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Abstract. This paper presents a continuum - traffic flow like - model for the
flow of products through complex production networks, based on statistical

information obtained from extensive observations of the system. The resulting

model consists of a system of hyperbolic conservation laws, which, in a relax-
ation limit, exhibit the correct diffusive properties given by the variance of the

observed data.

1. Introduction. We present a continuum - traffic flow like - model for the evo-
lution of a large number of parts through a complex production system. The basic
idea of traffic flow like models for production systems is to model the evolution of
parts as moving on a virtual ’road’, introducing an artificial spatial variable, namely
the stage of the production process. So, the raw part enters the system at stage
x = 0 and the finished part leaves the system at stage x = 1. In the work presented
in this paper we compute the velocity of the part from the statistics of a large
number of observed data. This leads to the formulation of a Lagrangian particle
model, and the consequent derivation of macroscopic conservation laws for the part
density using large time averages. The present paper represents an extension of the
work in [1] and [5]. In this previous work, the large time averaged conservation
laws were derived from a standard Chapman - Enskog expansion of an underlying
kinetic equation, leading to a single parabolic conservation law, i.e. a convection
diffusion equation. As will be explained in the following, the parabolicity of the
resulting equation has to be viewed as an artifact of the asymptotics and actually
gives rise to modeling problems, as far as the formulation of boundary conditions
is concerned. In the present paper, the parabolic conservation law is replaced by a
hyperbolic relaxation system which, on one hand, exhibits the same unidirectional
flow of information as the underlying particle model, and, on the other hand, re-
produces the parabolic equations derived and discussed in [1] and [5] in the limit of
very large systems.

This paper is organized as follows: In Section 2, we explain in detail how observed
data are used to compute state dependent probability distributions for the velocities.
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Section 3 represents a review of the derivation of the particle model and the resulting
kinetic equation for the particle distribution function in [1]. Section 4 is devoted to
the derivation of the hyperbolic relaxation model and its relation to the parabolic
model discussed in [1] and [5]. Some numerical results on a suitably simplified model
of a semiconductor fab are presented in Section 5.

2. Parameter Extraction. The goal of this paper is to develop a macroscopic
model for the flow of individual parts through the production process. Other than
in the standard discrete event simulation (DES) [2] models, we will not try to model
the whole process by a synthesis of - necessarily simplified - models for individual
nodes, but instead present a methodology for extracting the transport coefficients
from actually observed data. We assume, that we have observed the evolution of a
large number of parts through the system over a period of time and have recorded
the times each part has entered each stage of the process. So, the data available to
the model are in the form of a matrix {ak(n), k = 1 : K + 1, n = 1 : N}, where
ak(n), k = 1 : K denotes the time part number n has entered stage number k of
the process, and aK+1(n) denotes the time the (finished) part number n exits the
whole system. We will employ a traffic flow type model. That is, we will model
the progress of each part through the system as the evolution of a particle on a
virtual ‘road’, located in the interval [0, 1]. So parts enter at stage x = 0 and leave
at stage x = 1. Dividing the interval [0, 1] into K cells [xk, xk+1], k = 1 : K with
xk = (k − 1)ε, k = 1 : K + 1, ε = 1

K , this gives observed velocities vk(n) =
ε

ak+1(n)−ak(n) for the part number n inside the cell [xk, xk+1]. In the following, we
use time units corresponding to the total cycle time. So, the units are chosen such
that aK+1 − a1 = O(1), ak+1 − ak = O( 1

K ) = O(ε), and therefore vk(n) = O(1)
holds. Therefore, we observe a discrete probability distribution for the velocity Vk
of a part in the cell [xk, xk+1] of the form

dP[Vk = v] =
1
N

N∑
n=1

δ(v − vk(n)) dv .

The goal here is to develop a non - equilibrium model, i.e. a model which is capable
of responding to transient inputs. We assume that this response is essentially given
by the response to some integral quantities Sk. So, at the same time we observe the
- possibly vector valued - quantity sk(n) ∈ Rd which denotes the measurement of Sk
at the time ak(n). We employ a mean field assumption, that is, we assume that the
evolution of an individual part does not influence the quantity Sk significantly, and
therefore the random variables Sk are in zeroth order independent of the observed
velocities Vk. This yields a joint probability distribution for vk and Sk of the form

dP[Vk = v, Sk = s] =
1
N

N∑
n=1

δ(v − vk(n))δ(s− sk(n)) dvds, s ∈ Rd . (1)

In the following, we will compute the macroscopic states Sk from a homogenized
density for the individual parts. The equation for this homogenized density will
employ the conditional probability dP[Vk = v | Sk = s] of the velocity Vk, given
that the state Sk. As given by (1), this conditional probability is not well defined,
since the joint probability density dP[Vk = v, Sk = s] is discrete in the variable s,
i.e. the probability to observe a given state Sk is either zero or infinity. We therefore
modify the definition (1) by distributing the observed variables Sk over cells in Rd.
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Let Rd be the the disjoint union of cells Cj , j ∈ N. We replace (1) by

dP[Vk = v, Sk = s] =
1
N

N∑
n=1

δ(v − vk(n))
∑
j

χj(Sk(n))
χj(s)
|Cj |

dvds , (2)

where χj denotes the indicator function of the cell Cj ⊂ Rd, and |Cj | =
∫
χj(s) ds

denotes the volume of the cell Cj . The definition (2) allows us to define the condi-
tional probability density of the velocity Vk, given the observation Sk in the usual
way as

dP
dv

[Vk = v | Sk = s] =
dP
dvds [Vk = v, Sk = s]∫
dP
dv′ds [Vk = v′, Sk = s] dv′

or

(a)
dP
dv

[vk = v | Sk = s] =
N∑
n=1

γkn(s)δ(v − vk(n)), (3)

(b) γkn(s) =

∑
j χj(Sk(n))χj(s)

|Cj |∑N
m=1

∑
j χj(Sk(m))χj(s)

|Cj |

Given a density S(x, t) for the macroscopic state Sk, we obtain the probability
distribution for the velocity v = Vk in the interval [xk, xk+1] as

(a) US(x, v, t) = Uk(v, S(x, t)) for x ∈ [xk, xk+1) , (4)

(b) Uk(v, S(x, t)) =
dP
dv

[vk = v | Sk = S(x, t)] =
N∑
n=1

γkn(S(x, t))δ(v − vk(n))

US(x, v, t) is a probability density in the variable v, which depends on the macro-
scopic state density S(x, t). How well the probability distribution US in (4) is able
to predict the evolution of parts depends, of course, on the actual degree of corre-
lation between the velocities vk and the observed states sk. The appropriate choice
of the observed states sk is therefore essential. In practice, we will choose the sk
as either the total load (the total number of parts in the system) or as the number
of parts at a stage ≥ k or ≤ k, or a combination of the above (see [5] for details).
We note, that Us(x, v, t) represents in some sense a generalization of the concept of
clearing functions [4] to clearing distributions.

3. The Particle Model. This section is essentially a summary of the work in [1],
leading to a kinetic equation for the evolution of the density f(x, v, t) of parts at
stage x having velocity v. Denoting the position of the part at time t by x = ξ(t),
the evolution of the part is given by the Newton equation dξ

dt = v where the velocity
v is updated periodically from the distribution US defined in Section 2. This implies
that the position ξ after the infinitesimal time interval dt is given by

ξ(t+ dt) = ξ(t) + dt v (5)

We define the frequency with which these updates are performed by ω and obtain
the following rule for computing the velocity at time t + dt from the velocity at
time t. At each infinitesimal time interval dt we ‘flip a coin’, that is we compute a
random variable r, where the probability that r = 1 equals ωdt and the probability
that r = 0 equals 1− ωdt. If r = 0, we maintain the current velocity and, if r = 1,
we update the velocity v from the distribution U defined in Section 2. This gives
the rule

(a) v(t+ dt) = (1− r)v(t) + ru, (6)
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(b) P[r = 1] = ωdt, P[r = 0] = 1− ωdt, dP[u = w] = US(ξ(t), w, t) dw
Equations (5) and (6) define a stochastic process for the evolution of the particle
position ξ(t) and its velocity v(t). If we define the probability density that the part
at time t is at position x with velocity v by f(x, v, t) dxdv, we obtain the evolution
equation

f(x, v, t+ dt) =∫
δ(x−ξ−dtw)δ(v−(1−r)w+ru)[δ(r−1)ωdt+δ(r)(1−ωdt)]U(ξ, w, t)f(ξ, w, t) drdξdw

In the limit dt→ 0 this gives the evolution equation (see [1] for details)

(a) ∂tf + v∂xf +Q[f ] = 0, (7)

(b) Q[f ] = ω(x, v)f(x, v, t)− U(x, v, t)
∫
ω(x, v′)f(x, v′, t) dv′

Note that we have made the scattering frequency ω, defined in (6), dependent on
the current velocity v as well as on the position x. The reason for this dependence
is that the scattering velocity ω has to be defined in terms of a mean free path, i.e.
the distance λ a part travels before it undergoes a change in velocity. If we update,
on average, each time a part enters the next cell, we have λ = ε. Since the average
time between a sudden change in velocity is, according to (6), given by 1

ω , a part
with velocity v travels, on average, a distance λ = v

ω before undergoing a scattering
event. This gives ω = v

ε , and the collision operator Q in (7) becomes

Q[f ](x, v, t) =
1
ε

[vf(x, v, t)− U(x, v, t)
∫
v′f(x, v′, t) dv′] . (8)

We assume a complex system with a large number K of stages, and so ε = 1
K << 1

holds. The goal is therefore to derive an evolution equation for the part density
ρ(x, t) =

∫
f(x, v, t) dv, using some form of asymptotics for ε → 0. Note that the

propagation of information in the kinetic equation (7) is unidirectional, that is parts
can only move forward and the support of the density f(x, v, t) is always confined
to the half space v > 0, since velocity can only change randomly according to US
whose support is also confined to v > 0. It therefore suffices to prescribe the influx
density f(x = 0, v, t) for positive velocities v to obtain a well posed boundary value
problem for the kinetic equation (7).

4. Asymptotics. The goal of this section is to derive a simple conservation law
for the density of parts, given by ρ(x, t) =

∫
f(x, v, t) dv. In [1], this is achieved by

a Chapman - Enskog expansion of the kinetic equation (7). (We refer the reader to
[3] for background on Chapman - Enskog asymptotics.) This leads to a parabolic
conservation law for the density ρ. The parabolicity of the macroscopic model rep-
resents, however a major shortfall. In a parabolic model information is transmitted
at infinite velocity in both spatial directions. This is not the case for the underlying
particle model in Section 3. Amongst other things, this implies that the parabolic
model will require a boundary condition at the outflux boundary x = 1, and there
is no physical way to prescribe the outflux. In [1] and [5] this problem has been
dealt with by using artificial numerical boundary conditions. The deeper reason for
this conundrum is that Chapman - Enskog asymptotics translates the diffusion in
velocities, produced by the collision operator Q in (7) into diffusion in the spatial
variable x, and is , in a sense, too coarse an instrument to reflect that this diffusion
only takes place among positive velocities. We will therefore employ a modified
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Chapman - Enskog procedure, leading to a hyperbolic system with positive char-
acteristic velocities, which in a relaxation limit reduces to the parabolic system in
[1].

The basic idea is to split the dynamics of equation (7) into a slow part, con-
strained to the kernel of the collision operator Q, and a fast part constrained to
the complement of the kernel. We first characterize the kernel of the collision op-
erator Q in (8). The kernel of Q is given by functions of the form f(x, v, t) =
1
vUS(x, v, t)c(x, t), where c is some arbitrary function of space and time. For the
following it will be convenient to define the normalized kernel distribution as

W (x, v, t) =
US(x, v, t)
vu−1(x, t)

, u−1(x, t) =
∫

1
v
US(x, v, t) dv .

We split the function space B for the kinetic density function f into the linear hull
of the kernel and its complement:

B = B0 ⊕ B1, B0 = L[W ], ψ ∈ B1 ⇐⇒
∫
ψ dv = 0 .

We define the projection onto the kernel space B0 by

P [f ](x, v, t) = W (x, v, t)ρ(x, t), ρ(x, t) =
∫
f(x, v, t) dv (9)

The definition (9) of the projection operator P implies immediately that PQ =
QP = 0 holds. We split the evolution equation (7) into the evolution in the kernel
manifold and the evolution in its complement B1 by writing f = φ + ψ, φ =
P [f ], ψ = f − P [f ], and by applying the projections P and I − P to equation (7),
giving

(a) ∂tφ+P [v∂xφ+v∂xψ] = 0, (b) (I−P )∂t(φ+ψ)+(I−P )[v∂xφ+v∂xψ]+
1
ε
Q[ψ] = 0 .

(10)
Equation (10)(a) gives the conservation law for the density ρ, whereas equation
(10)(b) has to be solved asymptotically for ψ, giving the closure for the conservation
law (10)(a). In detail we have

(a) ∂tρ+ ∂xF = 0, (b) F = w1ρ+
∫
vψ dv, (11)

(c) w1(x, t) =
∫
vW (x, v, t) dv =

1
u−1

, (d) ∂tψ+ρ∂tW+(I−P )∂x[vWρ+vψ]+
1
ε
Q[ψ] = 0 .

A closed conservation law for the density ρ is obtained by computing the term∫
vψ dv in (11)(b) asymptotically from the equation (11)(d). In the usual Chapman

- Enskog procedure, this is done by using the pseudo - inverse Q+ of the operator Q,
i.e. the inverse of Q restricted to B1. A direct calculation gives Q+[g] = (I −P )[ gv ],
and (11)(d) can be written as

ψ = −ε(I − P )
1
v
{∂tψ + ρ∂tW + (I − P )∂x[vWρ+ vψ]}

which yields, in first order

ψ = −ε(I − P )
1
v

[ρ∂tW + (I − P )∂x(vWρ)] +O(ε2) . (12)

Inserting this into the closure in (11)(b) gives∫
vψ dv = −εpρ− εD∂xρ,
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p =
∫
v(I−P )

1
v

[∂tW+(I−P )v∂xW ] dv, D =
∫
v(I−P )

1
v

(I−P )(vW ) dv (13)

and the asymptotic conservation law

∂tρ+ ∂xF = 0, F = (w1 − εp)ρ− εD∂xρ (14)

The convection diffusion equation (14) is the the parabolic conservation law de-
rived in [1]. Computing the diffusion coefficient, using the definition (9) of the
projection P , gives D = w1(w1w−1 − 1), where from now on we use the notation
wj =

∫
vjW dv, j ∈ Z. The diffusion coefficient D can be written in terms of a

variance as

D = w1(w1w−1 − 1) = w2
1

∫
(
1
v
− 1
w1

)2vW dv , (15)

and is therefore strictly positive. The conservation law (14) has been used in [1]
and [5] to model quite complex, re - entrant production systems. It does, however,
exhibit the fundamental flaw outlined in the beginning of this section. In the present
work, we will take a different approach, replacing the diffusion approximation (14)
by a hyperbolic relaxation model. Instead of approximating the solution of (11)(d)
using the pseudo inverse of the operator Q, we approximate the component ψ of
the density f , belonging to B1 by a moment closure. So, we approximate ψ(x, v, t)
by the ansatz ψ(x, v, t) = β(x, t)R(x, v, t) for a given density R and replace (11)(d)
by its first moment, giving

∂t[β
∫
vR dv]+ρ∂t

∫
vW dv+

∫
v(I−P )∂x[vWρ+vβR] dv+

β

ε

∫
vQ[R] dv = 0 .

We assume R to be normalized, such that
∫
vR dv = 1 holds. This gives the

equation

∂tβ+ρ∂tw1+∂x
∫
v(I−P )[vWρ+vβR] dv+(∂xw1)(w1ρ+β)+

β

ε

∫
vQ[R] dv = 0 .

and the hyperbolic system

∂t

(
ρ
β

)
+ ∂x[A(x, t)

(
ρ
β

)
] +
(

0
ρ∂tw1 + (∂xw1)(w1ρ+ β) + q

εβ

)
= 0 (16)

with the system matrix A and the coefficient q given by

A =
(

w1 1∫
v(I − P )vW dv

∫
v(I − P )vR dv

)
, q =

∫
vQ[R] dv (17)

The hyperbolic system (16) will depend of course on the choice of the shape function
R. In order to match the hyperbolic system as closely as possible to the original
Chapman - Enskog solution (12), we choose the shape function R to be in highest
order equal to the kernel element (12) given by the Chapman - Enskog expansion.
Therefore we set

R(x, v, t) =
1

γ(x, t)
(I − P )

1
v

[(I − P )(vW )] (18)

with γ(x, t) a normalization coefficient, guaranteeing that
∫
vR dv = 1 holds. The

form of the shape function R(x, v, t) is given by the following

Lemma 4.1. The shape function R(x, v, t), defined in (18) is of the form

R =
w1

D
(Ww−1 −

W

v
) , (19)
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where the moments of the equilibrium density W are defined as wj(x, t) =
∫
vjW (x, v, t) dv

and D denotes the diffusion coefficient given in (15).

Proof. Computing the projections, we obtain

(I−P )vW = vW−w1W, ⇒ (I−P )
1
v

(I−P )(vW ) = −w1(I−P )
W

v
= w1(w−1W−

W

v
)

and the normalization coefficient γ is therefore given by

γ(x, t) =
∫
v(I − P )

1
v

(I − P )(vW ) dv = w1(w−1w1 − 1) = D ,

with D the diffusion coefficient, defined in (15). This gives (19).

As it turns out, this choice of the shape function R yields a system matrix A
in the hyperbolic relaxation system (16) which retains the property of the original
particle system, namely that all characteristic velocities are non - negative, i.e.
that both eigenvalues of the matrix A in (16) are nonnegative. To this end, it is
convenient to introduce the variance σ2 of the distribution W . We define

σ2 =
∫

(v − w1)2W dv = w2 − w2
1 > 0 (20)

We have

Lemma 4.2. The system matrix A and the coefficient q in (17) is given by

A =

(
w1 1
σ2 w1w−1σ

2

D

)
, q =

σ2

D
. (21)

Both eigenvalues of A are real and nonnegative.

Proof. Computing the (2, 1) component of the matrix A in (17), we obtain∫
v(I − P )vW dv = w2 − w2

1 = σ2

Computing the (2, 2) term of the matrix A in (17) we obtain, using the definition
(19),

vR =
w1

D
(w−1vW −W )⇒ (I −P )vR =

w1w−1

D
(I −P )vW =

w1w−1

D
(vW −w1W )

⇒ A22 =
∫
v(I − P )vR dv =

w1w−1

D
(w2 − w2

1) =
w1w−1σ

2

D

To compute the coefficient q, we have, according to (19) and the definition of the
collision operator Q,

Q[R] = vR− US
∫
v′R′ dv′ = vR− US

w1

D
(w−1w1 − 1) = vR− US

⇒
∫
vQ[R] =

w1

D
(w−1w2 − w1)−

∫
vUS dv

Now, by definition US = vW
w−1 holds, which gives

q =
w1

D
(w−1w2 − w1)− w2

w1
=
σ2

D
.
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In order to estimate the eigenvalues of the matrix A, we first note that

det(A) =
w2

1w−1σ
2

D
− σ2 =

w1σ
2

D
≥ 0

holds. Computing the two eigenvalues gives

λ1 =
w1

2
[1 +

w−1σ
2

D
+

√
(1− w−1σ2

D
)2 + 4

σ2

w2
1

] > 0, λ2 =
det(A)
λ1

> 0 .

We conclude this section by briefly summarizing the implications of Lemma 4.2.
• Lemma 4.2 implies that the system (16) is hyperbolic, and that the charac-

teristic velocities (the eigenvalues of the matrix A) all point forward. There-
fore, a well posed initial boundary value problem for the system (16) is ob-
tained by prescribing the influx densities at x = 0 as boundary values. The
appropriate boundary condition for the system (16) would be of the form
ρ(0, t) = Fin(t)

w1(t)
, β(0, t) = 0, i.e. we prescribe the influx of product and as-

sume that the velocity distribution is in equilibrium at influx.
• This eliminates the problem of imposing an artificial boundary condition at

the outflux point x = 1 for the parabolic conservation law (14). On the other
hand, the system (16) still contains the small parameter ε. Carrying out the
formal limit ε→ 0 in the second component of the system (16) gives

β = −εD∂xρ−
εDρ

σ2
[∂xσ2 + ∂tw1 + w1∂xw1] +O(ε2)

which, inserted into the first component, almost reproduces the flux in the
parabolic conservation law (14), with the correct diffusion coefficient and a
small O(ε) perturbation to the convective velocity w1.

• Thus, we obtain essentially the same convection - diffusion equation as (14),
except that the nonlocal diffusive effect is now ‘one sided’ in the sense that
the propagation of information in (16) is strictly in the forward direction. Of
course the formal limit ε → 0 in (16) cannot be correct for the boundary
value problem since the boundary value problem for (16) is well posed when
the influx is prescribed, whereas the formal limit ε→ 0 is not.

• In practice, we will discretize the conservation law (16) by a conservative
upwind scheme, using a time - implicit discretization of the term qβ

ε , thus
obtaining a reasonable O(1) CFL condition.

• Since the propagation speeds in the relaxation system (16) better reflect the
nature of the underlying particle and kinetic models in Section 3, it has to be
regarded as the preferable model.

5. A Computational Example. We carry out a numerical experiment in order
to compare a complex system to the hyperbolic relaxation model. The purpose of
this comparison is to substantiate the agreement in terms of WIP levels and fluxes
as functions of time at each machine stage.

As a semi - realistic example, we use a simplified model of a semiconductor fab.
This model consists of nine machine clusters, each performing tasks such as etching,
lithography and deposition. Each cluster consists of multiple machines. So, there is
a total of 200 machines in the system. The simplified production process consists of
26 stages, i.e. each part has to visit an individual cluster multiple times, and we are
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Figure 1. Varying Influx (Ramp Up and Ramp Down)

dealing with a highly re - entrant production system. The re - entrant structure in
semiconductor manufacturing arises from the fact that chips are produced in layers.
So, each time a layer is deposited, the same wafer has to go through the sequence
of lithography - deposition - etching again. We refer the reader to [5] for a detailed
explanation of the simplified semiconductor fab model.

For the purpose of demonstration, we replace the observed system by a discrete
event simulation (DES). We take an influx profile that we get out of the averaged
DES models and then we try to predict the non-equilibrium behavior using the
hyperbolic relaxation model.

We execute the DES model by generating a total of 900 lots with a varying influx.
The averaged influx, computed out of 100 discrete event simulations, can be seen
in Figure 1. Afterwards, we compute the data for the observations from various
steady state situations and then try to predict the system in a non - steady state
regime as can be seen by the transients in Figures 2 and 3.

Figure 2. 3D Comparison of Fluxes for DES and Hyperbolic Re-
laxation Models
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As explained in section 4, after computing the transport coefficients in the matrix
A and the coefficient q, given simply in (21), we solve the hyperbolic relaxation
system (16) by using upwinding scheme.

Figure 3. 3D Comparison of WIP Levels for DES and Hyperbolic
Relaxation Models

As we see in Figures 2 and 3, although the WIP levels and flux values of hyper-
bolic relaxation and DES models at each stage are not exactly equal, the results
are close enough to each other to substantiate the agreement of two models. There-
fore, we are able to predict the transient behavior of the given system with the
macroscopic model under conditions different than those used to collect the data.
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