FROM DISCRETE VELOCITY BOLTZMANN EQUATIONS TO GAS DYNAMICS BEFORE SHOCKS

FLORENT BERTHELIN, ATHANASIOS E. TZAVARAS, AND ALEXIS VASSEUR

Abstract. This article is devoted to the proof of the hydrodynamic limit for a discrete velocity Boltzmann equation before appearance of shocks in the limit system.

1. Introduction

We consider the system of discrete velocity Boltzmann equations

$$
\begin{equation*}
\partial_{t} f_{i}+v_{i} \partial_{x} f_{i}=\frac{1}{\varepsilon} Q_{i}(f, f), \quad \text { for } i=1, \ldots, N, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{i}(f, f)=\sum_{j k l} S_{i j k l}\left(f_{k} f_{l}-f_{i} f_{j}\right), \tag{1.2}
\end{equation*}
$$

and $N \geq 3$. Such systems have been extensively studied in the literature (see e.g. Cabannes, Gatignol and Luo [7] or Platkwoski and Illner [17] and references therein) because they offer a simplification and approximation of the Boltzmann equation that shares remarkable similarities to the latter model. Nevertheless, these systems are quite simpler than the Boltzmann equation and for instance their existence theory is relatively well understood in both the cases of one dimension $[1,3,12]$ as well as in several space dimensions $[4,11]$. Discrete velocity models present certain pathologies in several space dimensions and we will refrain from working with them here.

The parameter ε is called mean free path or Knudsen number and. under certain conditions on the interaction coefficients $S_{i j k l}$ that will be precised later, the system formally converges as $\varepsilon \rightarrow 0$ to equations,

$$
\begin{align*}
\partial_{t} \rho+\partial_{x}(\rho u) & =0, \\
\partial_{t}(\rho u)+\partial_{x}(\rho E) & =0, \tag{1.3}\\
\partial_{t}(\rho E)+\partial_{x}(\rho J(u, E)) & =0,
\end{align*}
$$

The limiting procedure has been justified for the case of the Broadwell model by Calfisch and Papanicolaou [8] and the related problem of the asymptotic in time convergence of (1.1) to global Maxwellians is established in works of Beale [1] and Kawashima [14].

[^0]The objective of this article is to establish the hydrodynamic limit from discrete Boltzmann equations (1.1) to the gas dynamics system in the form (1.3) in the regime where the solutions of (1.3) remain smooth. We will develop and estimate a relative entropy identity following ideas in Berthelin-Vasseur [2] and Tzavaras [19]. These articles concern kinetic or relaxation limits for BGK-type of collision operators. The ingredients, required in order to account for Boltzmann collison operators, are an estimation of the entropy dissipation and certain structural properties that pertain to system (1.3). The relative entropy method was developed in the context of uniqueness and stability for hyperbolic conservation laws by Dafermos [9] and DiPerna [10], and the context of hydrodynamics for stochastic particle systems by Yau [20] and Olla-Varadhan-Yau [16]. In addition to the aforementioned references the reader is referred to $[5,6,13,15,18]$ for the application of relative entropy in a variety of contexts.

We begin in section 2 with a description of the model, an outline of the formalism of its hydrodynamic limit and the statement of the main result Theorem 2.3. In section 3 we develop links between the kinetic and the macroscopic entropies and prove certain structural properties of the limit system, the entropy consistency property and hyperbolicity. Section 4 contains the key estimation of the entropy dissipation (Proposition 4.1), and section 5 contains the derivation of the relative entropy identity and the conclusion of the proof of Theorem 2.3.

2. Description of the model and statement of Results

The interaction coefficients $S_{i j k l}$ entering the definition of the collision operator (1.2) are assumed to satisfy the properties of symmetry and microreversibility,

$$
\begin{gather*}
S_{i j k l}=S_{j i k l}, \quad S_{i j k l}=S_{i j l k} \tag{2.4}\\
S_{i j k l}=S_{k l i j} \tag{2.5}
\end{gather*}
$$

and to describe the probability of the elastic collision $(i, j) \rightarrow(k, l)$ conserving the microscopic mass, momentum and energy

$$
\begin{equation*}
v_{k}+v_{l}=v_{i}+v_{j}, \quad v_{k}^{2}+v_{l}^{2}=v_{i}^{2}+v_{j}^{2} \quad \text { if } S_{i j k l} \neq 0 \tag{2.6}
\end{equation*}
$$

For any $f \in \mathbb{R}^{N}$, we have from (2.6):

$$
\begin{equation*}
\sum_{i} Q_{i}=0, \quad \sum_{i} v_{i} Q_{i}=0, \quad \sum_{i} v_{i}^{2} Q_{i}=0 \tag{2.7}
\end{equation*}
$$

which entail conservation laws for the total mass, momentum and energy. Consider the collision matrix $B \in\{-1,0,1\}^{N^{2} \times N}$ given by:

$$
\begin{aligned}
& B_{i j, i}=B_{i j, j}=-B_{i j, k}=-B_{i j, l}=1 \quad \text { if } \quad S_{i j k l} \neq 0 \\
& B_{i j, k}=0 \quad \text { everywhere else. }
\end{aligned}
$$

Note that (2.7) implies that $(1, \cdots, 1),\left(v_{1}, \cdots, v_{N}\right)$ and $\left(v_{1}^{2}, \cdots, v_{N}^{2}\right)$ are in the kernel of B. We pose the additional hypothesis:

$$
\begin{equation*}
N(B)=\operatorname{span}\left\{(1, \cdots, 1),\left(v_{1}, \cdots, v_{N}\right),\left(v_{1}^{2}, \cdots, v_{N}^{2}\right)\right\} \text { and } \operatorname{dim} N(B)=3 \tag{H}
\end{equation*}
$$

This implies that the only conserved quantities are precisely the mass, momentum and energy and that the model does not have any extraneous conservation laws.

Finally, we define the entropy of f via the usual relation

$$
\mathcal{H}(f)=\sum_{i=1}^{N} f_{i} \ln f_{i}
$$

For any C^{1} function $F: \mathcal{D} \rightarrow \mathbb{R}$ defined on a convex set $\mathcal{D} \subset \mathbb{R}^{k}$, we define the associated relative function:

$$
F\left(U_{1} \mid U_{2}\right)=F\left(U_{1}\right)-F\left(U_{2}\right)-F^{\prime}\left(U_{2}\right)\left(U_{1}-U_{2}\right)
$$

We also set

$$
s(y)=y \ln y,
$$

and use in the sequel the following notations:

$$
\begin{aligned}
& a * b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \quad a, b \in \mathbb{R}^{3} \\
& f \cdot g=\sum_{i=1}^{N} f_{i} g_{i} \quad f, g \in \mathbb{R}^{N} \\
& |f|=\sum_{i=1}^{N}\left|f_{i}\right| \quad f \in \mathbb{R}^{N} \\
& P f=\sum_{i=1}^{N}\left(1, v_{i}, v_{i}^{2}\right) f_{i} \quad f \in \mathbb{R}^{N} \\
& |P f|=\sum_{\beta=0}^{2} \sum_{i=1}^{N}\left|v_{i}^{\beta} f_{i}\right| \quad f \in \mathbb{R}^{N}
\end{aligned}
$$

Our first lemma concerns tha structure of Maxwellians associated to discrete velocity Boltzmann equations:

Lemma 2.1. A vector $\left(M_{1}, \cdots, M_{N}\right) \in\left(\mathbb{R}^{+}\right)^{N}$ verifies $Q(M, M)=0$ if and only if there exists $a, b, c \in \mathbb{R}$ such that

$$
M_{i}=e^{a+b v_{i}+c v_{i}^{2}} \quad \text { for } \quad \text { any } 1 \leq i \leq N
$$

Setting $\psi(b, c)=\sum_{i=1}^{N} e^{b v_{i}+c v_{i}^{2}}$, we express the Maxwellians in the form

$$
M_{i}=\rho \frac{e^{b v_{i}+c v_{i}^{2}}}{\sum_{i=1}^{N} e^{b v_{i}+c v_{i}^{2}}}
$$

and note the relations

$$
\begin{equation*}
\rho=\sum_{i=1}^{N} M_{i}=e^{a} \psi(b, c), \quad \sum_{i=1}^{N} v_{i} M_{i}=\rho \frac{\partial_{b} \psi}{\psi}(b, c), \quad \sum_{i=1}^{N} v_{i}^{2} M_{i}=\rho \frac{\partial_{c} \psi}{\psi}(b, c) \tag{2.8}
\end{equation*}
$$

For a given Maxwellian M, we define

$$
(\rho, \rho u, \rho E)=P M
$$

that is to say

$$
\begin{aligned}
& \rho=\sum_{i=1}^{N} M_{i}=\sum_{i=1}^{N} e^{a+b v_{i}+c v_{i}^{2}}=e^{a} \psi(b, c), \\
& \rho u=\sum_{i=1}^{N} v_{i} M_{i}=\sum_{i=1}^{N} v_{i} e^{a+b v_{i}+c v_{i}^{2}}=\rho \frac{\partial_{b} \psi}{\psi}(b, c), \\
& \rho E=\sum_{i=1}^{N} v_{i}^{2} M_{i}=\sum_{i=1}^{N} v_{i}^{2} e^{a+b v_{i}+c v_{i}^{2}}=\rho \frac{\partial_{c} \psi}{\psi}(b, c) .
\end{aligned}
$$

We notice that

$$
u=\partial_{b}(\ln \psi), \quad E=\partial_{c}(\ln \psi)
$$

and then we denote \mathcal{U} the set of admissible value of (u, E), that is:

$$
\mathcal{U}=\left\{\left(\partial_{b}(\ln \psi), \partial_{c}(\ln \psi)\right) \mid b, c \in \mathbb{R}\right\} .
$$

The hydrodynamic limit system can be written formally as

$$
\left\{\begin{array}{l}
\partial_{t} \sum_{i} M_{i}+\partial_{x} \sum_{i} v_{i} M_{i}=0 \tag{2.9}\\
\partial_{t} \sum_{i} v_{i} M_{i}+\partial_{x} \sum_{i} v_{i}^{2} M_{i}=0 \\
\partial_{t} \sum_{i} v_{i}^{2} M_{i}+\partial_{x} \sum_{i} v_{i}^{3} M_{i}=0
\end{array}\right.
$$

which leads to

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0 \tag{2.10}\\
\partial_{t}(\rho u)+\partial_{x}(\rho E)=0 \\
\partial_{t}(\rho E)+\partial_{x}(\rho J)=0
\end{array}\right.
$$

where we set

$$
\begin{equation*}
J(u, E)=\frac{\partial_{b c} \psi}{\psi} \tag{2.11}
\end{equation*}
$$

The flux $J=J(u, E)$ is well defined thanks to the following lemma.
Lemma 2.2. The function $\ln \psi$ is smooth and strictly convex and so the map: T : $(b, c) \rightarrow(u, E)$ defined by

$$
T(b, c)=\nabla_{(b, c)} \ln \psi(b, c)
$$

is a C^{1} diffeomorphism from \mathbb{R}^{2} to \mathcal{U}.
We introduce also the entropy of the system:

$$
\eta(\rho, \rho u, \rho E)=\mathcal{H}(M)=\sum_{i=1}^{N} M_{i} \ln M_{i} .
$$

Conversely, for any $U=(\rho, \rho u, \rho E)$ with $\rho>0$ and $(u, E) \in \mathcal{U}$, we define

$$
M(U)=\left(M_{i}(U)\right)_{i=1, \cdots, N}=\left(e^{a+b v_{i}+c v_{i}^{2}}\right)_{i=1, \cdots, N}
$$

with ρ, u, E and a, b, c related as in Lemma 2.1.

The article is devoted to the proof of the following theorem:

Theorem 2.3. Let $\left(\rho_{0}, u_{0}, E_{0}\right)$, be a Lipshitzian function on \mathbb{R} with values in $\mathbb{R}^{+} \times \mathcal{U}$ such that $U_{0}=\left(\rho_{0}, \rho_{0} u_{0}, \rho_{0} E_{0}\right)$ and $\eta\left(\rho_{0}, \rho_{0} u_{0}, \rho_{0} E_{0}\right)$ lie altogether in $L^{1}(\mathbb{R})$ and $\partial_{x} U_{0} \in L^{2}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Then, there exists a maximal time T^{*} such that the solution $(\rho, \rho u, \rho E)$ to the limit system (2.10) with initial values $\left(\rho_{0}, u_{0}, E_{0}\right)$ stays Lipshitzian on $\left[0, T^{*}\right) \times \mathbb{R}$. Denote \bar{M} the Maxwellian associated to $(\rho, \rho u, \rho E)$. Consider $f_{\varepsilon}^{0} \in$ $\left(L^{1}(\mathbb{R})\right)^{N}$ such that each component is nonnegative and verifying $\mathcal{H}\left(f_{\varepsilon}^{0}\right)$ bounded in $L^{1}(\mathbb{R})$. We denote f_{ε} the solution of (1.1) with initial value f_{ε}^{0}. If f_{ε}^{0} converges strongly to \bar{M}^{0}, Maxwellian associated to $\left(\rho_{0}, u_{0}, E_{0}\right)$ in the sense that

$$
\int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x \underset{\varepsilon \rightarrow 0}{\rightarrow} 0
$$

then f_{ε} converges strongly to \bar{M} in the sense that for any $T<T^{*}$:

$$
\sup _{0 \leq t \leq T} \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(t, x) d x \underset{\varepsilon \rightarrow 0}{\rightarrow} 0
$$

where

$$
\mathcal{H}(f \mid g)=\sum_{i} f_{i} \ln \left(f_{i} / g_{i}\right)-\left(f_{i}-g_{i}\right) \geq 0
$$

The proof is based on the results of Tzavaras [19] and Berthelin-Vasseur [2] on the relative entropy method, and on an estimation of the entropy-dissipation developed in section 4.

3. Preliminaries

In this section, we gather certain structural properties of the model (1.1) and its hydrodynamic limit. Especially, we introduce a link between kinetic relative entropies and macroscopic ones, we show that the system is hyperbolic, entropy consistent and obtain properties on the domain \mathcal{U}.

First, we prove Lemma 2.1 and Lemma 2.2.
Proof of Lemma 2.1. If $Q(M, M)=0$ then in particular
$D[M]=\sum_{i=1}^{N} \ln \left(M_{i}\right) Q_{i}(M)=\frac{1}{4} \sum_{i j k l} S_{i j k l}\left[\ln \left(M_{k} M_{l}\right)-\ln \left(M_{i} M_{j}\right)\right]\left(M_{k} M_{l}-M_{i} M_{j}\right)=0$.
But each terms of the last sum is nonnegative so, for any i, j, k, l such that $S_{i j k l} \neq 0$, we have $M_{k} M_{l}=M_{i} M_{j}$ which means:

$$
\ln M_{k}+\ln M_{l}=\ln M_{i}+\ln M_{j} .
$$

This implies that $\ln M=\left(\ln M_{i}\right)_{i=1, \cdots, N}$ lies in $N(B)$. Hypothesis (H) implies that there exists (a, b, c) such that

$$
\ln M_{i}=a+b v_{i}+c v_{i}^{2} \quad \text { for any } 1 \leq i \leq N
$$

Conversely, note that if $\ln M$ is given by such a formula, then $M_{k} M_{l}=M_{i} M_{j}$ for any $i j k l$ verifying $S_{i j k l} \neq 0$ and $Q(M, M)=0$ as well.

To show the second part of the statement. Note that from the definition of ψ we have $e^{a}=\frac{\rho}{\psi}$, that is to say $e^{-a}=\frac{\psi}{\rho}$. Noting that

$$
\begin{aligned}
& \partial_{b} \psi=\sum_{i=1}^{N} v_{i} e^{b v_{i}+c v_{i}^{2}}=e^{-a} \sum_{i=1}^{N} v_{i} M_{i}, \\
& \partial_{c} \psi=\sum_{i=1}^{N} v_{i}^{2} e^{b v_{i}+c v_{i}^{2}}=e^{-a} \sum_{i=1}^{N} v_{i}^{2} M_{i},
\end{aligned}
$$

gives the result.
We list the useful formulas

$$
\begin{align*}
& \sum_{i=1}^{N} e^{b v_{i}+c v_{i}^{2}}=\psi(b, c), \\
& \sum_{i=1}^{N} v_{i} e^{b v_{i}+c v_{i}^{2}}=\psi(b, c) u, \tag{3.12}\\
& \sum_{i=1}^{N} v_{i}^{2} e^{b v_{i}+c v_{i}^{2}}=\psi(b, c) E .
\end{align*}
$$

Proof of Lemma 2.2. The matrix of the second derivatives of $\ln \psi$ is:

$$
\frac{1}{\psi^{2}}\left(\begin{array}{ll}
\psi \partial_{b b} \psi-\left(\partial_{b} \psi\right)^{2} & \psi \partial_{b c} \psi-\partial_{b} \psi \partial_{c} \psi \\
\psi \partial_{b c} \psi-\partial_{b} \psi \partial_{c} \psi & \psi \partial_{c c} \psi-\left(\partial_{c} \psi\right)^{2}
\end{array}\right)
$$

which can be rewritten

$$
\frac{1}{\psi}\left(\begin{array}{ll}
\sum_{i=1}^{N}\left(v_{i}-u\right)^{2} e^{b v_{i}+c v_{i}^{2}} & \sum_{i=1}^{N}\left(v_{i}-u\right)\left(v_{i}^{2}-E\right) e^{b v_{i}+c v_{i}^{2}} \\
\sum_{i=1}^{N}\left(v_{i}-u\right)\left(v_{i}^{2}-E\right) e^{b v_{i}+c v_{i}^{2}} & \sum_{i=1}^{N}\left(v_{i}^{2}-E\right)^{2} e^{b v_{i}+c v_{i}^{2}}
\end{array}\right) .
$$

Indeed, we have

$$
\begin{aligned}
& \psi \partial_{b b} \psi-\left(\partial_{b} \psi\right)^{2}=\psi \sum_{i=1}^{N} v_{i}^{2} e^{b v_{i}+c v_{i}^{2}}-\psi u \sum_{i=1}^{N} v_{i} e^{b v_{i}+c v_{i}^{2}} \\
& \stackrel{(3.12)}{=} \psi \sum_{i=1}^{N}\left(v_{i}-u\right)^{2} e^{b v_{i}+c v_{i}^{2}}, \\
& \psi \partial_{b c} \psi-\left(\partial_{b} \psi\right)\left(\partial_{c} \psi\right)=\psi \sum_{i=1}^{N} v_{i}^{3} e^{b v_{i}+c v_{i}^{2}}-\sum_{i=1}^{N} v_{i} e^{b v_{i}+c v_{i}^{2}} \sum_{i=1}^{N} v_{i}^{2} e^{b v_{i}+c v_{i}^{2}} \\
& \stackrel{(3.12)}{=} \psi \sum_{i=1}^{N} v_{i}^{3} e^{b v_{i}+c v_{i}^{2}}-\psi^{2} u E \\
& \stackrel{(3.12)}{=} \psi \sum_{i=1}^{N}\left(v_{i}-u\right)\left(v_{i}^{2}-E\right) e^{b v_{i}+c v_{i}^{2}},
\end{aligned}
$$

and similarly for the last entry of the matrix.

The trace of this matrix is positive. Its determinant is also positive as can be seen by applying the Cauchy-Schwarz inequality,

$$
\left[\sum_{i=1}^{N}\left(v_{i}-u\right)\left(v_{i}^{2}-E\right) e^{b v_{i}+c v_{i}^{2}}\right]^{2} \leq\left(\sum_{i=1}^{N}\left(v_{i}-u\right)^{2} e^{b v_{i}+c v_{i}^{2}}\right)\left(\sum_{i=1}^{N}\left(v_{i}^{2}-E\right)^{2} e^{b v_{i}+c v_{i}^{2}}\right)
$$

If the determinant is equal to 0 then equality holds in the Cauchy-Schwarz inequality which, in turn, implies that the vectors $(1, \ldots, 1),\left(v_{1}, \ldots, v_{N}\right)$ and $\left(v_{1}^{2}, \ldots v_{N}^{2}\right)$ are linearly dependent. The latter is ruled out by hypothesis (H), and thus the matrix of the second derivatives of $\ln \psi$ is strictly positive, and $\ln \psi$ is strictly convex. The mapping T is a $C^{1,1}$ diffeomorphism from \mathbb{R}^{2} to \mathcal{U}.

We prove now the following lemma related to relative quantities.
Lemma 3.1. Let $F: \mathcal{D} \rightarrow \mathbb{R}$ be a C^{2} function on a convex set $\mathcal{D} \subset \mathbb{R}^{k}$. The function F is convex on \mathcal{D} if and only if the associated relative function is nonnegative on $\mathcal{D} \times \mathcal{D}$.

Proof. For any $U_{1}, U_{2} \in \mathcal{V}$ we have:

$$
F\left(U_{1} \mid U_{2}\right)=\int_{0}^{1} \int_{0}^{1} F^{\prime \prime}\left(U_{1}+s t\left(U_{2}-U_{1}\right)\right):\left[\left(U_{1}-U_{2}\right) \otimes\left(U_{1}-U_{2}\right)\right] t d s d t
$$

Hence, if F is convex then $F^{\prime \prime}$ is positive and so $F\left(U_{1} \mid U_{2}\right)$ is nonnegative. Conversely, for $\left|U_{1}-U_{2}\right|$ small, we have:

$$
F\left(U_{1} \mid U_{2}\right)=F^{\prime \prime}\left(U_{2}\right):\left[\left(U_{1}-U_{2}\right) \otimes\left(U_{1}-U_{2}\right)\right]+o\left(\left|U_{1}-U_{2}\right|^{2}\right)
$$

Then, if $F(\cdot \mid \cdot)$ is nonnegative everywhere, then $F^{\prime \prime}\left(U_{2}\right)$ is a nonnegative matrix for any U_{2} and F is convex.

In particular, $s^{\prime}(y)=1+\ln y$ leads to the usual relation:

$$
s(y \mid z)=y \ln \frac{y}{z}-(y-z) \geq 0
$$

since s is convex.
Let us show now the following lemma which gives the link between the relative entropy at the kinetic level and at the macroscopic level.

Lemma 3.2. For any $U=(\rho, \rho u, \rho E)$ with $\rho>0$ and $(u, E) \in \mathcal{U}$, we set

$$
M(U)=\left(M_{i}(U)\right)_{i=1, \cdots, N}=\left(e^{a+b v_{i}+c v_{i}^{2}}\right)_{i=1, \cdots, N}
$$

with ρ, u, E and a, b, c related as in Lemma 2.1. We then have

$$
\begin{gathered}
\text { i) } P M(U)=U \\
\text { ii) } \eta(U)=\mathcal{H}(M(U))=\inf _{P f=U} \mathcal{H}(f),
\end{gathered}
$$

and

$$
\text { iii) } \quad \frac{\partial \eta}{\partial U}(U) * w=\frac{\partial \mathcal{H}}{\partial f}(M(U)) \cdot f
$$

for any $w \in \mathbb{R}^{3}$ and any $f \in \mathbb{R}^{N}$ such that $w=P f$. Especially

$$
i v) \quad \eta(U \mid \bar{U})=\mathcal{H}(M(U) \mid M(\bar{U}))
$$

and
v) $\quad \eta(U \mid \bar{U}) \leq \mathcal{H}(f \mid M(\bar{U}))$,
for any $P f=U$.
Proof. i) We have

$$
P M(U)=\sum_{i=1}^{N}\left(1, v_{i}, v_{i}^{2}\right) M_{i}(U)=\sum_{i=1}^{N}\left(1, v_{i}, v_{i}^{2}\right) e^{a+b v_{i}+c v_{i}^{2}}=(\rho, \rho u, \rho E)=U .
$$

ii) By definition, we have

$$
\eta(U)=\mathcal{H}(M(U))=\sum_{i=1}^{N} s\left(M_{i}(U)\right) .
$$

For any f such that $P f=U$, we have

$$
\begin{aligned}
0 \leq \mathcal{H}(f \mid M(U)) & =\mathcal{H}(f)-\mathcal{H}(M(U))-\partial_{f} \mathcal{H}(M(U)) \cdot(f-M(U)) \\
& =\mathcal{H}(f)-\mathcal{H}(M(U))-\sum_{i=1}^{N}\left(1+\ln M_{i}(U)\right)\left(f_{i}-M_{i}(U)\right)
\end{aligned}
$$

with

$$
\sum_{i=1}^{N}\left(1+\ln M_{i}(U)\right)\left(f_{i}-M_{i}(U)\right)=(1+a, b, c) * P(f-M(U))=0
$$

since $P(f-M(U))=U-P M(U)=0$. Hence:

$$
\mathcal{H}(f) \geq \mathcal{H}(M(U)) \quad \text { for any } P f=U
$$

which gives the result.
iii) By differentiation of $U=P M(U)$ with respect to U, we get, with P linear,

$$
I d=P \frac{\partial M}{\partial U} .
$$

We denote

$$
e_{\beta}=P \frac{\partial M}{\partial U_{\beta}}
$$

Let $f \in \mathbb{R}^{N}$ and $w \in \mathbb{R}^{3}$ such that $w=P f$. Decomposing w on the basis $\left(e_{\beta}\right)$ we have:

$$
P f=w=\sum_{\beta=1}^{3} w_{\beta} e_{\beta}=\sum_{\beta=1}^{3} w_{\beta} P \frac{\partial M}{\partial U_{\beta}}
$$

and so

$$
P\left(f-\sum_{\beta=1}^{3} w_{\beta} \frac{\partial M}{\partial U_{\beta}}\right)=0
$$

This gives the existence of g such that:

$$
\begin{aligned}
& f=\sum_{\beta=1}^{3} w_{\beta} \frac{\partial M}{\partial U_{\beta}}+g \\
& P g=0
\end{aligned}
$$

But

$$
\frac{\partial \eta}{\partial U_{\beta}}=\frac{\partial \mathcal{H}}{\partial f}(M(U)) \cdot \frac{\partial M}{\partial U_{\beta}}
$$

Hence:

$$
\begin{aligned}
\frac{\partial \eta}{\partial U} * w=\sum_{\beta=1}^{3} \frac{\partial \eta}{\partial U_{\beta}} w_{\beta} & =\sum_{\beta=1}^{3} w_{\beta} \frac{\partial \mathcal{H}}{\partial f}(M(U)) \cdot \frac{\partial M}{\partial U_{\beta}} \\
& =\frac{\partial \mathcal{H}}{\partial f}(M(U)) \cdot(f-g)
\end{aligned}
$$

We conclude with the argument that

$$
\frac{\partial \mathcal{H}}{\partial f}(M(U)) \perp N(P)
$$

This comes from the fact that

$$
\eta(U)=\min _{P f=U} \mathcal{H}(f)=\mathcal{H}(M(U))
$$

(see [19, Proposition 2.1]).
iv) We have

$$
\begin{aligned}
\eta(U \mid \bar{U}) & =\eta(U)-\eta(\bar{U})-\partial_{U} \eta(\bar{U}) *(U-\bar{U}) \\
& =\mathcal{H}(M(U))-\mathcal{H}(M(\bar{U}))-\partial_{f} \mathcal{H}(M(\bar{U})) \cdot(M(U)-M(\bar{U})) \\
& =\mathcal{H}(M(U) \mid M(\bar{U}))
\end{aligned}
$$

using iii) with $w=U-\bar{U}$ and $f=M(U)-M(\bar{U})$.
$v)$ For f such that $U=P f$, we have

$$
\begin{aligned}
\eta(U \mid \bar{U}) & =\mathcal{H}(M(U))-\mathcal{H}(M(\bar{U}))-\partial_{f} \mathcal{H}(M(\bar{U})) \cdot(M(U)-M(\bar{U})) \\
& \leq \mathcal{H}(f)-\mathcal{H}(M(\bar{U}))-\partial_{f} \mathcal{H}(M(\bar{U})) \cdot(M(U)-M(\bar{U})) \\
& \leq \mathcal{H}(f \mid M(\bar{U}))-\partial_{f} H(M(\bar{U})) \cdot(M(U)-f)
\end{aligned}
$$

Now

$$
\partial_{f} H(M(\bar{U})) \cdot g=\sum_{i=1}^{N}\left(1+\ln M_{i}(U)\right) g_{i}=\sum_{i=1}^{N}\left(1+a+b v_{i}+c v_{i}^{2}\right) g_{i}=0
$$

whenever $P g=0$. Since $P(M(U)-f)=0$, we conclude.
We can now show the main proposition of this section.
Proposition 3.3. The system (1.3) is hyperbolic, admissible (in the sense of BerthelinVasseur [2]), i.e. there exists $C>0$ such that

$$
|A(U \mid \bar{U})| \leq C \eta(U \mid \bar{U}) \quad \text { for any } \rho>0,(u, E) \in \mathcal{U}
$$

η is a convex entropy and

$$
\eta(U \mid \bar{U})=\mathcal{H}(M(U) \mid M(\bar{U}))=s(\rho \mid \bar{\rho})+\rho \ln \psi((\bar{b}, \bar{c}) \mid(b, c))
$$

for any U, \bar{U} with ρ, u, E and a, b, c related as in Lemma 2.1. Finally, there exists a constant $C>0$ such that

$$
|u|+|E| \leq C \quad \text { for } \quad \text { any } \quad(u, E) \in \mathcal{U}
$$

Proof. Let us first check that η is an entropy of the limit system with entropy flux $\sum_{i=1}^{N} v_{i} M_{i}(U) \ln M_{i}(U)$. Indeed

$$
\begin{aligned}
& \partial_{t} \sum_{i=1}^{N} M_{i} \ln M_{i}+\partial_{x} \sum_{i=1}^{N} v_{i} M_{i} \ln M_{i} \\
= & \sum_{i=1}^{N}\left(1+\ln M_{i}\right)\left(\partial_{t} M_{i}+v_{i} \partial_{x} M_{i}\right) \\
= & \sum_{i=1}^{N}\left(1+a+b v_{i}+c v_{i}^{2}\right)\left(\partial_{t} M_{i}+v_{i} \partial_{x} M_{i}\right) \\
= & (1+a)\left(\partial_{t} \sum_{i=1}^{N} M_{i}+\partial_{x} \sum_{i=1}^{N} v_{i} M_{i}\right)+b\left(\partial_{t} \sum_{i=1}^{N} v_{i} M_{i}+\partial_{x} \sum_{i=1}^{N} v_{i}^{2} M_{i}\right) \\
& +c\left(\partial_{t} \sum_{i=1}^{N} v_{i}^{2} M_{i}+\partial_{x} \sum_{i=1}^{N} v_{i}^{3} M_{i}\right) \\
= & 0 .
\end{aligned}
$$

Let us now calculate $\mathcal{H}(M \mid \bar{M})$ for two Maxwellians M, \bar{M}. We set

$$
\begin{aligned}
& \ln M_{i}=a+b v_{i}+c v_{i}^{2} \\
& \ln \bar{M}_{i}=\bar{a}+\bar{b} v_{i}+\bar{c} v_{i}^{2} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\mathcal{H}(M \mid \bar{M}) & =\mathcal{H}(M)-\mathcal{H}(\bar{M})-\partial_{f} \mathcal{H}(\bar{M}) \cdot(M-\bar{M}) \\
& =\sum_{i=1}^{N} M_{i} \ln M_{i}-\sum_{i=1}^{N} \overline{M_{i}} \ln \bar{M}_{i}-\sum_{i=1}^{N}\left(1+\ln \bar{M}_{i}\right) \cdot\left(M_{i}-\bar{M}_{i}\right) \\
& =\sum_{i=1}^{N} M_{i}\left(\ln M_{i}-\ln \bar{M}_{i}\right)-\sum_{i=1}^{N}\left(M_{i}-\bar{M}_{i}\right) \\
& =(a-\bar{a}) \sum_{i=1}^{N} M_{i}+(b-\bar{b}) \sum_{i=1}^{N} v_{i} M_{i}+(c-\bar{c}) \sum_{i=1}^{N} v_{i}^{2} M_{i}-\sum_{i=1}^{N}\left(M_{i}-\bar{M}_{i}\right) \\
& =(a-\bar{a}) \rho+(b-\bar{b}) \rho u+(c-\bar{c}) \rho E-(\rho-\bar{\rho}) \\
& =\rho(\ln (\rho / \psi)-\ln (\bar{\rho} / \bar{\psi}))+(b-\bar{b}) \rho u+(c-\bar{c}) \rho E-(\rho-\bar{\rho}) \\
& =s(\rho \mid \bar{\rho})+\rho\left[\ln \bar{\psi}-\ln \psi-\partial_{b}(\ln \psi)(b-\bar{b})-\partial_{c}(\ln \psi)(c-\bar{c})\right] \\
& =s(\rho \mid \bar{\rho})+\rho(\ln \psi)((\bar{b}, \bar{c}) \mid(b, c)) .
\end{aligned}
$$

The function s and $(-\ln \psi)$ are convex, and thus, thanks to Lemma 3.1,

$$
\mathcal{H}(M \mid \bar{M}) \geq 0 \quad \text { for any } M, \bar{M} .
$$

Lemma 3.2 gives that the relative entropy of η is nonnegative, and thanks to Lemma 3.1 again, we conclude that η is convex. Hence, the limit system is hyperbolic.

Note that for any $(u, E) \in \mathcal{U}$, since

$$
u=\frac{\sum_{i=1}^{N} v_{i} M_{i}}{\sum_{i=1}^{N} M_{i}}, \quad E=\frac{\sum_{i=1}^{N} v_{i}^{2} M_{i}}{\sum_{i=1}^{N} M_{i}}
$$

we have

$$
|u| \leq \sup _{i=1, \cdots, N}\left|v_{i}\right|, \quad|E| \leq \sup _{i=1, \cdots, N}\left|v_{i}^{2}\right| .
$$

Hence \mathcal{U} is bounded in \mathbb{R}^{2}. Let us write the limit system as

$$
\partial_{t} U+\partial_{x} A(U)=0
$$

where

$$
A(\rho, \rho u, \rho E)=(\rho u, \rho E, \rho J(u, E))
$$

First note that the two first component of A are linear in U, so the associated relative quantity are 0 . For the third one we calculate:

$$
A_{3}(U \mid \bar{U})=\rho J((u, E) \mid(\bar{u}, \bar{E}))
$$

Thanks to the Taylor expansion, since $J \in C^{2}$ and \mathcal{U} is bounded, there exists a constant $C>0$ such that for any $(u, E) \in \mathcal{U}$, we have

$$
J((u, E) \mid(\bar{u}, \bar{E})) \leq C\left(|u-\bar{u}|^{2}+|E-\bar{E}|^{2}\right)
$$

We also have

$$
\eta(U \mid \bar{U}) \geq \rho(\ln \psi)((\bar{b}, \bar{c}) \mid(b, c)) \geq c \rho\left(|u-\bar{u}|^{2}+|E-\bar{E}|^{2}\right)
$$

with $c>0$ thanks to the strict convexity of $\ln \psi$ and the boundedness of \mathcal{U}. Hence

$$
|A(U \mid \bar{U})| \leq \frac{C}{c} \eta(U \mid \bar{U}) \quad \text { for any } \rho>0,(u, E) \in \mathcal{U}
$$

which means that the system is admissible.

4. Estimation of the dissipation

This section is dedicated to the estimation of the dissipation

$$
\begin{equation*}
D(f)=\frac{1}{4} \sum_{i j k l} S_{i j k l} \ln \left(\frac{f_{k} f_{l}}{f_{i} f_{j}}\right)\left(f_{k} f_{l}-f_{i} f_{j}\right) \geq 0 \tag{4.13}
\end{equation*}
$$

via the proposition:
Proposition 4.1. There exists a constant C such that for any $f \in \mathbb{R}^{N}$ we have

$$
\begin{equation*}
\sum_{i=1}^{N}\left|f_{i}-M_{i}\right| \leq C \sqrt{D(f)} \tag{4.14}
\end{equation*}
$$

where $M=M(P f)$ is the associated Maxwellian.
We first prove three lemmas.

Lemma 4.2. Let $0<\alpha<\beta$. For any $f \in \mathbb{R}^{N}$, we set $\rho=\sum_{i=1}^{N} f_{i}$, and $M=M(P f)$.
There exists $C_{\alpha \beta}$ such that for any $f \in \mathbb{R}^{N}$, if $0<\alpha \rho \leq f_{i} \leq \beta \rho$ for any i, then

$$
\begin{equation*}
D(f) \geq C_{\alpha \beta} \sum_{i=1}^{N}\left|f_{i}-M_{i}\right|^{2} \tag{4.15}
\end{equation*}
$$

Proof. Since $D(f / \rho)=D(f) / \rho^{2}$ and $\sum_{i=1}^{N}\left|\frac{f_{i}}{\rho}-M_{i}\left(P\left(\frac{f}{\rho}\right)\right)\right|^{2}=\sum_{i=1}^{N}\left|\frac{f_{i}}{\rho}-\frac{M_{i}(P f)}{\rho}\right|^{2}=$ $\frac{1}{\rho^{2}} \sum_{i=1}^{N}\left|f_{i}-M_{i}\right|^{2}$, we can assume that $\rho=1$.
From $\left|\ln \frac{A}{B}\right| \leq \max \left(\frac{1}{A}, \frac{1}{B}\right)|A-B|$ with $A=f_{i} f_{j}$ and $B=f_{k} f_{l}$, we get $D(f) \geq \bar{D}(f)$ with

$$
\bar{D}(f)=\frac{\alpha^{2}}{4} \sum_{i j k l} S_{i j k l}\left(\ln f_{k}+\ln f_{l}-\ln f_{i}-\ln f_{j}\right)^{2}
$$

Since the kernel of $\bar{D}(f)$ is $V=\operatorname{vect}\left((1, \cdots, 1),\left(v_{1}, \cdots, v_{N}\right),\left(v_{1}^{2}, \cdots, v_{N}^{2}\right)\right)$ from property (H), denoting by \mathbb{P} the linear projection from \mathbb{R}^{N} onto V, there exists C such that

$$
\bar{D}(f) \geq C \sum_{i}\left|\ln f_{i}-\mathbb{P}\left(\ln f_{i}\right)\right|^{2}
$$

Now, since $\exp (\mathbb{P}(\ln f))=M(\exp (\mathbb{P}(\ln f)))$, we have

$$
\begin{aligned}
f-M(f) & =\exp (\ln f)-\exp (\mathbb{P}(\ln f))+M(\exp (\mathbb{P}(\ln f)))-M(\exp (\ln f)) \\
& =(\operatorname{Id}-M) \circ \exp (\ln f)-(\operatorname{Id}-M) \circ \exp (\mathbb{P} \ln f) .
\end{aligned}
$$

Using that exp is lipschitz on every $]-\infty, R]$ and that $\mathbb{P} \ln f$ do not goes to $-\infty$, there exists $K_{\alpha \beta}>0$ such that $(\operatorname{Id}-M) \circ$ exp is lipschitz on $\ln [\alpha, \beta]$ and on $\ln (\mathbb{P}[\alpha, \beta])$. Thus

$$
\left|f_{i}-M_{i}(f)\right| \leq K_{\alpha \beta}\left|\ln f_{i}-\mathbb{P} \ln f_{i}\right|
$$

and therefore

$$
\bar{D}(f) \geq \frac{C}{K_{\alpha \beta}^{2}} \sum_{i}\left|f_{i}-M_{i}\right|^{2} .
$$

Lemma 4.3. There exists γ_{1}, C_{1} such that for any $f \in \mathbb{R}^{N}$, setting $\rho=\sum_{i=1}^{N} f_{i}$, if there exists i_{0} such that $f_{i_{0}} \leq \gamma_{1} \rho$, then

$$
\begin{equation*}
D(f) \geq C_{1} \rho^{2} . \tag{4.16}
\end{equation*}
$$

Proof. Since $D(f / \rho)=D(f) / \rho^{2}$, we may assume with no loss of generality that $\rho=1$.
The proof proceeds by contradiction. Let us assume that for any γ, C, there exists f and i_{0} such that $f_{i_{0}} \leq \gamma \rho$ and $D(f) \leq C$. From Proposition 3.3, \mathcal{U} is bounded, that is to say ($u=\sum_{i=1}^{N} v_{i} f_{i}, E=\sum_{i=1}^{N}\left|v_{i}\right|^{2} f_{i}$) is bounded. Thus there exists γ such that $0<\gamma<M_{i}$ for any i.
With this γ, for any $n \in \mathbb{N}^{*}$, taking $C=1 / n$, there exists f^{n} and $i_{0}(n)$ such that
$f_{i_{0}(n)}^{n} \leq \gamma$ and $D\left(f^{n}\right) \leq 1 / n$. Since $i_{0}(n)$ takes finitely many values, we can extract a subsequence such that $i_{0}(n)$ remains constant. For this index i_{0}, we have for a subsequence $f_{i_{0}}^{n} \rightarrow f_{i_{0}} \in[0, \gamma]$, and extracting successively further subsequences, $f_{j}^{n} \rightarrow f_{j} \in[0,1]$ for all other j. Now $D\left(f^{n}\right) \rightarrow 0$ gives $D(f)=0$, and Lemma 2.1 implies that $f=M$ and then $\gamma<M_{i_{0}}=f_{i_{0}}$ which is a contradiction.

By similar arguments, we also prove that
Lemma 4.4. There exists γ_{2}, C_{2} such that for any $f \in \mathbb{R}^{N}$, setting $\rho=\sum_{i=1}^{N} f_{i}$, if there exists i_{0} such that $f_{i_{0}} \geq \gamma_{2} \rho$, then

$$
\begin{equation*}
D(f) \geq C_{2} \rho^{2} \tag{4.17}
\end{equation*}
$$

Based on these three properties, we can now show the Proposition 4.1.
Proof of Proposition 4.1. Let $\varepsilon>0$ and set $I=\sum_{i=1}^{N}\left|f_{i}-M_{i}\right|$. If $\rho<\varepsilon$ then $I \leq 2 \varepsilon$.

For $\rho \geq \varepsilon$, we select γ_{1}, γ_{2} as in Lemmas 4.3 and 4.4 and distinguish three possibilities: either (i) $\gamma_{1} \rho<f_{i}<\gamma_{2} \rho$ for all indices i, or (ii) there exists i_{0} so that $f_{i_{0}}>\gamma_{2} \rho$, or finally (iii) there is i_{0} such that $f_{i_{0}}<\gamma_{1} \rho$. In each case I is estimated as follows:

$$
\begin{aligned}
\sum_{i=1}^{N}\left|f_{i}-M_{i}\right| \leq & \sum_{i=1}^{N}\left|f_{i}-M_{i}\right| \mathbb{I}_{\rho \leq \varepsilon}+\sum_{i=1}^{N}\left|f_{i}-M_{i}\right| \mathbb{I}_{\rho \geq \varepsilon} \\
\leq & 2 \varepsilon+\sum_{i=1}^{N}\left|f_{i}-M_{i}\right| \mathbb{I}_{\exists i_{0} ; f_{i_{0}} \leq \gamma_{1} \rho} \mathbb{I}_{\rho \geq \varepsilon} \\
& +\sum_{i=1}^{N}\left|f_{i}-M_{i}\right| \mathbb{I}_{\exists i_{0} ; f_{i_{0}} \geq \gamma_{2} \rho} \mathbb{I}_{\rho \geq \varepsilon} \\
& +\sum_{i=1}^{N}\left|f_{i}-M_{i}\right| \mathbb{I}_{\forall i ; \gamma_{1} \rho \leq f_{i} \leq \gamma_{2} \rho} \mathbb{I}_{\rho \geq \varepsilon} \\
\leq & 2 \varepsilon+2 \rho \mathbb{I}_{\exists i_{0} ; f_{i_{0}} \leq \gamma_{1} \rho}+2 \rho \mathbb{I}_{\exists i_{0} ; f_{i_{0}} \geq \gamma_{2} \rho} \\
& +\sqrt{\sum_{i}\left|f_{i}-M_{i}\right|^{2} \mathbb{I}_{\forall i ; \gamma_{1} \rho \leq f_{i} \leq \gamma_{2} \rho} \mathbb{I}_{\rho \geq \varepsilon} \sqrt{N}} \\
\leq & 2 \varepsilon+2 \sqrt{\frac{D(f)}{C_{1}}}+2 \sqrt{\frac{D(f)}{C_{2}}}+\sqrt{\frac{N D(f)}{C_{\gamma_{1} \gamma_{2}}}}
\end{aligned}
$$

Finally, we take $\varepsilon \rightarrow 0$.

5. Hydrodynamic limit

In this section, we prove Theorem 2.3. We denote by f_{ε} the solution of (1.1), by $U_{\varepsilon}=\left(\rho_{\varepsilon}, \rho_{\varepsilon} u_{\varepsilon}, \rho_{\varepsilon} E_{\varepsilon}\right)=P f_{\varepsilon}=\sum_{i=1}^{N}\left(1, v_{i}, v_{i}^{2}\right)\left(f_{\varepsilon}\right)_{i}$, by $M_{\varepsilon}=M\left(U_{\varepsilon}\right)$, by \bar{U} the smooth solution to the limit system and by $\bar{M}=\bar{M}(\bar{U})$ the associated Maxwellian.

Multiplying (1.1) by $\ln \left(f_{\varepsilon}\right)_{i}$ and summing in i gives

$$
\begin{equation*}
\partial_{t} \sum_{i=1}^{N}\left(f_{\varepsilon}\right)_{i} \ln \left(f_{\varepsilon}\right)_{i}+\partial_{x} \sum_{i=1}^{N} v_{i}\left(f_{\varepsilon}\right)_{i} \ln \left(f_{\varepsilon}\right)_{i}+\frac{D\left(f_{\varepsilon}\right)}{\varepsilon}=0 \tag{5.18}
\end{equation*}
$$

Thanks to Proposition 3.3, we have:

$$
\begin{equation*}
\partial_{t} \sum_{i=1}^{N} \bar{M}_{i} \ln \bar{M}_{i}+\partial_{x} \sum_{i=1}^{N} v_{i} \bar{M}_{i} \ln \bar{M}_{i}=0 \tag{5.19}
\end{equation*}
$$

We can now study the evolution of the relative entropy between f_{ε} and \bar{M} :

$$
\begin{aligned}
& \partial_{t} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)+\partial_{x} \sum_{i=1}^{N} v_{i} s\left(\left(f_{\varepsilon}\right)_{i} \mid \bar{M}_{i}\right) \\
= & \partial_{t} \sum_{i=1}^{N} s\left(\left(f_{\varepsilon}\right)_{i} \mid \bar{M}_{i}\right)+\partial_{x} \sum_{i=1}^{N} v_{i} s\left(\left(f_{\varepsilon}\right)_{i} \mid \bar{M}_{i}\right) \\
= & \partial_{t} \sum_{i=1}^{N}\left(f_{\varepsilon}\right)_{i} \ln \left(f_{\varepsilon}\right)_{i}+\partial_{x} \sum_{i=1}^{N} v_{i}\left(f_{\varepsilon}\right)_{i} \ln \left(f_{\varepsilon}\right)_{i} \\
& -\partial_{t} \sum_{i=1}^{N} \bar{M}_{i} \ln \bar{M}_{i}-\partial_{x} \sum_{i=1}^{N} v_{i} \bar{M}_{i} \ln \bar{M}_{i} \\
& -\partial_{t} \sum_{i=1}^{N}\left(1+\ln \bar{M}_{i}\right)\left(\left(f_{\varepsilon}\right)_{i}-\bar{M}_{i}\right)-\partial_{x} \sum_{i=1}^{N} v_{i}\left(1+\ln \bar{M}_{i}\right)\left(\left(f_{\varepsilon}\right)_{i}-\bar{M}_{i}\right)
\end{aligned}
$$

Since

$$
\sum_{i=1}^{N}\left(1+\ln \bar{M}_{i}\right)\left(\left(f_{\varepsilon}\right)_{i}-\bar{M}_{i}\right)=\partial_{f} \mathcal{H}(\bar{M}) \cdot\left(f_{\varepsilon}-\bar{M}\right)
$$

and using the notation $V: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ defined by:

$$
V f_{i}=v_{i} f_{i} \quad 1 \leq i \leq N
$$

we also have

$$
\sum_{i=1}^{N} v_{i}\left(1+\ln \bar{M}_{i}\right)\left(\left(f_{\varepsilon}\right)_{i}-\bar{M}_{i}\right)=\partial_{f} \mathcal{H}(\bar{M}) \cdot\left(V f_{\varepsilon}-V \bar{M}\right)
$$

Combining this with (5.18) and (5.19) , we get

$$
\begin{aligned}
& \partial_{t} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)+\partial_{x} \sum_{i=1}^{N} v_{i} s\left(\left(f_{\varepsilon}\right)_{i} \mid \bar{M}_{i}\right)+\frac{D\left(f_{\varepsilon}\right)}{\varepsilon} \\
& \quad=-\partial_{t}\left(\partial_{f} \mathcal{H}(\bar{M}) \cdot\left(f_{\varepsilon}-\bar{M}\right)\right)-\partial_{x}\left(\partial_{f} \mathcal{H}(\bar{M}) \cdot\left(V f_{\varepsilon}-V \bar{M}\right)\right)
\end{aligned}
$$

Using Lemma 3.2, we get

$$
\begin{align*}
& \partial_{t} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)+\partial_{x} \sum_{i=1}^{N} v_{i} s\left(\left(f_{\varepsilon}\right)_{i} \mid \bar{M}_{i}\right)+\frac{D\left(f_{\varepsilon}\right)}{\varepsilon} \tag{5.20}\\
&=-\partial_{t}\left(\partial_{U} \eta(\bar{U}) * P\left(f_{\varepsilon}-\bar{M}\right)\right)-\partial_{x}\left(\partial_{U} \eta(\bar{U}) * P\left(V f_{\varepsilon}-V \bar{M}\right)\right) \\
&=-\partial_{t}\left(\partial_{U} \eta(\bar{U})\right) * P\left(f_{\varepsilon}-\bar{M}\right)-\partial_{U} \eta(\bar{U}) * \partial_{t}\left(P\left(f_{\varepsilon}-\bar{M}\right)\right) \\
&-\partial_{x}\left(\partial_{U} \eta(\bar{U})\right) * P\left(V f_{\varepsilon}-V \bar{M}\right)-\partial_{U} \eta(\bar{U}) * \partial_{x}\left(P\left(V f_{\varepsilon}-V \bar{M}\right)\right) .
\end{align*}
$$

For $k=0,1,2$, multiplying (1.1) by v_{i}^{k}, summing over i and using (2.7), we have

$$
\partial_{t} \sum_{i=1}^{N} v_{i}^{k}\left(f_{\varepsilon}\right)_{i}+\partial_{x} \sum_{i=1}^{N} v_{i}^{k+1}\left(f_{\varepsilon}\right)_{i}=0
$$

that is to say

$$
\begin{equation*}
\partial_{t} P f_{\varepsilon}+\partial_{x} P\left(V f_{\varepsilon}\right)=0 \tag{5.21}
\end{equation*}
$$

Furthermore,

$$
\partial_{t} \sum_{i=1}^{N} v_{i}^{k} \bar{M}_{i}+\partial_{x} \sum_{i=1}^{N} v_{i}^{k+1} \bar{M}_{i}=0
$$

that is to say

$$
\begin{equation*}
\partial_{t} P(\bar{M})+\partial_{x} P(V \bar{M})=0 \tag{5.22}
\end{equation*}
$$

It gives

$$
\begin{aligned}
& \partial_{t} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)+\partial_{x} \sum_{i=1}^{N} v_{i} s\left(\left(f_{\varepsilon}\right)_{i} \mid \bar{M}_{i}\right)+\frac{D\left(f_{\varepsilon}\right)}{\varepsilon} \\
& \quad=-\partial_{U U}^{2} \eta(\bar{U}) \partial_{t}(\bar{U}) * P\left(f_{\varepsilon}-\bar{M}\right)-\partial_{U U}^{2} \eta(\bar{U}) \partial_{x}(\bar{U}) * P\left(V f_{\varepsilon}-V \bar{M}\right) \\
& \quad=\partial_{U U}^{2} \eta(\bar{U}) A^{\prime}(\bar{U}) \partial_{x}(\bar{U}) * P\left(f_{\varepsilon}-\bar{M}\right)-\partial_{U U}^{2} \eta(\bar{U}) \partial_{x}(\bar{U}) * P\left(V f_{\varepsilon}-V \bar{M}\right) \\
& \quad=\partial_{U U}^{2} \eta(\bar{U}) \partial_{x}(\bar{U}) *\left(A^{\prime}(\bar{U})\left(U_{\varepsilon}-\bar{U}\right)-P\left(V f_{\varepsilon}-V \bar{M}\right)\right) \\
& \quad=\partial_{U U}^{2} \eta(\bar{U}) \partial_{x}(\bar{U}) *\left(A^{\prime}(\bar{U})\left(U_{\varepsilon}-\bar{U}\right)-P\left(V f_{\varepsilon}-V M_{\varepsilon}\right)-P\left(V M_{\varepsilon}-V \bar{M}\right)\right),
\end{aligned}
$$

where we used the fact that, since $\eta(U)$ is an entropy for (2.10), the flux $A(U)$ satisfies $\left(\partial_{u u} \eta\right) A^{\prime}=\left(A^{\prime}\right)^{T} \partial_{u u} \eta$. Now

$$
P\left(V M_{\varepsilon}-V \bar{M}\right)=\sum_{i=1}^{N}\left(1, v_{i}, v_{i}^{2}\right) v_{i}\left(\left(M_{\varepsilon}\right)_{i}-\bar{M}_{i}\right)=A\left(U_{\varepsilon}\right)-A(\bar{M})
$$

therefore

$$
\begin{align*}
\partial_{t} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right) & +\partial_{x} \sum_{i=1}^{N} v_{i} s\left(\left(f_{\varepsilon}\right)_{i} \mid \bar{M}_{i}\right)+\frac{D\left(f_{\varepsilon}\right)}{\varepsilon} \tag{5.23}\\
& =-\partial_{U U}^{2} \eta(\bar{U}) \partial_{x}(\bar{U}) *\left(A\left(U_{\varepsilon} \mid \bar{U}\right)+P\left(V f_{\varepsilon}-V M_{\varepsilon}\right)\right)
\end{align*}
$$

We exploit this evolution equation in order to get the bound. First we want to bound $D\left(f_{\varepsilon}\right)$ with respect to ε. Integrating (5.20) with respect to (t, x) gives

$$
\begin{aligned}
& \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(t, x) d x-\int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x+\int_{0}^{t} \int_{\mathbb{R}} \frac{D\left(f_{\varepsilon}\right)}{\varepsilon} d x d s \\
& \quad=-\int_{\mathbb{R}} \partial_{U} \eta(\bar{U}) * P\left(f_{\varepsilon}-\bar{M}\right) d x+\int_{\mathbb{R}} \partial_{U} \eta(\bar{U}) * P\left(f_{\varepsilon}^{0}-\overline{M^{0}}\right) d x
\end{aligned}
$$

For every $T<T^{*}$, there exists C_{T} such that $\left|\partial_{U} \eta(\bar{U})\right|(t, x) \leq C_{T}$ for any $x \in \mathbb{R}$, $0 \leq t \leq T$. Thus we have

$$
\int_{0}^{t} \int_{\mathbb{R}} \frac{D\left(f_{\varepsilon}\right)}{\varepsilon} d x d s \leq \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x+C_{T} \int_{\mathbb{R}}\left|P\left(f_{\varepsilon}-\bar{M}\right)\right|+\left|P\left(f_{\varepsilon}^{0}-\overline{M^{0}}\right)\right| d x
$$

Integrating (5.21) and (5.22) with respect to (t, x) gives in particular

$$
\int_{\mathbb{R}}\left|f_{\varepsilon}(t, x)\right| d x=\int_{\mathbb{R}} f_{\varepsilon}(t, x) d x=\int_{\mathbb{R}} f_{\varepsilon}^{0}(x) d x
$$

and

$$
\int_{\mathbb{R}}|\bar{M}(t, x)| d x=\int_{\mathbb{R}} \bar{M}(t, x) d x=\int_{\mathbb{R}} \bar{M}^{0}(x) d x
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{R}} \mid & P\left(f_{\varepsilon}-\bar{M}\right) \mid d x \\
& \leq\left(1+\sup _{i=1, \cdots, N}\left|v_{i}\right|+\sup _{i=1, \cdots, N}\left|v_{i}^{2}\right|\right)\left(\int_{\mathbb{R}} f_{\varepsilon}^{0}(x) d x+\int_{\mathbb{R}} \bar{M}^{0}(x) d x\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{0}^{t} \int_{\mathbb{R}} D\left(f_{\varepsilon}\right) d x d s \leq C_{T}^{0} \varepsilon, \quad \text { for } 0 \leq t \leq T \tag{5.24}
\end{equation*}
$$

with

$$
\begin{aligned}
C_{T}^{0}= & \sup _{\varepsilon}\left(\int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x\right) \\
& +4 C_{T} \max \left(1, \sup _{i=1, \cdots, N}\left|v_{i}^{2}\right|\right) \sup _{\varepsilon}\left(\int_{\mathbb{R}} f_{\varepsilon}^{0}(x) d x+\int_{\mathbb{R}} \bar{M}^{0}(x) d x\right) .
\end{aligned}
$$

We turn now to the estimation of $\mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)$ with respect to ε. For every $T<T^{*}$, there exists \tilde{C}_{T} such that

$$
\left|\partial_{U U}^{2} \eta(\bar{U})\right|(t, x) \leq \tilde{C}_{T}, \quad\left|\partial_{x} \bar{U}\right|(t, x) \leq \tilde{C}_{T}
$$

for any $x \in \mathbb{R}, 0 \leq t \leq T$ and

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbb{R}}\left|\partial_{x} \bar{U}\right|^{2}(s, x) d x d s \leq \tilde{C}_{T} \tag{5.25}
\end{equation*}
$$

Then integrating (5.23) with respect to (t, x) gives

$$
\begin{array}{rl}
\int_{\mathbb{R}} & \mathcal{H} \\
\left(f_{\varepsilon} \mid \bar{M}\right)(t, x) d x-\int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x+\int_{0}^{t} \int_{\mathbb{R}} \frac{D\left(f_{\varepsilon}\right)}{\varepsilon} d x d s \\
\quad=-\int_{0}^{t} \int_{\mathbb{R}} \partial_{U U}^{2} \eta(\bar{U}) \partial_{x}(\bar{U}) *\left(A\left(U_{\varepsilon} \mid \bar{U}\right)+P\left(V f_{\varepsilon}-V M_{\varepsilon}\right)\right) d x d s
\end{array}
$$

Thanks to Proposition 3.3 and Lemma 3.2, we get

$$
\left|A\left(U_{\varepsilon} \mid \bar{U}\right)\right| \leq C_{1} \eta\left(U_{\varepsilon} \mid \bar{U}\right) \leq C_{1} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)
$$

Thanks to Proposition 4.1, we get

$$
\left|P V\left(f_{\varepsilon}-M_{\varepsilon}\right)\right|^{2} \leq C_{2}\left(\sum_{i=1}^{N}\left|\left(f_{\varepsilon}\right)_{i}-\left(M_{\varepsilon}\right)_{i}\right|\right)^{2}=C_{2}\left|f_{\varepsilon}-M_{\varepsilon}\right|^{2} \leq C_{3} D\left(f_{\varepsilon}\right)
$$

Thus, it gives

$$
\begin{aligned}
& \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(t, x) d x \\
& \quad \leq \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x+\left(\tilde{C}_{T}\right)^{2} C_{1} \int_{0}^{t} \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(s, x) d x d s \\
& \quad+\left(\int_{0}^{t} \int_{\mathbb{R}}\left|\partial_{U U}^{2} \eta(\bar{U}) \partial_{x}(\bar{U})\right|^{2} d x d s\right)^{1 / 2}\left(\int_{0}^{t} \int_{\mathbb{R}}\left|P V\left(f_{\varepsilon}-M_{\varepsilon}\right)\right|^{2} d x d s\right)^{1 / 2} \\
& \quad \leq \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x+\tilde{C}_{T}^{2} C_{1} \int_{0}^{t} \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(s, x) d x d s \\
& \quad+\tilde{C}_{T}^{3 / 2} C_{3}^{1 / 2}\left(\int_{0}^{t} \int_{\mathbb{R}} D\left(f_{\varepsilon}\right)(s, x) d x d s\right)^{1 / 2} \\
& \quad \leq \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right)(x) d x+\tilde{C}_{T}^{2} C_{1} \int_{0}^{t} \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(s, x) d x d s+\tilde{C}_{T}^{3 / 2} C_{3}^{1 / 2} \sqrt{C_{T}^{0} \varepsilon}
\end{aligned}
$$

using (5.24). Setting $w_{\varepsilon}(t)=\int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(t, x) d x$, it writes

$$
w_{\varepsilon}(t) \leq w_{\varepsilon}(0)+C_{4} \int_{0}^{t} w_{\varepsilon}(s) d s+C_{5} \sqrt{\varepsilon}
$$

Using Gronwall's lemma, we get

$$
\sup _{0 \leq t \leq T} \int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon} \mid \bar{M}\right)(t, x) d x \leq\left(\int_{\mathbb{R}} \mathcal{H}\left(f_{\varepsilon}^{0} \mid \bar{M}^{0}\right) d x+C_{5} \sqrt{\varepsilon}\right) e^{C_{4} T}
$$

References

[1] J. T. Beale. Large-time behavior of discrete velocity Boltzmann equations. Comm. Math. Phys., 106(4):659-678, 1986.
[2] F. Berthelin and A. Vasseur. From kinetic equations to multidimensional isentropic gas dynamics before shocks. SIAM J. Math. Anal., 36(6):1807-1835 (electronic), 2005.
[3] J.-M. Bony. Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace. In Journées "Équations aux derivées partielles" (Saint Jean de Monts, 1987), pages Exp. No. XVI, 10. École Polytech., Palaiseau, 1987.
[4] J.-M. Bony. Existence globale à données de Cauchy petites pour les modèles discrets de l'équation de Boltzmann. Comm. Partial Differential Equations, 16(4-5):533-545, 1991.
[5] Y. Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations, 25(3-4):737-754, 2000.
[6] Y. Brenier, R. Natalini, and M. Puel. On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc., 132(4):1021-1028 (electronic), 2004.
[7] H. Cabannes, R. Gatignol, and L.-S. Luo. The discrete Boltzmann equation (theory and applications). Henri Cabannes, Paris, 2003. Revised from the lecture notes given at the University of California, Berkeley, CA, 1980, Available electronically at http://lapasserelle.com/henri_ cabannes/Cours_de_Berkeley.pdf.
[8] R. E. Caflisch and G. C. Papanicolaou. The fluid dynamical limit of a nonlinear model Boltzmann equation. Comm. Pure Appl. Math., 32(5):589-616, 1979.
[9] C. M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal., 70(2):167-179, 1979.
[10] R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J., 28(1):137-188, 1979.
[11] M. Feldman and S.-Y. Ha. Nonlinear functionals of multi-D discrete velocity Boltzmann equations. J. Statist. Phys., 114(3-4):1015-1033, 2004.
[12] S.-Y. Ha and A. E. Tzavaras. Lyapunov functionals and L^{1}-stability for discrete velocity Boltzmann equations. Comm. Math. Phys., 239(1-2):65-92, 2003.
[13] B. Jourdain, C. Le Bris, T. Lelièvre, and F. Otto. Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal., 181(1):97-148, 2006.
[14] S. Kawashima. Large-time behavior of solutions of the discrete Boltzmann equation. Comm. Math. Phys., 109(4):563-589, 1987.
[15] C. Lattanzio and A. E. Tzavaras. Structural properties of stress relaxation and convergence from viscoelasticity to polyconvex elastodynamics. Arch. Ration. Mech. Anal., 180(3):449-492, 2006.
[16] S. Olla, S. R. S. Varadhan, and H.-T. Yau. Hydrodynamical limit for a Hamiltonian system with weak noise. Comm. Math. Phys., 155(3):523-560, 1993.
[17] T. Płatkowski and R. Illner. Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev., 30(2):213-255, 1988.
[18] L. Saint-Raymond. Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal., 166(1):47-80, 2003.
[19] A. E. Tzavaras. Relative entropy in hyperbolic relaxation. Commun. Math. Sci., 3(2):119-132, 2005.
[20] H.-T. Yau. Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys., 22(1):63-80, 1991.
(Florent Berthelin)
Laboratoire J. A. Dieudonné, UMR 6621 CNRS
Université de Nice, Parc Valrose
06108 Nice cedex 2, France
E-mail address: Florent. Berthelin@unice.fr
(Athanasios E. Tzavaras)
Department of Mathematics
University of Maryland
College Park, MD 20742-4015, USA
AND
Department of Applied Matematics and
Institute for Applied and Computational Mathematics (FORTH)
University of Crete
71409 Heraklion, GREECE
E-mail address: tzavaras@math.umd.edu
(Alexis Vasseur)
Mathematics Department
University of Texas at Austin
1 University Station C1200
Austin, TX 78712-0257, USA
E-mail address: vasseur@math.utexas.edu

[^0]: 2000 Mathematics Subject Classification. 35L65, 82C40, 76Nxx, 76P05, 35F20.
 Key words and phrases. Hydrodynamic limit, Entropy method, discrete Boltzmann equations, gas dynamics.

 Partially supported by the National Science Foundation Grants DMS-0607053, DMS-0555272 and DMS-0757227, and by the program "Pythagoras" of the Greek Secretariat of Research.

