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GLOBAL WELL-POSEDNESS
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IN CRITICAL SPACES
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(Communicated by David S. Tartakoff)

ABSTRACT. We prove global well-posedness for the dissipative quasi-geostroph-
1+2_2a
ic equation with initial data in critical Besov spaces B ¢” ,0< <,

142 2a
provided that the Bp ¢ norm of the initial data is sufficiently small com-
pared with the dissipative coefficient k.

1. INTRODUCTION

We are concerned with the two dimensional dissipative quasi-geostrophic equa-
tion
Oy +u-VO+ k(—D)*0 =0,
(DQG) u = (—Ra0, R,0),
0(x,0) = Op(x).
where the scalar 6 represents the potential temperature, u is the fluid velocity,

and Ry, Re are the usual Riesz transform. For the physical background of this
equation, one may check [I], [3] and references therein for the details. We solve the

1+2-2
open problem given by [I]; namely, with 6, € Bp;;” “ for 1 < p,q < oo, what is
the well-posedness of (DQG)? Two crucial estimates were proved in [3], [4], and we
use those estimates to get the following result.

142 -2
Theorem. There exists a constant e > 0 such that for any 6y € Bp;” “ with
1160l 14200 < € < €p, (DQG) has a unique global solution 0, which belongs to
BP»‘I

142 -2a
C([0,00); Bp,g" )-

2. PROOF OF THEOREM

Step 1. A priori estimates. Let A; be the Fourier multiplier given by A;f =
Qixf (j =0,£1,42,---) where ®;(£) is a smooth function localized around || = 27
satisfying >~ @ =1, except for £ = 0. Applying the operator A; to the first
equation of (DQG), we obtain

d
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Multiplying by %AJH - |A;01P7% in the above equation and then integrating with
respect to x, we have

S S LN VN NN e
= f%/Aj(u.va)-Aje.|Aj9\H.
Wu [4] proved the following lower bound estimate:
/(—A)"‘ NN RN
> 02|01,
So we obtain that
DN, +C 2% 10501,

<O [ - 9) 2,610,002,

We decompose (u - V) as a paraproduct. (We obtain estimates of this product
term. See the appendix.) Then,

d Ie
001, +C w227 ||00]1,
. s 2_9q —
< .%o g-il+]-2 >.aj||Aj¢9|\gp1||9\|j3

2 .
1+2 2
t+p 2
P,q

Dividing both sides by [|A;6][2,",

d o
%HAJ'Q”LP +C K- 22j . HAJ'Q”LP

< (. 2%e, 9—i(1+2-20a) aj||9|\2

1+%72(1'
P.q

By solving the above differential equation of time, we get
2jc
12560()]|ze < ™77 - || 260| o

t )
+C- a; - 22ja : 2—](14—%—2@) / 67(t78)22] NH6||2 1+2 20"
P

0 p,q

By Young’s inequality in time,
180 |se o < {15600

C - Ci(1+2_
a2 IO g2

T p,q

We note that ||0(t)||zr < ||00||z» Was proved in [3]. So,

C o2
||9HIZ%°B,1):%72Q < HHOHB%H—M + ;HGHE?BH%iM'

p,q P,q
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Step 2. Iteration and uniform estimates. Because the bicontinuous constant
arising in the above estimate does not depend on time, we will look for a solution
w(z,t) = 0(x,t) — Sa(t)bo, instead of looking for a solution 6(x,t), where S, (t)0y =
e =200 w(x,t) satisfies

wy +u- V(w+ Sa(t)b) + k(—AL)%w =0,

u = (—Ra(w~+ So(t)0p), R1(w + Sa(t)b0)),

We define the following sequences:

wit £ V(w8 (4)8) + k(—A)w" T =0,
u" = (—Ro(w" + S0 (t)00), R1(w"™ + So(t)6p)),
w™ (z,0) = 0.

Similarly to a priori estimates, we have

||wn+1||~ 1+

2_9q
L%onvqp
C
< —Jw"[] 14220 " ([Jw™]] 142 -2a + (S (t)bo]] 1+%—2a)
K ’j."onvq OOBP‘I ’%Qprq
C
< E”wnnwm 14220 " (‘|wn”~m31+%—2a + HQOHBH%—M)-

T =P:4q T =Pq P.q

Let ¢¢ < 45, and fix 7 such that < €. If ||90\|Bl+%_2a < € < ¢ , then

g

p,q
[|w 142 s, are uniformly bounded by [|w™|| . 1,2 .. < 7.
p.a’ LFB

T T p,q

Step 3. Equations of difference, existence, and uniqueness. Let dw" =
w” —w” L, fu™ = u® —u""!. Then we have the following system of difference
equations:

Swl 4 u™ - Vow™ ! + k(= A)Y 6w 4 du™ - V(w™ + Sa(t)bo) = 0,
u" = (—Ra(w" 4 Sa(t)b0), Ri(w™ + Sa(t)b0)), ou™ = (—Rz(6w™), Ry (dw™)),
Sw" T (x,0) = 0.

Then, as before, we get

c
6w ™ I vzae <0 —ll0wmll_ wezaa (0l ivzoaa 11000 iizo2n)
L’Io‘c P,qp K ’%Q qup T@prqp Bqup
< U (b < g N L
0 gy R
. 1+2-2a
So, w™ converges to w in LBy, " . Furthermore, we can take 7 as small as we
142 -2
want. Hence w™ converges to w in C([0,T); Bp:;” 0é). Uniqueness can be proved

similarly. This completes the proof of theorem.
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3. APPENDIX
We decompose (u - V6) as a paraproduct:
Aju-VO) = Y NS AV + Y A (A 8-, V0)
[i=l<N li—1|<N

(1) + Y0 Y AL ALV0).

1>j—N |I—m|<1

So we have three terms to the right-hand side of (1). Motivated by [2], we decompose
I defined below as

L= Z |/Aj(55—1u-AlV9)-Aj9.|Aj9‘p72d$|
[I—jI<N

> /[Ajasz—w]VAz@-Aﬁlﬁﬂl’”l

l—j|<N

IN

iy /(sl_lu—sj_lu)vajﬁle-Ajemjavﬂ—ﬂ

[1=jI<N

+| Z /ijlu . VAJAlQ . AJQ . ‘Aj(9|p_2d$‘
[l—jI<N
= L+ 1+ Is.

I disappears when integrated, by the divergence free condition of u. (From now
on, we repeatedly use Bernstein’s inequalities.) By Holder inequality,

L = | Z /[Aj,Szflu]VAle.Ajg‘Aj9|p—2|

li—j|<N
< C[Ag, Sj—au] VA0 - |00,
< C-279)|VS1ul| L |[V 20| Lo || 25015,

But, by the Calderon-Zygmund theorem, we have

—2a

IVSj—rullpe < C-22°10]] .2
Bqup

Therefore

I < C - %% . g ill+5-20) ~aj|\Aj9II’Z;1||9H2

2
142 -2
+p o
P,q

where {a;} € 17 such that }°;. , a = 1. Similarly

Iy < C-[|0zull VA0 1o ]| 2,015
< C- 2D 8ul|e 10015,
<

O . g2a . 9-i(l+2-20) .aj||Aj9|\’;1H9llj3

2 .
1+2 -2
+p o
P,q
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In the same way, we get the estimate for the second term of (1). The third term,
denoted by I11, is given by

=1y % /Aj(Alu.A,,Lve)ajemjavﬂ—ﬂ
12j=N |l-m|<1
<C- N 1 Awl|ne ][ 28] Lol 201571V A0
I>j—N
<C- 20 a0l ST 10013,
I>j—N

<C- 2j(1+%)

VT S Rt e
I>j—N

2_9q 29,
.21(1+p 2 )HAZGHLP _2l(1+p 2 )||Al9”L1’

< ¢ 9% gmi(l+2-20) ~aj|\Aj9||’221||9HZ

1+%72a'
P,q
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