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Abstract

A production system which produces a large number of items in many
steps can be modelled as a continuous flow problem. The resulting hyper-
bolic partial differential equation (PDE) typically is nonlinear and nonlo-
cal, modeling a factory whose cycle time depends nonlinearly on the work
in progress. One of the few ways to influence the output of such a fac-
tory is by adjusting the start rate in a time dependent manner. We solve
two prototypical control problems for this case: i) demand tracking where
we determine the start rate that generates an output rate which opti-
mally tracks a given time dependent demand rate and ii) backlog tracking
which optimally tracks the cumulative demand. The method is based
on the formal adjoint method for constrained optimization, incorporating
the hyperbolic PDE as a constraint of a nonlinear optimization problem.
We show numerical results on optimal start rate profiles for steps in the
demand rate and for periodically varying demand rates and discuss the
influence of the nonlinearity of the cycle time on the limits of the re-
activity of the production system. Differences between perishable and
non-perishable demand (demand vs. backlog tracking) are highlighted.

1 Introduction

Recently Armbruster et al [3] have introduced a continuum model to simulate
the average behavior of production systems at an aggregate level. Such a de-
scription is appropriate e.g. for a semiconductor fab which produces a large
number of items in a large number of steps. The appropriate mathematical
variable to describe the production flow in that case is a density variable ρ(x, t)
describing the density of products at stage x of the production at a time t. We
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scale x ∈ [0, 1], x = 0 representing the beginning of the production line and
x = 1 the end.

Assuming mass conservation - a reasonable assumption for a semiconductor
fab which does not know without significant testing whether a given wafer is de-
fective -, the time evolution of the product density is described by the continuity
equation:

∂ρ(x, t)

∂t
+

∂

∂x
(v(ρ(x, t))ρ(x, t)) = 0 (1)

where v(ρ(x, t)) is a velocity function that depends on the density ρ(x, t) only.
The rate λ(t) of products entering and exiting the fab at x = 0 and x = 1 are
defined as

λ(t) = v(ρ(x, t))ρ(x, t)|x=0

σ(t) = v(ρ(x, t))ρ(x, t)|x=1

We choose the velocity v(ρ, x, t) = vEQ(ρ) as a function of the total load in the
production line describing the equilibrium velocity of the factory as a whole [3].
We model the equilibrium flow vEQ using the total load (Work in Progress, WIP)

L :=
∫ 1

0
ρ(x, t)dx. Treating the production line as one M/M/1 queue [16, 1] the

associated cycle time τ = 1
vEQ

for a production rate µ = 1
vmax

and an average

queue length L we obtain τ = µ(1 + L) and

v(ρ) =
vmax

1 +
∫ 1

0
ρ(s, t) ds

. (2)

Assuming an initial WIP distribution in the factory ρ0(x), is known, and
prescribing the influx, we have a fully determined first order nonlinear hyperbolic
PDE for the evolution of the network densities.

∂ρ(x, t)

∂t
+

∂

∂x
(v(ρ)ρ(x, t)) = 0 (3a)

λ(t) = v(ρ)ρ(0, t) (3b)

ρ0(x) = ρ(x, 0) (3c)

v(ρ) =
vmax

1 +
∫ 1

0 ρ(s, t) ds
. (3d)

If the influx λ(t) and our initial condition ρ0(x) are nonnegative, then the density
is and will remain nonnegative.

Note that the velocity of the conservative hyperbolic PDE (3a) is constant
across the entire system at a given time. This would imply that in a real world
factory, all parts move through the factory with the same speed. While in a
serial production line, speed through the factory is dependent on all items and
machines downstream, in a highly re-entrant factory this is not the case. Since
items must visit machines more than once, including machines at the beginning
of the production process, their speed through factory is determined by the total
number of parts both upstream and downstream from them. Such re-entrant
production is characteristic for semiconductor fabs.

Further, the system (3) enjoys the following theoretical properties:
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• v(ρ) is positive

• v(ρ) is bounded; 0 < v(ρ) ≤ vmax

• v(ρ) has no spatial dependence (it is integrated out)

While the positivity of v(ρ) follows easily from the fact that vmax > 0, the
strict inequality in the second characteristic is not so obvious. The PDE in
ρ (3a) is an advection equation, hence whatever is in the system was either
there at the beginning or came in through the left boundary condition. Since
λ(t) = v(ρ)ρ(0, t) is bounded, and assuming that ρ0(x) is as well, the finite time
horizon implies that ρ(x, t) is bounded on [0, 1] × [0, τ ]. Therefore, there exists
a ρmax > 0 such that

0 ≤ ρ(x, t) ≤ ρmax for all (x, t) ∈ [0, 1] × [0, τ ]

and hence v(ρ) is strictly larger than zero.
The last item is a result of the non-locality of the continuum model and has

two important consequences. First, v(ρ) is only time dependent so

∂

∂x
(v(ρ)ρ(x, t)) ≡ v(ρ)ρx(x, t)

Second, the density propagates with the same speed everywhere in the spatial
domain for a given time, which means that no shocks and/or rarefaction waves
develop.

1.1 Controlling the continuum model

The ultimate goal of any model for a production system typically is to control it
in such a way as to run production in a predetermined way. For a semiconductor
fab there are essentially only two ways that influence production rate: The influx
and dispatch policies. Dispatch policies are used to control the behavior of the
production line on small scales: they act at the individual production stage
and they are used to match target production for a short amount to time -
typically involving production targets for the next few days or at most a week
(see [23]). The only way to influence the output of the whole factory over a
longer timescale, e.g. following a seasonal demand pattern or ramping up or
down a new product, is to change the influx. However, given that realistic cycle
times of a semiconductor factory lie between 30 and 60 days and given that
WIP in re-entrant production has a big influence on the speed of a product
through a factory (in particular if the factory is run close to capacity) it is far
from obvious what kind of starts policy leads to a desired output over a given
period of time.

In this paper we will develop an algorithm that controls the outflux of the
continuum model solely by regulating the influx. We achieve two distinct yet
related goals:
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1. Minimize the mismatch between the outflux and a demand rate target
over a fixed time period (demand tracking problem).

2. Minimize the mismatch between the total number of parts that have left
the factory and the desired total number of parts over a fixed time period
(backlog problem).

Mathematically we obtain a control problem subject to hyperbolic PDEs. Whereas
the theory of elliptic and parabolic PDEs is well–established [26] far less results
are known for hyperbolic problems [6, 28, 27, 4, 13]. We pursue a numerical
approach to solve the demand tracking and backlog problem.

We will use a formal approach to the adjoint method of variational optimiza-
tion. This will allow us to deal with jumps in the initial and boundary values
as well as with the nonlocality in the flux function. Alternative approaches to
controlling hyperbolic systems [8, 14, 15] are based on classical solutions and
due to the nonlocal term in the flux are not applicable to our system. For the
same reasone the recent results due to Bressan et. al. on optimality conditions
[5] are also not directly applicable. Therefore, we focus on the formal derivation
and its numerical validation. This approach is an optimize–then–discretize ap-
proach to the problem. Other approaches use first a full numerical discretization
before proceeding to the optimization problem, e.g. [9]. However, in this way
the structural information of the PDE is more difficult to preserve.

The structure of this paper will be as follows. We introduce the demand
tracking problem in Section 2 and discuss the adjoint method and its numeri-
cal implementation. Results for several demand scenarios will be discussed in
Chapter 3. Section 4 will discuss the backlog problem together with some inter-
esting results for different demand experiments. Section 5 will draw conclusions
and suggest further areas of investigation. Algebraic details of the derivations
of equations for the adjoint method can be found in an appendix 6.1 and 6.2.

2 Demand tracking

Controlling the production rate of a factory or production system is a vital goal
in manufacturing: producing too much of an item leads to inventory/holding
costs while producing too little leads to lost sales and backlog costs. In order
to maximize profitability, a production system must be able to match its pro-
jected demand as closely as possible. While demand is stochastic over a given
time period, a business typically generates a demand forecast for the next day,
week, month, etc. and runs its production system to match this demand accord-
ingly. Although there are numerous ways to generate this demand forecast, the
specifics are not important to this research since the only a priori assumption
is that a demand rate forecast exists and is in the form of a target outflux.
The question of a total item demand forecast will be addressed in the backlog
problem.

Assuming costs that penalize both overproduction and underproduction
equally and forgetting errors between the outflux and demand target after they
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have appeared (the news vendor model [24]), we define a cost functional J by

J(ρ, λ) :=
1

2

∫ τ

0

(d(t) − v(ρ)ρ(1, t))
2

dt. (4)

The problem of minimizing the mismatch between outflux and demand rate
target over a fixed time period can be formulated as a mathematical optimization
problem. We minimize the cost functional J(ρ, λ) subject to the PDE–dynamics
introduced previously, i.e., we need to solve

min J(ρ, λ) subject to (5a)
∂ρ(x,t)

∂t + ∂
∂x (v(ρ)ρ(x, t)) = 0 (5b)

λ(t) = v(ρ)ρ(0, t) (5c)

ρ0(x) = ρ(x, 0) (5d)

v(ρ) = vmax

1+
R

1

0
ρ(s,t) ds

. (5e)

In the following we will formally derive first–order necessary conditions for
the problem (5). To this end we introduce the Lagrangian function L(ρ, λ, φ) as

L(ρ, λ, φ) :=
1

2

∫ τ

0

(d(t) − v(ρ)ρ(1, t))
2

dt (6)

+

∫ 1

0

∫ τ

0

φ(x, t) [ρt(x, t) + v(ρ)ρx(x, t)] dt dx

where φ is the multiplier. To find the first–order necessary conditions we take
the variations of L with respect to ρ, λ and φ, respectively, and enforce them to
vanish. The details of formally calculating this variational derivative, including
the enforcement of the boundary conditions, are contained in Appendix 6.1. We
find

ρt(x, t) + v(ρ)ρx(x, t) = 0 for all (x, t) ∈ (0, 1) × (0, τ) (7a)

λ(t) = v(ρ)ρ(0, t) (7b)

ρ0(x) = ρ(x, 0) (7c)

v(ρ) =
vmax

1 +
∫ 1

0 ρ(s, t) ds
, (7d)

φ(x, τ) = 0 for all x ∈ [0, 1] (7e)

φ(1, t) = d(t) − v(ρ)ρ(1, t) for all t ∈ [0, τ ] (7f)

φt(x, t) + v(ρ)φx(x, t) = (7g)

v(ρ)2

vmax

[

ρ(1, t)d(t) − v(ρ)ρ(1, t)2 −
∫ 1

0

φ(s, t)ρx(s, t) ds

]

(7h)

0 = −φ(0, t) (7i)
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The equations have to be solved for (ρ, λ, φ) and the conditions are necessary
for first–order optimality provided that the functions sufficiently regular. The
system (7) enjoys a few interesting properties: As expected the original PDE
dynamics (7a–(7d) is part of the optimality system and ensures the feasibility
of the solution.

The equations (7f)–(7h) are partial differential equation for φ. Given the
boundary data (7e) and (7f) the PDE (7g) can be solved for φ. The function φ

is the Lagrange multiplier for the PDE constraints and called adjoint variable.
The characteristics for φ are depicted below and the equations for φ have to be
solved backwards in time. The last condition is called optimality condition and

Figure 1: The characteristics for the ρ and φ PDEs. The solid border lines
represent known data while the dashed border lines represent unknown data.
The solution characteristics (the lines with arrows) generate the unknown data
forwards in time for the ρ PDE and backwards in time for the φ PDE.

is an additional restriction on φ. We might interpret the condition as follows:
The influx λ has to be chosen in such a way that the backwards solution to
(7g) additionally satisfies (7i). For a numerical treatment of the optimization
problem it is worthwhile to note that equation (7i) is a descent direction for
the reduced cost functional j. The reduced cost functional is defined by j(λ) :=
J(ρ(λ), λ). Here, ρ(λ) for given λ is the solution to (7a)–(7d). Provided suitable
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regularity we have
∂

∂λ
j(λ)δλ = −φ(0, t)

if φ and ρ are given by (7a)–(7h).
These observations motivate the following numerical procedure to solve the

problem (5).

2.1 Numerical issues

To solve equations (7a) and (7g) numerically we discretize ρ and φ on a space-
time grid (xi, tj). Hence, the optimization problem (5) is a finite–dimensional
constrained optimization problem which is solved using a nonlinear conjugate
gradient method applied to the reduced cost functional j(λ). The gradient of j

is determined using the adjoint variables as discussed above:

• Determine the gradient of j for given λ(ti)

• Part 1 - Solve the PDE for ρ(xi, tj):
We numerically solve the ρ partial differential equation 7a forward in time
with initial condition ρ0(x) and λ(t). We use a spatial resolution ∆x and
a temporal resolution ∆t set to ∆t = ∆x

vmax
to satisfy the CFL stability

condition [18] and we use a standard upwind method due to the positivity
of the velocity function:

ρ(xi, tj + ∆t) = ρ(xi, tj) −
v(tn)∆t

∆x
(ρ(xi, tj) − ρ(xi − ∆x, tj)) (8)

where i := 1 . . .N , j := 1 . . .M with x1 = 0, xN = 1, t1 = 0 and tM = τ .

• Part 2 – Solve the adjoint PDE for φ(xi, tj): The adjoint function φ(x, t)
is determined by solving the three equations 7e, 7f and 7g on the same
grid and the same upwind method but backwards in time.

• Part 3 - Finding j′(·)
Having determined φ we evaluate the gradient of our cost functional as

j′(tj) = −φ(x1, tj) for all tj .

Having gradient information many methods can be applied to solve the min-
imization problem for the reduced cost functional [25, 22, 17]. In particular,
second–order or Newton–methods could be used for solving the problem. Since
we only deal with mid–size problems we simply apply the Polak-Ribiére+ non-
linear conjugate gradient method [21] combined with a projection to ensure the
positivity of λ and a line–search to guarantee sufficient descent. This method
performs well for our problems and is easy to implement.
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3 Numerical Results: Demand Tracking Exper-

iments

In this section we discuss several different experiments for the demand tracking
problem. Except where explicitly noted, the we use a spatial grid of ∆x = 10−2

for the discretization of the PDEs. The stopping criteria for the optimization
problem is ‖j′‖ ≤ ǫstop = 10−3. Most simulations took on the order of 5 minutes.
In the following results we demonstrate that the adjoint method works well for
the demand tracking problems and the results agree with intuition.

3.1 A Step Demand Function

As a prototypcial experiment we study a demand function that is constant and
increases by a one step jump half way in the time interval. Specifically we have
a constant initial density profile ρ0(x) ≡ 1, a vmax of 4, a constant initial λ0 ≡ 2
and a demand function that jumps from 2 to 3 halfway through our time interval
at t = 5.

0 2 4 6 8 10
1.5

2

2.5

3

3.5

4

4.5

5

5.5

time

influx λ
outflux σ
demand

Figure 2: Influx, outflux, and demand for a step demand function from 2 to 3 at
t = 5. ρ0 was constant at 1, λ0 was constant at 2, proceeded for 30 iterations,
exiting due to maximum iteration. Note the end effect.

Fig. 2 displays the demand target rate and optimal influx, and outflux
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determined via the adjoint algorithm over the time interval t ∈ [0, 10]. The
figure shows that we can generate an influx that closely matches the desired
outflux by putting a large amount of material into the factory in a relatively
short amount of time, resulting in a influx spike. The figure also shows some
features that need to be explained: oscillations in the influx near the end time
τ = 10, and oscillations of the outflux near the discontinuity. The oscillations
near the end are due to our choice of the cost functional: We only try to fit
the demand in an average way on (0, T ). Hence, there is no information on the
pointwise behavior. The reason behind this is illustrated by the characteristic
picture for the φ PDE (Fig. 1). In the upper left corner, φ(0, τ) is set to zero
hence the derivative of the cost function there is zero. When the source terms of
the φ PDE are small or zero, the φ PDE becomes a simple advection equation.
Therefore, the value of φ is constant along it’s characteristics and hence carries
the values at the top boundary conditions φ(x, τ) = 0 to the gradient, which is
−φ(0, t). Hence, in our domain near (x = 0, t = τ), the gradient will stay at or
near zero, and λ will not be changed or changed very little as a result of the
conjugate gradient method. Clearly, this effect will vanish as soon as a terminal
constraint is added to the cost functional, e.g.,

J(ρ, λ) =
1

2

∫ τ

0

(d(t) − v(ρ)ρ(1, t))2dt +
1

2
(d(T ) − v(ρ)ρ(1, T ))2.

The oscillations are not induced by the numerics.

3.1.1 Convergence of the cost functional

We examine the cost functional as we iterate λn for the experiment shown in Fig.
2. Figure 3 shows the cost j(λn) on a log scale at each iteration for 75 iterations.
This figure displays large drops in cost during the first few iterations until
locking on to a local extremum whereby it displays a roughly linear decrease.
This indicates that for the first few iterations the method is descending upon
a multidimensional saddle point until a new search direction is chosen that
results in a more significant drop. The method then proceeds to descend along
this direction in much the same way as it initially did before locking on to the
local minimum. While the method only finds local minima, the cost function is
bounded below by zero.

3.1.2 Convergence to the minimizer λ∗(t)

To examine the convergence of the adjoint method, we first look at the results of
our algorithm for different numbers of iterations. Figs. 4(a), and 4(b)) display
the results of the PR+ algorithm for the same experiment as in Fig. 2 for 10
and 300 iterations respectively.

After 10 iterations we are still far from an ideal solution, but after 300
iterations our output matches the demand nearly perfectly. Our control λ,
however, develops more and more oscillations. This effect is well known in
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Figure 3: The decrease in j(λk) with each iteration for the same experiment as
in Fig. 2
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(a) After 10 iterations
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(b) After 300 iterations

Figure 4: The PR+ conjugate gradient results for different numbers of iterations
for the same conditions as in Fig. 2
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control theory under the name of chattering - the optimal solution will have
infinitely many oscillations in a finite time interval.

Smoothing the influx by taking a moving average and examining the corre-
sponding outflux after 100 iterations supports the chattering explanation: Fig.
5 shows that the average influx produces a ramp outflux. Furthermore a smaller
moving average window size, which correlates to a less-smooth influx, produces
a steeper jump. Therefore, the oscillations in the influx generate an outflux
discontinuity. Chattering is further supported by the fact that the frequency
of the input oscillations increases as the spatial step ∆x and the associated
time step ∆t become smaller. Note that chattering disappears if the demand
increase is a ramp rather than a step function. We conduct an experiment were
the demand will increase from a steady demand level of two at t = 5 linearly
to an steady demand level of three within different time intervals. Fig. 6 shows
output and input after 100 iterations of the optimization scheme. These ramps
do not develop the oscillations in the influx characteristic for the step demand.
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(a) Influx versus average influx
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(b) Average influx and the resulting outflux

Figure 5: The influx and the moving average influx (window 1/2 time unit
centered at the time step) after 100 iterations and the corresponding outflux for
the average influx under the same conditions as in Fig. 2

3.2 Factory Reactivity

To examine the response of a factory to changes in the demand, known as the
reactivity of the factory, it is helpful to examine the relationship between the
velocity and the load. As Fig. 7 shows, the nonlinearity of the velocity function
results in sharply varying behavior for different values of the maximum velocity
vmax.
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(a) Ramp ends at t=7.5
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(b) Ramp ends at t=6.5
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(c) Ramp ends at t=5.5
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(d) Ramp ends at t=5.25

Figure 6: Results for a demand ramp with greater slopes for the same conditions
as in Fig. 2. Note that the oscillations that occurred in Fig. 4 are no longer
present.
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Figure 7: The velocity vs. the load for different values of vmax

Note that with large vmax, a unit change in the load has a much greater effect
in the velocity than for a lower vmax, especially for a small load. For high loads
the response to an increase in the load is not much different but higher values
of vmax have velocities at an overall higher level. Therefore, the combination of
both the vmax and the factory load define the factory’s reactivity. The next few
examples highlight different system reactivities and their consequences.

3.2.1 The effect of vmax

The following scenarios highlight the difference in a system’s ability to react
to the same oscillatory demand rate target depending on the vmax. Note that
vmax is the reciprocal of the raw processing (cycle) time of the factory. These
examples illustrate the benefit of a small cycle time and were run with the
exact same conditions with the exception of the different values of vmax. Each
experiment was run for 50 iterations with a τ of 10 with the sinusoidal demand
rate target

d(t) = sin(πt) + 1

with constant ρ0(x) = 1 and constant λ0(t) = 2.
We see in Fig. 8(a) (high vmax) that after an initial transient the match

between the outflux and demand becomes perfect. More interestingly, for low
vmax (Fig. 8b)) the outflux can not be changed fast enough to follow the demand
oscillation.

3.2.2 The effect of the load

The next experiments show the difference in the system’s response depending
on it’s load. In these the demand function steps up one unit to a new steady
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(a) vmax = 3
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(b) vmax = 1

Figure 8: The effect of vmax on a sinusoidally oscillating demand function14



state and then later steps down to the original steady state. The maximum
velocity is four for all experiments, Since the steady state is determined by

ρss =
λss

vmax − λss
(9)

a steady state cannot be established above an outflux of 4. Figure 9 shows that
the system follows easily a step up and down for an underloaded factory (from
12.5% to 37.5% loading) but that a step from 75% to 100% loading is difficult.
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(a) ρss = 0.5
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(b) ρss = 3.5

Figure 9: The effect of the load on a step up/step down demand function
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4 The Backlog Problem

The backlog of a production system at a given time t is defined as the total
number of items that have been demanded minus the total number of items
that have left the factory up to that time. Backlog can be negative or positive,
with a negative backlog corresponding to overproduction and a positive backlog
corresponding to a shortage. The backlog problem differs from the demand
tracking problem in one key way: errors are not forgotten. Fig. 10(a) and Fig.
10(b) schematically illustrate the difference for a demand with a step increase.
Given a maximum rate of increase, the best approach in the demand tracking
problem is to increase the outflux (solid blue line) until it reaches the demand
target (dashed green line) and then stay there . The best approach in the
backlog tracking problem is to maximally increase the outflux until the area
below the demand (rate) target and above the outflux equals the area above the
demand target and below the outflux. At that time the backlog is zero and the
outflux will drop to the demand target.
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(a) Schematic influx response to a demand jump for de-
mand tracking
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(b) Schematic influx response to a demand jump for back-
log tracking

Figure 10: Demand tracking vs. backlog tracking

4.1 Cost functional and adjoint approach

It is useful to define the cumulative demand and the cumulative outflux at time
t as

D(t) :=

∫ t

0

d(r) dr

O(t) :=

∫ t

0

v(ρ)ρ(1, r) dr ≡
∫ t

0

σ(r) dr.
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Hence, the backlog at time t becomes

b(t) :=

∫ t

0

(d(r) − v(ρ)ρ(1, t)) dr ≡ D(t) − O(t).

We define a cost functional over a fixed time period from [0, τ ],as

J(ρ, λ) =
1

2

∫ τ

0

b(t)2 dt (10)

where the outflux is generated by our usual PDE model (3a). The cost func-
tional Eq. 10 penalizes overproduction and underproduction equally. This is
not usually the case - typically overproduction has small holding costs whereas
underproduction may lead to contractual penalties that are much higher. Tak-
ing account of different costs will make the cost functional non-smooth. While
minimization of the cost functional may still be possible, this question will not
been addressed in this research.

Minimizing a Lagrangian using the same approach as in the demand tracking
problem but with significantly more involved algebra (see Appendix 6.2) we
arrive at a coupled system of two PDEs - one for the density ρ(x, t) and one for
the adjoint variable φ(x, t) that are coupled through the boundary conditions:

0 = ρt(x, t) + v(ρ)ρx(x, t) (11a)

0 = φ(x, τ) (11b)

φ(1, t) =

∫ τ

t

b(c) dc (11c)

φt(x, t) + v(ρ)φx(x, t) =
v(ρ)2

vmax
ρ(1, t)

∫ τ

t

b(c) dc − v(ρ)2

vmax

∫ 1

0

φ(x, t)ρx(x, t) dx

(11d)

0 = −φ(0, t) (11e)

Notice that the boundary condition for the φ equation is related to the integrated
backlog and can again be determined after the ρ equation has been solved,
allowing the same numerical approach for solving the PDEs as in the demand
tracking problem and the same iterative algorithm to find a minimum of the
cost functional.

4.2 Backlog Results

The following experiments were run with the same parameters as the demand
tracking problem unless otherwise noted. A backlog experiment typically takes
longer than a comparable experiment for the demand tracking problem,

We will again examine the case of a step demand rate function; We consider a
demand rate function that goes from 2 to 3 halfway through our time interval of
τ = 10, a constant initial density profile of ρ0(x) ≡ 1, a vmax of 4, and a constant
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Figure 11: Influx, outflux, and demand rate for a step demand function from 2
to 3 at t = 5.

initial influx rate of λ(t) ≡ 2. Fig.11 shows the results of this experiment after
50 iterations. Notice that the oscillations in λ have disappeared, both at the end
as well as near the discontinuity. The explanation for this lies in the boundary
condition of the φ-equation φ(1, t) =

∫ τ

t b(c) dc. Given that the ρ and the φ

PDEs are hyperbolic the iteration algorithm for the optimization really involves
the following steps λn → φn(1, t) → λn+1 → φn+1(1, t) etc. However, since for
the backlog problem φ(1, t) involves an integration step, any oscillations in time
will be smoothed out.

Figure 12 shows the optimal influx pattern for a jump in the demand that
happens very early in the control interval. The influx seems to follow a heuristic
of increasing the influx to make up for missed backlogs and then exponentially
reduce to the new steady state influx. Note the strong inverse response showing
the decrease of the outflux due to the increase of the influx.

Fig. 13, shows the difference of demand tracking and backlog tracking for
the oscillatory demand d(t) = sin(πt)+1 discussed before. Clearly the demand
tracking problem minimizes the time for the outflux to match the demand signal
whereas the backlog problem overproduces to reduce the backlog to zero as fast
as possible.

5 Conclusion

We have shown how formally to generate an input control for the output and
backlog tracking problem of a hyperbolic nonlinear and nonlocal transport equa-
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Figure 12: Backlog tracking for a demand jump that comes too early for the
influx to generate an outflux that increases at the right time. Note the much
higher scale compared to the previous figure.
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Figure 13: The results of an oscillatory demand for the demand tracking problem
and the backlog problem.
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tion. The algorithm based on the adjoint method of optimizing a cost functional
with constraints is an extremely powerful and useful tool and it applies per-
fectly to the continuum model of factory production. While we have not been
concerned with mathematical fundamentals e.g. question of uniqueness of the
minimizer or even the existence of the solutions of the associated PDEs or the ex-
istence of a minimizer at all, our extensive simulations indicate that the method
allows to solve the tracking problem for most practical cases. Such a statement
is relatively easy to make since the results of the optimization algorithms are
easy to evaluate: The associated cost function has a lower bound of zero and
the associated minimizer can be compared to the minimizing input for a linear
hyperbolic equation which is generated by a simple delay of the desired output.

Using the control algorithm we are able to make some interesting observa-
tions about the behavior of continuum models of production systems: We can
quantify the reactivity of a factory and show how that leads to increased or
decreased sensitivity to changes in the input. We also notice that discontinuous
changes in the demand seem to lead to chattering. Furthermore we can illus-
trate the influence of the nonlinear behavior of the production line nicely by its
conversion of a saw-tooth like input function into a harmonic outflux.

To specifically use this algorithm for a given production system the following
steps will have to be done:

1. The continuum model will have to be parameterized via a suitable clearing
function. Extracting such a function out of real or simulation data is not
obvious and subject to current research [29].

2. As long as the clearing function is a monotone function of the load or
the local density, the adjoint calculus will lead to similar equations as
discussed in this paper and hence a optimized input function λ∗(t) can be
calculated easily.

3. λ∗(t) will be discretized to generate daily inputs.

Transferring this algorithm to a real world production system involves addi-
tional future research:

• A factory has additional constraints - we need to incorporate a maximal
influx λmax as well as a constaint on the maximal change in the influx
since factories can not change their production rate arbitrarily fast. This
adds additional constraints to the optimization problem.

• Similarly, the cost functional may be made much more realistic at the
expense of differentiability.

• Clearing functions involving batch processes are not necessarily mono-
tonically increasing. It is currently unclear whether and how the adjoint
algorithm works in this case.

• Our current control algorithm can be considered as a open loop control
algorithm. Such algorithms are not robust under perturbations. Clearly
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a small stochastic perturbation in the density level at an early time in our
control horizon will have a large effect on the error of your demand tracking
problem later on. We are working on developing a model predictive control
approach [11] that uses the adjoint method to control a discrete event
simulation (DES). The resulting optimal influx will be implemented in the
DES only for a short control window. The resulting new state will then
be fed back into the adjoint algorithm and an updated optimal influx
will be generated. We expect that such a feedback loop will lead to a
control algorithm that is robust against stochastic fluctuations and model
mismatch.

• Control of production systems based on the influx is a large scale control
algorithm - long time scales and over many production steps. In [23] we
have shown that dispatch policies can be used to effect small scale control
- short time scales and acting on individual machines. The integration
of both approaches would enable us to control for e.g. seasonal demand
swings while at the same time adjust for daily production variation and
daily demand.

Furthermore there are several theoretical questions that we are interested to
follow up:

• All of the above calculations have been done in a formal way. A full the-
oretical underpinning needs to discuss the existence and regularity prop-
erties of the solutions of the forward and the adjoint partial differential
equation.

• The current gradient based optimization search finds a local minimum.
Are there special cases when we can prove that the local minimum is
actually the global minimum?

• An exciting theoretical question comes from the discretization of the con-
tinuum model. Production systems modeling has been analyzing so called
fluid models for a long time (see eg. [7]). They are coupled ODEs that
mimic the behavior of queues in front of machines. It has been shown that
such models in the limit of large number of queues can be modeled by the
continuum model [2]. On the other hand optimal control of a finite number
of ODEs is a solved problem based on Pontryagin’s maximum principle
[20]. The convergence of such an algorithm to the adjoint algorithms of
controlling PDEs is an open question.
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6 Appendix

This appendix shows the calculations for the variational derivatives necessary
to derive the systems of equations 7 for the demand tracking problem and 11
for the backlog problem.

6.1 Demand tracking

We would like to find DρLδρ, where our Lagrangian L(ρ, λ, φ) is defined as:

L(ρ, λ, φ) := J(ρ, λ) + 〈E(ρ, λ), φ〉

≡ 1

2

∫ τ

0

(d(t) − v(ρ)ρ(1, t))
2

dt

+

∫ 1

0

∫ τ

0

φ(x, t) [ρt(x, t) + v(ρ)ρx(x, t)] dt dx

For clarity we will first find DρJ and then find Dρ 〈E(ρ, λ), φ〉. By adding the

them together we will have DρL. Recall that v′(ρ)δρ = − v(ρ)2

vmax

∫ 1

0 δρ(s, t) ds.
Using integration by parts we can rewrite L as:

L(ρ, λ, φ) =
1

2

∫ τ

0

(d(t) − v(ρ)ρ(1, t))
2

dt

+

∫ 1

0

[φ(x, τ)ρ(x, τ) − φ(x, 0)ρ(x, 0)] dx

+

∫ τ

0

[φ(1, t)v(ρ)ρ(1, t) − φ(0, t)v(ρ)ρ(0, t)] dt

−
∫ 1

0

∫ τ

0

ρ(x, t) [φt(x, t) + v(ρ)φx(x, t)] dt dx.
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6.1.1 Finding DρJ

We will be taking derivatives in a variational sense.

DρJ =

∫ τ

0

(d(t) − v(ρ)ρ(1, t))

(

v(ρ)2

vmax
ρ(1, t)

∫ 1

0

δρ(s, t) ds − v(ρ)δρ(1, t)

)

dt

↓

=

∫ τ

0

v(ρ)2

vmax
ρ(1, t) (d(t) − v(ρ)ρ(1, t))

∫ 1

0

δρ(s, t) ds dt

−
∫ τ

0

v(ρ) (d(t) − v(ρ)ρ(1, t)) δρ(1, t) dt

Putting terms together with the same variation we get:

DρJ =

∫ τ

0

v(ρ)2

vmax

(

ρ(1, t)d(t) − v(ρ)ρ(1, t)2
)

∫ 1

0

δρ(s, t) ds dt

+

∫ τ

0

(

v(ρ)2ρ(1, t) − v(ρ)d(t)
)

δρ(1, t) dt

6.1.2 Finding Dρ 〈E(ρ, λ), φ〉

Dρ 〈E(ρ, λ), φ〉 =

∫ 1

0

[φ(x, τ)δρ(x, τ) − φ(x, 0)δρ(x, 0)] dx

+

∫ τ

0

φ(1, t)

[

−v(ρ)2

vmax
ρ(1, t)

∫ 1

0

δρ(s, t) ds + v(ρ)δρ(1, t)

]

dt

−
∫ τ

0

φ(0, t)

[

−v(ρ)2

vmax
ρ(0, t)

∫ 1

0

δρ(s, t) ds + v(ρ)δρ(0, t)

]

dt

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δρ(x, t) dt dx

+

∫ 1

0

∫ τ

0

v(ρ)2

vmax
ρ(x, t)φx(x, t)

∫ 1

0

δρ(s, t) ds dt dx

Regrouping:
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Dρ 〈E(ρ, λ), φ〉 =

∫ 1

0

[φ(x, τ)δρ(x, τ) − φ(x, 0)δρ(x, 0)] dx

+

∫ τ

0

[φ(1, t)v(ρ)δρ(1, t) − φ(0, t)v(ρ)δρ(0, t)] dt

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δρ(x, t) dt dx

+

∫ τ

0

v(ρ)2

vmax
[φ(0, t)ρ(0, t) − φ(1, t)ρ(1, t)]

∫ 1

0

δρ(s, t) ds dt (12)

+

∫ 1

0

∫ τ

0

v(ρ)2

vmax
ρ(x, t)φx(x, t)

∫ 1

0

δρ(s, t) ds dt dx (13)

For the term (12) we may bring out the spatial integral, change the integra-
tion variable, and change the order of integration to obtain:

∫ τ

0

v(ρ)2

vmax
[φ(0, t)ρ(0, t) − φ(1, t)ρ(1, t)]

∫ 1

0

δρ(s, t) ds dt

=

∫ 1

0

∫ τ

0

v(ρ)2

vmax
[φ(0, t)ρ(0, t) − φ(1, t)ρ(1, t)] δρ(x, t) dt dx

and for the term (13) we can change the integration variables and integration
order and bring out a spatial integral to rewrite as:

∫ 1

0

∫ τ

0

v(ρ)2

vmax
ρ(x, t)φx(x, t)

∫ 1

0

δρ(s, t) ds dt dx

=

∫ 1

0

∫ τ

0

v(ρ)2

vmax
ρ(x, t)φx(x, t)

∫ 1

0

δρ(θ, t) dθ dt dx

=

∫ 1

0

∫ τ

0

v(ρ)2

vmax
ρ(s, t)φx(s, t)

∫ 1

0

δρ(θ, t) dθ dt ds

=

∫ 1

0

∫ τ

0

v(ρ)2

vmax

[
∫ 1

0

ρ(s, t)φx(s, t) ds

]

δρ(θ, t) dt dθ

=

∫ 1

0

∫ τ

0

v(ρ)2

vmax

[
∫ 1

0

ρ(s, t)φx(s, t) ds

]

δρ(x, t) dt dx

Now putting all terms together with the same variation and substituting (by
integration by parts)

−
∫ 1

0

φ(s, t)ρx(s, t) ds

= φ(0, t)ρ(0, t) − φ(1, t)ρ(1, t) +

∫ 1

0

ρ(s, t)φx(s, t) ds

26



we obtain:

Dρ 〈E(ρ, λ), φ〉 =

∫ 1

0

[φ(x, τ)δρ(x, τ) − φ(x, 0)δρ(x, 0)] dx (14a)

+

∫ τ

0

[φ(1, t)v(ρ)δρ(1, t) − φ(0, t)v(ρ)δρ(0, t)] dt (14b)

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δρ(x, t) dt dx (14c)

−
∫ 1

0

∫ τ

0

v(ρ)2

vmax

[
∫ 1

0

φ(s, t)ρx(s, t) ds

]

δρ(x, t) dt dx (14d)

6.1.3 Finding DρL

Adding together DρJ and Dρ 〈E(ρ, λ), φ〉 and grouping all like variations to-
gether gives the following equations

DρLδρ =

∫ 1

0

[φ(x, τ)] δρ(x, τ)

−
∫ 1

0

[φ(x, 0)] δρ(x, 0)

+

∫ τ

0

[

v(ρ)φ(1, t) + v(ρ)2ρ(1, t) − v(ρ)d(t)
]

δρ(1, t)

−
∫ τ

0

[v(ρ)φ(0, t)] δρ(0, t)

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δρ(x, t) dt dx

+

∫ 1

0

∫ τ

0

v(ρ)2

vmax

[

ρ(1, t)d(t) − v(ρ)ρ(1, t)2 −
∫ 1

0

φ(s, t)ρx(s, t) ds

]

δρ(x, t) dt dx

We need to explicitly include our initial and boundary conditions

λ(t) = v(ρ)ρ(0, t)

ρ0(x) = ρ(x, 0)

into our adjoint method. Since we are given a fixed initial condition ρ0(x),
δρ(x, 0) is zero. Similarly, since we are given a fixed λ(t) and we assume that we
have existence and uniqueness of solutions, ρ is determined at the left boundary
and therefore cannot vary there. and hence the variations δρ(0, t) is zero.
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The adjoint method requires that DρLδρ be equal to zero. Hence

0 = DρLδρ

⇓

0 =

∫ 1

0

[φ(x, τ)] δρ(x, τ)

+

∫ τ

0

[

v(ρ)φ(1, t) + v(ρ)2ρ(1, t) − v(ρ)d(t)
]

δρ(1, t)

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δρ(x, t) dt dx

+

∫ 1

0

∫ τ

0

v(ρ)2

vmax

[

ρ(1, t)d(t) − v(ρ)ρ(1, t)2 −
∫ 1

0

φ(s, t)ρx(s, t) ds

]

δρ(x, t) dt dx.

By the weak form of the Fundamental Theorem Of The Calculus Of Variations
we get

0 = φ(x, τ) almost everywhere in [0, 1]

0 = v(ρ)φ(1, t) + v(ρ)2ρ(1, t) − v(ρ)d(t) almost everywhere in [0, τ ]

0 = −φt(x, t) − v(ρ)φx(x, t)

+
v(ρ)2

vmax

[

ρ(1, t)d(t) − v(ρ)ρ(1, t)2 −
∫ 1

0

φ(s, t)ρx(s, t) ds

]

almost everywhere in (0, 1) × (0, τ).

We will ignore sets of measure zero and since v(ρ) > 0

φ(x, τ) = 0 for all x ∈ [0, 1] (15)

φ(1, t) = d(t) − v(ρ)ρ(1, t) for all t ∈ [0, τ ] (16)

φt(x, t) + v(ρ)φx(x, t) = (17)

v(ρ)2

vmax

[

ρ(1, t)d(t) − v(ρ)ρ(1, t)2 −
∫ 1

0

φ(s, t)ρx(s, t) ds

]

for all (x, t) ∈ (0, 1) × (0, τ)

6.2 Backlog problem

In the demand tracking problem we took the derivative of the Lagrangian with
respect to ρ, grouped like variational terms together, and set the corresponding
equations to zero. This is not possible in the backlog problem as we will have

terms involving an integral over a variation
∫ 1

0 δρ(s, t) ds. Therefore, a different
technique will be used to find the adjoint equations.
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6.2.1 Find DρL(ρ, λ, φ)

After integration by parts, we have the Lagrangian

L(ρ, λ, φ) = J(ρ, λ) + 〈E(ρ, λ), φ〉

=
1

2

∫ τ

0

(
∫ t

0

(d(r) − v(ρ)ρ(1, r)) dr

)2

dt +

∫ 1

0

[φ(x, τ)ρ(x, τ) − φ(x, 0)ρ(x, 0)] dx

+

∫ τ

0

[φ(1, t)v(ρ)ρ(1, t) − φ(0, t)v(ρ)ρ(0, t)] dt −
∫ 1

0

∫ τ

0

ρ(x, t) [φt(x, t) + v(ρ)φx(x, t)] dt dx

Breaking up the derivative into two parts for clarity, we have

DρJδρ =
∫ τ

0

(
∫ t

0

(d(r) − v(ρ)ρ(1, r) dr)

) (
∫ t

0

[

v(ρ)2

vmax
ρ(1, r)

∫ 1

0

δρ(s, r) ds − v(ρ)δρ(1, r) dr

])

dt

⇓ substituting b(t) =

∫ t

0

(d(r) − v(ρ)ρ(1, r)) dr

=

∫ τ

0

b(t)

∫ t

0

[

v(ρ)2

vmax
ρ(1, r)

∫ 1

0

δρ(s, r) ds

]

dr dt

−
∫ τ

0

b(t)

∫ t

0

[v(ρ)δρ(1, r)] dr dt.

Since E(ρ, λ) has not changed from the demand tracking problem, we can use
equations 14 from the demand tracking problem. Setting the variations δρ(0, t)
and δρ(x, 0) to zero by the same reasoning as in the demand tracking problem
we find

DρL(ρ, λ, φ)δρ =
∫ τ

0

b(t)

∫ t

0

[

v(ρ)2

vmax
ρ(1, r)

∫ 1

0

δρ(s, r) ds

]

dr dt

−
∫ τ

0

b(t)

∫ t

0

[v(ρ)δρ(1, r)] dr dt +

∫ 1

0

[φ(x, τ)δρ(x, τ)] dx

+

∫ τ

0

[φ(1, t)v(ρ)δρ(1, t)] dt −
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δρ(x, t) dt dx

−
∫ 1

0

∫ τ

0

v(ρ)2

vmax

[
∫ 1

0

φ(s, t)ρx(s, t) ds

]

δρ(x, t) dt

6.2.2 Pointwise Approach To Equation Derivation

Since we cannot easily group like variational terms together in DρL, we employ
a different approach to deriving the adjoint equations. The key concept is to
assume that, as in the weak version of the Fundamental Theorem Of Variational
Calculus, that DρL = 0 holds for every variation δρ(x, t). Therefore, by choosing
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specific forms of the variation δρ(x, t), we can elucidate more information from
DρL, knowing that DρL = 0 holds pointwise throughout our domain.

Operating formally, we can choose our variation δρ(x, t) to be separable delta
functions of x and t with support on the interior of [0, 1] × [0, τ ], i.e.

δρ(x, t) ≡ δ(x − α)δ(t − β), with α ∈ (0, 1) and β ∈ (0, τ)

with the delta function(s) possessing the usual properties:

δ(u) = 0 for u 6= 0
∫

Ω

δ(u − a) du = 1 if a ∈ Ω

∫

Ω

f(u)δ(u − a) du = f(a), a ∈ Ω.

Substituting this into DρL = 0 (evaluating δρ at endpoints if required and
changing the integration constant to reduce confusion) yields:

0 = DρL(ρ(λ), λ, φ)

=

∫ τ

0

b(c)

[
∫ c

0

v(ρ)2

vmax
ρ(1, r)

∫ 1

0

δ(s − α)δ(r − β) ds dr

]

dc

−
∫ τ

0

b(c)

[
∫ c

0

v(ρ)δ(1 − α)δ(r − β) dr

]

dc

+

∫ 1

0

φ(x, τ)δ(x − α)δ(τ − β) dx

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δ(x − α)δ(t − β) dt dx

−
∫ 1

0

∫ τ

0

[

v(ρ)2

vmax
φ(x, t)ρx(x, t)

∫ 1

0

δ(s − α)δ(t − β) ds

]

dt dx

+

∫ τ

0

φ(1, t)v(ρ)δ(1 − α)δ(t − β) dt

Since α is in (0, 1) and β is in (0, τ),

δ(1 − α) = δ(τ − β) = 0

and
∫ 1

0

δ(s − α) ds = 1

and hence

0 =

∫ τ

0

b(c)

[
∫ c

0

v(ρ)2

vmax
ρ(1, r)δ(r − β) dr

]

dc (18)

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δ(x − α)δ(t − β) dt dx (19)

−
∫ 1

0

∫ τ

0

[

v(ρ)2

vmax
φ(x, t)ρx(x, t)δ(t − β)

]

dt dx. (20)
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Given that for β > c the δ function in term (18) does not have any support
inside the integral, term (18) is equal to

v(ρ)2

vmax
ρ(1, β)

[

∫ τ

0

b(c) dc −
∫ β

0

b(c) dc

]

=
v(ρ)2

vmax
ρ(1, β)

∫ τ

β

b(c) dc.

With the evaluation of (19) and (20) we find

0 =
v(ρ)2

vmax
ρ(1, β)

∫ τ

β

b(c) dc (21)

− [φt(α, β) + v(ρ)φx(α, β)]

− v(ρ)2

vmax

∫ 1

0

φ(x, β)ρx(x, β) dx.

Because (α, β) can be any interior point of the domain, we would then expect
that (21) holds for every point on the interior of our domain, giving us the
adjoint PDE in φ

φt(x, t) + v(ρ)φx(x, t) =
v(ρ)2

vmax
ρ(1, t)

∫ τ

t

b(c) dc − v(ρ)2

vmax

∫ 1

0

φ(x, t)ρx(x, t) dx.

(22)
To determine the coupling condition, we must choose a variation that mimics

a delta function on the boundary of our spatial domain at x = 1 and a delta
function in the interior of the time domain. Spatially we would like a function
δǫ that has the following properties for some small parameter ǫ and a ∈ R:

lim
ǫ→0

δǫ(u − a) = 0 for u 6= a

lim
ǫ→0

δǫ(0) = ∞

lim
ǫ→0

∫

Ω

δǫ(u − a) du = 1 if a ∈ Ω

lim
ǫ→0

∫

Ω

δǫ(u − a)f(u) du = f(a) if a ∈ Ω

An example of a function with these properties is:

δǫ(x) :=
1

ǫ
√

2π
e−x2/2ǫ2

By centering this function about x = 1 we can approximate a delta function
there, so we take our variation to be:

δρ(x, t) ≡ δǫ(1 − x)δ(t − β) with β ∈ (0, τ)
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Substituting into DρL = 0 gives:

0 = DρL(ρ, λ, φ)

=

∫ τ

0

b(c)

[
∫ c

0

v(ρ)2

vmax
ρ(1, r)

∫ 1

0

δǫ(1 − s)δ(r − β) ds dr

]

dc

−
∫ τ

0

b(c)

[
∫ c

0

v(ρ)δǫ(0)δ(r − β) dr

]

dc (23)

+

∫ 1

0

φ(x, τ)δǫ(1 − x)δ(τ − β) dx

−
∫ 1

0

∫ τ

0

[φt(x, t) + v(ρ)φx(x, t)] δǫ(1 − x)δ(t − β) dt dx

−
∫ 1

0

∫ τ

0

[

v(ρ)2

vmax
φ(x, t)ρx(x, t)

∫ 1

0

δǫ(1 − s)δ(t − β) ds

]

dt dx

+

∫ τ

0

φ(1, t)v(ρ)δǫ(0)δ(t − β) dt (24)

If we take the limit as ǫ → 0, we see that terms (23, 24) approach infinity while
all other terms are bounded (order 1). Therefore to satisfy DρL = 0 we must
set these terms (23, 24) to zero (the other terms will be equal to zero due to the
φ PDE and terminal condition). This yields:

0 =

∫ τ

0

φ(1, t)v(ρ)δǫ(0)δ(t − β) dt

−
∫ τ

0

b(c)

[
∫ c

0

v(ρ)δǫ(0)δ(r − β) dr

]

dc

= δǫ(0)v(ρ)

[

φ(1, β) −
∫ τ

β

b(c) dc

]

Again since β can be any value in (0, τ) we would expect this to hold for any
time t ∈ (0, τ) which gives our coupling condition:

φ(1, t) =

∫ τ

t

b(c) dc ∀t ∈ (0, τ)

We now have the φ PDE, the coupling condition, and by examining DρL = 0
directly, the terminal condition for the backlog problem as (respectively):

0 =
v(ρ)2

vmax
ρ(1, t)

∫ τ

t

b(c) dc (25)

− [φt(x, t) + v(ρ)φx(x, t)]

− v(ρ)2

vmax

∫ 1

0

φ(x, t)ρx(x, t) dx for all (x, t) ∈ (0, 1) × (0, τ)

φ(1, t) =

∫ τ

t

b(c) dc for all t ∈ [0, τ ] (26)

φ(x, τ) ≡ 0 for all x ∈ [0, 1] (27)
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7 Appendix

This appendix describes the details of the conjugate gradient numerical method
used to find the minimizing influx λ∗(t).

7.1 Line Search and β+

The objective of the line search is to find a step length sk > 0 that minimizes
the cost functional j(λk) in a particular search direction dk. To find an exact
local minimizer of j(λk+1) at each iteration would be computationally infeasible
for our problem so this cannot be required. However, we would like to guarantee
that we have taken a step length that is not too small. We also want that the
slope of j(λk+1) is small, so that increasing sk will either increase j(λk+1) or
decrease it very little. These conditions are encapsulated in the strong Wolfe
conditions [21]

j(λk + skdk) ≤ j(λk) + c1skj′(λk)T dk (28a)
∣

∣j′(λk + skdk)T dk

∣

∣ ≤ c2

∣

∣j′(λk)T dk

∣

∣ (28b)

with 0 < c1 < c2 < 1. We have implemented a step-length selection algorithm
that obeys the strong Wolfe conditions (28) and is detailed in [10] with a pseu-
docode description in [21]. This algorithm takes in the search direction dk, the
current control λk, and a maximum value for sk and returns a step length sk

that obeys the strong Wolfe conditions. We opted to use a combination of bi-
section and polynomial interpolation to choose our test step lengths. While this
is in inexact line search (sk is not guaranteed to be a local minimizer), when
coupled with our PR+ conjugate gradient method, numerical experience shows
that the algorithm is efficient [12], [21]. While not implemented, it is also pos-
sible to show global convergence of the PR+ conjugate gradient if the inexact
line search method satisfies the strong Wolfe conditions and also the sufficient
descent condition

j′(λk)T dk ≤ −c3 ‖j′(λk)‖2
, 0 < c3 ≤ 1.

Suitable line search methods can be found in [19]. In our work convergence to a
desired tolerance could always be achieved and hence more advanced line search
methods that guaranteed global convergence were not implemented.

Nonlinear conjugate gradient methods, including the PR+ method, are de-
signed for unconstrained optimization, while we wish to constrain the method
to the space where our control constraint

0 ≤ λ(t) ≤ λmax

is not violated. We accomplished this numerically using the line search. First,
our line search took in a maximum value for sk, which we calculated as follows.
Since dk and λk are just vectors in R

M , we can examine each of their components
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individually. The only way that λk+1 = λk + skdk can be greater than λmax is
if a component of dk, di

k was positive and

sk >
λmax − λi

k

di
k

Similarly, the only way that λk+1 can become negative is if some component of
dk was negative and

sk >
λi

∣

∣di
k

∣

∣

If di
k was zero, it is skipped as the choice of sk will have no effect. By defining

the maximum value of sk to be the minimum value that made these inequalities
false for all components of dk, we can guarantee that our control constraint
(7.1) will hold for all λk, regardless of dk. As result of this and our choice of a
nonnegative λ0, we ensure that ρ(x, t) remains nonnegative for all iterations as
well.

The enforcement of our control constraint had an important effect that
needed to be dealt with. The line search method we used assumes that an
interval exists where the strong Wolfe conditions hold. However, given our con-
strained space, it was possible that along a descent direction dk,

j (λk + skdk)

was approximately linear with slope j′(λk)T dk until the maximum value of sk.
In this case, there would be no choice of step length where the strong Wolfe
conditions held. Therefore, sk was chosen as the maximum value of sk so as to
minimize the function along this direction, which meant that a component of λ

was now at either 0 or λmax. The reasoning behind this is that along that search
direction, the lowest value of j(λ) occurs at a an infeasible step length, so the
lowest feasible value occurs at the maximum step length. In future iterations
when a component of λk was at a boundary and the search direction would take
it into the infeasible region, its corresponding component of the search direction
dk was set to zero. This ensured that the control constraint was not violated
and that other components of λk could still be changed so as to lower j(λ) even
further.

7.2 Exit conditions

We employed the following two exit conditions on our implementation of the
PR+ conjugate gradient system. The most simple of the two was to halt after
a maximum number of iterations. The other takes advantage of the fact that
at a local minimum of j(λ), j′(λ) should be close to zero. In order to stop,
we required that the norm of the derivative of j at the current control λk be
significantly less than the norm of the derivative of j at the initial control λ0,
i.e.

‖j′(λk)‖2 ≤ ǫstop ‖j′(λ0)‖2
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This choice of stopping condition let us define an absolute stopping criteria
across all of our experiments, as the number of components in j′(λ) and hence
the size of ‖j(λk)‖ varied depending on the space time grid used in that partic-
ular experiment. Of course there are other choices of stopping criteria, such as
non-improvement of the cost function or actual computational time. As we will
see, in practice the stopping criteria was almost always the maximum iterations,
and that due to the relatively fast nature of our algorithm, this stopping criteria
could be and was set depending on the desired level of convergence.
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