

1

(
√

2π)d

∫

ξ∈Rd
f̂(ζ − ξ)f̂u(ξ)dξdu

=
∫

u∈Rd

Gλ,β(u, ζ)
1

(
√

2π)d

∫

ξ∈Rd
f̂(ζ − ξ)f̂(ξ)e−iξ·udξdu

=
1

(
√

2π)d

∫

ξ∈Rd

f̂(ζ − ξ)f̂(ξ)Ĝλ,β(ξ, ζ)dξ, (2.27)

where Ĝλ,β(ξ, ζ) =
∫
u∈Rd Gλ,β(u, ζ)e−iξ·udu. In particular, Q̂(ζ) is a weighted

convolution in Fourier space.

Let u = re, e ∈ Sd−1, r ∈ R. For d = 3, it follows

Ĝλ,β(ξ, ζ) =
∫

r

∫

e
r2G(re, ζ)e−irξ·ededr (2.28)

= 16π2Cλ

∫

r
rλ+2[sinc(

rβ|ζ|
2

)sinc(r|ξ − β

2
ζ|)− sinc(r|ξ|)]dr .

Since the domain of computation is restricted to Ωv = [−L,L)3, u ∈ [−2L, 2L)3

then r ∈ [0, 2
√

3L], and the right hand side of (2.28) is the finite integral

16π2Cλ

∫ 2
√

3L

0
rλ+2[sinc(

rβ|ζ|
2

)sinc(r|ξ − β

2
ζ|)− sinc(r|ξ|)]dr . (2.29)

A point worth noting here is that the above formulation (2.27) results in
O(N2d) number of operations, where N is the number of discretizations in each
velocity direction. Also, exploiting the symmetric nature in particular cases of
the collision kernel one can reduce the number of operations to O(NdlogN)
in velocity space (or NlogN if N counts the total number of Fourier nodes in
d dimensional velocity space).

3 Numerical Method

3.1 Discretization of the Collision Integral

Coming to the discretization of the velocity space, it is assumed that the two
interacting velocities and the corresponding relative velocity

v , w , u ∈ [−L,L)d and ζ ∈ [−Lζ , Lζ)
d , (3.1)
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where the velocity domain L is chosen such that u = v − w ∈ [−L,L)d

through an assumption that supp(f) ∈ [−L,L)d. For a sufficiently large L,
the computed distribution will not lose mass, since the initial momentum is
conserved (there is no convection in space homogeneous problems), and is
renormalized to zero mean velocity. We assume a uniform grid in the velocity
and Fourier spaces with hv and hζ as the respective grid element sizes. hv and
hζ are chosen such that hvhζ = 2π

N
, where N = number of discretizations of v

and ζ in each direction as a requirement for using a standard FFT package.

3.2 Time Discretization

In the process of getting a dimensionless formulation, we recall the basic rescal-
ing for the Boltzmann equation. First we defined the mean free path as the
product of the average speed by the mean free time (the average time between
collisions which depends on the collision frequency). The mean free path is the
average distance traveled between collisions, and it is very relevant for space
dependent solutions.
In the case of space homogeneous simulations, we use a second-order Runge-
Kutta scheme or a Euler forward step method for approximation to the time
derivative of f , where the value of dimensionless time step dt is chosen of the
order 0.1 times mean free time
With time discretizations taken as tn = ndt, the discrete version of the Runge-
Kutta scheme we use is given by

f 0(vj) = f0(v
j)

f̃(vj) = f tn(vj) +
dt

2
Qλ,β[f tn(vj), f tn(vj)]

f tn+1

(vj) = f tn(vj) + dtQλ,β[f̃(vj), f̃(vj)] ,

(3.2)

and the corresponding Forward Euler scheme with smaller time step is given
by

f̃(vj) = f tn(vj) + dtQ(f tn , f tn) . (3.3)

3.3 Conservation Properties - Lagrange Multipliers

Since the calculation of Qλ,β(f, f)(v) involves computing Fourier transforms
with respect to v, we extensively use a Fast Fourier Transform method. Note
that the total number of operations in computing the collision integral reduces
to the order of 3N2dlog(N)+O(N2d) for (2.24) and O(N2d) for (2.27). Observe
that, choosing 1/2 ≤ β ≤ 1, the proposed scheme works for both elastic and
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inelastic collisions. As a note, the method proposed in the current work can
also be extended to lower dimensions in velocity space.

The accuracy of the proposed method relies heavily on the size of the grid and
the number of points taken in each velocity/Fourier space directions, where it
be seen that the computed Qλ,β[f, f ](v) does not conserve the quantities it is
supposed to, when tested with the collision invariants. That is ρ,m, e must be
conserved in time for elastic collisions, but just ρ for linear Boltzmann inte-
gral, and ρ,m for inelastic collisions. Even though the difference between the
computed (discretized) collision integral and the continuous one may not be
large, it is nevertheless essential that this issue be addressed and solved.

To this end, we propose a simple constrained Lagrange multiplier method
is employed where the constraints are the required conservation properties on
the moments for the solution.
Let M = Nd, the total number of discretizations of the velocity space. As-
sume that the classical Boltzmann collision operator is being computed. So
ρ,m = (m1,m2,m3) and e are conserved. Let ωj be the integration weights
where j = 1, 2, ..., M . Let

f̃ =
(

f̃1 f̃2 . . f̃M

)T

be the distribution vector at the computed time step and

f =
(

f1 f2 . .fM

)T

be the constructed corrected distribution vector with the required moments
conserved. Let

C
(d+2)×M

=




ωj

viωj

|vj|2ωj




and

a
(d+2)×1

=
(

ρ m1 m2 m3 e

)T

be the vector of conserved quantities. The corresponding conservation scheme
can be written as the following constrained optimization problem:

Given f̃ ∈ RM , C ∈ Rd+2×M , and a ∈ Rd+2,

find f ∈ RM such that (3.4)

minimizes ‖f̃ − f‖2
2 , subject to the constrain Cf = a.

To solve this constrain minimization problem, we employ the Lagrange mul-
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tiplier method. Let λ ∈ Rd+2 be the Lagrange multiplier vector. Then the
corresponding scalar objective function to be optimized is given by

L(f, λ) =
M∑

j=1

|f̃j − fj|2 + λT (Cf − a) . (3.5)

Equation (3.5) can actually be solved explicitly for the corrected distribution
value and the resulting equation of correction can be implemented numerically
in the code. Taking the derivative of L(f, λ) with respect to fj, j = 1, ..., M
and λi, i = 1, ..., d + 2 i.e. gradients of L,

∂L

∂fj

= 0; j = 1, ...,M ⇒ f = f̃ +
1

2
CT λ ,

and
∂L

∂λ1

= 0; i = 1, ..., d + 2 ⇒ Cf = a , (3.6)

retrieves the constraints. Solving for λ,

CCT λ = 2(a− Cf̃) . (3.7)

Recall that CCT is symmetric and positive definite, since C is the integra-
tion matrix, then the inverse of CCT exists. In particular the value of λ is
determined by

λ = 2(CCT )−1(a− Cf̃) . (3.8)

Then, substituting λ into (3.6) we obtain,

f = f̃ + CT (CCT )−1(a− Cf̃) , (3.9)

and using equation for forward Euler scheme (3.3), the complete scheme is
given by

f̃j = fn
j + dtQ(fn

j , fn
j )

fn+1
j = f̃j + CT (CCT )−1(a− Cf̃) ∀j , with f tn(vj) = fn

j .
(3.10)

Then ,

fn+1
j = fn

j + dtQ(fn
j , fn

j ) + CT (CCT )−1(a− Cf̃)

= fn
j + dtQ(fn

j , fn
j ) + CT (CCT )−1(a− a− dtCQ(fn

j , fn
j )) (3.11)

= fn
j + dtQ(fn

j , fn
j )− dtCT (CCT )−1CQ(fn

j , fn
j )

= fn
j + dt[I− CT (CCT )−1C]Q(fn

j , fn
j ) ,
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with I - N ×N identity matrix. Letting ΛN(C) = I− CT (CCT )−1C with I -
N ×N identity matrix, one obtains

fn+1
j = fn

j + dtΛN(C)Q(fn
j , fn

j ) , (3.12)

where we expect the required observables are conserved and the solution ap-
proaches a stationary state, since limn→∞ ‖ΛN(C) Q(fn

j , fn
j )‖∞ = 0 .

Identity (3.12) summarizes the whole conservation process. Moreover, the op-
timization method can be extended to have the distribution function satisfy
higher order moments from (2.10). In this case, a(t) will include entries of
mn(t) from (??).

We point out that for the linear Boltzmann collision operator used in the
mixture problem conserves density and not momentum (unless one computes
isotropic solutions) and energy. For this problem, the constraint would just
be the density equation. For inelastic collisions, density and momentum are
conserved and in this case the constraints are the energy and momentum equa-
tions. For the elastic Boltzmann operator, all three quantities (density, mo-
mentum and energy) are conserved and this approximated quantities are the
constraints for the optimization problem. This approach of using Lagrangian
constraints in order to secure moment preservation differs from the proposed
in [27], [28] for conservation of moments using spectral solvers.

4 Self-Similar asymptotics for a general elastic or inelastic BTE of
Maxwell type or the cold thermostat problem - power law tails

As mentioned in the introduction, a new interesting benchmark problem for
our scheme is the capability to compute dynamically scaled solutions or self-
similar asymptotics. More precisely, we present simulation where the computed
solution, in a properly scaled time, approaches an admissible self-similar so-
lution. Such procedure yields a choice of non-equispaced time grid depending
on the spectral properties of the model being computed. And, in fact, such a
choice in the time rescaling for self-similarity asymptotic approximations in
Fourier space are actually a choice of a non-equispaced grid in Fourier space
since the self-similarity variable is a proportion of the quotient of velocity and
time as shown in (2.16, 2.17, 2.18 for Maxwell type models. Equivalently, in
the corresponding Fourier transformed framework, it is a proportion of the
quotient of the spectral (Fourier) variable and time. This is actually the same
qualitative issue that is needed for the calculation of the heat equation kernel
(or fundamental solution) by means of non-equispaced grids in Fourier space
in [39]. We recall that the fundamental solution for the initial value problem
associated to the heat equation is actually the self-similar solution the heat
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equation.

This procedure is of particular interest for our method because of the power
tail behavior of the asymptotic self-similar state, i.e. higher order moments
of the computed solution will become unbounded in properly rescaled time.
The computational method and proposed scheme is be benchmarked with an
available explicit solution for a particular choice of parameters. For the com-
pleteness of this presentation, the analytical description of such asymptotics
is given in the following two sub sections.

4.1 Self-Similar Solution for a non-negative Thermostat Temperature

We consider the Maxwell type equation from (2.20) related to a space homo-
geneous model for a weakly coupled mixture modeling slowdown process. The
content of this section is dealt in detail in [14] for a particular choice of zero
background temperature (cold thermostat). For the sake of brevity, we refer
to [14] for details. However, a slightly more general form of the self-similar
solution for non zero background temperature is derived here from the zero
background temperature solution. Without loss of generality for our numerical
test, we assume the differential cross sections bL for collision kernel of the lin-
ear and bN , the corresponding one for the nonlinear part, are the same, both
denoted by b(k.σ

|k| ), satisfying the Grad cut-off conditions (2.6). In particular,

condition (2.22) is automatically satisfied.

In [14], it was shown that the Fourier transform of the isotropic self-similar
solution associated to problem in (2.20) takes the form:

φ(x, t) = ψ(xe−µt) = 1−a(xe−µt)p, as xe−µt → 0, with p ≤ 1 , (4.1)

where x = |ζ|2/2 and µ and Θ are related by

µ =
2

3p2
and Θ =

(3p + 1)(2− p)

3p2
.

Note that p = 1 corresponds to initial states with finite energy. It was shown
in [14] for T = 0 (i.e. a cold thermostat effect), the Fourier transform of the
self-similar, isotropic solutions of (2.20) is given by

φ(x, t) =
4

π

∫ ∞

0

1

(1 + s2)2
e−xe

−2t
3 as2

ds , (4.2)
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and its corresponding inverse Fourier transform, both for p = 1, µ = 2
3

and
Θ = 4

3
(as computed in [14]) is given by

f ss
0 (|v|, t) = etF0(|v|et/3) with F0(|v|) =

4

π

∫ ∞

0

1

(1 + s2)2

e−|v|
2/2s2

(2πs2)
3
2

ds. (4.3)

Remark: It is interesting to observe that, as computed originally in [9], for
p = 1

3
or p = 1

2
in (4.2) yields Θ = 0, which corresponds to the classical elastic

model of Maxwell type. In this case it is possible to construct explicit solu-
tions to the elastic BTE with infinite initial energy. In addition, it is clear now
that in order to have self-similar explicit solutions with finite energy in the
case of the classical elastic model of Maxwell type one needs to have an extra
”source term” such as a weakly couple mixture model for slowdown processes,
or bluntly speaking the linear collisional term added to the elastic energy con-
servative operator.

In order to recover the self-similar solution for the original equilibrium posi-
tive temperature T (i.e. hot thermostat case) for the linear collisional term,
we denote, including time dependence for convenience,

φ0(x, t) = φ(x, t)Thermostat=0 and φT (x, t) = φ(x, t)Thermostat=T
so that φT (x, t) = φ0(x, t)e−T x . (4.4)

Note that the solution constructed in (4.2) is actually φ0(x, t). Then the self-
similar solution for non zero background temperature, denoted by φT (x, t)
satisfies

φT (k, t) =
4

π

∫ ∞

0
e−|k|

2e−2t/3as2/2 1

(1 + s2)2
e−|k|

2T /2ds

=
4

π

∫ ∞

0
e−|k|

2[e−2t/3as2+T ]/2 1

(1 + s2)2
ds. (4.5)

In particular, letting T̄ = e−2t/3as2 + T and taking the inverse Fourier Trans-
form, we obtain the corresponding self-similar state for the positive tempera-
ture thermostat, which according to (2.17) the can be written in probability
space as follows

f ss
T (|v|, t) = etFT (|v|et/3) , FT (|v|) =

4

π

∫ ∞

0

1

(1 + s2)2

e−|v|
2/2T̄

(2πT̄ )
3
2

ds. (4.6)

Then, letting t →∞, since T̄ = T + as2e
−2t
3 → T , yields
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FT (|v|)→t→∞
4

π

1

(2πT )
3
2

e−|v|
2/2T

∫ ∞

0

1

(1 + s2)2
ds = MT (v) , (4.7)

since
4

π

∫ ∞

0

1

(1 + s2)2
ds =

2

π

(
s

1 + s2
+ arctan(s)

)
|∞0 = 1. (4.8)

Then, the self-similar particle distribution f ss
T (v, t) for the positive tempera-

ture thermostat approaches a rescaled Maxwellian distribution with the back-
ground temperature T , that is, according to (2.17)

f ss
T (|v|, t) = etFT (|v|et/3) ≈ et

(2πT )
3
2

e−(|v|2 e2t/3)/2T +t , as t →∞ . (4.9)

Remark: As pointed out in the previous remark, such asymptotic behavior,
for finite initial energy, is due to the balance of the binary term and the linear
collisional term in (2.20).
In addition, very interesting behavior is seen on FT (|v|) as T → 0 (cold
thermostat problem), where the particle distribution approaches a distribution
with power-like tails (i.e. a power law decay for large values of |v|) and an
integral singularity at the origin. Indeed, is derived in [14] the asymptotic
behavior of F0(|v|) from (4.3), for large and small values of |v|, leading to

F0(|v|) = 2(
2

π
)5/2 1

|v|6 [1 + O(
1

|v|)], for |v| → ∞,

F0(|v|) =
21/2

π5/2

1

|v|2 [1 + 2|v|2ln(|v|) + O(|v|2)], for |v| → 0. (4.10)

In particular, the self-similar particle distribution function F0(|v|), v ∈ R3,
behaves like 1

|v|6 as |v| → ∞, and as 1
|v|2 as |v| → 0, which indicates a very

anomalous, non-equilibrium behavior as function of velocity, which neverthe-
less remains with finite mass and kinetic energy. This asymptotic effect can
be described as an overpopulated (with respect to Maxwellian), large energy
tails and infinitely many particles at zero energy. This interesting, unusual
behavior is observed in problems of soft condensed matter [38].

We shall see in the following section that our solver captures these states
described above with spectral accuracy since the self-similar solutions are at-
tractors for a large class of initial states. These numerical tests are a crucial
aspect of the spectral Lagrangian deterministic solver used to simulate this
type of non-equilibrium phenomena, where all these explicit formulae for our
probability distributions allow us to carefully benchmark the proposed nu-
merical scheme. First we recall some relevant analytical results that secure
the convergence to these particular self-similar states.
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4.2 Self-similar asymptotics for a general problem

The self-similar nature of the solutions F (|v|) for a very general class of prob-
lems of Maxwell type interactions, for a wide range of values for the parameters
β, p, µ and Θ, was addressed in [12] in much detail. Three different behaviors
have been clearly explained. Of particular interest for our present numerical
study are the mixture problem with a cold background and the inelastic Boltz-
mann cases. Interested readers are referred to [12].

For the purpose of our presentation, let φ = F [f ] be the Fourier transform
of the probability distribution function satisfying the initial value problem
(2.1)-(2.5) or (2.11) and let Γ(φ) = F [Q+(f, f)] be the Fourier transform of
the gain part of the collisional term associated with the initial value prob-
lem for f(v, 0) = f0(v) prescribed. It was shown in [12] that the operator
Γ(φ), defined over the Banach space of continuous bounded functions with
the L∞-norm (i.e. the space of characteristic functions, that is the space of
Fourier transforms of probability distributions), satisfies the following three
properties [12]:

1 - Γ(φ) preserves the unit ball in the Banach space.
2 - Γ(φ) is L-Lipschitz operator, i.e. there exists a bounded linear operator L

in the Banach space, such that

|Γ(φ1)− Γ(φ2)|(x, t) ≤ L(|φ1 − φ2|(x, t)), ∀ ‖φi‖ ≤ 1; i = 1, 2 . (4.11)

3 - Γ(φ) is invariant under transformations (dilations)

eτDΓ(φ) = Γ(eτDφ) , D = x
∂

∂x
, eτDφ(x) = φ(xeτ ), τ ∈ R+ . (4.12)

In the particular case of the initial value problem associated to Boltzmann
type of equations for Maxwell type of interactions, the bounded linear oper-
ator that satisfies property 2 is the one that linearizes the Fourier transform
of the gain operator about the state φ = 1.

Next, let xp, restricted to the unit ball, be the eigenfunction corresponding
to the eigenvalue λ(p) of the linear operator L associated to Γ in (4.11), i.e.
L(xp) = λ(p)xp. Also let

µ(p) =
λ(p)− 1

p
be defined for p > 0 , (4.13)

and called the spectral function associated to Γ. It was shown in [12] that
µ(0+) = +∞ (i.e. p = 0 is a vertical asymptote) and that for the problems
associated to the initial value problems (2.1)-(2.5) or (2.11), there exists a
unique minimum for µ(p) localized at p0 > 1, and that µ(p) → 0− as p → +∞.
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Then, the existence of self-similar states and convergence of the solution to the
initial value problem to such a self-similar distribution function was described
and proved in [12], and it is summarized in the following four statements:

(i) Lemma (existence and uniqueness of the initial value problem):
There exists a unique isotropic solution f(|v|, t) to the initial value problem
(2.1)-(2.5) or (2.11) for Maxwell type interactions, in the class of probability
measures, satisfying f(|v|, 0) = f0(|v|) ≥ 0,

∫
Rd f0(|v|)dv = 1 such that for

the Fourier transform problem x = |ζ|2
2

, u0 = F [f0(|v|)] = 1 + O(x), as
x → 0,

(ii) Theorem (existence of self-similar states): f(|v|, t) has self-similar
state in the following sense: Assume that the Fourier transform of the initial
state satisfies

u0 + µ(p) xp u′0 = Γ(u0) + O(xp+ε), such that p + ε < p0 , (4.14)

(i.e. µ(p); µ′(p) < 0), where µ(p) is the spectral function defined in (4.13).
Then, there exists a unique, non-negative, self-similar solution

f ss(|v|, t) = e−
d
2
µ(p)tFp(|v|e− 1

2
µ(p)t) ,

with F(Fp(|v|)) = w(x), x = |ζ|2/2 such that µ(p)xpw′(x) + w(x) = Γ(w).
(iii) Theorem (self-similar asymptotics): There exists a unique (in the class

of probability measures) solution f(|v|, t) satisfying f(|v|, 0) = f0(|v|) ≥ 0,

with
∫
Rd

f(|v|)dv = 1, such that for x = |ζ|2
2
→ 0 and

F [f0(|v|)] = 1− a xp + O(xp+ε), 0 ≤ p ≤ 1 with p + ε < p0 .

Then, there exists a unique non-negative self-similar solution f (p)
ss (|v|, t) =

e−
d
2
µ(p)tFp(|v|e− 1

2
µ(p)t) for any given 0 ≤ p ≤ 1, such that

f(|v|, t) →t→∞ e−
d
2
µ(p)tFp(|v|e− 1

2
µ(p)t) . (4.15)

or equivalently

e
d
2
µ(p)tf(|v|e 1

2
µ(p)t, t) →t→∞ Fp(|v|) , (4.16)

where µ(p) is the value of spectral function (4.13) associated to the linear
bounded operator L .

(iv) Power tail behavior of the asymptotic limit: If µ(p) < 0, then the
self-similar limiting function Fp(|v|) does not have finite moments of all
orders. In addition, if 0 ≤ p ≤ 1 then all moments of order less than p are
bounded; i.e. mq =

∫
Rd Fp(|v|)|v|2qdv ≤ ∞; 0 ≤ q ≤ p. However, if p = 1

(finite energy case) then, the boundedness of moments of any order larger
than 1, depends on the conjugate value of µ(1), the spectral function µ(p).
That means mq ≤ ∞ only for 0 ≤ q ≤ p∗, where p∗ ≥ p0 > 1 is the unique
maximal root of the equation µ(p∗) = µ(1).
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Fig. 1. Typical graph for the spectral function µ(p) for a general homogeneous
Boltzmann collisional problem of Maxwell type

Remark 1: When p = 1, µ(1) is the energy dissipation rate, and E(t) = eµ(1)t

the kinetic energy evolution function. So, E(t)d/2f(vE(t), t) → F1(|v|).

Remark 2: We point out that condition (4.14) on the initial state is eas-
ily satisfied by taking a sufficiently concentrated Maxwellian distribution as
shown in [12], and as done for our simulations in the next section.

However, when rescaling with a different rate in time, it is not possible to
pick up the non-trivial limiting state f ss, since, as shown in [12],

f(|v|e 1
2
ηt, t) →t→∞ e−

d
2
ηtδ0(|v|); η > µ(1) , (4.17)

and

f(|v|e 1
2
ηt, t) →t→∞ 0; µ(pmin) < µ(1 + δ) < η < µ(1) . (4.18)

These results are also true for any p ≤ 1. For the general space homogeneous
(elastic or inelastic) Boltzmann model of Maxwell type or the corresponding
mixture problem, the spectral function µ(p), as defined in (4.13), is given in
figure 1.
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5 Numerical Results

We benchmark the proposed numerical method to compute several examples
in three dimensions, both in velocity and time, for several initial value prob-
lems associated with non-conservative models where some analysis is avail-
able, as are exact moment formulae for Maxwell type of interactions as well as
qualitative analysis for solutions of VHS models. We shall plot our numerical
results versus the exact available solutions when available. Because all com-
puted problems converge to an isotropic long time state, we choose to plot the
distribution function in only one direction, which is chosen to be the one with
the initial anisotropies in velocity space. All the numerical simulations con-
sidered in this manuscript correspond to examples with space homogeneous,
isotropic, VHS collision kernels, i.e. differential cross section independent from
scattering angle.

We simulate the homogeneous problem associated to the following problems
for different choices of the parameters β and λ, and the Jacobian Jβ and
heating force term G(f).

5.1 Maxwell type of Elastic Collisions

Consider the initial value problem (2.1), (2.2), with B(|u|, µ) = 1
4π
|u|λ with

the value of the parameters are e = β = 1, Jβ = 1, λ = 0 and with the pre-
collisional velocities defined from (2.3). In this case, for a general initial state
with finite mass, mean and kinetic energy, there is no exact expression for the
evolving distribution function. However there are exact expressions for all the
statistical moments (observables). Thus, the numerical method is compared
with the known analytical moments for different discretizations in the velocity
space.

The initial states we take are convex combinations of two shifted Maxwellian
distributions. So consider the following case of initial states with unit mass∫
R3 f0(v)dv = 1 given by convex combinations of shifted Maxwellians

f(v, 0) = f0(t) = γMT1(v − V1) + (1− γ)MT2(v − V2); with 0 6 γ 6 1

where MT (v− V ) = 1
(2πT )3/2 e

−|v−V |2
(2T ) . Then, taking γ = 0.5 and mean fields for

the initial state determined by

V1 = [−2, 2, 0]T , V2 = [2, 0, 0]T ; T1 = 1 , T2 = 1 ,
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enables the first five moment equations corresponding to the collision invari-
ants to be computed from those of the initial state. All higher order moments
are computed using the classical moments recursion formulas for Maxwell type
of interactions (2.10). In particular, it is possible to obtain the exact evolution
of all moments as functions of time. Thus,

ρ(t) = ρ0 = 1 and V (t) = V0 = [0, 1, 0]T ,

and, from the moments calculation in (2.10), the complete evolution of the
second moment tensor (2.9) is given by

M(t) =




5 −2 0

−2 3 0

0 0 1




e−t/2 +
1

3




8 0 0

0 11 0

0 0 8




(1− e−t/2) ,

the energy flow (2.9) by

r(t) =
1

2




−4

13

0




e−t/3 +
1

6




0

43

0




(1− e−t/3)− 1

6




12

4

0




(e−t/2 − e−t/3) ,

and the kinetic temperature is conserved, so

T (t) = T0 =
8

3
;

since the kinetic energy is also conserved, that is E(t) = E(0) for all t.
These moments, along with their numerical approximations for different dis-
cretizations in velocity space, are plotted in figure 2. We took N = 16 for the
numerical simulations and it can be seen that the computed moments agree
almost exactly with the analytical results except for energy flow r(t), a third
order moment. This indicates that as higher order moments, such as r(t) from
(2.9), generate larger errors, and may diverge from the analytical solution for
large times as it can be observed in the last two plots of the energy flow r1(t)
and r2(t) in figure 2. This can be improved by increasing the value of N , the
number of Fourier modes. We point out that it is also possible, in this case of
Maxwell type interactions, to augment the number of constrains (i.e. the vec-
tor a) to include the time evolution of more explicit moment formulas, however
this approach would only be useful for higher order computational accuracy
of the Boltzmann equation of Maxwell type. Thus, for this presentation, we
just constrain the lowest moments for which conservation holds independent
of the collision rate. In figure 3, the evolution of the computed distribution
function into a Maxwellian is plotted for N = 40, and it is still possible to see
the error in both the components r1, r2 of the energy flow.
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Fig. 2. Spectral-Lagrangian solver test for Maxwell type of elastic collisions con-
straining only mass, momentum and kinetic energy. Plot of higher order moments
from (2.9): momentum flow M11,M12, M22,M33, energy flow r1, r2; N=16. Third
order moments, such as the energy flow components, generate larger errors that are
reduced by taking larger N.
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Fig. 3. Evolution of the distribution function for Maxwell type elastic collisions,
N=40

5.2 Maxwell type of Elastic collisions - Bobylev-Krook-Wu (BKW) Solution

An explicit solution to the initial value problem (2.1) for elastic, Maxwell type
of interactions (β = 1, λ = 0) was derived in [3] and later in [44] for initial
states that have at least 2+ δ-moments bounded. It is not of self-similar type,
but it can be shown to converge to a Maxwellian distribution. This solution
takes the form

f(v, t) =
e−|v|

2/(2Kη2)

2(2πKη2)3/2
(
5K − 3

K
+

1−K

K2

|v|2
η2

) , (5.1)

where K = 1− e−t/6 and η =initial distribution temperature. It is interesting
to observe that this particular explicit solution is negative for small values
of t. Consequently, in order to obtain an admissible probability distribution
which may be assigned a physical meaning, f must be non-negative. This is
indeed the case for any K > 3

5
or t > t0 ≡ 6ln(5

2
) ∼ 5.498.

This explicit solution formula is indeed an optimal tester to a homogeneous
Boltzmann equation solver. We set the initial distribution function at t =
0 to be the BKW solution at t = t0. The numerical approximation to the
Boltzmann solver for this initial state and the exact evolution of the BKW
solution are plotted for different values of N at various time steps in figure 4.
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Fig. 4. BKW solution of the homogenous Boltzmann equation, ρ, and E(t) conserved

5.3 Hard Sphere Elastic Collisions

In (2.1), (2.2) or equivalently (2.4), we have β = 1, Jβ = 1 and λ = 1 with
the post-collisional velocities defined from (2.3). Unlike Maxwell type of inter-
actions, there is no explicit expression for the moment equations and neither
is there any explicit solution expression as in the BKW solution scenario.
For hard sphere isotropic collisions, the expected behavior of the moments is
similar to that of the Maxwell type of interactions case except that in this
case, the moments somewhat evolve to the equilibrium a bit faster than in the
former case i.e. figure 5. We also plot the time evolution of the distribution
function starting from the convex combination of Maxwellians as described in
a previous subsection in figure 6.

5.4 Inelastic Collisions

This is the case wherein the utility of the proposed method is the most clear.
No other deterministic method can compute the distribution function in the
case of inelastic collisions (isotropic). Our current method can compute a 3−D
evolution without much complication and with exactly the same number of
operations as used in an elastic collision case. This model works for all variable
hard sphere interactions. Consider the special case of Maxwell (λ = 0) type
of inelastic (β 6= 1) collisions in a space homogeneous Boltzmann Equation in
(2.1), with (2.4) and (2.5). Let φ(v) = |v|2 be a smooth enough test function.
Using the weak form of the Boltzmann equation with such a test function one
can obtain the ODE governing the evolution of the kinetic energy K(t) = E(t)
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Fig. 5. Moments evolution for elastic hard sphere collisions: Momentum Flow
M11, M12,M22,M33, Energy Flow r1, r2; N=16

(2.7):

K ′(t) = β(1− β)(
|V |2
2

−K(t)) , (5.2)
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Fig. 6. Evolution of the distribution function for elastic hard sphere collisions; N =
32

where V - conserved (constant) bulk velocity of the distribution function. This
gives the following solution for the kinetic energy as computed in (2.10)

K(t) = K(0)e−β(1−β)t +
|V |2
2

(1− e−β(1−β)t) , (5.3)

where K(0) =kinetic energy at time t = 0. As we have an explicit expression
for the kinetic energy evolving in time, this analytical moment can be com-
pared with its numerical approximation for accuracy and the corresponding
graph is given in figure 7. The general evolution of the distribution function
in an inelastic collision environment is also shown in figure 7. In the conser-
vation routine (constrained Lagrange multiplier method), energy is not used
as a constraint and just density and momentum equations are used for con-
straints. Figure 7 shows the numerical accuracy of the method even though
the energy (plotted quantity) is not being conserved as part of the constrained
optimization method. So, the conservation correction with respect to density
and momentum ensures that energy evolves as required and as expected. All
simulations here, and those shown below, for inelastic interactions have been
carried out for a value of the restitution coefficient e = 0.5, or equivalently
β = 0.75.

5.5 Inelastic Collisions with Diffusion Term

We simulate next equations (2.11) and (2.12) modeling inelastic interactions
in a randomly excited heat bath with constant temperature η. The evolution
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Fig. 7. Evolution of the Boltzmann equation for inelastic collisions of Maxwell type.
Plots of the kinetic energy E(t) (left) and the probability distribution f(v, t) (right);
N=32

equation for the kinetic temperature as a function of time is given by:

dT

dt
= 2η − ζ

1− e2

24

∫

v∈R3

∫

w∈R3

∫

σ∈S2
(1− µ)B(|u|, µ)|u|2f(v)f(w) dσdwdv .

(5.4)
In the case of inelastic Maxwell type interactions according to (2.10), the
evolution of the temperature (5.4) has a closed form

dT

dt
= 2η − ζπC0(1− e2)T , (5.5)

which gives a closed expression for the time evolution of the kinetic tempera-
ture

T (t) = T0e
−ζπC0(1−e2)t + TMM

∞ [1− e−ζπC0(1−e2)t] , (5.6)

where

T0 =
1

3

∫

v∈R3
|v|2f(v)dv and TMM

∞ =
2η

ζπC0(1− e2)
.

As it can be seen from the expression for T, in the absence of the diffusion
term (i.e. η = 0) and for e 6= 1 (inelastic collisions), the kinetic temperature of
the distribution function decays exponentially in time, just like in the previous
section. So, inelastic interaction the presence of the diffusion term pushes the
temperature to a positive stationary state TMM

∞ > 0. Also note that if the in-
teractions were elastic and the diffusion coefficient positive then, TMM

∞ = +∞,
so the model would not admit stationary states with finite kinetic temperature.
These properties were shown in [34] and similar time asymptotic behavior is
expected in the case of hard sphere interactions where THS

∞ > 0 is shown to
exist. However, the time evolution of the kinetic temperature is a non-local
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Fig. 8. Evolution of the kinetic temperature for inelastic collisions of Maxwell type
with a diffusion term; N = 16.

integral (5.4) and does not satisfy a close ODE form (5.5).
We simulate both cases, hard spheres and Maxwell type inelastic interac-
tions, choosing the diffusion parameter η = 1 and the inelasticity parameter
β = 0.75. We also compared in figure 8, for the example of Maxwell type inter-
actions, the kinetic temperature versus the exact analytical solution (5.6) for
different initial data. In figure 9 observe the expected asymptotic behavior in
the case of hard sphere inelastic interactions, for the same parameters values
of η and β.
Notice that the conservation properties for this case of inelastic collisions with
a diffusion term are set exactly like in the previous subsection (inelastic col-
lisions without the diffusion term), i.e. we only constrain mass density an
momentum.

5.6 Maxwell type of Elastic Collisions - Slow down process problem

We consider next the initial value problem (2.20) with β = 1, Jβ = 1 and
B(|u|, µ) = 1

4π
, i.e. isotropic collisions. The second term is a linear collision

integral modeling the effect of particle interactions and with a constant tem-
perature thermostat which conserves only density, and the first term is the
classical bilinear elastic collision integral from (2.20) conserving density, mo-
mentum and energy. The function M(v) in (2.20) denotes the Maxwellian,

given by MT (v) = e
−|v|2
(2T ) 1

(2πT )3/2 , with T the constant thermostat temperature.

In particular, it can be shown [14; 12] that any initial distribution function
converges to the background distribution MT . This behavior is well captured
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Fig. 9. Evolution of the kinetic temperature for inelastic, hard sphere collisions with
a diffusion term and THS∞ < T0; N = 16.

by the numerical method. Indeed, figure 10 corresponds to an initial state of
a convex combination of two Maxwellians. In addition, we can compute the
long time approximation to the self-similar solution as follows. In the finite
energy case of (4.6), with parameters for p = 1, a = 1, µ = 2

3
, θ = 4

3
in (4.2),

i.e. p = 1 in (4.15) and (4.16), the Fourier transform of self-similar solution
takes the exact form

f ss
T (v, t) =

√
(2)

π5/2

∫ ∞

0

1

(1 + s2)2

e−|v|
2/2T̄

T̄
3
2

ds T̄ = T + as2e
−2t
3 , (5.7)

As t → ∞, the time rescaled numerical distribution is compared with the
analytical solution f ss

T for a positive background temperature T and it can
be observed that converges to the Maxwellian MT . It can also be observed
in figure 10, that the computed distribution is in very good agreement with
the analytical self-similar distribution f ss

T from (5.7). Similar agreement is ob-
served for different constant values of T approaching 0 (figure 10).
The interesting asymptotics corresponding to power-like tails and infinitely
many particles at zero energies occur only when T = 0 as shown in (4.10).
Since letting T = 0 in the scheme created an instability, we proposed the fol-
lowing new strategy to counter this effect. We let instead T = ζe−αt, ensuring
that the thermostat temperature vanishes for large time, and set

T̄ = ζe−αt + a s2e
−2t
3 , (5.8)

where the role of α is very important and a proper choice needs to be made.
In our simulations a = 1 and we take ζ = 0.25 and the values of α need to be
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Fig. 10. Evolution of the pdf of a slow down process for Maxwell type collisions
with parameters Θ = 4/3, µ = 2/3;N = 24

chosen exactly as α = µ(1) = 2/3, the energy dissipation rate as described in
section 4.2 to recover the asymptotics as in (4.10).
Remark: We notice that the procedure we use to compute approximations to
self-similar solutions in free space to energy dissipative models of collisional
Maxwell type uses time rescaling of the velocity by the inverse of the squared
root of the kinetic energy (2.17), which it is, for a Maxwell type interaction
model, exponential time rescaling in velocity space, and equivalently, in of
Fourier modes. Such procedure may also be viewed as a non-uniform grid of
Fourier modes that are distributed according to the continuum spectrum of the
associated problem. This choice plays the equivalent role to the corresponding
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Fig. 11. Evolving pdf f(v, t) for a slow down process for Maxwell type interactions
with T = 1

4e−2t/3, N = 32.

spectral approximation of the free space problem of the heat kernel, that is,
the Green’s function for the heat equation, which happens to be a similarity
solution as well, due to the linearity of the problem in this case. In partic-
ular, we expect optimal algorithm complexity using such a non-equispaced
Fast Fourier Transform, as obtained by Greengard and Lin [39] for spectral
approximation of the free space heat kernel. This problem will be addressed in
a forthcoming paper. The following plots elucidate the fact that the scheme
can handle self-similar asymptotics to non-equilibrium states power-like high
energy tails and blow up at the origin, which are achieved asymptotically with
a decaying T . For a decaying background temperature as in (5.8), figure 11
shows evolution of a convex combination of Maxwellians to a self-similar (blow
up for zero energies and power-like for high energies) behavior. Figure 12 plots
the computed distribution along with a Maxwellian with temperature equal
to the computed temperature of the numerical solution. This illustrates that
the computed approximation to the self-similar solution is largely deviated
from a Maxwellian equilibrium. In order to better capture the power-like ef-
fect using this numerical method, we set T = ζe−2t/3 = ζe−µt, see (5.8), where
µ = µ(p) is related the spectral properties of the Fourier transformed equation
as described in section 4.2 on the slow down process problem with µ = µ(1)
the energy dissipation rate. Thus, as it was computed in [14] and revised in
section 4 of this paper, we know that for initial states with finite energy p = 1
and the corresponding energy dissipation rate is µ = µ(1) = 2/3. In particular
p∗ = 1.5 is the conjugate of p = 1 of the spectral curve mq in Theorem 4.1
part (i). In addition, the rescaled probability will converge to the moments of
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Fig. 12. Computed pdf versus the Maxwellian distribution with kinetic temperature
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the self-similar state (4.15), (4.16), that is

e−qt2/3
∫

v∈R3
f(v)|v|2qdv → mq ,

and we know any moment mq is unbounded for q > p∗ = 1.5.
We have plotted in figure 13 the evolution of e−qt2/3

∫
v∈R3 f(v)|v|2qdv for q =

1, 1.3, 1.45, 1.5, 1.55, 1.7, 2.0, computed for different values of N = 10, 14, 16,
18, 22, 26. It can be seen that, as time progresses and as the thermostat tem-
perature T decreases to 0, the approximated numerically computed moments
converge to mq, q ≥ 1.5 and start to become unbounded as predicted. The
value q = 1.5 is the threshold value, as any moment mq>1.5(t) →∞.
From the expected spectral accuracy analysis it can be observed the numerical
mq>1.5(t) moments improve the growth zone for larger final times as the value
of N increases. The reason for such an effect is because the velocity domain
is truncated and we use only a finite number of Fourier modes. That makes
the computed distribution function to take small negative values for large ve-
locities contributing to numerical errors that may cause mq to peak and then
relax back. In particular, larger order moments of the computed self-similar
asymptotics with the negative oscillating parts on large energy tails, result in
large negative moment values for the above mentioned values of N creating
large negative errors. However it is noticed that the negative oscillation values
of f(t, v) coincide with large velocity values used in getting approximating mq

moments, for q > 1.5, and that such an error is reduced in time for larger
number N of of Fourier modes. Finally we point out that a FFTW package
has been used. We have noticed in our numerics are not reliable for that for
the specific choice of values N 6= 6, 10, 14, 18, 22, 26, ..., 6+4k; k = 0, 1, 2, 3, ....
More precisely, the approximating moments to mq(t) start to take negative
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N = 10 N = 14

N = 22 N = 26

Fig. 13. mq(t) for T = e−2t/3

values very quickly, as seen in figure 14 for N = 16 and N = 20, making the
numerical solution inadmissible since analytically mq(t) > 0,∀t. Such effect
may be due to the particular choice of the FTTW solver.

6 Conclusions and Future Work

In conclusion, the presented numerical method works for elastic and inelas-
tic variable hard sphere interactions. This is first of its kind as no additional
modification is required to compute for elastic and inelastic collisions. In com-
parison with the known analytical results (moment equations for elastic BTE,
BKW self-similar solution, attracting Bobylev-Cercignani-Gamba self-similar
solutions for elastic collisions in a slow down process), the computed results
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N = 16 N = 20

Fig. 14. mq(t) for T = e−2t/3

.

are found to be very accurate. The method employs a Fast Fourier Transform
for faster evaluation of the collision integral. Even though the method is im-
plemented for a uniform grid in velocity space, it can even be implemented
for a non-uniform velocity grid. The only challenge in this case is computing
the Fast Fourier Transform on such a non-uniform grid. There are available
packages for this purpose, but such a non-uniform FFT can also be imple-
mented using a high degree polynomial interpolation and this possibility is
currently being explored. The integration over the unit sphere is avoided com-
pletely and only a simple integration over a regular velocity grid is needed.
Even though a trapezoidal rule is used as an integration rule, other integra-
tion rules like a Gaussian quadrature can be used to get better accuracy. For
time discretization, a simple second-order Runge Kutta scheme is used. The
proposed method has a big advantage over other non-deterministic methods
as the exact distribution function can actually be computed instead of just
the averages.

Implementation of this scheme for the space inhomogeneous case is currently
developed by the authors by means of splitting algorithms in advection and
collision components. Next step in this direction would be to implement the
method for a practical 1 and 2−D space inhomogeneous problems such shock
tube phenomena for specular and diffusive boundary conditions, resolution
of the probability distribution function boundary layer discontinuity for dif-
fusive boundary conditions with a sudden change of boundary temperature,
and Rayleigh-Benard instability or a Couette flow problem.
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