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Abstract
The linear Schrödinger equation with periodic potentials is an im-

portant model in solid state physics. The most efficient direct simula-
tion using a Bloch decomposition based time-splitting spectral method
[17] requires the mesh size to be O(ε) where ε is the scaled semiclassi-
cal parameter. In this paper, we generalize the Gaussian beam method
introduced in [20] to solve this problem asymptotically. We combine
the technique of Bloch decomposition and the Eulerian Gaussian beam
method to arrive at an Eulerian computational method that requires
mesh size of O(

√
ε). The accuracy of this method is demonstrated via

several numerical examples.
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1 Introduction

The linear Schrödinger equation with periodic potentials

iε
∂Ψε

∂t
= −ε2

2
∆Ψε + VΓ

(x

ε

)
Ψε + U(x)Ψε, x ∈ Rn , (1.1)
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is a simple model in solid state physics which describes the motion of elec-
trons with the periodic potentials generated by the ionic cores. Here Ψε(t, x)
is the wave function, ε is the re-scaled Plank constant in the semiclassical
regime, and U(x) is the smooth external potential. The oscillatory lattice-
potential VΓ(z) is a periodic function in some regular lattice Γ.

We consider this model in one dimension with the two-scale WKB initial
condition:

Ψε
0(x, z :=

x

ε
) = A0(x, z)eiS0(x)/ε . (1.2)

Without loss of generality we assume Γ = 2πZ, i.e.

VΓ(z + 2π) = VΓ(z), ∀z ∈ R. (1.3)

We introduce several physical concepts related to (1.3) [1]:

• The fundamental domain of the lattice Γ is C = (0, 2π).

• The dual lattice Γ∗ = Z.

• The (first) Brillouin zone is B =
(
−1

2
,
1
2

)
, which is the fundamental

domain of Γ∗.

The direct numerical simulation of (1.1)-(1.2) is prohibitively expensive
due to the small parameter ε in the semiclassical regime and the highly
oscillating structure of VΓ. The standard time-splitting spectral method [3]
requires the mesh size be o(ε) and the time step be o(ε). A novel time-
splitting spectral method based on the Bloch decomposition was proposed
recently by Huang, Jin, Markowich and Sparber [17] which relaxes the time
step requirement to be O(1) with a much coarser mesh size of O(ε). However,
such a mesh size is still expensive especially in high dimensions for a very
small ε.

One efficient alternative way is to solve (1.1)-(1.2) asymptotically by the
Bloch band decomposition and the modified WKB method [4, 12], which
leads to eikonal and transport equations in the semi-classical regime. The
problem of these approaches is that they do not give accurate solution
around caustics. The Gaussian beam method, developed for the high fre-
quency linear waves [30, 33, 32, 26, 27, 20], and also in the setting of quantum
mechanics [13, 14, 15], provides an efficient way to compute the wave ampli-
tude around caustics. The idea is to allow the phase function to be complex
and choose the imaginary part properly so that the solution has a Gaussian
profile. The detailed construction and its validity at caustics were analyzed
by Ralston etc in [31, 6]. All these previous works gave the Gaussian beam
method in the Lagrangian framework.

In [20], we developed an Eulerian Gaussian beam method to solve the
linear Schrödinger equation asymptotically. The method consists of solving
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n complex-valued and 1 real-valued homogeneous Liouville equations for n-
space dimensional problems. The solution to this method has been showed
to have good accuracy even at caustics, with a mesh size as coarse as O(

√
ε).

There have also been other Eulerian Guassian beam methods [23, 22] that
use much more complex-valued inhomogeneous Liouville equations. In this
paper, we generalize our method in [20] for (1.1)-(1.2) with the help of the
Bloch decomposition. The idea is to use the Eulerian Gaussian beam method
of [20] for each of the Bloch band, and then superimpose them for all the
bands. (This method is restricted to adiabatic cases which do not permit
band-crossings.) Since effectively only small number of bands are needed
numerically and the Liouville equation is solved locally in the vicinity of a
co-dimensional zero level curve [28, 29, 25], the overall cost of this method
is much smaller than a full simulation by directly solving (1.1) when ε is
small.

For periodic potentials, every energy band could yield caustics in the
semiclassical regime. Since the solution is a superposition of many energy
bands, there could be many caustics thus significantly reduce the overall
accuracy of the semiclassical method. Thus methods accurate near caustics
are highly desirable for such problems.

The paper is organized as follows. In Section 2 we give an overview
of the Bloch decomposition and the semiclassical limit of the Schrödinger
equation with periodic structures. In Section 3, we formulate the Gaussian
beam method for solving (1.1)-(1.2) by combining the Bloch decomposition
with the Eulerian Gaussian beam method of [20]. We show the accuracy and
efficiency of this Gaussian beam method through several numerical examples
in Section 4, and make some conclusive remarks in Section 5.

2 Overview of the Bloch decomposition and the
semiclassical limit

2.1 The Bloch decomposition

Define Em(k) as the m-th eigenvalue and χm(k, z) as the corresponding m-th
eigenfunction of the shifted Hamiltonian H(k, z):

H(k, z) :=
1
2
(−i∂z + k)2 + VΓ(z), (2.1)

H(k, z)χm(k, z) = Em(k)χm(k, z), (2.2)

χm(k, z + 2π) = χm(k, z), z ∈ R, k ∈ B. (2.3)

Em(k), k ∈ B is called the m-th energy band, and {Em(k), χm(k, z)}m

describe the spectral properties of the shifted Hamiltonian H(k, z). It has
been shown in [35] that there exists an ordered countable family of real
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eigenvalues {Em(k)}∞m=1 such that

E1(k) ≤ E2(k) ≤ · · · ≤ Em(k) ≤ · · · , m ∈ N,

and the complete set of the eigenfunctions {χm(k, z)}∞m=1 for each k ∈ B
forms an orthonormal basis of L2(C). This allows for a decomposition of the
initial condition (1.2) in terms of Bloch waves with the help of the stationary
phase method (cf. [4, §3.2 and §4.7 of Chapter 4]):

Ψε
0(x, z) =

∞∑

m=1

a0
m(x)χm(∂xS0, z)eiS0(x)/ε + O(ε), (2.4)

where the coefficient

a0
m(x) =

∫ 2π

0
A0(x, z)χm(∂xS0, z)dz. (2.5)

2.2 The semiclassical limit and its computation

Plugging the modified WKB ansatz :

Ψε(t, x) = A
(
t, x,

x

ε

)
eiS(t,x)/ε, (2.6)

into (1.1) yields, to the leading order, the following eikonal equation for Sm

and transport equation for am via a separation of the slow scale x and fast
scale x/ε (cf. [4]):

∂tSm + Em(∂xSm) + U(x) = 0 , (2.7)

∂tam + E′
m(∂xSm)∂xam +

1
2
am∂x

(
E′

m(∂xSm)
)

+ βmam = 0, (2.8)

where βm(t, x) ∈ iR is given by

βm = 〈∂tχm, χm〉L2(C) −
1
2
∂x

(
E′

m(∂xSm)
)

− i

2
〈(∂z + i∂xSm)∂xχm + ∂x(∂z + i∂xSm)χm, χm〉L2(C)

(2.9)

with χm evaluated at k = ∂mSm(t, x) and 〈·, ·〉L2(C) defined as

〈f, g〉L2(C) =
∫ 2π

0
fgdz.

The solution to (1.1) is approximated by

Ψε(t, x) =
∞∑

m=1

am(t, x)χm

(
∂xSm,

x

ε

)
eiSm(t,x)/ε + O(ε). (2.10)
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Note that since βm(t, x) ∈ iR, the following conservation law holds ([4]):

∂t |am|2 + ∂x(E′
m(∂xSm) |am|2) = 0.

The solution to the Hamilton-Jacobi equation (2.7) develops singulari-
ties when caustic forms, and the correct semiclassical limit of the physical
observables (density, velocity, etc.), as ε → 0, becomes multivalued beyond
caustics. To describe the dynamics beyond caustics, one can use the Wigner
transform to obtain the Liouville equation along each band ([2]):

Lmwm = ∂twm + E′
m(ξ)∂ywm − U ′(y)∂ξwm = 0 , (2.11)

where wm(t, x, ξ) > 0 is the density distribution of the m-th energy band
of the particle. The operator Lm is the linear Liouville operator for the
m-th energy band. The semiclassical limit initial data for wm, for (1.2), is
measure-valued:

wm(0, x, ξ) =
∣∣a0

m

∣∣2 δ(ξ − ∂xS0) , (2.12)

where a0
m is given by (2.5).

The (multivalued) physical observables such as ρm, um = ∂xSm etc. can
be evaluated by taking the moments of wm over ξ.

An efficient numerical method to solve the Liouville equation (2.11) with
initial data (2.12) was introduced in [5, 18, 19], through a decomposition of
wm = fmδ(φm) where both fm and φm solve the same Liouville equation for
the m-th energy band (in the level set framework):

Lmφm = 0, Lmfm = 0 .

One can compute the multivalued densities by

ρm(t, y) ∈
{

f(t, y, ξ)
|∂ξφm|

∣∣∣φm(t, y, ξ) = 0
}

. (2.13)

Based on this formulation, a level set method for the semiclassical limit of
(1.2) was introduced in [24]. For the computations of multivalued solutions
to this problem see also [8, 9, 10, 11]. The problems with all these semi-
classical methods is that ρm defined in (2.13) blows up at caustics since
∂ξφm = 0.

In Section 3, we will introduce the Bloch decomposition-based Gaussian
beam method to solve (1.1)-(1.2), which is a generalization of the Eulerian
Gaussian beam method we developed in [20]. The key difference from (2.13)
is that, one can get rid of the singularities of |∂ξφm| by making φm complex.

2.3 Numerical computation of the Bloch bands

In this subsection, we briefly restate the numerical computation of the Bloch
bands {Em(k), χm(k, z)}m for convenience. The details are referred to [17,
Section 2.2].
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Define the Fourier transform of χm as

χ̂m(k, λ) =
1
2π

∫ 2π

0
χm(k, z)e−iλzdz.

By taking the Fourier transform of (2.2), one has

(λ + k)2

2
χ̂m(k, λ) +

1
2π

∫ 2π

0
e−iλzVΓ(z)χm(k, z)dz = Em(k)χ̂m(k, λ) .

(2.14)
The discrete formula of (2.14) for λ ∈ {−Λ, · · · ,Λ− 1} ⊂ Z reads as

H(k, Λ)




χ̂m(k,−Λ)
χ̂m(k, 1− Λ)

...
χ̂m(k, Λ− 1)


 = Em(k)




χ̂m(k,−Λ)
χ̂m(k, 1− Λ)

...
χ̂m(k, Λ− 1)


 , (2.15)

where the 2Λ× 2Λ matrix H(k, Λ) is given by

H(k, Λ) =




(−Λ+k)2

2 + V̂Γ(0) V̂Γ(−1) · · · V̂Γ(1− 2Λ)
V̂Γ(1) (−Λ+1+k)2

2 + V̂Γ(0) · · · V̂Γ(2− 2Λ)
...

...
. . .

...
V̂Γ(2Λ− 1) V̂Γ(2Λ− 2) · · · (Λ−1+k)2

2 + V̂Γ(0)




.

The eigenfunction χm(k, z) is computed by

χm(k, z) =
∫ +∞

−∞
χ̂m(k, λ)eiλzdλ =

Λ−1∑

λ=−Λ

χ̂m(k, λ)eiλz.

3 A Bloch decomposition-based Gaussian beam
method

In this section we give the Bloch decomposition-based Gaussian beam method
using both the Lagrangian and Eulerian formulations. We first briefly intro-
duce the Lagrangian formulation for solving the Schrödinger equation with
periodic potentials, then focus on the Eulerian formulation.

3.1 The Lagrangian formulation

In this subsection, we adopt the Gaussian beam approximation to the m-th
energy band of the Schrödinger equation (1.1). Denote

ϕε,m
la (t, x, y0) = am(t, y)χ̃m

(
∂xTm,

x

ε

)
ei Tm(t,x,y)/ε, (3.1)
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where y = y(t, y0), and Tm(t, x, y) is a second order Taylor truncated phase
function

Tm(t, x, y) = Sm(t, y) + pm(t, y)(x− y) +
1
2
Mm(t, y)(x− y)2.

Note that Sm ∈ R, pm ∈ R, am ∈ C, Mm ∈ C. χ̃m

(
∂xTm,

x

ε

)
is χm

(
k,

x

ε

)

with real-valued k replaced by complex-valued ∂xTm and

χ̃m(k, z) = χm(k, z) for k ∈ R.

Using the Lagrangian beam summation formula (for example, [16]) and
(2.10), one has the Lagrangian Gaussian beam solution to (1.1) as

Φε
la(t, x) =

∞∑

m=1

∫

R

1√
2πε

rθ(x− y(t, y0))ϕ
ε,m
la (t, x, y0)dy0, (3.2)

in which rθ ∈ C∞
0 (Rn), rθ ≥ 0 is a truncation function with rθ ≡ 1 in a ball

of radius θ > 0 about the origin and the trajectory of the beam center y is
chosen as

dy

dt
= E′

m(pm), y(0) = y0.

By a similar derivation of the Lagrangian formulation as in [20, Section
2.1], one has the set of the evolutionary ODEs (the details of the derivation
are given in Appendix):

dy

dt
= E′

m(pm), (3.3)

dpm

dt
= −U ′(y), (3.4)

dMm

dt
= −E′′

m(pm)M2
m − U ′′(y), (3.5)

dSm

dt
= E′

m(pm)pm − Em(pm)− U(y), (3.6)

dam

dt
= −1

2
E′′

mMmam + um,1(pm)U ′(y)am , (3.7)

where um,1 is given by

um,1(k) = 〈∂kχm, χm〉L2(C), (3.8)

and y = y(t, y0), pm = pm(t, y(t, y0)), Mm = Mm(t, y(t, y0)), Sm =
Sm(t, y(t, y0)), am = am(t, y(t, y0)).

The equations (3.3)-(3.4) are called the ray-tracing equations; (3.5) is a
Riccati equation for the Hessian Mm, which could be solved by the dynamic
first order system of ray tracing equations:

dPm

dt
= E′′

m(pm)Rm,
dRm

dt
= −U ′′(y)Pm, (3.9)

Mm(t, y(t, y0)) = RmP−1
m . (3.10)
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According to [32, 20] we specify the initial conditions for (3.3)-(3.7) as

y(0, y0) = y0, (3.11)
pm(0, y0) = ∂yS0(y0), (3.12)

Mm(0,y0) = ∂2
yS0(y0) + iI, (3.13)

Sm(0, y0) = S0(y0), (3.14)
am(0, y0) = a0

m(y0), (3.15)

where a0
m is given by (2.5).

When one computes the Lagrangian beam summation integral using
(3.1) and (3.2), the complex-valued ∂xTm = pm+(x−y)Mm could be approx-
imated by the real-valued pm with the Taylor truncated error of O(|x− y|),
i.e.

Φε
la(t, x) =

∞∑

m=1

∫

R

1√
2πε

rθ(x−y)am(t, y)χ̃(pm,
x

ε
)eiTm(t,x,y)/εdy0+O(|x− y|) .

(3.16)
Since |x− y| is of O(

√
ε) (cf. [32, 20]), this approximation does not destroy

the total accuracy of the Gaussian beam method, yet it provides the benefit
that the eigenfunction χ̃m(k, z) is only evaluated for real-valued k which
implies χ̃m(k, z) = χm(k, z).

3.2 The Eulerian formulation

In this subsection, by an application of a similar technique developed in [20]
we introduce the Eulerian Gaussian beam formulation using the level set
method to solve (1.1)-(1.2).

First, corresponding to ray tracing equations (3.3)-(3.4), an Eulerian
level set method for computing (multivalued) velocity um = ∂xSm solves for
the zero level set of φm which satisfies the homogeneous Liouville equation
[5, 19]:

Lmφm = 0, (3.17)

where Lm is defined in (2.11). Next, since the Lagrangian system (3.6)-
(3.7) is defined on the rays (characteristics), its Eulerian formulation can be
written as [23, 22]:

LmSm = E′
m(ξ)ξ − Em(ξ)− U(y), (3.18)

Lmam = −1
2
E′′

m(ξ)Mmam + um,1(ξ)U ′(y)am, (3.19)

and um,1 is determined by (3.8). It was observed in [20] that, if φm is
complex, then Mm in (3.19) can be obtained from

Mm = −∂yφm

∂ξφm
.
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To be compatible with the initial data (3.13)-(3.15), we use the following
initial conditions:

φm(0, y, ξ) = −iy + (ξ − ∂yS0) (3.20)
Sm(0, y, ξ) = S0(y), am(0, y, ξ) = a0

m(y) , (3.21)

where a0
m is given by (2.5).

By essentially identical proofs as in [20, Theorem 3.2], one could see
that (3.20) complexifies the Liouville equation (3.17) and makes ∂ξφm non-
degenerate for all t > 0.

The multivalued velocity um is given by the zero level set of the real part
of φm, i.e.

Re φm(t, y, um) = 0

Define

ϕε,m
eu (t, x, y, ξ) = am(t, y, ξ)χm(ξ,

x

ε
)eiTm(t,x,y,ξ)/ε, (3.22)

where

Tm(t, x, y, ξ) = Sm(t, y, ξ) + ξ(x− y) +
1
2
Mm(t, y, ξ)(x− y)2,

then the Eulerian beam summation formula corresponding to (3.16) is given
by (cf. [20])

Φε
eu(t, x) =

∞∑

m=1

∫

R

∫

R

1√
2πε

rθ(x− y)ϕε
eu(t, x, y, ξ)δ(Re[φm])dξdy . (3.23)

Remark 3.1 Equation (3.23) could be solved by a discretized delta function
integral method [34] or a local semi-Lagrangian method introduced in [20,
Section 3.3].

Remark 3.2 The curve integration method for the computation of phase
S from a given multivalued velocity u = ∂xS introduced in [7, 21] cannot
be used here since the integration constant, which can not be ignored when
evaluating (3.23), is different for different bands. Therefore we use the inho-
mogeneous Liouville equation (3.18) to compute the phase function directly,
as in [22, 23].

Remark 3.3 Although the Liouville equations are defined in the phase space,
thus the computational dimension is doubled than a direct computation of
the Schrödinger equation (1.1), one only needs to solve the Liouville equa-
tions locally in the vicinity of a co-dimensional zero level curve of Re(φm)
[28, 29, 25], hence with a mesh size of O(

√
ε), the overall cost of this method

is much smaller than a full simulation by directly solving (1.1) when ε is
small. For cost analysis of the Eulerian Gaussian beam method see [20].
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Figure 1: The eigenvalues Em(k), m = 1, · · · , 8 of the Mathieu’s model.

4 Numerical examples

In this section, we test the accuracy of the Bloch decomposition-based Gaus-
sian beam method by several numerical examples. The ‘true’ solution of the
Schrödinger equation with periodic potentials is solved by the Strang split-
ting spectral method [3] using small enough mesh sizes and time steps (both
of o(ε)). In all examples, we use Mathieu’s model for the periodic potential
VΓ(z) = cos z. In numerical examples of Section 4.2, the truncation param-
eter θ in (3.23) is chosen fairly large so that the cut-off error is almost zero.

4.1 Approximations of the Bloch decomposition

We first look at the eigenvalues {Em(k)}∞m=1 and eigenfunctions {χm(k, z)}∞m=1

of the shifted Hamiltonian (2.1) for Mathieu’s model. The first eight eigen-
values and modulus of eigenfunctions are shown in Figures 1-2, which are
computed by the algorithm described in Section 2.3. We notice that in Fig-
ure 1 some of the eigenvalues around k = 0, ±0.5 are very close to each other
which may numerically cause band crossing. The issue of band crossing is
itself an interesting topic which will not be studied in this paper. To avoid
unnecessary numerical complication, we do not put mesh points around the
singular points (k = 0, ±0.5).
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Figure 2: The modulus of the eigenfunctions |χm(k, z)|2 , m = 1, · · · , 8 of
the Mathieu’s model.
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Example 1. We test the accuracy of the Bloch decomposition by the fol-
lowing two initial conditions

1) A0(x, z) = e−50(x+0.5)2 , S0(x) = 0.3x + 0.1 sin x, x ∈ [−1, 0] , (4.1)

2) A0(x, z) = e−50(x+0.5)2 cos z, S0(x) = 0.3x + 0.1 sin x, x ∈ [−1, 0]. (4.2)

The l2 errors of the Bloch decomposition with different ε are given in
Table 1 and Table 2. As one can see, the errors are basically independent
of ε and the accuracy is good even for small number of bands.

M 6 8 10 12
ε = 1/128 5.49× 10−4 9.85× 10−6 1.10× 10−7 8.37× 10−10

ε = 1/512 5.49× 10−4 9.85× 10−6 1.10× 10−7 8.30× 10−10

ε = 1/2048 5.48× 10−4 9.53× 10−6 1.10× 10−7 8.31× 10−10

Table 1: the l2 errors of Bloch decomposition for the initial data (4.1).

M 6 8 10 12
ε = 1/128 3.83× 10−3 1.15× 10−4 1.94× 10−6 2.07× 10−8

ε = 1/512 3.83× 10−3 1.15× 10−4 1.94× 10−6 2.07× 10−8

ε = 1/2048 3.83× 10−3 1.15× 10−4 1.94× 10−6 2.07× 10−8

Table 2: the l2 errors of Bloch decomposition for the initial data (4.2).

4.2 The Gaussian beam approximations

In this subsection, we conduct numerical experiments to show the efficiency
and accuracy of the Bloch decomposition-based Gaussian beam method.
We take the external potential U(x) = 0 for all the examples. This is not
necessary for the numerical method, but is convenient for us to stay away
from the singularity points of the Bloch eigenfunctions (k = 0, ±0.5). The
solutions of the Liouville equations (3.17)-(3.19) can be obtained using the
method of characteristics:

φm(t, y, ξ) = −i(y − E′
m(ξ)t) + ξ − S′0(y − E′

m(ξ)t),
Sm(t, y, ξ) = S0(y − E′

m(ξ)t) + E′
m(ξ)ξt− Em(ξ)t,

am(t, y, ξ) =
a0

m(y)√
1 +

(
i + S′′0 (y − E′

m(ξ)t)
)
E′′

m(ξ)t
.

We will denote the solution given by (3.23) as Φε
GB.
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Example 2. In this example, we take (4.1) as the initial data for the
Schrödinger equation (1.1). The l2 errors between the solution of the Schrödinger
equation Ψε and that of the Gaussian beam method Φε

GB are given in Table
3. Here we take time t = 0.2, the number of Bloch bands M = 8, the num-
ber of Gaussian beams Ny = 32 (which is enough for numerical accuracy
and shows the efficiency for small values of ε). The convergence rate in ε is
of order 0.6730 in the l2 norm. We plot the wave amplitudes and absolute
errors for different ε in Figure 3.

ε 1/128 1/512 1/2048
||Φε

GB −Ψε||2 6.41× 10−2 2.17× 10−2 9.92× 10−3

Table 3: the l2 errors of wave function for Example 2.

Example 3 In this example, the same experiments are carried out for initial
data (4.2). With the same numerical parameters as in Example 2, the l2

errors between the solution of the Schrödinger equation Ψε and that of the
Gaussian beam method Φε

GB are given in Table 4. The convergence rate in ε
is of order 0.7054 in the l2 norm. We plot the wave amplitudes and absolute
errors for different ε in Figure 4.

ε 1/128 1/512 1/2048
||Φε

GB −Ψε||2 4.85× 10−2 1.43× 10−2 6.86× 10−3

Table 4: the l2 errors of wave function for Example 3.

5 Conclusion

In this paper, we developed an efficient Eulerian computational method for
the linear Schrödinger equation with periodic potentials. Using the Bloch
decomposition, we generalize the Gaussian beam method introduced in [20]
to solve the problem with periodic potentials asymptotically with an error
of O(

√
ε), where ε is the small semiclassical parameter. While the classi-

cal numerical method, such as the recently developed Bloch-decomposition
based time-splitting spectral method, for the original Schrödinger equation
requires the mesh size to be of O(ε), this new method requires the mesh size
to be merely of O(

√
ε). Several numerical examples are given to demonstrate

the accuracy and effectiveness of this Bloch decomposition-based Gaussian
beam method.

13



−1 −0.8 −0.6 −0.4 −0.2 0
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

 

 

|Ψε|

|Φ
GB
ε |

−1 −0.8 −0.6 −0.4 −0.2 0
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

 

 

|Ψε−Φ
GB
ε |

(a) ε =
1

128

−1 −0.8 −0.6 −0.4 −0.2 0
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

 

 

|Ψε|

|Φ
GB
ε |

−1 −0.8 −0.6 −0.4 −0.2 0
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

 

 

|Ψε−Φ
GB
ε |

(b) ε =
1

512

−1 −0.8 −0.6 −0.4 −0.2 0
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

 

 

|Ψε|

|Φ
GB
ε |

−1 −0.8 −0.6 −0.4 −0.2 0
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

 

 

|Ψε−Φ
GB
ε |

(c) ε =
1

2048

Figure 3: Example 2, the Schrödinger solution |Ψε| versus the Gaussian
beams solution |Φε

GB| at ε = 1
128 , 1

512 , 1
2048 . The left figures are the com-

parisons of the wave amplitude at t = 0.2; the right figures plot the errors
|Ψε − Φε

GB|.
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Figure 4: Example 3, the Schrödinger solution |Ψε| versus the Gaussian
beams solution |Φε

GB| at ε = 1
128 , 1

512 , 1
2048 . The left figures are the com-

parisons of the wave amplitude at t = 0.2; the right figures plot the errors
|Ψε − Φε

GB|.
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Appendix

In this appendix, we give the detailed derivation of the Lagrangian formu-
lation for the Bloch decomposition-based Gaussian beam method.

For convenience we drop the index m and denote the modified WKB
ansatz as

Ψε(t, x, y) = a(t, y)χ̃(Tx,
x

ε
)eiT/ε, (A.1)

where y = y(t, y0), χ̃(Tx, z :=
x

ε
) is χ(k, z :=

x

ε
) with the real-valued k

replaced by the complex-valued Tx and T = T (t, x, y) is given by

T (t, x, y) = S(t, y) + p(t, y)(x− y) +
1
2
M(t, y)(x− y)2. (A.2)

Note that when x = y, Tx = p(t, y) ∈ R, which implies χ̃(Tx, z) = χ(Tx, z).
Note

Ψε
t =

(
da

dt
χ̃ + aχ̃k

dTx

dt
+

i

ε
aχ̃

dT

dt

)
eiT/ε

Ψε
x =

(
aχ̃kTxx +

1
ε
aχ̃z +

i

ε
aχ̃Tx

)
eiT/ε,

Ψε
xx =

(
aχ̃kkT

2
xx +

2
ε
aχ̃kzTxx + aχ̃kTxxx +

2i

ε
aχ̃kTxxTx

)
eiT/ε

+
(

1
ε2

aχ̃zz +
2i

ε2
aχ̃zTx − 1

ε2
aχ̃T 2

x +
i

ε
aχ̃Txx

)
eiT/ε.

Plugging them into (1.1) and matching the leading order asymptotic coeffi-
cient give

(Tt + ytTy)χ̃− 1
2
χ̃zz − iTxχ̃z +

1
2
T 2

x χ̃ + VΓχ̃ + Uχ̃ = 0,

which can be written as

[Tt + ytTy + U(x)]χ̃ =
1
2
(∂z + iTx)2χ̃− VΓ(z)χ̃. (A.3)

Evaluating (A.3) at x = y gives

[St + yt(Sy − p) + U(y)]χ =
1
2
(∂z + ip)2χ− VΓ(z)χ,

where we have used the fact that when x = y, Tx = p(t, y) ∈ R, which
implies χ̃(Tx, z) = χ(Tx, z). This fact will be used again later.

Making use of the Bloch eigenvalue problem (2.1)-(2.3), one has

[St + yt(Sy − p) + U(y)]χ = −H(p, z)χ = −E(p)χ,
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which is equivalent to

St + ytSy − pyt + E(p) + U(y) = 0. (A.4)

Taking derivative with respect to x of (A.3) gives

(Txt + ytTxy + Ux)χ̃ + (Tt + ytTy + U)χ̃kTxx

= iTxx(∂z + iTx)χ̃ +
(

1
2
(∂z + iTx)2 − VΓ(z)

)
χ̃kTxx. (A.5)

Evaluating (A.5) at x = y yields

(pt + yt(py −M) + Uy)χ + (St + yt(Sy − p) + U)Mχk

= iM(∂z + ip)χ +
(

1
2
(∂z + ip)2 − VΓ(z)

)
Mχk.

After simplification and taking inner product with χ of the above equation,

pt + ytpy + Uy = [yt − p + i〈χz, χ〉]M + 〈(E −H)χk, χ〉M. (A.6)

We introduce a theorem below which helps our further derivation.

Theorem A.1 The derivatives of the Bloch eigenfunction E(k) satisfy the
following relations

E′(k) = k − iu3,

E′′(k) = 1 + 2iu2 + 2iu1u3,

where

u1(k) = 〈χk, χ〉,
u2(k) = 〈χk, χz〉 = −〈χkz, χ〉,
u3(k) = 〈χz, χ〉.

Moreover, we have the equalities

〈(E −H)χk, χ〉 = 0,

〈(E −H)χkk, χ〉 = 0,

u2 + u2 + 2u1u3 = 0.

Proof: By taking derivatives of (2.2) with respect to k, we have

Hkχ + Hχk = E′χ + Eχk.

Taking inner product with χ, one gets

E′ = 〈Hkχ, χ〉+ 〈(H − E)χk, χ〉

17



The first term of the right-hand side above gives k − iu3 because

Hk = −i∂z + k,

and the second term is zero since H is self-adjoint,

〈(H − E)χk, χ〉 = 〈χk, (H − E)χ〉 = 0.

Hence we have
E′(k) = k − iu3.

The other equalities could be easily proved similarly. ¤

Using these equalities, (A.6) becomes

pt + ytpy + Uy = (yt − E′(p))M. (A.7)

Taking derivative with respect to x of (A.5), we have

(Txxt + ytTxxy + Uxx)χ̃ + 2(Txt + ytTxy + Ux)χ̃kTxx

+(Tt + ytTy + U)(χ̃kkT 2
xx + χ̃kTxxx)

= iTxxx(∂z + iTx)χ̃− T 2
xxχ̃ + 2iTxx(∂z + iTx)χ̃kTxx

+
(

1
2
(∂z + iTx)2 − VΓ(z)

)
(χ̃kkT 2

xx + χ̃kTxxx).

Evaluating the last equation at x = y produces

(Mt + ytMy + Uyy)χ + 2(yt − E′(p))χkM
2

= (2ytχk − χ + 2iχkz − 2pχk)M2 + (E −H)χkkM
2.

Taking inner product with χ and simplifying it lead to

(Mt+ytMy+Uyy)+2(yt−E′(p))M2u1 = (2ytu1−1−2iu2−2pu1)M2. (A.8)

By matching the next order in the asymptotic expansion, one has,

(at + ytay)χ̃ + aχ̃k(Txt + ytTxy)− iaχ̃kzTxx + aχ̃kTxxTx +
1
2
aχ̃Txx = 0.

Evaluating it at x = y gives

(at +ytay)χ−aχkUy +aχk(yt−E′(p))M +(−χkyt− iχkz +χkp+
1
2
)aM = 0.

By taking the inner product with χ and simplifying it, one has

(at+ytay)−au1Uy+au1(yt−E′(p))M+(−u1yt+iu2+u1p+
1
2
)aM = 0. (A.9)
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Considering the y−trajectory defined by

dy

dt
= E′(p),

and using the equalities

2ytu1 − 1− 2iu2 − 2pu1 = 2E′u1 − 1− 2iu2 − 2pu1

= 2u1(E′ − p)− 1− 2iu2

= −2u1u3 − 1− 2iu2 = −E′′,

(A.4), (A.7)-(A.9) can be written as a set of ODEs:

dy

dt
= E′(p), (A.10)

dp

dt
= −Uy, (A.11)

dS

dt
= pE′(p)− E(p)− U, (A.12)

dM

dt
= −E′′M2 − Uyy, (A.13)

da

dt
= au1Uy − 1

2
E′′aM. (A.14)
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