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Abstract. This article is devoted to the proof of the hydrodynamic limit for
a discrete velocity Boltzmann equation before appearance of shocks in the limit
system.

1. Introduction

We consider the system of discrete velocity Boltzmann equations

(1.1) ∂tfi + vi∂xfi =
1
ε
Qi(f, f), for i = 1, . . . , N,

where

(1.2) Qi(f, f) =
∑
jkl

Sijkl(fkfl − fifj),

and N ≥ 3. Such systems have been extensively studied in the literature (see e.g.
Cabannes, Gatignol and Luo [7] or Platkwoski and Illner [17] and references therein)
because they offer a simplification and approximation of the Boltzmann equation
that shares remarkable similarities to the latter model. Nevertheless, these systems
are quite simpler than the Boltzmann equation and for instance their existence
theory is relatively well understood in both the cases of one dimension [1, 3, 12] as
well as in several space dimensions [4, 11]. Discrete velocity models present certain
pathologies in several space dimensions and we will refrain from working with them
here.

The parameter ε is called mean free path or Knudsen number and. under certain
conditions on the interaction coefficients Sijkl that will be precised later, the system
formally converges as ε→ 0 to equations,

(1.3)

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρE) = 0,

∂t(ρE) + ∂x(ρJ(u,E)) = 0,

The limiting procedure has been justified for the case of the Broadwell model by
Calfisch and Papanicolaou [8] and the related problem of the asymptotic in time
convergence of (1.1) to global Maxwellians is established in works of Beale [1] and
Kawashima [14].
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The objective of this article is to establish the hydrodynamic limit from discrete
Boltzmann equations (1.1) to the gas dynamics system in the form (1.3) in the
regime where the solutions of (1.3) remain smooth. We will develop and estimate a
relative entropy identity following ideas in Berthelin-Vasseur [2] and Tzavaras [19].
These articles concern kinetic or relaxation limits for BGK-type of collision opera-
tors. The ingredients, required in order to account for Boltzmann collison operators,
are an estimation of the entropy dissipation and certain structural properties that
pertain to system (1.3). The relative entropy method was developed in the context
of uniqueness and stability for hyperbolic conservation laws by Dafermos [9] and
DiPerna [10], and the context of hydrodynamics for stochastic particle systems by
Yau [20] and Olla-Varadhan-Yau [16]. In addition to the aforementioned references
the reader is referred to [5, 6, 13, 15, 18] for the application of relative entropy in a
variety of contexts.

We begin in section 2 with a description of the model, an outline of the formal-
ism of its hydrodynamic limit and the statement of the main result Theorem 2.3.
In section 3 we develop links between the kinetic and the macroscopic entropies
and prove certain structural properties of the limit system, the entropy consistency
property and hyperbolicity. Section 4 contains the key estimation of the entropy
dissipation (Proposition 4.1), and section 5 contains the derivation of the relative
entropy identity and the conclusion of the proof of Theorem 2.3.

2. Description of the model and statement of results

The interaction coefficients Sijkl entering the definition of the collision operator
(1.2) are assumed to satisfy the properties of symmetry and microreversibility,

(2.4) Sijkl = Sjikl, Sijkl = Sijlk,

(2.5) Sijkl = Sklij ,

and to describe the probability of the elastic collision (i, j) → (k, l) conserving the
microscopic mass, momentum and energy

(2.6) vk + vl = vi + vj , v2
k + v2

l = v2
i + v2

j if Sijkl 6= 0.

For any f ∈ RN , we have from (2.6):

(2.7)
∑
i

Qi = 0,
∑
i

viQi = 0,
∑
i

v2
iQi = 0 ,

which entail conservation laws for the total mass, momentum and energy. Consider
the collision matrix B ∈ {−1, 0, 1}N2×N given by:

Bij,i = Bij,j = −Bij,k = −Bij,l = 1 if Sijkl 6= 0,
Bij,k = 0 everywhere else.

Note that (2.7) implies that (1, · · ·, 1), (v1, · · ·, vN ) and (v2
1, · · ·, v2

N ) are in the kernel
of B. We pose the additional hypothesis:

(H) N(B) = span
{

(1, · · ·, 1), (v1, · · ·, vN ), (v2
1, · · ·, v2

N )
}

and dimN(B) = 3 .

This implies that the only conserved quantities are precisely the mass, momentum
and energy and that the model does not have any extraneous conservation laws.
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Finally, we define the entropy of f via the usual relation

H(f) =
N∑
i=1

fi ln fi

For any C1 function F : D → R defined on a convex set D ⊂ Rk, we define the
associated relative function:

F (U1|U2) = F (U1)− F (U2)− F ′(U2)(U1 − U2).

We also set

s(y) = y ln y ,

and use in the sequel the following notations:

a ∗ b = a1b1 + a2b2 + a3b3 a, b ∈ R3,

f · g =
N∑
i=1

figi f, g ∈ RN ,

|f | =
N∑
i=1

|fi| f ∈ RN ,

Pf =
N∑
i=1

(1, vi, v2
i )fi f ∈ RN ,

|Pf | =
2∑

β=0

N∑
i=1

∣∣∣vβi fi∣∣∣ f ∈ RN .

Our first lemma concerns tha structure of Maxwellians associated to discrete
velocity Boltzmann equations:

Lemma 2.1. A vector (M1, · · · ,MN ) ∈ (R+)N verifies Q(M,M) = 0 if and only if
there exists a, b, c ∈ R such that

Mi = ea+bvi+cv
2
i for any 1 ≤ i ≤ N.

Setting ψ(b, c) =
∑N

i=1 e
bvi+cv

2
i , we express the Maxwellians in the form

Mi = ρ
ebvi+cv

2
i∑N

i=1 e
bvi+cv2i

and note the relations

(2.8) ρ =
N∑
i=1

Mi = eaψ(b, c),
N∑
i=1

viMi = ρ
∂bψ

ψ
(b, c),

N∑
i=1

v2
iMi = ρ

∂cψ

ψ
(b, c).

For a given Maxwellian M , we define

(ρ, ρu, ρE) = PM,
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that is to say

ρ =
N∑
i=1

Mi =
N∑
i=1

ea+bvi+cv
2
i = eaψ(b, c),

ρu =
N∑
i=1

viMi =
N∑
i=1

vie
a+bvi+cv

2
i = ρ

∂bψ

ψ
(b, c),

ρE =
N∑
i=1

v2
iMi =

N∑
i=1

v2
i e
a+bvi+cv

2
i = ρ

∂cψ

ψ
(b, c).

We notice that
u = ∂b(lnψ), E = ∂c(lnψ),

and then we denote U the set of admissible value of (u,E), that is:

U = {(∂b(lnψ), ∂c(lnψ)) | b, c ∈ R}.

The hydrodynamic limit system can be written formally as

(2.9)

 ∂t
∑

iMi + ∂x
∑

i viMi = 0,
∂t
∑

i viMi + ∂x
∑

i v
2
iMi = 0,

∂t
∑

i v
2
iMi + ∂x

∑
i v

3
iMi = 0,

which leads to

(2.10)

 ∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρE) = 0,
∂t(ρE) + ∂x(ρJ) = 0,

where we set

(2.11) J(u,E) =
∂bcψ

ψ
.

The flux J = J(u,E) is well defined thanks to the following lemma.

Lemma 2.2. The function lnψ is smooth and strictly convex and so the map: T :
(b, c)→ (u,E) defined by

T (b, c) = ∇(b,c) lnψ(b, c)

is a C1 diffeomorphism from R2 to U .

We introduce also the entropy of the system:

η(ρ, ρu, ρE) = H(M) =
N∑
i=1

Mi lnMi.

Conversely, for any U = (ρ, ρu, ρE) with ρ > 0 and (u,E) ∈ U , we define

M(U) = (Mi(U))i=1,··· ,N = (ea+bvi+cv
2
i )i=1,··· ,N

with ρ, u,E and a, b, c related as in Lemma 2.1.

The article is devoted to the proof of the following theorem:
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Theorem 2.3. Let (ρ0, u0, E0), be a Lipshitzian function on R with values in R+×U
such that U0 = (ρ0, ρ0u0, ρ0E0) and η(ρ0, ρ0u0, ρ0E0) lie altogether in L1(R) and
∂xU0 ∈ L2(R)∩L∞(R). Then, there exists a maximal time T ∗ such that the solution
(ρ, ρu, ρE) to the limit system (2.10) with initial values (ρ0, u0, E0) stays Lipshitzian
on [0, T ∗)× R. Denote M the Maxwellian associated to (ρ, ρu, ρE). Consider f0

ε ∈
(L1(R))N such that each component is nonnegative and verifying H(f0

ε ) bounded in
L1(R). We denote fε the solution of (1.1) with initial value f0

ε . If f0
ε converges

strongly to M0, Maxwellian associated to (ρ0, u0, E0) in the sense that∫
R
H(f0

ε |M
0)(x) dx →

ε→0
0,

then fε converges strongly to M in the sense that for any T < T ∗:

sup
0≤t≤T

∫
R
H(fε|M)(t, x) dx →

ε→0
0,

where

H(f |g) =
∑
i

fi ln(fi/gi)− (fi − gi) ≥ 0.

The proof is based on the results of Tzavaras [19] and Berthelin-Vasseur[2] on the
relative entropy method, and on an estimation of the entropy-dissipation developed
in section 4.

3. Preliminaries

In this section, we gather certain structural properties of the model (1.1) and
its hydrodynamic limit. Especially, we introduce a link between kinetic relative
entropies and macroscopic ones, we show that the system is hyperbolic, entropy
consistent and obtain properties on the domain U .

First, we prove Lemma 2.1 and Lemma 2.2.
Proof of Lemma 2.1. If Q(M,M) = 0 then in particular

D[M ] =
N∑
i=1

ln(Mi)Qi(M) =
1
4

∑
ijkl

Sijkl[ln(MkMl)− ln(MiMj)](MkMl−MiMj) = 0.

But each terms of the last sum is nonnegative so, for any i, j, k, l such that Sijkl 6= 0,
we have MkMl = MiMj which means:

lnMk + lnMl = lnMi + lnMj .

This implies that lnM = (lnMi)i=1,··· ,N lies in N(B). Hypothesis (H) implies that
there exists (a, b, c) such that

lnMi = a+ bvi + cv2
i for any 1 ≤ i ≤ N.

Conversely, note that if lnM is given by such a formula, then MkMl = MiMj for
any ijkl verifying Sijkl 6= 0 and Q(M,M) = 0 as well.
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To show the second part of the statement. Note that from the definition of ψ we

have ea =
ρ

ψ
, that is to say e−a =

ψ

ρ
. Noting that

∂bψ =
N∑
i=1

vie
bvi+cv

2
i = e−a

N∑
i=1

viMi,

∂cψ =
N∑
i=1

v2
i e
bvi+cv

2
i = e−a

N∑
i=1

v2
iMi,

gives the result.
We list the useful formulas

N∑
i=1

ebvi+cv
2
i = ψ(b, c),

N∑
i=1

vie
bvi+cv

2
i = ψ(b, c)u,(3.12)

N∑
i=1

v2
i e
bvi+cv

2
i = ψ(b, c)E.

Proof of Lemma 2.2. The matrix of the second derivatives of lnψ is:
1
ψ2

(
ψ∂bbψ − (∂bψ)2 ψ∂bcψ − ∂bψ∂cψ
ψ∂bcψ − ∂bψ∂cψ ψ∂ccψ − (∂cψ)2

)
which can be rewritten

1
ψ


N∑
i=1

(vi − u)2ebvi+cv
2
i

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i

N∑
i=1

(v2
i − E)2ebvi+cv

2
i

 .

Indeed, we have

ψ∂bbψ − (∂bψ)2 = ψ
N∑
i=1

v2
i e
bvi+cv

2
i − ψu

N∑
i=1

vie
bvi+cv

2
i

(3.12)
= ψ

N∑
i=1

(vi − u)2ebvi+cv
2
i ,

ψ∂bcψ − (∂bψ)(∂cψ) = ψ

N∑
i=1

v3
i e
bvi+cv

2
i −

N∑
i=1

vie
bvi+cv

2
i

N∑
i=1

v2
i e
bvi+cv

2
i

(3.12)
= ψ

N∑
i=1

v3
i e
bvi+cv

2
i − ψ2uE

(3.12)
= ψ

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i ,

and similarly for the last entry of the matrix.
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The trace of this matrix is positive. Its determinant is also positive as can be seen
by applying the Cauchy-Schwarz inequality,[

N∑
i=1

(vi − u)(v2
i − E)ebvi+cv

2
i

]2

≤
( N∑
i=1

(vi − u)2ebvi+cv
2
i

)( N∑
i=1

(v2
i − E)2ebvi+cv

2
i

)
If the determinant is equal to 0 then equality holds in the Cauchy-Schwarz inequality
which, in turn, implies that the vectors (1, ..., 1), (v1, ..., vN ) and (v2

1, ...v
2
N ) are

linearly dependent. The latter is ruled out by hypothesis (H), and thus the matrix
of the second derivatives of lnψ is strictly positive, and lnψ is strictly convex. The
mapping T is a C1,1 diffeomorphism from R2 to U .

We prove now the following lemma related to relative quantities.

Lemma 3.1. Let F : D → R be a C2 function on a convex set D ⊂ Rk. The function
F is convex on D if and only if the associated relative function is nonnegative on
D ×D.

Proof. For any U1, U2 ∈ V we have:

F (U1|U2) =
∫ 1

0

∫ 1

0
F ′′(U1 + st(U2 − U1)) : [(U1 − U2)⊗ (U1 − U2)]t ds dt.

Hence, if F is convex then F ′′ is positive and so F (U1|U2) is nonnegative. Conversely,
for |U1 − U2| small, we have:

F (U1|U2) = F ′′(U2) : [(U1 − U2)⊗ (U1 − U2)] + o(|U1 − U2|2).

Then, if F (·|·) is nonnegative everywhere, then F ′′(U2) is a nonnegative matrix for
any U2 and F is convex.

In particular, s′(y) = 1 + ln y leads to the usual relation:

s(y|z) = y ln
y

z
− (y − z) ≥ 0,

since s is convex.

Let us show now the following lemma which gives the link between the relative
entropy at the kinetic level and at the macroscopic level.

Lemma 3.2. For any U = (ρ, ρu, ρE) with ρ > 0 and (u,E) ∈ U , we set

M(U) = (Mi(U))i=1,··· ,N = (ea+bvi+cv
2
i )i=1,··· ,N

with ρ, u,E and a, b, c related as in Lemma 2.1. We then have

i) PM(U) = U,

ii) η(U) = H(M(U)) = inf
Pf=U

H(f),

and

iii)
∂η

∂U
(U) ∗ w =

∂H
∂f

(M(U)) · f,

for any w ∈ R3 and any f ∈ RN such that w = Pf .
Especially

iv) η(U |U) = H(M(U)|M(U)),
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and
v) η(U |U) ≤ H(f |M(U)),

for any Pf = U .

Proof. i) We have

PM(U) =
N∑
i=1

(1, vi, v2
i )Mi(U) =

N∑
i=1

(1, vi, v2
i )e

a+bvi+cv
2
i = (ρ, ρu, ρE) = U.

ii) By definition, we have

η(U) = H(M(U)) =
N∑
i=1

s(Mi(U)).

For any f such that Pf = U , we have

0 ≤ H(f |M(U)) = H(f)−H(M(U))− ∂fH(M(U)) · (f −M(U))

= H(f)−H(M(U))−
N∑
i=1

(1 + lnMi(U))(fi −Mi(U)),

with
N∑
i=1

(1 + lnMi(U))(fi −Mi(U)) = (1 + a, b, c) ∗ P (f −M(U)) = 0

since P (f −M(U)) = U − PM(U) = 0. Hence:

H(f) ≥ H(M(U)) for any Pf = U,

which gives the result.
iii) By differentiation of U = PM(U) with respect to U , we get, with P linear,

Id = P
∂M

∂U
.

We denote

eβ = P
∂M

∂Uβ
.

Let f ∈ RN and w ∈ R3 such that w = Pf . Decomposing w on the basis (eβ) we
have:

Pf = w =
3∑

β=1

wβeβ =
3∑

β=1

wβP
∂M

∂Uβ
,

and so

P

f − 3∑
β=1

wβ
∂M

∂Uβ

 = 0.

This gives the existence of g such that:

f =
3∑

β=1

wβ
∂M

∂Uβ
+ g

Pg = 0.
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But
∂η

∂Uβ
=
∂H
∂f

(M(U)) · ∂M
∂Uβ

,

Hence:

∂η

∂U
∗ w =

3∑
β=1

∂η

∂Uβ
wβ =

3∑
β=1

wβ
∂H
∂f

(M(U)) · ∂M
∂Uβ

=
∂H
∂f

(M(U)) · (f − g).

We conclude with the argument that
∂H
∂f

(M(U)) ⊥ N(P ).

This comes from the fact that

η(U) = min
Pf=U

H(f) = H(M(U))

(see [19, Proposition 2.1]).
iv) We have

η(U |U) = η(U)− η(U)− ∂Uη(U) ∗ (U − U)
= H(M(U))−H(M(U))− ∂fH(M(U)) · (M(U)−M(U))

= H(M(U)|M(U))

using iii) with w = U − U and f = M(U)−M(U).
v) For f such that U = Pf , we have

η(U |U) = H(M(U))−H(M(U))− ∂fH(M(U)) · (M(U)−M(U))

≤ H(f)−H(M(U))− ∂fH(M(U)) · (M(U)−M(U))

≤ H(f |M(U))− ∂fH(M(U)) · (M(U)− f).

Now

∂fH(M(U)) · g =
N∑
i=1

(1 + lnMi(U))gi =
N∑
i=1

(1 + a+ bvi + cv2
i )gi = 0

whenever Pg = 0. Since P (M(U)− f) = 0, we conclude.

We can now show the main proposition of this section.

Proposition 3.3. The system (1.3) is hyperbolic, admissible (in the sense of Berthelin-
Vasseur [2]), i.e. there exists C > 0 such that

|A(U |U)| ≤ Cη(U |U) for any ρ > 0, (u,E) ∈ U ,

η is a convex entropy and

η(U |U) = H(M(U)|M(U)) = s(ρ|ρ) + ρ lnψ((b, c)|(b, c))

for any U,U with ρ, u,E and a, b, c related as in Lemma 2.1. Finally, there exists a
constant C > 0 such that

|u|+ |E| ≤ C for any (u,E) ∈ U .
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Proof. Let us first check that η is an entropy of the limit system with entropy flux
N∑
i=1

viMi(U) lnMi(U). Indeed

∂t

N∑
i=1

Mi lnMi + ∂x

N∑
i=1

viMi lnMi

=
N∑
i=1

(1 + lnMi)(∂tMi + vi∂xMi)

=
N∑
i=1

(1 + a+ bvi + cv2
i )(∂tMi + vi∂xMi)

= (1 + a)

(
∂t

N∑
i=1

Mi + ∂x

N∑
i=1

viMi

)
+ b

(
∂t

N∑
i=1

viMi + ∂x

N∑
i=1

v2
iMi

)

+c

(
∂t

N∑
i=1

v2
iMi + ∂x

N∑
i=1

v3
iMi

)
= 0.

Let us now calculate H(M |M) for two Maxwellians M,M . We set

lnMi = a+ bvi + cv2
i

lnM i = a+ bvi + cv2
i .

Then,

H(M |M) = H(M)−H(M)− ∂fH(M) · (M −M)

=
N∑
i=1

Mi lnMi −
N∑
i=1

Mi lnM i −
N∑
i=1

(1 + lnM i) · (Mi −M i)

=
N∑
i=1

Mi(lnMi − lnM i)−
N∑
i=1

(Mi −M i)

= (a− a)
N∑
i=1

Mi + (b− b)
N∑
i=1

viMi + (c− c)
N∑
i=1

v2
iMi −

N∑
i=1

(Mi −M i)

= (a− a)ρ+ (b− b)ρu+ (c− c)ρE − (ρ− ρ)

= ρ(ln(ρ/ψ)− ln(ρ/ψ)) + (b− b)ρu+ (c− c)ρE − (ρ− ρ)

= s(ρ|ρ) + ρ
[
lnψ − lnψ − ∂b(lnψ)(b− b)− ∂c(lnψ)(c− c)

]
= s(ρ|ρ) + ρ(lnψ)((b, c)|(b, c)).

The function s and (− lnψ) are convex, and thus, thanks to Lemma 3.1,

H(M |M) ≥ 0 for any M,M.

Lemma 3.2 gives that the relative entropy of η is nonnegative, and thanks to Lemma
3.1 again, we conclude that η is convex. Hence, the limit system is hyperbolic.
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Note that for any (u,E) ∈ U , since

u =

N∑
i=1

viMi

N∑
i=1

Mi

, E =

N∑
i=1

v2
iMi

N∑
i=1

Mi

,

we have
|u| ≤ sup

i=1,··· ,N
|vi|, |E| ≤ sup

i=1,··· ,N
|v2
i |.

Hence U is bounded in R2. Let us write the limit system as

∂tU + ∂xA(U) = 0,

where
A(ρ, ρu, ρE) = (ρu, ρE, ρJ(u,E)).

First note that the two first component of A are linear in U , so the associated relative
quantity are 0. For the third one we calculate:

A3(U |U) = ρJ((u,E)|(u,E)).

Thanks to the Taylor expansion, since J ∈ C2 and U is bounded, there exists a
constant C > 0 such that for any (u,E) ∈ U , we have

J((u,E)|(u,E)) ≤ C(|u− u|2 + |E − E|2).

We also have

η(U |U) ≥ ρ(lnψ)((b, c)|(b, c)) ≥ cρ(|u− u|2 + |E − E|2),

with c > 0 thanks to the strict convexity of lnψ and the boundedness of U . Hence

|A(U |U)| ≤ C

c
η(U |U) for any ρ > 0, (u,E) ∈ U ,

which means that the system is admissible.

4. Estimation of the dissipation

This section is dedicated to the estimation of the dissipation

(4.13) D(f) =
1
4

∑
ijkl

Sijkl ln
(
fkfl
fifj

)
(fkfl − fifj) ≥ 0

via the proposition:

Proposition 4.1. There exists a constant C such that for any f ∈ RN we have

(4.14)
N∑
i=1

|fi −Mi| ≤ C
√
D(f),

where M = M(Pf) is the associated Maxwellian.

We first prove three lemmas.
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Lemma 4.2. Let 0 < α < β. For any f ∈ RN , we set ρ =
N∑
i=1

fi, and M = M(Pf).

There exists Cαβ such that for any f ∈ RN , if 0 < αρ ≤ fi ≤ βρ for any i, then

(4.15) D(f) ≥ Cαβ
N∑
i=1

|fi −Mi|2.

Proof. SinceD(f/ρ) = D(f)/ρ2 and
N∑
i=1

∣∣∣∣fiρ −Mi(P
(
f

ρ

)
)
∣∣∣∣2 =

N∑
i=1

∣∣∣∣fiρ − Mi(Pf)
ρ

∣∣∣∣2 =

1
ρ2

N∑
i=1

|fi −Mi|2, we can assume that ρ = 1.

From
∣∣ln A

B

∣∣ ≤ max
(

1
A ,

1
B

)
|A−B| with A = fifj and B = fkfl, we get D(f) ≥ D(f)

with

D(f) =
α2

4

∑
ijkl

Sijkl (ln fk + ln fl − ln fi − ln fj)
2 .

Since the kernel of D(f) is V = vect
(
(1, · · · , 1), (v1, · · · , vN ), (v2

1, · · · , v2
N )
)

from
property (H), denoting by P the linear projection from RN onto V , there exists C
such that

D(f) ≥ C
∑
i

| ln fi − P(ln fi)|2.

Now, since exp(P(ln f)) = M(exp(P(ln f))), we have

f −M(f) = exp(ln f)− exp(P(ln f)) +M(exp(P(ln f)))−M(exp(ln f))
= (Id−M) ◦ exp(ln f)− (Id−M) ◦ exp(P ln f).

Using that exp is lipschitz on every ]−∞, R] and that P ln f do not goes to −∞, there
exists Kαβ > 0 such that (Id −M) ◦ exp is lipschitz on ln[α, β] and on ln(P[α, β]).
Thus

|fi −Mi(f)| ≤ Kαβ| ln fi − P ln fi|
and therefore

D(f) ≥ C

K2
αβ

∑
i

|fi −Mi|2.

Lemma 4.3. There exists γ1, C1 such that for any f ∈ RN , setting ρ =
N∑
i=1

fi, if

there exists i0 such that fi0 ≤ γ1ρ, then

(4.16) D(f) ≥ C1ρ
2.

Proof. Since D(f/ρ) = D(f)/ρ2, we may assume with no loss of generality that
ρ = 1.
The proof proceeds by contradiction. Let us assume that for any γ,C, there exists
f and i0 such that fi0 ≤ γρ and D(f) ≤ C. From Proposition 3.3, U is bounded,

that is to say (u =
N∑
i=1

vifi, E =
N∑
i=1

|vi|2fi) is bounded. Thus there exists γ such

that 0 < γ < Mi for any i.
With this γ, for any n ∈ N∗, taking C = 1/n, there exists fn and i0(n) such that



FROM DISCRETE BOLTZMANN TO GAS DYNAMICS 13

fni0(n) ≤ γ and D(fn) ≤ 1/n. Since i0(n) takes finitely many values, we can extract
a subsequence such that i0(n) remains constant. For this index i0, we have for a
subsequence fni0 → fi0 ∈ [0, γ], and extracting successively further subsequences,
fnj → fj ∈ [0, 1] for all other j. Now D(fn) → 0 gives D(f) = 0, and Lemma 2.1
implies that f = M and then γ < Mi0 = fi0 which is a contradiction.

By similar arguments, we also prove that

Lemma 4.4. There exists γ2, C2 such that for any f ∈ RN , setting ρ =
N∑
i=1

fi, if

there exists i0 such that fi0 ≥ γ2ρ, then

(4.17) D(f) ≥ C2ρ
2.

Based on these three properties, we can now show the Proposition 4.1.

Proof of Proposition 4.1. Let ε > 0 and set I =
∑N

i=1 |fi −Mi|. If ρ < ε then
I ≤ 2ε.

For ρ ≥ ε, we select γ1, γ2 as in Lemmas 4.3 and 4.4 and distinguish three
possibilities: either (i) γ1ρ < fi < γ2ρ for all indices i, or (ii) there exists i0 so that
fi0 > γ2ρ, or finally (iii) there is i0 such that fi0 < γ1ρ. In each case I is estimated
as follows:

N∑
i=1

|fi −Mi| ≤
N∑
i=1

|fi −Mi|1Iρ≤ε +
N∑
i=1

|fi −Mi|1Iρ≥ε

≤ 2ε+
N∑
i=1

|fi −Mi|1I∃i0;fi0
≤γ1ρ1Iρ≥ε

+
N∑
i=1

|fi −Mi|1I∃i0;fi0
≥γ2ρ1Iρ≥ε

+
N∑
i=1

|fi −Mi|1I∀i;γ1ρ≤fi≤γ2ρ1Iρ≥ε

≤ 2ε+ 2ρ1I∃i0;fi0
≤γ1ρ + 2ρ1I∃i0;fi0

≥γ2ρ

+
√∑

i

|fi −Mi|21I∀i;γ1ρ≤fi≤γ2ρ1Iρ≥ε
√
N

≤ 2ε+ 2

√
D(f)
C1

+ 2

√
D(f)
C2

+

√
ND(f)
Cγ1γ2

Finally, we take ε→ 0.

5. Hydrodynamic limit

In this section, we prove Theorem 2.3. We denote by fε the solution of (1.1), by

Uε = (ρε, ρεuε, ρεEε) = Pfε =
N∑
i=1

(1, vi, v2
i )(fε)i, by Mε = M(Uε), by U the smooth

solution to the limit system and by M = M(U) the associated Maxwellian.
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Multiplying (1.1) by ln(fε)i and summing in i gives

(5.18) ∂t

N∑
i=1

(fε)i ln(fε)i + ∂x

N∑
i=1

vi(fε)i ln(fε)i +
D(fε)
ε

= 0.

Thanks to Proposition 3.3, we have:

(5.19) ∂t

N∑
i=1

M i lnM i + ∂x

N∑
i=1

viM i lnM i = 0.

We can now study the evolution of the relative entropy between fε and M :

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i)

= ∂t

N∑
i=1

s((fε)i|M i) + ∂x

N∑
i=1

vis((fε)i|M i)

= ∂t

N∑
i=1

(fε)i ln(fε)i + ∂x

N∑
i=1

vi(fε)i ln(fε)i

−∂t
N∑
i=1

M i lnM i − ∂x
N∑
i=1

viM i lnM i

−∂t
N∑
i=1

(1 + lnM i)((fε)i −M i)− ∂x
N∑
i=1

vi(1 + lnM i)((fε)i −M i).

Since
N∑
i=1

(1 + lnM i)((fε)i −M i) = ∂fH(M) · (fε −M),

and using the notation V : RN → RN defined by:

V fi = vifi 1 ≤ i ≤ N,

we also have

N∑
i=1

vi(1 + lnM i)((fε)i −M i) = ∂fH(M) · (V fε − VM).

Combining this with (5.18) and (5.19) , we get

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

= −∂t
(
∂fH(M) · (fε −M)

)
− ∂x

(
∂fH(M) · (V fε − VM)

)
.
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Using Lemma 3.2, we get

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

(5.20)

= −∂t
(
∂Uη(U) ∗ P (fε −M)

)
− ∂x

(
∂Uη(U) ∗ P (V fε − VM)

)
= −∂t(∂Uη(U)) ∗ P (fε −M)− ∂Uη(U) ∗ ∂t(P (fε −M))
−∂x(∂Uη(U)) ∗ P (V fε − VM)− ∂Uη(U) ∗ ∂x(P (V fε − VM)).

For k = 0, 1, 2, multiplying (1.1) by vki , summing over i and using (2.7), we have

∂t

N∑
i=1

vki (fε)i + ∂x

N∑
i=1

vk+1
i (fε)i = 0,

that is to say

(5.21) ∂tPfε + ∂xP (V fε) = 0.

Furthermore,

∂t

N∑
i=1

vkiM i + ∂x

N∑
i=1

vk+1
i M i = 0,

that is to say

(5.22) ∂tP (M) + ∂xP (VM) = 0.

It gives

∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

= −∂2
UUη(U)∂t(U) ∗ P (fε −M)− ∂2

UUη(U)∂x(U) ∗ P (V fε − VM)
= ∂2

UUη(U)A′(U)∂x(U) ∗ P (fε −M)− ∂2
UUη(U)∂x(U) ∗ P (V fε − VM)

= ∂2
UUη(U)∂x(U) ∗

(
A′(U)(Uε − U)− P (V fε − VM)

)
= ∂2

UUη(U)∂x(U) ∗
(
A′(U)(Uε − U)− P (V fε − VMε)− P (VMε − VM)

)
,

where we used the fact that, since η(U) is an entropy for (2.10), the flux A(U)
satisfies (∂uuη)A′ = (A′)T∂uuη. Now

P (VMε − VM) =
N∑
i=1

(1, vi, v2
i )vi((Mε)i −M i) = A(Uε)−A(M),

therefore

(5.23)
∂tH(fε|M) + ∂x

N∑
i=1

vis((fε)i|M i) +
D(fε)
ε

= −∂2
UUη(U)∂x(U) ∗

(
A(Uε|U) + P (V fε − VMε)

)
.
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We exploit this evolution equation in order to get the bound. First we want to
bound D(fε) with respect to ε. Integrating (5.20) with respect to (t, x) gives∫

R
H(fε|M)(t, x) dx−

∫
R
H(f0

ε |M
0)(x) dx+

∫ t

0

∫
R

D(fε)
ε

dx ds

= −
∫

R
∂Uη(U) ∗ P (fε −M) dx+

∫
R
∂Uη(U) ∗ P (f0

ε −M0) dx.

For every T < T ∗, there exists CT such that |∂Uη(U)|(t, x) ≤ CT for any x ∈ R,
0 ≤ t ≤ T . Thus we have∫ t

0

∫
R

D(fε)
ε

dx ds ≤
∫

R
H(f0

ε |M
0)(x) dx+ CT

∫
R
|P (fε −M)|+ |P (f0

ε −M0)| dx.

Integrating (5.21) and (5.22) with respect to (t, x) gives in particular∫
R
|fε(t, x)| dx =

∫
R
fε(t, x) dx =

∫
R
f0
ε (x) dx,

and ∫
R
|M(t, x)| dx =

∫
R
M(t, x) dx =

∫
R
M

0(x) dx.

Thus ∫
R
|P (fε −M)| dx.

≤ (1 + sup
i=1,··· ,N

|vi|+ sup
i=1,··· ,N

|v2
i |)
(∫

R
f0
ε (x) dx+

∫
R
M

0(x) dx
)
,

and

(5.24)
∫ t

0

∫
R
D(fε) dx ds ≤ C0

T ε, for 0 ≤ t ≤ T,

with

C0
T = sup

ε

(∫
R
H(f0

ε |M
0)(x) dx

)
+ 4CT max(1, sup

i=1,··· ,N
|v2
i |) sup

ε

(∫
R
f0
ε (x) dx+

∫
R
M

0(x) dx
)
.

We turn now to the estimation of H(fε|M) with respect to ε. For every T < T ∗,
there exists C̃T such that

|∂2
UUη(U)|(t, x) ≤ C̃T , |∂xU |(t, x) ≤ C̃T ,

for any x ∈ R, 0 ≤ t ≤ T and

(5.25)
∫ T

0

∫
R
|∂xU |2(s, x) dx ds ≤ C̃T .

Then integrating (5.23) with respect to (t, x) gives∫
R
H(fε|M)(t, x) dx−

∫
R
H(f0

ε |M
0)(x) dx+

∫ t

0

∫
R

D(fε)
ε

dx ds

= −
∫ t

0

∫
R
∂2
UUη(U)∂x(U) ∗

(
A(Uε|U) + P (V fε − VMε)

)
dx ds.



FROM DISCRETE BOLTZMANN TO GAS DYNAMICS 17

Thanks to Proposition 3.3 and Lemma 3.2, we get

|A(Uε|U)| ≤ C1η(Uε|U) ≤ C1H(fε|M).

Thanks to Proposition 4.1, we get

|PV (fε −Mε)|2 ≤ C2

(
N∑
i=1

|(fε)i − (Mε)i|

)2

= C2|fε −Mε|2 ≤ C3D(fε).

Thus, it gives∫
R
H(fε|M)(t, x) dx

≤
∫

R
H(f0

ε |M
0)(x) dx+ (C̃T )2C1

∫ t

0

∫
R
H(fε|M)(s, x) dx ds

+
(∫ t

0

∫
R
|∂2
UUη(U)∂x(U)|2 dx ds

)1/2(∫ t

0

∫
R
|PV (fε −Mε)|2 dx ds

)1/2

≤
∫

R
H(f0

ε |M
0)(x) dx+ C̃2

TC1

∫ t

0

∫
R
H(fε|M)(s, x) dx ds

+C̃3/2
T C

1/2
3

(∫ t

0

∫
R
D(fε)(s, x) dx ds

)1/2

≤
∫

R
H(f0

ε |M
0)(x) dx+ C̃2

TC1

∫ t

0

∫
R
H(fε|M)(s, x) dx ds+ C̃

3/2
T C

1/2
3

√
C0
T ε

using (5.24). Setting wε(t) =
∫

RH(fε|M)(t, x) dx, it writes

wε(t) ≤ wε(0) + C4

∫ t

0
wε(s) ds+ C5

√
ε.

Using Gronwall’s lemma, we get

sup
0≤t≤T

∫
R
H(fε|M)(t, x) dx ≤

(∫
R
H(f0

ε |M
0) dx+ C5

√
ε

)
eC4T .
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Université de Nice, Parc Valrose
06108 Nice cedex 2, France

E-mail address: Florent.Berthelin@unice.fr

(Athanasios E. Tzavaras)
Department of Mathematics
University of Maryland
College Park, MD 20742-4015, USA
and
Department of Applied Matematics and
Institute for Applied and Computational Mathematics (FORTH)
University of Crete
71409 Heraklion, GREECE

E-mail address: tzavaras@math.umd.edu

(Alexis Vasseur)
Mathematics Department
University of Texas at Austin
1 University Station C1200
Austin, TX 78712-0257, USA

E-mail address: vasseur@math.utexas.edu


