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Abstract

The solution to the Schrödinger equation is highly oscillatory when
the rescaled Planck constant ε is small in the semiclassical regime. A
direct numerical simulation requires the mesh size to be O(ε). The
Gaussian beam method is an efficient way to solve the high frequency
wave equations asymptotically, outperforming geometric optics method
in that the Gaussian beam method is accurate even at caustics.

In this paper, we solve the Schrödinger equation using both the
Lagrangian and Eulerian formulations of the Gaussian beam methods.
A new Eulerian Gaussian beam method is developed using the level
set method based only on solving the (complex-valued) homogeneous
Liouville equations. A major contribution here is that we are able
to construct the Hessian matrices of the beams by using the level-set
function’s first derivatives. This greatly reduces the computational
cost in computing the Hessian of the phase function in the Eulerian
framework, yielding an Eulerian Gaussian beam method with compu-
tational complexity comparable to that of the geometric optics but
with a much better accuracy around caustics.

We verify through several numerical experiments that our Gaussian
beam solutions are good approximations to the Schrödinger solutions
even at caustics. We also numerically study the optimal relation be-
tween the number of beams and the rescaled Planck constant ε in the
Gaussian beam summation.
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1 Introduction

We are interested in the Gaussian beam methods for the numerical approx-
imation of the Schrödinger equation:

iε
∂Ψε

∂t
+

ε2

2
∆Ψε − V (x)Ψε = 0, x ∈ R

n , (1.1)

with the WKB initial data,

Ψε(x, 0) = A0(x)eiS0(x)/ε . (1.2)

Here Ψε(x, t) is the wave function, ε is the re-scaled Plank constant, and
V (x) is the smooth potential. The physical observables can be defined in
terms of Ψε(x, t):

position density nε = |Ψε|2 , (1.3)

density flux Jε =
ε

2i
(Ψε∇Ψε − Ψε∇Ψε) , (1.4)

kinetic energy Eε =
ε2

2
|∇Ψε|2 . (1.5)

The wave function Ψε(x, t) and the related physical observables become
oscillatory of wave length O(ε) when ε is small– in the so-called semiclas-
sical regime. A mesh size of O(ε) is required when using the time-splitting
spectral method [1] to simulate (1.1)-(1.2) directly. The mesh size (and the
time step as well) becomes even worse, since they need to be as small as
o(ε), if a finite difference method is used [21, 22]. The mesh and time step
restrictions of these methods make the computation of (1.1)-(1.2) extremely
expensive, especially in high dimensions.

One alternative efficient approach is to solve the equation asymptotically
by the classical WKB method. Applying the ansatz

Ψε(x, t) = A(x, t)eiS(x,t)/ε (1.6)

to (1.1), one obtains the eikonal equation for the phase S(x, t) and the
transport equation for the amplitude ρ(x, t) = |A(x, t)|2([32]):

St +
1

2
|∇S|2 + V (x) = 0 , (1.7)

ρt + ∇ · (ρ∇S) = 0 . (1.8)

Since the eikonal equation is of the Hamilton-Jacobi type, the solution be-
comes singular after caustic formation. Beyond caustics, the correct semi-
classical limit of the Schrödinger equation becomes multivalued. The mul-
tivalued solution can be computed by the ray tracing methods [6, 2, 3],
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wave front methods [9], moment methods [11, 14] and level set methods
[16, 5, 15, 17]. We also refer the readers to the review paper on computa-
tional high frequency waves [8].

A problem with the WKB, or geometric optics based methods is that the
asymptotic solution is invalid at caustics, since the amplitude ρ(x, t) blows
up. None of the aforementioned methods could give accurate solutions near
caustics. But on the other hand, accurately computing the solutions around
the caustics is important in many applications, for example, in seismic imag-
ing [12, 13].

The Gaussian beam method, developed for the high frequency linear
waves, is an efficient approximate method that allows accurate computation
of the wave amplitude around the caustics [28]. Similar to the ray tracing
method, the Gaussian beam solution also has a WKB form of (1.6). The ray
determined by (1.7)-(1.8) is the center of the Gaussian beam. The difference
lies in that the Gaussian beam allows the phase function S(x, t) to be com-
plex off its center, and the imaginary part of S(x, t) is chosen so that the
solution decays exponentially away from the center. The Lagrangian formu-
lation consists of the ray tracing equations determined by (1.7)-(1.8), which
describe the trajectory of the beam center, and the Riccati equation, which
describes the Hessian of the phase S(x, t). The validity of this construction
at caustics is analyzed by Ralston in [29].

Lagrangian numerical methods of Gaussian beams were usually devel-
oped based on the Taylor expansion and superposition principle. The accu-
racy of the beam off the central ray is determined by the truncation error of
Taylor expansion, and the approximate solution is given by a sum of all the
beams. See [4, 13, 25]. The accuracy of the Taylor expansion was studied
by Motamed and Runborg [24], and Tanushev [30] developed and analyzed
higher order Gaussian beams giving better accuracy of the approximations.

Compared to the Lagrangian methods, which lose accuracy when the ray
diverges and need re-interpolation to maintain the numerical accuracy which
can be very complicated, the Eulerian methods based on solving PDEs on
fixed grids have the advantage of a uniform accuracy. Recently, motivated
by the work of Tanushev, J.L. Qian and J. Ralston [31], Leung, Qian and
Burridge [19] designed an Eulerian Gaussian beam summation method for
the Helmholtz equations. In their formulation, the Hessian matrix of the
phase was solved by 2n2 complex-valued inhomogeneous Liouville equations.1

They also introduced the semi-Lagrangian method to numerically evaluate
the singular Eulerian beam summation integral.

In this paper we systematically study the Gaussian beam method for
solving the Schrödinger equation in the semiclassical regime using both the

1After we completed this manuscript, we received the reference [18], where the Eulerian
Gaussian beam method of [19] was extended to the semiclassical Schrödinger equation still
using the same formulations for the Hessian of the phase as in [19].
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Lagrangian and the Eulerian formulations. The Lagrangian formulation
follows the classical work for linear hyperbolic equations [29]. The main
contribution of this paper is a new Eulerian Gaussian beam method using the
level set function. To compute the velocity and the Hessian of the phase, we
only use n complex valued homogeneous level-set Liouville equation, rather
than 2n2 inhomogeneous Liouville equations as in [19]. The Hessian of
the phase is evaluated from the first derivatives of the level set functions.
This new formulation not only significantly reduces the number of Liouville
equation to be used to construct the Hessian of the phase, but also allows
us to use the local level set method to further reduce the computational
cost due to the homogeneity of the Liouville equations being used. As a
matter of fact, the computational method for the (complex-valued) phase
and amplitude is not much different from the level set method used for
geometric optics computation as in [5, 16, 15]. In addition we also evaluate
the Gaussian beam summation integral using the semi-Lagrangian method
of [19] only near caustics, thus maintain largely the accuracy of the Eulerian
method. This new method will be tested for its accuracy and efficiency by
comparing with the solution of the Schrödinger equation (1.1)-(1.2).

The paper is organized as follows. In Section 2, we introduce the La-
grangian Gaussian beam formulation and summarize its properties. In Sec-
tion 3, we give the detailed derivation of the new level set formulations for
the Eulerian Gaussian beam method; we also discuss how to implement the
summation of the Eulerian Gaussian beams, with an analysis of the compu-
tational complexity of this new method in the end. The numerical examples
are given in Section 4 to test the accuracy and efficiency of the Gaussian
beam methods. We make some conclusive remarks in Section 5.

2 The Lagrangian formulation

In this section, we adopt the Gaussian beam approximation to the Schrödinger
equation (1.1). Let

ϕε
la(t, x, y0) = A(t, y)eiT (t,x,y)/ε, (2.1)

where y = y(t, y0) and T (t, x, y) is given by the Taylor expansion

T (t, x, y) = S(t, y)+p(t, y)·(x−y)+
1

2
(x−y)⊤M(t, y)(x−y)+O(|x−y|3),

(2.2)
in which (x − y)⊤ is the transpose of (x − y). Here S ∈ R, p ∈ R

n, A ∈ C,
M ∈ C

n×n. The imaginary part of M will be chosen so that (2.1) has a
Gaussian beam profile. We call (2.1) as the beam-shaped ansatz.

The difference from the WKB ansatz is, in (2.1)-(2.2), a free parameter y

is used to control the domain where the WKB analysis is applied. Actually
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y plays the role of the beam center, chosen as

dy

dt
= p(t, y), y(0) = y0. (2.3)

2.1 Formulation for the beam-shaped ansatz

We first derive the formulation for the beam-shaped ansatz (2.1). Plugging
(2.1) into (1.1) and equating the first two leading orders of ε, one obtains
the equations for T and A

∂T

∂t
+

∂y

∂t
· ∇yT +

1

2
|∇xT |2 + V = 0, (2.4)

∂A

∂t
+

∂y

∂t
· ∇yA +

1

2
(△xT )A = 0. (2.5)

Taking the first and second derivatives with respect to x in (2.4) gives

∂(∇xT )

∂t
+

∂y

∂t
· ∇yxT + ∇xT · ∇2

xT + ∇xV = 0, (2.6)

∂(∇2
xT )

∂t
+

∂y

∂t
· ∇yxxT +

(
∇2

xT
)2

+ ∇xT · ∇3
xT + ∇2

xV = 0. (2.7)

Using (2.2) and evaluating (2.4)-(2.7) at x = y yields (after ignoring the
O(|x − y|3) term)

∂S

∂t
+

∂y

∂t
· (∇yS − p) +

1

2
|p|2 + V = 0, (2.8)

∂A

∂t
+

∂y

∂t
· ∇yA +

1

2

(
Tr(M)

)
A = 0, (2.9)

∂p

∂t
+

∂y

∂t
· (∇yp − M) + p · M + ∇yV = 0, (2.10)

∂M

∂t
+

∂y

∂t
· ∇yM + M2 + ∇2

yV = 0, (2.11)

where Tr(M) is the trace of the matrix M .
Considering the y-trajectory given by (2.3), then (2.8)-(2.11) can be

written as a set of ODEs:

dy

dt
= p, (2.12)

dp

dt
= −∇yV, (2.13)

dM

dt
= −M2 −∇2

yV, (2.14)

dS

dt
=

1

2
|p|2 − V, (2.15)

dA

dt
= −1

2

(
Tr(M)

)
A. (2.16)
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Here y = y(t, y0), p = p(t, y(t, y0)), V = V (y(t, y0)), M = M(t, y(t, y0)),
S = S(t, y(t, y0)), A = A(t, y(t, y0)).

The equations (2.12)-(2.16) are the Lagrangian formulation of the Gaus-
sian beam method. (2.12)-(2.13) are called the ray-tracing equations, (2.14)
is a Riccati equation for the Hessian M , which will be solved by the dynamic
first order system of ray tracing equations (2.17).

We summarize some properties of these ODEs in Theorem 2.1. The
results and proofs of Part 1, 2 and 3 essentially follow those in [31].

Theorem 2.1 Let P (t, y(t, y0)) and R(t, y(t, y0)) be the (global) solutions
of the equations

dP

dt
= R,

dR

dt
= −(∇2

yV )P, (2.17)

with initial conditions

P (0, y0) = I, R(0, y0) = M(0, y0), (2.18)

where matrix I is the identity matrix and Im(M(0, y0)) is positive definite.
Assume M(0, y0) is symmetric, then for each initial position y0, we have
the following results:

1. P (t, y(t, y0)) is invertible for all t > 0.

2. The solution to equation (2.14) is given by

M(t, y(t, y0)) = R(t, y(t, y0))P
−1(t, y(t, y0)) (2.19)

3. M(t, y(t, y0)) is symmetric and Im(M(t, y(t, y0))) is positive definite
for all t > 0.

4. Besides the Hamiltonian V +
1

2
|p|2 is conserved along the y-trajectory,

another quantity A2 detP is also conserved, which means A(t, y(t, y0))
could also be computed by

A(t, y(t, y0)) =
[
(det P (t, y(t, y0)))

−1A2(0, y0)
]1/2

, (2.20)

where the square root is taken as the principle value.

Proof: Since y(t, y0) is not involved in the proof, we drop it for conve-
nience and simply write M(t, y(t, y0)), A(t, y(t, y0)), P (t, y(t, y0)) and
R(t, y(t, y0)) as M(t), A(t), P (t) and R(t) respectively.
(1) For any vector η ∈ C

n, by (2.17) z1 = P (t)η and z2 = R(t)η satisfy

dz1

dt
= z2,

dz2

dt
= −(∇2

yV )z1. (2.21)
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Define
σ(P, R, η) = z1 · z2 − z1 · z2. (2.22)

Note that ∇2
xV is real and symmetric, then by differentiating (2.22) with

respect to t and using (2.21), one has

d

dt
σ(P, R, η) =

dz1

dt
· z2 + z1 ·

dz2

dt
− dz1

dt
· z2 − z1 ·

dz2

dt
= z2 · z2 + z1 ·

(
(−∇2

yV )z1

)
− z2 · z2 − z1 ·

(
(−∇2

xV )z1

)

= 0.

Assume that P (t) is singular at t = t0, then there exists a non-zero
vector l ∈ C

n, such that P (t0)l = 0. So we have

0 = P (t0)l · R(t0)l − P (t0)l · R(t0)l

= σ(P (t0), R(t0), l) = σ(P (0), R(0), l)

= P (0)l · R(0)l − P (0)l · R(0)l

= l · M(0)l − l · M(0)l = 2il · Im[M(0)]l.

which is a contradiction since Im[M(0)] is positive definite and l0 is non-zero.
In the last identity we used the symmetry of M(0).

This proves the invertibility of P (t).
(2) Let M = RP−1. Using (2.17), one obtains

dM

dt
+ M2 + ∇2

yV =
dR

dt
P−1 + R

dP−1

dt
+ RP−1RP−1 + ∇2

yV

= −(∇2
yV )PP−1 − RP−1 dP

dt
P−1 + RP−1RP−1 + ∇2

yV

= −RP−1RP−1 + RP−1RP−1 = 0.

Thus M satisfies (2.14).
(3) First, since both M(t) and its transpose M⊤(t) satisfy the same equation
(2.14), the uniqueness (for example, Theorem 1 in [7]) implies M(t) = M⊤(t)
for all t > 0 when the initial condition M(0) is symmetric.

Since we already proved that P (t) is invertible, ∀l′ ∈ C
n there exist l

that satisfies l′ = P (t)l. Then

2il′ · Im[M(t)]l′ = 2iP (t)l · Im[M(t)]P (t)l

= P (t)l · M(t)P (t)l − P (t)l · M(t)P (t)l

= P (t)l · R(t)l − P (t)l · R(t)l

= σ(P (t), R(t), l) = σ(P (0), R(0), l)

= P (0)l · R(0)l − P (0)l · R(0)l

= P (0)l · M(0)P (0)l − P (0)l · M(0)P (0)l

= 2il · Im[M(0)]l.
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The second and last identities are got by the symmetries of M(t) and M(0).
Because Im[M(0)] is positive definite, Im[M(t)] is also positive definite.
(4) Along the y-trajectory,

d

dt

(
A2 det P

)
= 2A

dA

dt
detP + A2 d(detP )

dt

= −2A

[
1

2

(
Tr(M)

)
A

]
detP + A2Tr

(
P−1 dP

dt

)
detP

= −A2Tr
(
RP−1

)
det P + A2Tr

(
P−1R

)
detP = 0.

Hence A2 detP is conserved. �

2.2 The Lagrangian Gaussian beams summation

In this subsection, we introduce the Lagrangian Gaussian beam summation
formula given by Tanushev [30]. The approximation of the WKB initial data
(1.2) is shown in the next theorem.

Theorem 2.2 Let A0 ∈ C1(Rn) ∩ l2(Rn) and S0 ∈ C3(Rn), define

Ψε
0(x) = A0(x)eiS0(x)/ε,

ϕε
0(x, y0) = A0(y0)e

iT0(x,y0)/ε,

where

T0(x, y0) = Tα0(y0) + Tβ0 · (x − y0) +
1

2
(x − y0)

⊤Tγ0(x − y0),

Tα0(y0) = S0(y0) , Tβ0(y0) = ∇xS0(y0) , Tγ0(y0) = ∇2
xS0(y0) + iI .

Then
∥∥∥∥∥

∫

Rn

(
1

2πε

)n
2

rθ(x − y0)ϕ
ε
0(x, y0)dy0 − Ψε

0(x)

∥∥∥∥∥
l2

≤ Cε
1
2 .

where rθ ∈ C∞
0 (Rn), rθ ≥ 0 is a truncation function with rθ ≡ 1 in a ball of

radius θ > 0 about the origin and C is a constant related to θ.

By Theorem 2.2 we specify the initial data for (2.12)-(2.16) as

y(0, y0) = y0, (2.23)

p(0, y0) = ∇xS0(y0), (2.24)

M(0, y0) = ∇2
xS0(y0) + iI, (2.25)

S(0, y0) = S0(y0), (2.26)

A(0, y0) = A0(y0). (2.27)
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Then the Gaussian beam summation solution which approximates the Schrödinger
equation (1.1) is constructed as:

Φε
la(t, x) =

∫

Rn

(
1

2πε

)n
2

rθ(x − y(t, y0))ϕ
ε
la(t, x, y0)dy0. (2.28)

The discrete form of (2.28) in a bounded domain is given by

Φε
la(t, x) =

Ny0∑

j=1

(
1

2πε

)n
2

rθ(x − y(t, yj
0))ϕ

ε
la(t, x, yj

0)∆y0, (2.29)

where y
j
0’s are the equidistant mesh points, and Ny0

is the number of the

beams initially centered at y
j
0’s.

Note that rθ works as a cut-off function, and the cut-off error becomes
large when the truncation parameter θ is taken too small. On the other
hand, a big θ for wide beams makes the Taylor expansion error large. As far
as we know, it is still an open question that how large the θ should be chosen
when beams spread. However, for narrow beams one could take fairly large
θ which makes the cut-off error almost zero. For example, a one-dimensional
constant solution could be approximated by

1 =

∫

R

1√
2πε

exp

(−(x − y0)
2

2ε

)
dy0 ≈

∑

j

∆y0√
2πε

exp

(
−(x − yj

0)
2

2ε

)
.

3 The Eulerian formulation

In the last few years, the level set method has been developed to compute
the multi-valued solution of (1.7)-(1.8) which gives the correct semiclassical
limit of the Schrödinger solution [16, 5, 15] away from the caustics. The idea
is to build the velocity u = ∇yS into the intersection of zero level sets of
phase-space functions φj(t, y, ξ), j = 1, · · · , n, i.e.

φj(t, y, ξ) = 0, at ξ = u(t, y), j = 1, · · · , n. (3.1)

If we define φ = (φ1, · · · , φn), then by differentiating (3.1) with respect to
y for each j, the Hessian ∇yu satisfies

∇2
yS = ∇yu = −∇yφ(∇ξφ)−1. (3.2)

Comparing (3.2) with (2.19), we conjecture that

R = −∇yφ, P = ∇ξφ. (3.3)

Note that this conjecture does not violate the symmetry of the Hessian ∇yu

by the second and third parts of Theorem 2.1. Moreover, it also implies the
divergence-free condition

∇ξR + ∇yP = 0. (3.4)
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which actually holds initially (2.18).
In this section, we first review the level set formulations developed in

[15, 16, 19] for geometrical optics, and then prove that the conjecture (3.3)
is true under an appropriate initial condition for φ. We then describe the
level set algorithm for the Eulerian Gaussian beam method and the con-
struction of the wave function for the Schrödinger equation. Although our
new formulations are consistent with the Eulerian Gaussian beam method
constructed in [19] for the Helmholtz equations, by making use of the obser-
vation (3.3), we introduce a much simpler and efficient numerical method
than [19].

3.1 The verification of (3.3)

Define the linear Liouville operator as

L = ∂t + ξ · ∇y −∇yV · ∇ξ.

As shown in [15, 16], the level set equations for the velocity, phase and
amplitude are given by

Lφ = 0, (3.5)

LS =
1

2
|ξ|2 − V, (3.6)

LA =
1

2
Tr
(
(∇ξφ)−1∇yφ

)
A. (3.7)

If one introduces the new quantity ([15])

f(t, y, ξ) = A2(t, y, ξ)det(∇ξφ), (3.8)

then f(t, y, ξ) satisfies the Liouville equation

Lf = 0. (3.9)

For the Gaussian beams method in [19], two more inhomogeneous Liou-
ville equations, which are the Eulerian formula of (2.17) for P and R, were
introduced to construct the Hessian matrix

LR = −(∇2
yV )P, (3.10)

LP = R. (3.11)

Note that the equations (3.5)-(3.9) are real, while (3.10)-(3.11) are complex
and consist of 2n2 equations.

By taking the gradient of the equation (3.5) with respect to x and ξ

separately, we have

L(∇yφ) = ∇2
yV ∇ξφ, (3.12)

L(∇ξφ) = −∇yφ, (3.13)
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Compare (3.10)-(3.11) with (3.12)-(3.13), we observe that −∇yφ and
∇ξφ satisfy the same equations as R and P . Since the Liouville equations are
linear, the conjecture (3.3) is true by letting φ be complex and −∇yφ, ∇ξφ

have the same initial conditions as R and P respectively.
From (2.18) and (2.25), this suggests the following initial condition for

φ:
φ0(y, ξ) = −iy + (ξ −∇yS0). (3.14)

With this observation now we can solve (3.5) for complex φ, with initial data
(3.14). Then the Hessian M is constructed by

M = −∇yφ(∇ξφ)−1 (3.15)

where velocity u = −∇xS is given by the intersection of the zero-level
contours of the real part of φ, i.e. for each component φj ,

Re[φj(t, y, ξ)] = 0, at ξ = u(t, y) = ∇yS. (3.16)

Note that to compute u, S and M we just need to solve n complex-valued
homogeneous Liouville equation (3.5), while in the formulation of [19], one
needs to solve n real-valued homogeneous Liouville equation (3.5) and 2n2

complex-valued inhomogeneous Liouville equations (3.10) and (3.11). Our
new formulation has a computational cost only slightly higher than the level
set methods for geometrical optics [15, 17]. The only difference here is that
(3.5) is complex-valued while in geometrical optics computation one solves
real part.

3.2 The level set algorithm

In this section, we gives the implementation details of the new level set
method. We will also prove its validity at caustics.

• Step 1. Solve (3.5) for φ complex, with initial condition (3.14), then ob-
tain the velocity u by the intersection of the zero-level sets of Reφj , j =
1, · · · , n.

• Step 2. Compute −∇yφ and ∇ξφ (note these quantities actually are
already available from the first step when one discretizes the Liouville
equation for φ), then the Hessian matrix is given by (3.15).

• Step 3. One can integrate the velocity u along the zero-level sets
([10, 17]) to get the phase S. The idea is to do numerical integration
following each branch of the velocity. The integration constants are
obtained by both the boundary condition and the fact that the multi-
valued phase is continuous when it passes from one branch to the other.
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For example, if we consider a bounded domain [a, b] in one-dimension,
the phase function is given by

S(t, x) = −V (a)t − 1

2

∫ t

0
u2(τ, a)dτ +

∫ x

a
u(t, s)ds + S(0, a). (3.17)

Because

∫ x

a
u(t, s)ds is the only term in (3.17) which affects the quadratic

physical observables for fixed time t, one could take

S(t, x) =

∫ x

a
u(t, s)ds (3.18)

as the phase value in the numerical simulations of (1.3)-(1.5). For
more details and in higher dimensions, see [17].

• Step 4. Solve (3.9) with the initial condition

f0(y, ξ) = A2
0(y, ξ).

The amplitude A is given by

A = (det(∇ξφ)−1f)1/2, (3.19)

in which the square root is taken as the principle value.

Remark 3.1 All of the functions in Steps 2-4 only need to be solved locally
around the zero-level sets of Reφj , j = 1, · · · , n. Namely, the entire algo-
rithm can be implemented using the local level set methods [26, 27], thus the
computational cost for mesh size ∆y is O((∆y)−n ln(∆y)−1), about the same
as the local level set methods for geometrical optics computation [15, 17].

The well-definedness of (3.15) and (3.19) is justified by the following
theorem, which is the Eulerian version of Theorem 2.1.

Theorem 3.2 Let φ = φ(t, y, ξ) ∈ C be the solution of (3.5) with initial
data (3.14). Then we have the following: properties

1. ∇ξφ is non-degenerate for all t > 0.

2. Im
(
−∇yφ(∇ξφ)−1

)
is positive definite for all t > 0, y, ξ ∈ R

n.
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Proof: (1) For ∀η ∈ C
n, by using (3.12)-(3.13) we have

L
(
(∇ξφ)η · (∇yφ)η − (∇ξφ)η · (∇yφ)η

)

= L
(
(∇ξφ)η

)
· (∇yφ)η + (∇ξφ)η · L

(
(∇yφ)η

)

−L
(
(∇ξφ)η

)
· (∇yφ)η − (∇ξφ)η · L

(
(∇yφ)η

)

= −(∇yφ)η · (∇yφ)η + (∇ξφ)η ·
(
(∇2

yV · ∇ξφ)η
)

+(∇yφ)η · (∇yφ)η − (∇ξφ)η ·
(
(∇2

yV · ∇ξφ)η
)

= 0.

The last equality is true because ∇2
yV is symmetric and real.

If ∇ξφ is singular at (t2, y2, ξ2), there exists a non-zero l ∈ C
n such that

(∇ξφ)l|(t2,y2,ξ2) = 0. Then we have

(
(∇ξφ)l · (∇yφ)l − (∇ξφ)l · (∇yφ)l

)∣∣∣
(t2,y2,ξ2)

= 0.

Since L
(
(∇ξφ)l · (∇yφ)l − (∇ξφ)l · (∇yφ)l

)
= 0, there exists (0, y1, ξ1)

that connects (t2, y2, ξ2) by a characteristic such that

(
(∇ξφ)l · (∇yφ)l − (∇ξφ)l · (∇yφ)l

)∣∣∣
(0,y1,ξ1)

=
(
(∇ξφ)l · (∇yφ)l − (∇ξφ)l · (∇yφ)l

)∣∣∣
(t2,y2,ξ2)

= 0.

This implies, by taking account of the initial condition (3.14),

−2il · l = 0.

This is a contradiction, which proves ∇ξφ is not degenerate for all t > 0.

(2) Since we already proved that ∇ξφ is non-degenerate, ∀l′ ∈ C
n there

exists an l that satisfies l′ = (∇ξφ)l. Note that −∇yφ(∇ξφ)−1 is symmet-
ric from (3.2), then we have

2il′ · Im
(
−∇yφ(∇ξφ)−1

)∣∣
(t2,y2,ξ2)

l′

= 2i
(
(∇ξφ)l · Im

(
−∇yφ(∇ξφ)−1

)
(∇ξφ)l

)∣∣∣
(t2,y2,ξ2)

= −
(
(∇ξφ)l · (∇yφ)l − (∇ξφ)l · (∇yφ)l

)∣∣∣
(t2,y2,ξ2)

= −
(
(∇ξφ)l · (∇yφ)l − (∇ξφ)l · (∇yφ)l

)∣∣∣
(0,y1,ξ1)

= 2il · l,

13



which implies that Im
(
−∇yφ(∇ξφ)−1

)
is positive definite. �

Remark 3.3 Although det
(
Re[∇ξφ]

)
= 0 at caustics, the complexified φ

makes ∇ξφ non-degenerate, and the amplitude A, defined in (3.19), does
not blow-up at caustics!

So far we have got the phase S, the velocity u, the Hessian M and
the amplitude A. We show how to construct the wave function from these
quantities in the next subsection.

3.3 The Eulerian Gaussian beam summation

Define

ϕε
eu(t, x, y, ξ) = A(t, y, ξ)eiT (t,x,y,ξ)/ε,

where

T (t, x, y, ξ) = S(t, y, ξ) + ξ · (x − y) +
1

2
(x − y)⊤M(t, y, ξ)(x − y),

then the wave function is constructed via the following Eulerian Gaussian
beam summation formula:

Φε
eu(t, x) =

∫

Rn

∫

Rn

(
1

2πε

)n
2

rθ(x − y)ϕε
eu(t, x, y, ξ)Πn

j=1δ(Re[φj ])dξdy,

(3.20)
in which rθ ∈ C∞

0 (Rn), rθ ≥ 0 is a truncation function with rθ ≡ 1 in a
ball of radius θ > 0 about the origin and δ is the Dirac delta function. The
choice of rθ is the same as the one in the Lagrangian formulation.

We show in the Appendix that (3.20) is consistent to the Lagrangian
summation formula (2.28). (3.20) could be evaluated as a single integral
about y. Since the velocity becomes multivalued after caustic formation, we
denote uk, k = 1, · · · , K as the velocity branches and write

Φε
eu(t, x) =

∫

Rn

(
1

2πε

)n
2

rθ(x − y)
∑

k

ϕε
eu(t, x, y, uk)

|det(Re[∇ξφ]ξ=uk
)|dy, (3.21)

Since det
(
Re[∇ξφ]

)
= 0 at caustics, a direct numerical integration of

(3.21) loses accuracy around singularities (see Example 3 in Section 5 for
the detailed numerical demonstrations). To get a better accuracy, we split
(3.21) into two parts

I1 =
∑

k

∫

L1

(
1

2πε

)n
2

rθ(x − y)
ϕε

eu(t, x, y, uk)

|det(Re[∇ξφ]ξ=uk
)|dy, (3.22)

I2 =
∑

k

∫

L2

(
1

2πε

)n
2

rθ(x − y)
ϕε

eu(t, x, y, uk)

|det(Re[∇ξφ]ξ=uk
)|dy, (3.23)
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where

L1 =
{

y

∣∣∣
∣∣ det(Re[∇pφ](t, y, pj))

∣∣ ≥ τ
}

,

L2 =
{

y

∣∣∣
∣∣ det(Re[∇pφ](t, y, pj))

∣∣ < τ
}

,

with τ being a small parameter.
In our numerical simulations, I1 is treated using the trapezoid quadrature

rule, while the singular integral I2 is treated by the semi-Lagrangian method
introduced in [19]. For convenience we summarize the semi-Lagrangian
method here. Suppose we take a number of discrete beams centered at
yj , j = 1, · · · , My with the velocity u

j
k on the contour, the idea is to trace

each individual (yj , uj
k) back to the initial position (yj

0, u
j
k,0) using (2.12)-

(2.13) with t → −t, then determine the weight function ω(yj
0) for it. For

example in one dimension, if the two adjacent points of yj
0 are yj1

0 and yj2
0

such that yj1
0 < yj

0 < yj2
0 , then ω(yj

0) = (yj2
0 − yj1

0 )/2 (see Page 68 in [19] for
details). In this process one gets rid of the singular term by noticing that

dy0 =
1

|det(Re[∇ξφ]ξ=uk
)|dy. The discrete form of (3.23) reads as

Ĩ2 =

My∑

j=1

∑

k

(
1

2πε

)n
2

rθ(x − yj)ϕε
eu(t, x, yj , uj

k)ω(yj
0). (3.24)

We remark here that the semi-Lagrangian method (3.24) can be used
to evaluate (3.21), as was done in [19]. However, when the rays diverge
backward in time, ω(yj

0) becomes large and one loses the accuracy of the
Eulerian method. By using it only around caustics, we maintain mostly the
accuracy of the Eulerian method.

3.4 Estimates on computational complexity

Since the errors of the Gaussian beam method were already discussed in
[24, 30], we only focus on the analysis of the computational complexity
here. There are two steps for computing the Gaussian beam solution.

1. Solving the PDEs (3.5) and (3.9) for all beams.

2. Constructing the asymptotic solution using (3.21).

The numerical cost of the first step is related to the mesh size and the
time step. We will show later that the optimal mesh size is ∆y = O(ε

1
2 )

in the numerical simulations. We denote the numerical error of solving the
PDEs as Enum, which introduces the error of Enum/ε when one constructs
the wave function Φε

eu. For this error to be minor, we require the time

step taken as ∆t ∼ ε
1
2 in a fourth order time discretization. Then the
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computational complexity of the first step is O(ε−
n+1

2 ln ε−
1
2 ) if the local

level set method is used.
The numerical cost of the second step is related to the number of nodes

Nx in the x-mesh when we finally construct the solution by (3.21). To get a
whole picture of the wave field, one needs to resolve the wave length, which
requires Nx ∼ ε−n. Due to the truncation function rθ(x − y) and the fact
that the imaginary part of the Hessian matrix M is positive definite by The-
orem 3.2, the computational cost of (3.22) is O(1) for each x. Since (3.23) is
an integration on a small local domain (τ is small), the computational cost of
(3.24) is of a smaller order compared to (3.22). So the total computational
complexity of the second step is O(ε−n).

In summary, the total computational cost is O(ε−
n+1

2 ln ε−
1
2 +ε−n). This

is better than the complexity of directly solving the Schrödinger equa-
tion (1.1)-(1.2) using the Time Splitting Spectral Method [1], which is
O(ε−n−1 ln ε−n).

4 The numerical examples

In this section, we present several numerical examples using both the La-
grangian and the Eulerian formulations to show the accuracy of the Gaussian
beam solutions and the numerical efficiency. We compute the solution of the
Schrödinger equation by the Strang Splitting Spectral Method [1]. The ‘ex-
act’ Schrödinger solution Ψε is got by using a very fine mesh and a very small
time step with an appropriately large domain so that the periodic boundary
condition does not introduce a significant error to the initial value problem.
Since all the Gaussian beams are observed to be narrow in the numerical
examples, the truncation parameter θ in (2.29) and (3.21) is chosen large
enough so that the cut-off error is almost zero.

4.1 The Lagrangian Gaussian beam examples

We study the Lagrangian formulation numerically in this subsection. The
numerical examples are chosen such that the fourth order Runger-Kutta
scheme with the time step ∆t ∼ ε1/2 is good to be used for solving (2.12)-
(2.16). We analyze the asymptotic expansion error and the initial condition
error in Example 1. The numerical errors of integration and ODE solvers
are discussed in Example 2.
Example 1: A free particle with zero potential V (x) = 0. The initial
conditions for the Schrödinger equation are given by

A0(x) = e−25(x−0.5)2 , S0(x) = −x2.
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In this example, the Gaussian beam solution (2.28) can be solved analytically

Φε
la(t, x) =

e
−6.25− x2

2ε(5t2−4t+1)
+ i

ε

(5t−2)x2

2(5t2−4t+1)
+B2

4A

√
2Aε

(
(−2 + i)t + 1

) ,

where A and B are

A = 25 +
(1 − 2t)2

2ε(5t2 − 4t + 1)
− (1 − 2t)t

2ε(5t2 − 4t + 1)
i,

B = 25 +
2(1 − 2t)x

2ε(5t2 − 4t + 1)
− xt

ε(5t2 − 4t + 1)
i.

We plot the solutions at time t = 0.5 when the caustic are generated,
see Figure 1. We compare the wave amplitudes between the Gaussian beam
solution Φε

la(t, x) and the Schrödinger solution Ψε(t, x) for different ε’s. The
error comes mostly from the asymptotic expansion and the initial data ap-
proximation.

The absolute l1, l2 and l∞ errors between Φε
la and Ψε for different ε’s

are plotted in Figure 2. One can see that the Gaussian beam solution
Φε

la converges in ε with an order of about 1.5 in the l1 norm, the first
order in the l2 norm, and half order in the l∞ norm. We gain higher order
convergence rate in the l1 and l2 norms, because of the error cancelations in
the summation of Gaussian beams (see [24, 30]).

Example 2: Consider the potential V (x) = 2x3, with the initial conditions

A0(x) = e−25x2
, S0(x) =

1

π
cos(πx).

This example deals with a variable potential case. Since the potential
V (x) = 2x3 makes the force one-directional, the wave function of (1.1)-(1.2)
is asymmetric. Two caustics form at the time t = 0.5.

We use a fourth order Runge-Kutta method to solve the ODE system
(2.12)-(2.16) with the initial data (2.23)-(2.27) in the interval [−1.5, 1.5] with
periodic boundary conditions. Note that the Hessian M and the amplitude
A are solved via the dynamic ray tracing system (2.17), (2.19) and (2.20).
In Table 1, we present the absolute l1, l2 and l∞ errors between Φε and
Ψε using different ∆t’s and Ny0 = 200. We draw the conclusion that the
numerical errors are negligible compared to the other types of errors when
∆t ≤ 0.02 for ε = 1

4096 , n = 1.
Next we study on the error coming from evaluating the integral (2.28)

numerically. Evidently, the more nodes of y0 are used, the more accurate
the numerical integration will be; however, each node of y0 corresponds to
an ODE system, thus a large number of nodes will result in a high compu-
tational cost. In this example, we investigate the accuracy versus Ny0 for
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Figure 1: Example 1, the Schrödinger solution |Ψε| versus the Gaussian
beam solution |Φε

la| at different ε’s. The left figures are the comparisons at
t = 0 (the initial time); the right figures are the comparisons at time t = 0.5.
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Figure 2: Example 1, the convergence rate in ε of the l1, l2 and l∞ errors of
the wave function.

∆t 0.04 0.02 0.01 0.005
‖Φε

la − Ψε‖1 7.88 × 10−2 4.18 × 10−4 4.18 × 10−4 4.18 × 10−4

‖Φε
la − Ψε‖2 3.51 × 10−1 1.68 × 10−3 1.68 × 10−3 1.68 × 10−3

‖Φε
la − Ψε‖

∞
2.58 × 100 1.24 × 10−2 1.24 × 10−2 1.24 × 10−2

Table 1: the l1, l2 and l∞ errors of different ∆t’s for Example 2.

ε ≪ 1. We also study the optimal relation between Ny0 and ε which ensures
a good approximation and low computational cost.

We plot the solutions at time t = 0.5 in Figure 3. The wave amplitudes
are compared between the Schrödinger solution Ψε and the Gaussian beam
solution Φε using different numbers of beams Ny0 at ε = 1

4096 . The absolute
l1, l2 and l∞ errors between Φε and Ψε are given in Table 2. We can see that
the Gaussian beams solution converges quickly with the increasing number
of beams. In Figure 4 (left), we show that Ny0 ∼ ε−

1
2 is pretty much enough,

and larger Ny0 will not reduce the error further since the other errors start
to dominate.

Figure 4 (right) gives the absolute l1, l2 and l∞ errors between Φε
la and

Ψε for different ε’s at time t = 0.5, where we use Ny0 = 800 and ∆t = 0.001.
The error convergence rate in ε is about first order in l1 and l2 norms, the
order of 0.7894 in the l∞ norm. We also plot the comparisons of the position
density, the density flux and the kinetic energy for ε = 1

4096 , using Ny0 =
200, t = 0.5 and ∆t = 0.01 in Figure 5.
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Figure 3: Example 2, the Schrödinger solution |Ψε| versus the Gaussian
beams solution |Φε

la| at ε = 1
4096 using different Ny0 ’s. The left figures are

the comparisons at t = 0.5; the right figures plot the errors |Ψε − Φε
la|.
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Ny0 50 100 150 200
‖Φε

la − Ψε‖1 2.72 × 10−2 6.92 × 10−4 4.18 × 10−4 4.18 × 10−4

‖Φε
la − Ψε‖2 1.09 × 10−1 2.69 × 10−3 1.68 × 10−3 1.68 × 10−3

‖Φε
la − Ψε‖

∞
7.10 × 10−1 2.02 × 10−2 1.24 × 10−2 1.24 × 10−2

Table 2: the l1, l2 and l∞ errors at ε = 1
4096 of different Ny0 ’s for Example
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Figure 4: Example 2. Left: the plot of the optimal beam number Ny0 for
each ε; right: the convergence rate in ε of the l1, l2 and l∞ errors of the
wave function.

4.2 The Eulerian Gaussian beam examples

In this subsection, we study the Gaussian beam method numerically using
the Eulerian formulation. The numerical methods to the Liouville equation
have been very mature by now. It could be solved by either the finite
difference method [16, 17] or the semi-Lagrangian method [19, 20]. We do
not address the issue of optimal Liouville solvers here.

We present two numerical examples to show the effectiveness of the Eu-
lerian Gaussian beams method. In Example 3 (first proposed in [16]), we
point out that around caustics one needs to take enough discrete beams to
resolve the velocity contour well to obtain good accuracy. This is an is-
sue not discussed in [19]. We also study a simple two-dimensional case in
Example 4 which first appeared in [26].

Example 3 (1D) : Free motion particles with zero potential V (x) = 0. The
initial conditions for the Schrödinger equation are given by

A0(x) = e−25x2
, S0(x) = −1

5
log(2 cosh(5x)).

which implies that the initial density and velocity are

ρ0(x) = |A0(x)|2 = exp(−50x2), u0(x) = ∂xS0(x) = − tanh(5x).
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Figure 5: Example 2, ε = 1
4096 , Ny0 = 200, t = 0.5 and ∆t = 0.01. The

left figures are the comparisons of the position density, the density flux and
the kinetic energy of the Schrödinger solution Ψε and the Gaussian beams
solution Φε

la at t = 0.5; the right figures show the errors between them.
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The solutions of the Liouville equations (3.5), (3.6) and (3.9) can be
solved by the characteristics method analytically:

φ(t, y, ξ) = φ0(y − ξt, ξ),

S(t, y, ξ) = S0(y − ξt) + tu2
0(y − ξt)/2,

f(t, y, ξ) = A2
0(y − ξt, ξ).

We use ∆y = ∆ξ = 0.002 in the mesh for the Eulerian beam simulation,

and take ∆x =
1

65536
, the same mesh size as the numerical solution to the

Schrödinger equation, to construct the wave function (3.21). Figure 6 shows
the comparison of the wave amplitude between the Schrödinger solution Ψε

and the Eulerian beams solution Φε
eu for ε = 1 × 10−4 and at t = 0.5.

From the left figures of Figure 6(a)-(c), one could see that summing up
the beams centered on the mesh could only approximate the Schrödinger
solution accurately away from the caustics. In order to make good ap-
proximations around the caustics, one has to sum up more beams whose
centers better represent the velocity contour curve. In other words, one
needs to numerically resolve the singular integration (3.23) accurately by
the semi-Lagrangian method. This process could be easily implemented by
the Matlab subroutine ‘contour’. The results are shown in the right fig-
ures of Figure 6(a)-(c). To make some comparisons we list other types of
asymptotic solutions in Figure 6(d)-(f) given by geometric optics [16] and
the corrected geometric optics with phase shift information (Keller-Maslov
index) [17]. Since both the approximations blow up at caustics, we make
some truncations when plot them. One could also notice that the Eulerian
beam solution Φε

eu naturally carries the phase shift information even when
the velocity contour is not well resolved. The error of Φε

eu is substantially
smaller than Φε

GO and Φε
PS around the caustics.

We give the velocity contour and beams distribution around one caustic
in Figure 7. This figure shows that the contour of velocity around the caustic
(near x = −0.18) was not resolved well which causes large errors around the
caustic shown in Figure 6(c) (left). Figure 8 (left) shows the amplitude
convergence rates in ε are of the order of 0.9082 in the l1 norm and the
order of 0.7654 in the l∞ norm. In Figure 8 (right), we numerically show
that the optimal relationship between ∆y and ε is ∆y ∼ ε1/2 which ensures
a good approximation.

Example 4 (2D): Take the potential V (x1, x2) = 10 and the initial condi-
tions of the Schrödinger equation as

A0(x1, x2) = e−25(x2
1+x2

2),

S0(x1, x2) = −1

5
(log(2 cosh(5x1)) + log(2 cosh(5x2))).
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(a) Wave amplitude comparison
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(b) Undersampled wave amplitude Comparison
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Figure 6: Example 3, ε = 1× 10−4. The figure shows the comparison of the
wave amplitude between the Eulerian beam solution Φε

eu and the Schrödinger
solution Ψε at t = 0.5. The Eulerian beam solution on the left is got by the
summation of all the beams centered on the mesh, and the one on the right
is got by the summation of the beams which better resolve the zero contour
curve around caustics.
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(d) Wave amplitude comparison
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(e) Undersampled wave amplitude Comparison
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Figure 6: (continued). Left: the comparison between the geometric optics
approximation Φε

GO and the Schrödinger solution Ψε; right: the compari-
son between the geometric optics corrected with phase shift (Keller-Maslov
index) Φε

PS and the Schrödinger solution Ψε.
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Figure 7: Example 3, t=0.5. The left figure shows the multivalued velocity;
the right figure shows the beams centered on the mesh and the beams needed
to resolve the zero contour around the caustic point. The former case does
not resolve the caustic–around x = −0.18 well thus causes errors shown in
Figure 6(c) (left).
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Figure 8: Example 3. Left: the convergence rate in ε of the l1 and l∞ errors
of the wave amplitude; right: the plot of the optimal ∆y for each ε.
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Figure 9: Example 4, the two components of the multivalued velocity at
t = 0.5.

then the initial density and two components of the velocity are

ρ0(x1, x2) = exp(−50(x2
1 + x2

2)),

u0(x1, x2) = − tanh (5x1), v0(x1, x2) = − tanh (5x2).

This is an easily-implemented two-dimensional example, since the two
components are either x1-isotropic or x2-isotropic (see Figure 9). More
complicated examples could be dealt with similarly, but one needs more
sophisticated interpolation technique to get the intersection of the zero-level
contours. We do not address this issue here and refer to [23] for interested
readers. We use ∆y1 = ∆y2 = ∆ξ1 = ∆ξ2 = 0.004 for the computation
of the Liouville equations (3.5) and (3.9) by the semi-Lagrangian method

[19, 20]. The mesh size is ∆x1 = ∆x2 =
1

65536
for the construction of the

Eulerian beam solution (3.21). We take ε = 0.001 and compare the wave
amplitudes of the Schrödinger solution Ψε and the Eulerian beam solution
Φε

eu in Figure 10 at the time t = 0.5. The error between them is shown in
Figure 11.

5 Conclusion

In this paper, we present the Lagrangian and Eulerian formulations of the
Gaussian beam method for solving the Schrödinger equation. A new Eu-
lerian Gaussian beam method is developed using the level set method. By
using the observation (3.3), we evaluate the Hessian matrix of the phase
directly from the first derivatives of the (complexified) level set function for
velocity, thus avoid using an extra 2n2 (for n space dimension) complex-
valued, inhomogeneous Liouville equations as was done in [19]. We verify
the accuracy of the Gaussian beam solutions by several numerical examples
which show small error around caustics. We also point out that one needs
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Figure 10: Example 4, the comparison of the wave amplitude between the
Schrödinger solution Ψε on the left and the Eulerian beams solution Φε

eu on
the right for ε = 0.001 and at t = 0.5.

Figure 11: Example 4, the error plot of ||Ψε| − |Φε
eu||.
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to resolve the velocity contour near caustics to obtain good approximations
in the Eulerian formulation. Moreover, we give a numerical criteria for the
optimal choice of the beam numbers in the Gaussian beam summation. We
will extend this method to other problems in high frequency waves in the
near future.
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Appendix

The Lagrangian summation formulation (2.28) reads as

Φε
la(t, x) =

∫

Rn

(
1

2πε

)n
2

rθ(x − y(t, y0))ϕ
ε
la(t, x, y0)dy0, (A-1)

which is equivalent to

Φε
eu(t, x) =

∫

Rn

∫

Rn

(
1

2πε

)n
2

rθ(x−y)ϕε
eu(t, x, y, p)δ(Re[φ](0, y0, p0))dp0dy0.

(A-2)
based on Re[∇p0

φ](0, y0, p0) = I. Note that the integrated variables y0, p0

are the initial positions of y, p. Changing variables by y, p, we get

Φε
eu(t, x) =

∫

Rn

∫

Rn

(
1

2πε

)n
2

rθ(x − y)ϕε
eu(t, x, y, p)δ(Re[φ](t, y, p))dpdy.

(A-3)
in which we need det J = 1 for

J =

(
∇y0

y ∇p0
y

∇y0
p ∇p0

p

)
.

First it is easy to see det J |t=0 = 1. Moreover, we have

dJ

dt
= UJ,

with U =

(
0 I

−∇2
yV 0

)
. This gives

d

dt
(det J) = tr(adj(J)

dJ

dt
) = tr(adj(J)UJ) = tr(UJadj(J)) = det(J)tr(U) = 0.
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