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ABSTRACT. The occurrence of oscillations in a well-known asymptotic preserv-
ing (AP) numerical scheme is investigated in the context of a linear model of
diffusive relaxation, known as the P; equations. The scheme is derived with
operator splitting methods that separate the P; system into slow and fast dy-
namics. A careful analysis of the scheme shows that binary oscillations can
occur as a result of a black-red diffusion stencil and that dispersive-type os-
cillations may occur when there is too little numerical dissipation. The latter
conclusion is based on comparison with a modified form of the P; system.
Numerical fixes are also introduced to remove the oscillatory behavior.

1. Introduction. In this paper, we examine oscillatory behavior in asymptotic-
preserving (AP) operator-splitting techniques for the so-called P; equations in one
spatial dimension. These equations form a simple 2 x 2 linear hyperbolic system
which serves as a rough approximation of more complicated kinetic descriptions
of particle transport through a material medium [26, 39]. Operator splitting is
one approach to computing numerical solutions to such systems and, in the cur-
rent context, they are particularly useful in multi-scale applications with diffusive
relaxation, which we describe below. In practice, the P, system serves as a proto-
type for more complicated moment systems. For our current purposes, we focus on
this system in order to make the numerical analysis of the operator splitting more
transparent.

In kinetic models of particle transport, diffusive relaxation is a common phenom-
ena that occurs when the mean free path between particle collisions with a material
medium is small when compared to the macroscopic scales of interest. In such cases,
particles undergo frequent collisions with the material so that, over long time scales,
the predominant macroscopic behavior of the system is diffusive [23, 26, 39].
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Even though particle transport in collisional regimes can be accurately approx-
imated with a diffusive model, a kinetic model is still needed for regimes in which
collisions are less frequent. Thus, when simulating multi-scale problems with regions
of both high and low collisionality, such as multiple materials, a reasonable approach
is to use a kinetic model everywhere, since it is valid for all regimes. The challenge
of such an approach is to develop numerical methods that mimic the asymptotics of
the diffusion limit at the discrete level without resolving temporal and spatial scales
associated with the mean free path, which tends to zero in the diffusion limit. In
particular, a numerical scheme for a kinetic model should be consistent with the
diffusion equation in the diffusion limit. This is the so-called asymptotic preserving
property [16].

Conventional Godunov-type solvers for kinetic models, based on spatial recon-
structions and upwinding, are typically not asymptotic preserving. Like almost all
hyperbolic solvers, these methods use numerical dissipation to maintain stability
around discontinuities, and in most cases, the dissipation increases as the system
approaches the diffusion limit. Eventually, the numerical dissipation will actually
dominate the physical diffusion in the system. Consequently, one may generate
results which appear to resolve the solution profile, but are far from accurate.

Several methods have been developed for the P, equations and related systems
which are AP in the diffusive limit. We mention in passing the well-balanced ap-
proach taken in [10, 11, 2] and the discontinuous Galerkin formulation used in
[24, 29, 32]. However, our focus here is the AP operator splitting methodology that
has been developed over the last ten years, with applications to discrete-velocity ki-
netic models [20], radiative transfer [21], and kinetic semiconductor equations [18].
A complete review of this methodology can be found in [19]. Unlike naive splitting
approaches that are based solely on simplifying the numerical implementation of a
model, AP splitting is done in such a way as to preserve asymptotic balances. In
the context of diffusive relaxation, this means separating a given kinetic model into
two component systems with the following properties:

1. One component contains fast dynamics related to the mean free path. It
is numerically stiff and therefore updated in time with an implicit method.
Although implicit, the update is much simpler than an implicit update of the
full model and can often be implemented in an explicit fashion.

2. The second component contains slower, macroscopic dynamics and can be
updated with a standard explicit method.

3. As an isolated system, each component is well-posed in some sense.

The evolution of the complete system is performed by alternately updating each of
the two components. Such an approach is first order in time, but can improved with
more complex time integrators, such as implicit-explicit IMEX schemes [1, 37, 38].

Although successfully implemented in a number of applications, the operator
splitting methodology has some subtle issues. One of these is the onset on spurious
oscillations which are stable, but lead to unphysical results. Often, such oscillations
arise in so-called transition regimes, where collisions play an important role in the
dynamics of the model, but are not frequent enough to validate the diffusion limit.
Moment equations for simulating transport are most useful in these regimes, either
as stand-alone models or as preconditioners for more complex models.

The cause of spurious oscillations in a scheme based on operator splitting is not
easily deduced from inspection of the two component systems individually. Rather,
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one must look at the composition of the two components as a single method. Previ-
ously, it has been conjectured that oscillations and instabilities might be attributed
to numerical dispersion terms [16] or to numerical diffusion terms defined on black-
red grids [15], both of which are numerical artifacts of the splitting that appear in
the full scheme. We confirm here that binary oscillations can occur in low-resolution
schemes as a result of the black-red grid. However, we also determine that oscil-
lations of a dispersive nature can be attributed to a lack numerical dissipation in
the scheme, as opposed to standard upwind methods which are usually overly dis-
sipative. Our analysis is based on a comparison with a modified version of the P;
system, which was first introduced in [16] and later generalized in [15].

The organization of the paper is as follows. In Section 2, we introduce the P;
equations, their properties, and approaches for computing numerical solutions. In
particular, we identify the challenges associated with upwind methods and how a
splitting approach can be used to attack these challenges. We also exhibit cases
where the splitting scheme is oscillatory. In Section 3, we investigate the first
order version of the splitting scheme in more detail. This includes diagnosing the
source of oscillations and implementing corrections. Results are presented to exhibit
the improvement effected by our corrections. Section 4 contains discussion and
conclusions. Finally, details of numerical schemes are given in the Appendix.

2. The P, system. The P, system, also known as the hyperbolic heat equation
[4, 3, 13], is a relaxation model formulated as a simple 2 x 2 system. In one space
dimension, and with a diffusive scaling, the nondimensional equations are

Op+ 0xm =0, (la)
11 o

These equations are derived from a kinetic transport equation [26, 39, 15], and
the variables p and m are the first two moments of the underlying kinetic dis-
tribution function. Physically, p is the concentration of particles and em is the
bulk momentum, where the parameter ¢ is the magnitude of the macroscopic refer-
ence velocity relative to the microscopic particle velocity. Finally, o = o(z) is the
non-dimensional scattering cross-section. Given a macroscopic length scale L, the
physical cross-section (the inverse of the mean free path) is o/eL.

The mathematical aspects of the P; system and its nonlinear variants—including
the diffusive asymptotic behavior—have been studied both theoretically [27, 22, 33,
30, 31, 35] and numerically [10, 29, 20]. Studies of related models can be found
in the context of radiation and neutron transport [34, 25, 2, 11, 32] and also in
drift-diffusion systems such as charge transport in semiconductors [14, 21, 36] and
chemotaxis [7, 6].

Upon diagonalization, the P; equations take the form of a Goldstein-Taylor model
[9, 41] with wave speeds 4(v/3¢) 1. Indeed, if we set ¢+ = p + +/3em, then

11 o _
oot + gﬁaﬂfr = —@(éfﬁ —¢7), (2a)
_ 11 _ o, _
3t¢ - gﬁazéf) = —@(Qb - ¢+) (2b)
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Meanwhile, the diffusive character of (1) is evident upon formally balancing powers
of € in (1b) to specify a closure for (1a) that is accurate up to O(g2):

1
m = _5 zP (3&)
1
atp - 8m (3—0(919) . (3b)

In the following subsections, we review schemes for the P; system based on both
upwinding and splitting. Because these schemes are not new, many of the details
of their implementation have been moved to the appendix.

2.1. Upwind discretization. Upwind discretizations of (1) and similar equations
are known to have difficulties in diffusive regimes [29, 17, 20, 36, 8|. For fixed mesh
spacing h, there are two related issues that arise in the limit € — 0: (i) excessive
numerical dissipation and (ii) a restrictive time step. Both are easily understood
by way of a semi-discrete, first-order, upwind scheme for (2):

+ 11 ¢;r— ;r—l 95 (.t -
dio; +g%f=—2—52(¢j —-9;), (4a)
11 s — b7 ,
dt¢j_gﬁw:_%(¢j_¢j)7 (4b)

which, in terms of p and m, takes the form

mipr—mi—1 _ h 1 pip —2p+pja

tp]+ 2% 28\/§ h2 ’ (a‘)
11p‘+1—p‘_1 (o h 1 m<+1—2m»+m<_1

dm, + —-tB+2 =l 2y, 2 - Y J I 5b

it 23T g TR TR h2 (5b)

Here, and for the remainder of this paper, the subscript j for state variables p
and m and the cross-section o denotes the average value of the respective quantity
over a computational cell I; of width h. Later, we will also introduce composite
parameters ;, £;, and [;, which depend on o;.

For & small, the dominant balance in (5b) is

L piri—pia
my = =g P+ 0(), (6)

which when substituted into (5a), gives

dip; = Lojilpive = pj) = oj-1lpi = pi=2) | 7 1 piwr = 2pi+pim1 | o).

3 4h? 2e /3 h?

(7)
As e — 0, the first term on the right hand side of (7) yields a consistent discretiza-
tion of the diffusive flux on the right hand side of (3b). However, the second term
on the right hand side of (7)—the numerical dissipation term—will clearly affect
the accuracy of the solution unless the mesh spacing h is chosen much smaller than
e—an expensive undertaking given that one need not resolve such small scales when
discretizing the diffusion equation (3b) directly. The expense of resolving ¢ is exac-
erbated by a stiff hyperbolic CFL condition which requires that the time step At
in any temporal discretization of (5) satisfies

At < eCh (8)

for some O(1) constant C.
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The dissipative nature of the upwind scheme (5) is exhibited by the numerical
solutions of the P; equations presented in Figures 1(a) and 1(c), where temporal
integration of the semi-discrete scheme is achieved using first-order, semi-implicit
method: the fluxes are evaluated explicitly, but the source term in (5b) is handled
implicitly. Solutions are computed for z € [0,2], with a constant cross-section
o = 1.0, periodic boundary conditions, and initial conditions given by

(20, z€[0.8,1.2], ©
P=9 00, 2€[0.0,08)U(1.2,2],
m=20.

Solution profiles for p are given for ¢ = 0.8, t = 0.5 and ¢ = 1074, ¢ = 0.05.
These profiles make clear that, while the upwind scheme is satisfactory for O(1)
values of ¢, it lacks any reasonable sense of accuracy when ¢ is small. Indeed, the
numerical diffusion is so dominant when e = 10~%, that the profiles for p in Figure
1(a) appear as a flat line. For comparison, a highly resolved reference solution is
computed with a second-order, upwind scheme with 20,000 computational cells.

Higher-order Godunov-type schemes will decrease the numerical dissipation in (7)
with respect to h, but the factor of e~ ! remains. For example, in smooth regions
where a slope-limiter is not needed, the modified system for the second order scheme
of Van Leer [42] is [29]

Op + Opm = ih283m L h3 (10a)
11 o 1R, 1 h3 .

Meanwhile the modified system for the piecewise parabolic method [5], again with
no limiter, is [17]

h3
Oup + Opm = — 12\/5 . —p —h4a5 (11a)
11 o 1 A3 1 h*
0, Ox —m=—-——"0p" — 9. 11b
tm+3 2 p+52m 12\/§E zm+9062 xp ( )

In both cases, the numerical dissipation term in the equation for p is O(h?/e).
Profiles for p computed with a second-order upwind method are displayed in
Figures 1(b) and 1(d). When & = 0.8, the scheme performs well, but when ¢ = 107%,
the results are strongly dependent on the mesh spacing. For example, with 200
computational cells, h3/e = 1072, Hence the dissipation is relatively small and
the solution in Figure 1(d) captures the profile of the reference solution fairly well.
However, with 50 computational cells, h?/e = 0.64, which means the dissipation
term in (10) contributes significantly. As a result the profile is quite smeared.

2.2. Splitting method. The splitting approach introduced in [20, 36] was designed
to eliminate the problem of excessive numerical dissipation and to improve the
restrictive CFL condition in (8). The idea is to separate the P; system into the
following components:
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FIGURE 1. Standard upwind schemes with periodic boundary con-
ditions and initial condition (9). In all four figures, the triangles
represent the solution with h = 0.04, the circles represent the solu-
tion with h = 0.01, and the solid line is a highly resolved reference
solution that uses h = 10~%. The timestep is At = 0.1/3¢h

1. Stiff Component:

atp = 07 (123.)
1-¢21 o
Oum+ —5—30ep = = s (128)
2. Non-Stiff Component:
6tp+amm =0, (12C)
1
oym + gazp =0. (12d)

For simplicity, we are assuming that € < 1, although such a restriction is easily lifted
[20]. With this splitting, each component is formally well defined. In particular,
the non-stiff component is a hyperbolic system with wave speeds £1/+/3.

The splitting scheme is implemented by updating the stiff component (12a-b)
first, using the backward Euler method for the time integration and central dif-
ferencing to evaluate the spatial derivative of p. This gives the intermediate state
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pj =i, (13a)
n_ K Piv1 = P
S A A T (13%)
where ) )
€ (1—e*)At
= d =, 14
g €2+UjAt an i €2+O'jAt ( )

The non-stiff component is then evaluated with a first-order upwind method, using
(p*, m*) for an initial condition:

n+1 * * * n i n
P = p AL S S0 N 5 S 2p5 + pj (15a)
At 2h V3 2h ’
n+1 * n n * * *
My "My 1P = Pia _ 1 My = 2my 4 my, (15b)
At 3 2h V3 2h

Because p does not evolve in the stiff step (13), the implementation of the two steps
is essentially explicit.

Alternating evaluation of the two steps in (13) and (15) produces a first order
scheme. Second-order accuracy in space can be easily obtained using a MUSCL
approach to update the non-stiff component. However, second-order temporal ac-
curacy requires a more advanced time integrator such as the one used in [20] or one
of the IMEX methods discussed in [37, 38].

It is straightforward to show that the splitting method produces an AP scheme.
Indeed, as € — 0, (13b) becomes a consistent discretization of the balance in (3a):
* 1 p.?‘i‘l B p?—l

m; = 30, 57 . (16)
When substituted into (15a), the relation in (16) yields a consistent discretization
of the diffusive flux in (3b). Moreover, unlike the semidiscrete upwind discretization
(7), the numerical dissipation term in (15a) is independent of .

The splitting scheme also has a less restrictive CFL condition than the upwind
scheme. In particular, one need only satisfy the two CFL conditions

2
WTN <Ch and EkKAt< C%,

~~—

(17)

for some O(1) constant C. These two conditions correspond to the hyperbolic and
diffusive behavior, respectively, of the P, system. When ¢ < Coh, the hyperbolic
condition on the left will be satisfied independently of the choice of At and, as
€ — 0, the condition on the right becomes the standard time step condition for an
explicit diffusion equation:

Coh?

At
73

(18)

Using the splitting approach, we repeat the same set of numerical experiments
that were performed with the upwind schemes: with ¢ = 1.0, periodic boundary
conditions, and initial conditions given by (9). Results are presented in Figure 2.
When ¢ = 0.8, the splitting method and upwind method give similar results at
both first and second order. (Compare to Figure 1.) When ¢ = 10~%, the splitting
method is more accurate than the upwind method, particularly at first order and
with the coarser mesh. Unfortunately, the profile for the splitting method on the
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coarse mesh contains what appear to be binary oscillations. Such oscillations are a
drawback of the splitting method.

In addition to the binary oscillations observed in Figure 2, other types of oscil-
lations appear in other problems. In Figure 3(a), for example, oscillations appear
in the p profile of an experiment that uses the discontinuous cross-section

{ 0.02, x €[0.35,0.65] U[1.35,1.65],

1.0, = €[0,0.35)U (0.65,1.35) U (1.65,2]. (19)

This profile is computed using a first-order splitting scheme with ¢ = 0.1 and the
same initial condition (9). Clearly, non-physical oscillations occur in the regions
where o is smaller. These oscillations appear dispersive and are not restricted to
discontinuous cross-sections. For example, similar oscillations also occur when the
cross-section is set to the constant value o = 0.02, as is depicted Figure 3(b). These
results are of particular concern because the oscillations cause the profile to go
negative. The reference solution in these figures is generated with a second-order in
space and time upwind scheme with h = 0.01. This spatial step resolves the mean
free path, and the numerical diffusion is O(h3/e) = O(107?).

3. A closer look at operator splitting. In this section, we take a closer look at
the operator splitting method, in an attempt to diagnose and correct oscillations
discussed at the end of the previous section. For simplicity, we focus on the first
order implementation, in which case updating the state of the P, system from
(p"™,m™) to (p" 1, m" 1) requires one iteration of the two steps in (13) and (15).
The complete scheme is

Pt =y LM Ay 1 5541(Pfyo — p7) — Kj-1(p] — pj o)
Y oh 3 4h?
1 p0qy =207+ pl
n 1 rin Pj T Pj-1 7 (20a)
V3 2h
1
mj ™t —mj Bj Pl — Pl L% 1 damiyy — 29my 4 y-amyy
A7 322 oh o2 J \/g 2h
_ b (s — ) = 265(Pf — pf ) i1 (e — P o)
3v3 An 7

(20b)
where v; and k; are given in (14) and

Bi =+ (1—n,). (21)

Two terms in (20) immediately stand out as possible sources of oscillations. First
is one of the diffusive terms appearing in (20a):

Kj+1(0f 10 — p}) — Kj—1(p] = pj_s)
4h?
which is based on a wide stencil that uses every other cell—a so-called black-red

discretization. In [15], it is speculated that this stencil makes the scheme susceptible
to binary oscillations. The other obvious candidate is the dispersive term in (20b):

Kjt1(p] 10 = p}) = 265(p)1 = p7_1) + Kj—1(p] = pj_2) h 2 2
= —0, (k0 O(h?) .

(23)
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FIGURE 2. The splitting scheme, with periodic boundary condi-
tions and initial condition (9). In all four figures, the triangles
represent the solution with h = 0.04, the circles represent the so-
lution with A = 0.01, and the solid line is a reference solution with
h =10"%. The timesteps are chosen using the CFL condition (17)
with C'=0.1

The presence of this term and the subtle numerical issues it poses has been noted
in [16].

We first address the oscillations in Figures 2(c) and 2(d). Because the oscillations
appear to be binary, we replace the black-red diffusion discretization in (20) with a
more standard discretization:

Kj41(Pfro — P}) — Kj—1(p] — pf_2) ~ Kjr1/2(Pfn = P) — Kj—1y2(0f — pi-1)
4h? h2

(24)
where 141/ is the harmonic average of x; and ;1. It is clear from Figure 4(a)

that this change has fixed the problem.
It should also be noted that for the smooth initial condition

p=e 00D and m=0, (25)

there are no oscillations. See Figure 4(b). Thus we conclude that these binary
oscillations are associated with the discontinuity in the initial condition (9).
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p, t=0.075 ot=01

0 05 1 15 2
(a) e=0.1 (b) e=0.1

FIGURE 3. First-order splitting scheme results. Left: discontinu-
ous cross-section given by (19) and initial condition given by (9),
e = 0.1, and ¢t = 0.075. Right: Constant cross-section of o = 0.02,
initial condition given by (9), € = 0.1, and ¢ = 0.1. In both figures,
circles represent the numerical solution with A~ = 0.01 and time
step determined by (17) with C' = 0.1. The solid line is a refer-
ence solution computed with a second-order upwind scheme with
h =0.01 and At = 0.1v/3¢ch.

p, t=0.05

FIGURE 4. On the left, a recalculation of Figure 2(c), with the
black-red diffusion discretization replaced with a standard dis-
cretization, as described in (24). On the right, the black-red dis-
cretization is kept, but the smooth initial condition (25) is used.
In both cases, triangles represent the solution with h = 0.04 and
the solid line is a highly resolved reference solution.

The next task is to determine the cause of oscillations depicted in Figure 3. These
oscillations appear dispersive, so our first inclination is to remove the dispersive
term (23) from (20). Because this term is O(h), removing it does not affect the
consistency of the scheme. Unfortunately, it is clear from Figure 5(a) that the
oscillatory behavior does not improve. We also try replacing the black-red diffusion
discretization with a more standard discretization, as described in (24). However,
as Figure 5(b) shows, the oscillations remain.
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p,t=0.1 pt=0.1

FIGURE 5. Repeat of calculation from Figure 3(a). Left: First-
order splitting scheme with dispersive term (23) removed. Right:
First-order splitting scheme with black-red diffusion term modified
according to (24).

It turns out that one way to suppress the oscillations in Figure 3 can be motivated
by the modified equations for (20), which have the form

h
—— 8%, 26a
230" (26a)

h h
——02(ym) — —=0,(k0%p) , 26b
—=02(9m) — =220, (r0%p) (26)
where k, 8, and v are now functions of . These modified equations are an O(h, At)
approximation of the following hyperbolic-parabolic system:

1
Opp + Oy (’Ym) = gam(ﬁamp) +

1
Oym + =[B0.p + 7—gm =
3 €

1
Orp + O0x(ym) = gax(ﬂaxp) ) (27a)
10 Yo

which, to our knowledge, was first derived for a constant cross-section in [16]. Fol-
lowing the work in [16], a similar set of modified equations was derived in [15] for
general Py systems [26, 39] in one dimension, but with spatially varying cross-
sections.

For a constant cross-section (and thus constant s, 3, and «y ), a first-order semi-
discrete method for (27) is given by

mjip1—mj—1 _ h [Bypir1—2p;+pja
T T R
L Bpjr1—pi-1r o _ h [Bymye —2m;+myy
oymj + =3 5T + 2 =52\ 3 = . (28b)

The numerical dissipation terms, which are necessary for stability and suppression
of oscillations, are on the right. Meanwhile, the discretization for (27) given by the
splitting scheme (20) has numerical dissipation terms of the form

A P20
V3 2h V3 2h

We conclude that the splitting scheme in (20) suffers from too little numerical dissi-
pation, as opposed to a standard upwind solver, which uses too much. Indeed, if we

m” ;= 2m" +m”_
! J i1 (29)
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replace the dissipation terms in (20) by the corresponding dissipation terms in (27),
the oscillations in Figure 3 disappear and we obtain the correct behavior. These
results are presented in Figures 6(a) and (b) for both the constant and non-constant
cross-section.

Rather than repeat our analysis for the second-order version of the splitting
scheme (a much more tedious task), we work directly with the modified system
(27). For a non-constant cross-section, discretization of this system is a challenge
because it is not in conservative form. Here the splitting scheme provides some
guidance. In particular, the form of the dissipation terms in (20) suggests the
appropriate discretization for (27). In terms of the variables p and ¢ := 3~ 'm, the
modified system (27) takes the form

1
Ocp + 0:(76q) = 30:(r0ap) (30a)
1 Yo

This system is now in conservative form, but with spatially varying fluxes. It
therefore requires a generalization of the upwind treatment. Details of the scheme
are given in the appendix. Results that are first-order in time, but second-order in
space are presented in Figures 6(b) and (d). The profiles in these figures are quite
accurate, even though the time integration is only first-order.

4. Discussion and conclusions. We have presented a computational study of an
operator splitting method for the P, equations. Our results show that small mod-
ifications are sometimes needed to suppress numerical oscillations in the method.
In some cases, we have found that discretization of diffusion terms on a black-red
stencil can introduce binary oscillations into a numerical solution. In other cases,
there is simply not enough numerical dissipation to suppress oscillations.

The examples presented here are not exhaustive. Indeed, a more complete analy-
sis of the splitting scheme would be needed to conclude that the scheme is completely
free of oscillations. For example, one could attempt to establish some notion of a
total variation diminishing (TVD) property or, more generally, a positivity property
in the sense of Lax and Liu [28].

While oscillations of an isolated system may be stable, they may introduce insta-

bilities when coupled to large multi-physics codes. For example, it is important to
ensure that a numerical scheme does not produce false minima or maxima. Moving
forward, it seems that a more robust approach is to use modified systems like (27).
This approach has seen some initial success in [16, 15], but the presence of non-
conservative products in these systems presents a major obstacle. In this respect,
operator splitting schemes may continue to provide insight into how to appropriately
discretize modified systems.
Acknowledgements. The authors would like to thank R. G. McClarren, R. B. Lowrie,
and S. Jin for valuable discussion and insightful comments. This work supported by
the U.S. Department of Energy at the Los Alamos National Laboratory under con-
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5. Appendix. The purpose of this appendix is to provide complete details of the
schemes used to produce the results presented in the paper. As in the main text, all
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p,t=0.1 p, t=0.075
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FIGURE 6. Left: P; solution at time ¢t = 0.1 with constant cross-
section 0 = 0.02. Right: Solution at time ¢ = 0.075 with the
discontinuous cross section given by (19). In both figures, the solid
line is the reference solution and the circles are the solution using
the splitting method with the corrected numerical diffusion. The
timestep is chosen using the CFL conditions (17) with C' = 0.1

state variables and the cross-section o are adorned with the subscript j to denote
an average value over a computational cell I; of width h. The parameters v;, 3;,
and k; are composite parameters that depend on o; via the relations given in (14)
and (21). Supscripts of the form j 4+ 1/2 denote pointwise values, or approximations
thereof, at cell edges.

5.1. A few basic tools. Many of the schemes in the paper use the following tools.

Discretization of Linear Flux Gradients. Let Au, be a linear flux in a hyper-
bolic system, with A a constant matrix. A finite volume, upwind discretization of
Au, is given by

Tj+1/2
/ Aux dCC = A(Uj+1/2 — u‘j_l/g)

Tj—1/2
1

1
=~ S A (W 20+ War) + 51AN(Wajoe = ipny0,) - (B1)

Here the t-dependence of u has been suppressed and the matrix |A| := R|A|R™!
is calculated using the eigenvectors and eigenvalues in the diagonal decomposition
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A = RAR™!. The right and left edge values of u in (31) are given by

Wjt1/2,0 = RWj+1/2,e and Wjp1/2r = RWj+1/2,r7 (32)
and the characteristic edge values are determined by linear reconstructions on ad-
jacent cells; that is,

h / h’ /

Wit1/2,6 = Wj + §Wj and Wit1/2,r = Wj4+1 — EWjJrl ) (33)
where w; := R™'u; and the slopes w;- approximate derivatives in each cell. We use
three different approximations for the slope: (i) zero slope; (ii) central difference;
and (iii) the double minmod limiter:

1
/

1.
w; =  minmod (2(Wj+1 = Wj)s 5 (Wit = Wj1), 2(w; — Wj—l)) ;o (39

which is applied to vectors component-wise.
Second-Order Time Integration. For second-order time integration, we use two

methods: a TVD Runge-Kutta method and an IMEX method. For an ODE of the
form

y="Ly), (35)

with L linear, a second-order Runge Kutta scheme is [12, 40]
yM =y + AtL(y") (36a)
y" = 050y" +yW + AtLiy™)]. (36h)

Given L = L; + Lo, the following IMEX scheme [38, 37] is used when an explicit
update of Ly and an implicit update of Lo is desired:

y D =y" + AtnLa(y™") (372)
y® = y" + AL (yD) + (1 — 20)La(y D) + nLa(y )], (37b)
At
y' =y + SLY) + L) + L) + Ly®)]. (637
where
1

n:l—ﬁ. (38)

5.2. The schemes. We now present the details for the upwind and splitting schemes

used to produce results in the main paper. We also write out the details for dis-
cretizing the regularized system (30).

Upwind scheme. Let u = (p,m)T. Then the upwind discretization of (1) is given

by
d; + A (04172 ; uj_1/2) = —0,Q.u;, (39)
where
1 0 0 0
3e2 g2

Note that the time dependence of u has been suppressed. The evaluation of the
fluxes Acujyq)9 is given by (31) with A = A.. For the test cases in Figure 1, a
first-order spatial discretization is accomplished by setting the slope in (33) to zero.
This is exactly (5). Meanwhile, the second order version uses the double minmod
limiter (34). The time integration of (39) is accomplished at first order with the
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forward Euler method, and at second order by an IMEX scheme of the form given
in (37) that treats the flux terms explicitly and the source term implicitly. In both
cases, the time step is determined by (17) with C' = 0.1. The second-order reference
solutions in Figures 3, 5, and 6 are all computed using in the same way, with 200
computational cells.

The highly resolved reference solutions in Figures 1, 2, and 4 are also computed
with an upwind method, but with 20000 cells. The exact implementation of the
method depends on the value €. For ¢ = 0.8, the spatial reconstruction uses the
double minmod limiter (34) and the Runge-Kutta method (36a) with a time step
At = 0.1ev/3h. Thus the scheme is fully second order. For ¢ = 10~* the solution
is presumably smooth, so the spatial derivative in (33) is computed using a cen-
tral difference—with no limiting—in order to obtain second-order spatial accuracy.
However, only a first order time integrator is used, with the source term treated
implicitly and the flux term explicitly. Here we use a time step is At = 0.8v/3h,
which is very restrictive when ¢ is so small. In particular At ~ h2, so a second-order
time integrator is not really needed.

Splitting Scheme. For the splitting scheme, the implicit step (12a) is accomplished
by using (13) for both first and second-order as

(Wjp1/2 — Wj-1/2)

diuj + Aq I =0, (41)
where u; = (p3,mj) (see (13)) and
10
m=ali=(y ) (12)
3

As in the upwind discretization above, the evaluation of the fluxes Au;,; is deter-
mined by (31), except this time with A = A;. At first order, the slope approximation
in (33) is set to zero; at second order, the double minmod limiter (34) is used. Time
integration at first order involves alternating evaluation of the two steps in (13)
and (15). To get second order in time, the IMEX scheme (37) is used, where Ly
represents the non-stiff step and Lo represents the stiff step. The time step is set
according to (17) with C = 0.1.

The first order version of the splitting scheme is given explicitly in (20). First-
order modifications to this scheme, which were introduced to suppress the non-
physical oscillations, are described explicitly in Section 3. Rather than directly
implement similar modifications to the second-order splitting method, we instead
work with the regularized system (30).

Regularized Equations. The numerical scheme for regularized system (30) (which
was used to generate the profile in Figures 6(c) and 6(d)) can be formulated as a
generalization of the upwind method for spatially varying fluxes. However, it is
simpler to write out the scheme in terms of the components p and ¢. In semi-
discrete form, the scheme is
(VD) j+172 — (VB j—1y2 1 Kjq1/2(0f1 — PF) — Kj—1/2(0] — pf—1)
6tp] + =3 )
h 3 h?
(43a)

L pjri/2 = pj-1/2 V05
™ = (430)
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where k1o is the harmonic average of surrounding cell values:
o Jo = 2I£jlij+1

12 =
Kj + Kjt1

To compute edge values in (43), we define the diagonal variables

w* = p £ /3yBeq, (45)
so that
1, 4 _ 1 [(vB)je1/2, o _
Pit1/2 = §(wj+1/2+wj+1/2) and  (v8q)j11/2 = % T(wj+1/2_wj+l/2)'
(46)
Because of the spatial variation in v and 3, two upwinding steps are needed. First
+ . . .2
the edge values Wiy are determined in standard fashion:

+ _ ot - -
Witiye = Witipey and Wiyyp = Wiy, (47)
where the left and right values are based on linear reconstructions:
h h
+ — ot + - - _
Witiyoy = W; Fgs; and wi = wig - o8 (48)

and the slopes s* are approximated with the double minmod limiter (34). Next,

the products (vyBw®);41/2 in (46) are computed as

(\/% w+)j+1/2 =/ (VB)j+1/2.0 w;rﬂ/u (49)
(\/7_5w_)j+1/2 =1/ (V8)j41/2.r Wity /o (50)

where (v3);41/2,» and (vf);4+1/2,¢ are calculated with the same type of linear re-
construction as in (48), again with the double minmod limiter.

For constant cross-section, the approach described here reduces to a standard
second-order (in space) upwind method. We use this method with a forward Euler
time integrator for (43) to compute the solutions presented in Figures 6(c) and (d).
Thus the scheme is second order in space, but only first order in time. The time
step is set by (17) with C = 0.1.
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