REMARK ON THE BLOW UP CONDITION TO THE INCOMPRESSIBLE VISCOELASTIC FLUID SYSTEM

Hantaek Bae
Courant Institute of Mathematical Sciences, New York University
251 Mercer Street, New York, NY, 10012-1185, USA, E-mail: hantaek@cims.nyu.edu

Abstract

In this paper, we study the blow-up criterion for smooth solutions to the incompressible viscoelastic fluid system in \mathbb{R}^{2} by using the logarithmic Sobolev inequality. This is a refined version of the condition given by [6]. Compared with [3] and [5], the blow-up condition is expressed by a single term : the vorticity with respect to the velocity field.

1. INTRODUCTION

This paper is concerned with the incompressible viscoelastic fluid system in the Oldroyd model

$$
(V E)\left\{\begin{array}{l}
U_{t}+v \cdot \nabla U=\nabla v U \\
v_{t}+v \cdot \nabla v-\triangle v=-\nabla p+\nabla \cdot\left(U U^{T}\right) \\
\nabla \cdot v=0 \\
U(x, 0)=U_{0}(x), v(x, 0)=v_{0} \\
(t, x) \in(0,+\infty) \times R^{2}
\end{array}\right.
$$

where the matrix U represents the deformation tensor, v is the fluid velocity, and p is the pressure. The above system is one of the basic macroscopic models for viscoelastic flows, which corresponds to the so-called Hookean linear elasticity. For the physical background to this equation and various well-posedness results, one may check $[5,6,10,11]$ and references therein for the details. In particular, in [6], they have the following necessary condition for blow-up : Let $T^{\star}>0$ be a maximal time for the existence of the solution. Then, $T^{\star}<\infty \Rightarrow \int_{0}^{T^{\star}}\|\nabla v(t)\|_{L^{\infty}} d t=\infty$.
Recently, for the incompressible Euler equation, Planchon [12] established an improved blow-up criterion in the framework of Besov sapces : There exists a positive constant M such that if

$$
\lim _{\epsilon \rightarrow 0} \sup _{j \in \mathbb{Z}} \int_{T-\epsilon}^{T}\left\|\triangle_{j} w(t)\right\|_{L^{\infty}} d t \geq M
$$

then v cannot be continued beyond $t=T$. Motivated by this result, Cannone-Chen-Miao [3] obtained the corresponding result for the MHD equation:

$$
(M H D)\left\{\begin{array}{l}
v_{t}+v \cdot \nabla v=-\nabla p-\frac{1}{2} \nabla b^{2}+b \cdot \nabla b \\
b_{t}+v \cdot \nabla b=b \cdot \nabla v \\
\nabla \cdot v=\nabla \cdot b=0 \\
b(x, 0)=b_{0}(x), v(x, 0)=v_{0}
\end{array}\right.
$$

where v and b describe the velocity and the magnetic field vector, respectively. Unfortunately, they cannot apply the method used in [12] directly, and they overcome this difficulty by obtaining
a losing estimate for the MHD equation, which is studied in [5], and further established a blow-up criterion of smooth solution for the MHD equation : Let $\left(v_{0}, b_{0}\right) \in B_{p, q}^{s}, s>\frac{d}{p}+1,1 \leq p, q<\infty$. Suppose that $(v, b) \in C\left([0, T) ; B_{p, q}^{s}\right) \cap C^{1}\left([0, T) ; B_{p, q}^{s-1}\right)$ is the smooth solution to (MHD). There exists an absolute constant $M>0$ such that If

$$
\limsup _{\epsilon \rightarrow 0} \sup _{j \in \mathbb{Z}}^{T}\left\|\triangle_{T-\epsilon}(\nabla \times v)(t)\right\|_{L^{\infty}}+\left\|\triangle_{j}(\nabla \times b)(t)\right\|_{L^{\infty}} d t \geq M
$$

then v cannot be continued beyond $t=T$. Now, we want to prove the following theorem.

THEOREM: Let $U_{0} \in H^{s}, v_{0} \in H^{s-1}$ with $s>1$. Suppose that $v \in C\left([0, T) ; H^{s-1}\right), U \in$ $C\left([0, T) ; H^{s}\right)$ are the smooth solutions to the incompressible viscoelastic fluid system. Then there exists a constant $M>0$ such that
(i) If $\quad \lim _{\sigma \rightarrow 0} \sup _{j \in \mathbb{Z}} \int_{T-\sigma}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t=\delta<M, \quad$ then $\delta=0$, and the solutions can be extended beyond T.
(ii) If $\lim _{\sigma \rightarrow 0} \sup _{j \in \mathbb{Z}} \int_{T-\sigma}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t \geq M$, then the solutions blow up at $t=T$.

Remark: As explained in [12], we cannot say $\sup _{j \in \mathbb{Z}} \int_{0}^{T}\left\|\triangle_{j} \nabla v(t)\right\| d t<\infty \quad$ as a nonblowup condition. But, if we keep $\left\{\sup _{j \in \mathbb{Z}}\right\}$ inside of the time integration in (8), then we recover the condition used in [8] in the context of the Navier-Stokes equation. Of course, our criterion is an improved version of the criterion given by [6], and our result is better than the results in [5] because we only have one term in the criterion. We started with initial data $\left(v_{0}, U_{0}\right) \in H^{s-1} \times H^{s}$ which is less regular than initial data used in $[3,5,6,12]$ because we are using the Laplacian to gain some derivatives.

2. PROOF OF THEOREM

(1) BIOT-SAVART LAW, LITTLEWOOD-PALEY THEORY

Since the divergence of v is 0 , there exists a scalar function ψ such that $v=\nabla^{\perp} \psi$. Then the vorticity $w=\nabla \times v$ satisfies $w=-\triangle \psi$. Therefore, we can recover v from w by $v=\nabla^{\perp} \triangle^{-1} w$, which is called the Biot-Savart Law. And ∇v is the image of w under the singular integral operators of the Calderon-Zygmund type. One may then freely pass from ∇v to w in $\int_{0}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t$ in the above theorem since the singular integral operators are bounded on $\dot{B}_{\infty . \infty}^{0}$. Now, we briefly introduce the Littlewood-Paley Theory. We first have the following Littlewood-Paley Decomposition.[5]

Proposition 1. Let us denote by $\mathcal{D}(\Omega)$ the space of C^{∞} functions whose support is compact and included in Ω. Let us define \mathcal{C} to be the ring of center 0 of small radius $\frac{1}{2}$ and great radius 2 . There exist two nonnegative radial functions χ and ψ belonging, respectively, to $\mathcal{D}(B(0,1))$ and $\mathcal{D}(\mathcal{C})$ so that

$$
\chi(\xi)+\sum_{q \geq 0} \psi\left(2^{-q} \xi\right)=1, \quad|p-q| \geq 2 \Rightarrow \psi\left(2^{-p} \xi\right) \cdot \psi\left(2^{-q} \xi\right)=0
$$

For example, one can take $\chi \in \mathcal{D}(B(0,1))$ such that $\chi \equiv 1$ on $B\left(0, \frac{1}{2}\right)$ and take $\psi(\xi)=\chi(2 \xi)-\chi(\xi)$. Then we are able to define the Littlewood-Paley decomposition. Let $h, \tilde{h}, \triangle_{q}, S_{q}$ be defined as follow. Denoting by \mathcal{F} the Fourier transform,
$h=\mathcal{F}^{-1} \psi, \quad \tilde{h}=\mathcal{F}^{-1} \chi, \quad \triangle_{q} u=\mathcal{F}^{-1}\left(\psi\left(2^{-q} \xi\right) \hat{u}\right), \quad S_{q} u=\mathcal{F}^{-1}\left(\chi\left(2^{-q} \hat{u}\right)\right)$

The set $\left\{S_{q}, \triangle_{q}\right\}_{q \in N \cup\{0\}}$ is the Littlewood-Paley decomposition of unity. Let $s \in R, p, q \in[1, \infty]$. Then the inhomogeneous and homogeneous Besov seminorms are defined, respectively, by

$$
\|u\|_{B_{p, q}^{s}}=\left\|S_{0} u\right\|_{L^{p}}+\left(\sum_{j \geq-1} 2^{q j s}\left\|\triangle_{j} u\right\|_{L^{P}}^{q}\right)^{\frac{1}{q}}, \quad\|u\|_{\dot{B}_{p, q}}=\left(\sum_{j \in \mathbb{Z}} 2^{q j s}\left\|\triangle_{j} u\right\|_{L^{P}}^{q}\right)^{\frac{1}{q}}
$$

We also define time dependent seminorms.

$$
\|u\|_{L_{T}^{\rho} B_{p, q}^{s}}=\left\|S_{0} u\right\|_{L_{T}^{\rho} L^{p}}+\left\|\left(\sum_{j \geq-1} 2^{q j s}\left\|\triangle_{j} u\right\|_{L^{P}}^{q}\right)^{\frac{1}{q}}\right\|_{L_{T}^{\rho}}, \quad\|u\|_{L_{T}^{\rho} \dot{B}_{p, q}^{s}}=\left\|\left(\sum_{j \in \mathbb{Z}} 2^{q j s}\left\|\triangle_{j} u\right\|_{L^{P}}^{q}\right)^{\frac{1}{q}}\right\|_{L_{T}^{\rho}}
$$

Let us point out that $B_{2,2}^{s}$ is a usual Sobolev space H^{s} and that $B_{\infty, \infty}^{s}$ is the usual Holder space C^{s}. Now we have the following proposition.

Proposition 2. (a) Bernstein's inequality : for $1 \leq a \leq b,\left\|\triangle_{q} f\right\|_{L^{b}} \lesssim 2^{d\left(\frac{1}{a}-\frac{1}{b}\right) q}\left\|\triangle_{q} f\right\|_{L^{a}}$
(b) Assume that $f \in L^{p}, 1 \leq p \leq \infty$, and $\operatorname{supp} \hat{f} \subset\left\{2^{j-2} \leq|\xi| \leq 2^{j}\right\}$. Then there exists a constant C_{k} such that $C_{k}^{-1} 2^{j k}\|f\|_{L^{p}} \leq\left\|D^{k} f\right\|_{L^{p}} \leq C_{k} 2^{j k}\|f\|_{L^{p}}$
(c) Commutator estimate : $\left\|\left[f \cdot \nabla, \triangle_{j}\right] g\right\|_{L^{p}} \lesssim\|\nabla f\|_{L^{\infty}} \cdot\left\|\triangle_{j} g\right\|_{L^{p}}$

The proof is standard and can be found in $[4,5,7]$.

(2) A NEW FORMULATION

With the introduction of the deformation tensor, the incompressibility of the fluid can be represented as $(\operatorname{det} U=1)$. Moreover, if we denote $(\nabla \cdot U)_{j}=\partial_{i} U^{i j}$, we deduce from (VE) [11]

$$
(\nabla \cdot U)_{t}+v \cdot \nabla(\nabla \cdot U)=0
$$

In two space dimension, when $\nabla \cdot U_{0}=0,(1)$ ensures that $\nabla \cdot U=0$ for all time. Therefore, we can find a vector $\phi=\left(\phi_{1}, \phi_{2}\right)$ such that [10]

$$
\mathbf{U}=\left(\begin{array}{cc}
-\partial_{y} \phi_{1} & -\partial_{y} \phi_{2} \\
\partial_{x} \phi_{1} & \partial_{x} \phi_{2}
\end{array}\right)
$$

Then (VE) can be reformulated as

$$
(V E)\left\{\begin{array}{l}
\phi_{t}+v \cdot \nabla \phi=0 \\
v_{t}+v \cdot \nabla v-\triangle v=-\nabla p-\sum_{i=1}^{2} \triangle \phi_{i} \nabla \phi_{i} \\
\nabla \cdot v=0 \\
\phi(x, 0)=\phi_{0}(x), v(x, 0)=v_{0}
\end{array}\right.
$$

(3) A PRIORI ESTIMATE

By taking the localized operator \triangle_{j} to the velocity equation, multiplying by $\triangle_{j} v$, and integrating in the spatial variables, we have

$$
\frac{1}{2} \frac{d}{d t}\left\|\triangle_{j} v\right\|_{L^{2}}^{2}+\left\|\nabla \triangle_{j} v\right\|_{L^{2}}^{2} \lesssim\left\|\left[v \cdot \nabla, \triangle_{j}\right] v\right\|_{L^{2}}\left\|\triangle_{j} v\right\|_{L^{2}}+\left(\triangle_{j}(\nabla \cdot(\nabla \phi \nabla \phi)), \triangle_{j} v\right)
$$

where (\cdot, \cdot) denotes the inner product in L^{2} space.

Using the fact $\left\|\left[v \cdot \nabla, \triangle_{j}\right] v\right\|_{L^{2}} \lesssim\|\nabla v\|_{L^{\infty}} \cdot\left\|\triangle_{j} v\right\|_{L^{2}}$, and integrating the last term by parts,

$$
\frac{1}{2} \frac{d}{d t}\left\|\triangle_{j} v\right\|_{L^{2}}^{2}+\left\|\nabla \triangle_{j} v\right\|_{L^{2}}^{2} \lesssim\|\nabla v\|_{L^{\infty}}\left\|\triangle_{j} v\right\|_{L^{2}}^{2}+\left\|\triangle_{j}(\nabla \phi \nabla \phi)\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\nabla \triangle_{j} v\right\|_{L^{2}}^{2}
$$

Multiplying by $2^{j(s-1)}$ and adding them up, we have

$$
\begin{equation*}
\frac{d}{d t}\|v(t)\|_{H^{s-1}}^{2}+\|v(t)\|_{H^{s}}^{2} \lesssim\|\nabla v(t)\|_{L^{\infty}}\|v(t)\|_{H^{s-1}}^{2}+\|\nabla \phi(t)\|_{H^{s}}^{4} \tag{1}
\end{equation*}
$$

Similarly, $\quad \frac{d}{d t}\|\nabla \phi(t)\|_{H^{s}} \lesssim\|\nabla v(t)\|_{L^{\infty}}\|\nabla \phi(t)\|_{H^{s}}$. Therefore,

$$
\begin{equation*}
\frac{d}{d t}\|\nabla \phi(t)\|_{H^{s}}^{4}=4\|\nabla \phi(t)\|_{H^{s}}^{3} \cdot \frac{d}{d t}\|\nabla \phi(t)\|_{H^{s}} \lesssim\|\nabla v(t)\|_{L^{\infty}}\|\nabla \phi(t)\|_{H^{s}}^{4} \tag{2}
\end{equation*}
$$

(4) EQUATION OF THE VORTICITY

By applying curl to the velocity equation, we have

$$
w_{t}+v \cdot \nabla w-\triangle w=\nabla \times(\nabla \phi \triangle \phi)
$$

Multiplying by w and integrating in the spatial variables, we obtain that

$$
\frac{1}{2} \frac{d}{d t}\|w\|_{L^{2}}^{2}+\|\nabla w\|_{L^{2}}^{2} \lesssim\|\triangle \phi \nabla \phi\|_{L^{2}}\|\nabla w\|_{L^{2}} \lesssim\|\nabla \phi\|_{L^{\infty}}\|\triangle \phi\|_{L^{2}}\|\nabla w\|_{L^{2}} \lesssim\|\nabla \phi\|_{H^{s}}^{2}\|\nabla w\|_{L^{2}}
$$

Here, we use the fact that $s>1$. Therefore,

$$
\begin{equation*}
\frac{d}{d t}\|w\|_{L^{2}}^{2} \lesssim\|\nabla v\|_{L^{\infty}}\|w\|_{L^{2}}^{2}+\|\nabla \phi\|_{H^{s}}^{4} \tag{3}
\end{equation*}
$$

Remark: $\|w\|_{L_{T}^{\infty} L^{2}}$ comes from the estimate of $\|\nabla v\|_{L_{T}^{1} L^{\infty}}$ below. But, we are mentioning $\|w\|_{L_{T}^{\infty} L^{2}}$ before $\|\nabla v\|_{L_{T}^{1} L^{\infty}}$ for convenience. As we'll see later, the vorticity estimates stem from the lower frequency part of the gradient of the velocity, which is convolved with a nice function. The vorticity equation almost preserves the Navier-Stokes equation, and we are only concerned about the L^{2} bound, which is easily obtained from (3).
(5) CALCULATION OF $\|\nabla v\|_{L_{T}^{L_{T}} L^{\infty}}$

By integrating (1), (2), and (3) in time, we deduce that

$$
\begin{align*}
& \quad\|v(t)\|_{H^{s-1}}^{2}+\int_{0}^{t}\|v(\tau)\|_{H^{s}}^{2} d \tau \lesssim\left\|v_{0}\right\|_{H^{s-1}}^{2}+\int_{0}^{t}\|\nabla v(\tau)\|_{L^{\infty}}\|v(\tau)\|_{H^{s-1}}^{2} d \tau+\int_{0}^{t}\|\nabla \phi(\tau)\|_{H^{s}}^{4} d \tau \\
& \lesssim\left\|v_{0}\right\|_{H^{s-1}}^{2}+\|\nabla v\|_{L_{T}^{1} L^{\infty}}\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}+T \cdot\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4} \tag{4}\\
& \|\nabla \phi(t)\|_{H^{s}}^{4} \lesssim\left\|\nabla \phi_{0}\right\|_{H^{s}}^{4}+\int_{0}^{t}\|\nabla v(\tau)\|_{L^{\infty}}\|\nabla \phi(\tau)\|_{H^{s}}^{4} d \tau \lesssim\left\|\nabla \phi_{0}\right\|_{H^{s}}^{4}+\|\nabla v\|_{L_{T}^{1} L^{\infty}}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4} \tag{5}\\
& \|w(t)\|_{L^{2}}^{2} \lesssim\left\|w_{0}\right\|_{L^{2}}^{2}+\int_{0}^{t}\|\nabla \phi(\tau)\|_{H^{s}}^{4} d \tau \lesssim\left\|w_{0}\right\|_{L^{2}}^{2}+T \cdot\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4} \tag{6}
\end{align*}
$$

Now, we need to estimate $\|\nabla v\|_{L_{T}^{1} L^{\infty}}$. First, we decompose $\nabla v(t)$ in the following way:

$$
\nabla v(t)=\nabla S_{-N} v(t)+\sum_{|j| \leq N} \nabla \triangle_{j} v(t)+\sum_{j>N} \nabla \triangle_{j} v(t)
$$

where N will be determined later. Integrating in the spatial variables, we have that

$$
\|\nabla v(t)\|_{L^{\infty}} \lesssim\left\|\nabla S_{-N} v(t)\right\|_{L^{\infty}}+\sum_{|j| \leq N}\left\|\nabla \triangle_{j} v(t)\right\|_{L^{\infty}}+\sum_{j>N}\left\|\nabla \triangle_{j} v(t)\right\|_{L^{\infty}}
$$

On the first term, we use Bernstein's inequality so that

$$
\left\|\nabla S_{-N} v(t)\right\|_{L^{\infty}} \lesssim 2^{-N}\left\|S_{-N} \nabla v(t)\right\|_{L^{2}} \lesssim 2^{-N}\|\nabla v(t)\|_{L^{2}} \lesssim 2^{-N}\|w(t)\|_{L^{2}}
$$

where we used the Biot-Savart Law to the last inequality. We estimate the third term by using Bernstein's inequality and Young's inequality

$$
\begin{aligned}
& \sum_{j>N}\left\|\nabla \triangle_{j} v(t)\right\|_{L^{\infty}} \lesssim \sum_{j>N} 2^{j\left(1+\frac{d}{2}\right)}\left\|\triangle_{j} v(t)\right\|_{L^{2}}=\sum_{j>N} 2^{2 j}\left\|\triangle_{j} v(t)\right\|_{L^{2}} \\
= & \sum_{j>N} 2^{j(-s+1)} \cdot 2^{j(s+1)}\left\|\triangle_{j} v(t)\right\|_{L^{2}} \lesssim 2^{-N(s-1)} \cdot\|v(t)\|_{H^{s+1}}
\end{aligned}
$$

Let $\lambda=\min \{1, s-1\}>0$. Integrating in time,

$$
\begin{aligned}
& \|\nabla v\|_{L_{T}^{1} L^{\infty}} \lesssim 2^{-N \lambda}\left\{\|w\|_{L_{T}^{1} L^{2}}+\|v\|_{L_{T}^{1} H^{s+1}}\right\}+(2 N+1) \sup _{|j| \leq N} \int_{0}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t \\
\lesssim & 2^{-N \lambda}\left\{T\|w\|_{L_{T}^{\infty} L^{2}}+\|v\|_{L_{T}^{1} H^{s+1}}\right\}+(2 N+1) \sup _{j \in \mathbb{Z}} \int_{0}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t
\end{aligned}
$$

Now, we would like to estimate $\|v\|_{L_{T}^{1} H^{s+1}}$. It comes from the estimate of the inhomogeneous heat equation

$$
(H)\left\{\begin{array}{l}
v_{t}-\triangle v=-v \cdot \nabla v-\nabla \cdot(\nabla \phi \nabla \phi)=f \\
v(x, 0)=v_{0} \in H^{s-1}
\end{array}\right.
$$

The solution can be expressed as an integral form :

$$
v(t)=e^{t \triangle} v_{0}+\int_{0}^{t} e^{(t-s) \Delta} f(s) d s
$$

Since $s>1, f=-v \cdot \nabla v-\triangle \phi \nabla \phi \in L_{T}^{1} H^{s-1}$. From now on, we assume that $T>1$ and we estimate terms in the time interval $[1, T]$. Then,

$$
\|v\|_{L_{T}^{1} H^{s+1}} \lesssim \log T\left\{\|v(1)\|_{H^{s-1}}+\|f\|_{L_{T}^{1} H^{s-1}}\right\} \lesssim \log T\left\{\|v\|_{L_{T}^{\infty} H^{s-1}}+\|f\|_{L_{T}^{1} H^{s-1}}\right\}
$$

Therefore, by the assumption on $T>1$,
$\|v\|_{L_{T}^{1} H^{s+1}} \lesssim \log T\left\{\left\|v_{0}\right\|_{H^{s-1}}+\|v\|_{L_{T}^{2} H^{s}}^{2}+\|\nabla \phi\|_{L_{T}^{2} H^{s}}^{2}\right\} \lesssim T\left\{\left\|v_{0}\right\|_{H^{s-1}}+\|v\|_{L_{T}^{2} H^{s}}^{2}+T\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{2}\right\}$
But, from (4), $\|v\|_{L_{T}^{2} H^{s}}^{2} \lesssim\left\|v_{0}\right\|_{H^{s-1}}+\|\nabla v\|_{L_{T}^{1} L^{\infty}}\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}+T\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4}$.

$$
\|v\|_{L_{T}^{1} H^{s+1}} \lesssim T\left\|v_{0}\right\|_{H^{s-1}}+T\left\|v_{0}\right\|_{H^{s-1}}^{2}+T\|\nabla v\|_{L_{T}^{1} L^{\infty}}\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}+T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4}
$$

Therefore,

$$
\begin{align*}
\|\nabla v\|_{L_{T}^{1} L^{\infty}} & \lesssim 2^{-N \lambda}\left\{T\|w\|_{L_{T}^{\infty} L^{2}}+T\left\|v_{0}\right\|_{H^{s-1}}+T\left\|v_{0}\right\|_{H^{s-1}}^{2}+T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4}+T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{2}\right\} \\
& +2^{-N \lambda} T\|\nabla v\|_{L_{T}^{1} L^{\infty}}\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}+(2 N+1) \cdot \sup _{j \in \mathbb{Z}} \int_{1}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t \\
& \lesssim 2^{-N \lambda}\left\{T\left\|w_{0}\right\|_{L^{2}}+T\left\|v_{0}\right\|_{H^{s-1}}+T\left\|v_{0}\right\|_{H^{s-1}}^{2}+T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4}+T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{2}\right\} \\
& +2^{-N \lambda} T\|\nabla v\|_{L_{T}^{1} L^{\infty}}\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}+(2 N+1) \cdot \sup _{j \in \mathbb{Z}} \int_{1}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t \tag{7}
\end{align*}
$$

(6) LOGARITHMIC ESTIMATE

We establish the logarithmic Sobolev inequality in the framework of mixed time-space Besov space.

From (7),

$$
\begin{aligned}
& \left\{1-2^{-N \lambda} T\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}\right\}\|\nabla v\|_{L_{T}^{1} L^{\infty}} \\
\lesssim & 2^{-N \lambda}\left\{T\left\|w_{0}\right\|_{L^{2}}+T\left\|v_{0}\right\|_{H^{s-1}}+T\left\|v_{0}\right\|_{H^{s-1}}^{2}+T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4}+T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{2}\right\} \\
+ & (2 N+1) \sup _{j \in \mathbb{Z}} \int_{1}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t \\
\lesssim & 2^{-N \lambda} T^{2}\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4}+2^{-N \lambda}\left\{T^{2}+T\left\|w_{0}\right\|_{L^{2}}+T\left\|v_{0}\right\|_{H^{s-1}}+T\left\|v_{0}\right\|_{H^{s-1}}^{2}\right\} \\
+ & (2 N+1) \sup _{j \in \mathbb{Z}} \int_{1}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t
\end{aligned}
$$

Let $\mu(T)=\|w\|_{L_{T}^{\infty} L^{2}}^{2}+\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}+\|\nabla \phi\|_{L_{T}^{\infty} H^{s}}^{4}$.

$$
\begin{aligned}
& \left\{1-2^{-N \lambda} \cdot T \cdot\|v\|_{L_{T}^{\infty} H^{s-1}}^{2}\right\} \cdot\|\nabla v\|_{L_{T}^{1} L^{\infty}} \\
\lesssim & 2^{-N \lambda} \cdot T^{2} \cdot \mu(T)+2^{-N \lambda} \cdot T^{2}\left\{1+\left\|w_{0}\right\|_{L^{2}}+\left\|v_{0}\right\|_{H^{s-1}}^{2}\right\}+(2 N+1) \sup _{j \in \mathbb{Z}} \int_{1}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}}
\end{aligned}
$$

If we choose $N \sim \frac{1}{\lambda} \log (T \mu(T))$,

$$
\|\nabla v\|_{L_{T}^{1} L^{\infty}} \lesssim T+T\left\{1+\left\|w_{0}\right\|_{L^{2}}+\left\|v_{0}\right\|_{H^{s-1}}^{2}\right\}+(1+\log (1+T \mu(T))) \cdot \sup _{j \in \mathbb{Z}} \int_{1}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t
$$

By (4), (5), and (6),
$\mu(T) \lesssim \mu(0)+T \mu(T)+T(\mu(0))^{2} \mu(T)+\left\{(1+\log (1+T \mu(T))) \cdot \sup _{j \in \mathbb{Z}} \int_{1}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t\right\} \mu(T)$
This inequality still holds if the time interval $[1, T)$ is replaced by $[T-\sigma, T)$. So, we infer that $\mu(T)$ can be dominated by $\mu(T-\sigma)$ from the following inequality :

$$
\begin{equation*}
\mu(T) \lesssim \mu(T-\sigma)+g(\sigma) \cdot \mu(T) \cdot\{1+\log (1+\sigma \mu(T))\} \tag{8}
\end{equation*}
$$

where $g(\sigma)=\sigma+\sigma(\mu(T-\sigma))^{2}+\sup _{j \in \mathbb{Z}} \int_{T-\sigma}^{T}\left\|\triangle_{j} \nabla v(t)\right\|_{L^{\infty}} d t$ is a function such that $g(\sigma)$ tends to 0 as σ goes to 0 . Since σ does not depend on T, this completes the proof of the Theorem.

Acknowledgements : The author would like to deeply thank Professor Ping Zhang for kind help, suggestions, and encouragement.

References

1. J. T. Beale, T. Kato, A. Majda : Remarks on the Breakdown of Smooth Solutions for the 3-D Euler Equations, Comm. Math. Phys. 94(1) (1984), 61-66
2. J.M. Bony : Calcul symbolique et propagation des singularities pour les equations aux derivees partielles non lineaires. Ann. de l'Ecole Norm. Sup. 14 (1981)
3. M. Cannone, Q. Chen, C. Miao : A Losing Estimate for the Ideal MHD Equations with Application to Blow-up Criterion, SIAM J. Math. Anal. 38(6) (2007), 1847-1859
4. J.Y. Chemin : Perfect Incompressible Fluids, Oxford, Clarendon Press, 1998
5. J. Y. Chemin, N. Masmoudi : About Lifespan of Regular Solutions of Equations Related to Viscoelastic Fluids, SIAM J. Math. Anal. 33 (2001), 84-112
6. Y. Chen, P. Zhang : The Global Existence of Small Solutions to the Incompressible Viscoelastic Fluid System in 2 and 3 Space Dimensions, Comm. Partial Differential Equations, 31 (2006), 1793-1810
7. R. Danchin : Fourier Analysis Methods for PDE's (2005)
8. H. Kozono, T. Okawa, Y. Taniuchi : The Critical Sobolev Inequalities in Besov Spaces and Regularity Criterion to Some Semi-linear Evolution Equations, Math. Z. 242 (2002), 251-278
9. H. Kozono, Y. Taniuchi : Limiting Case of the Sobolev Inequality in BMO, with Application to the Euler Equations, Comm. Math. Phys. 214(1) (2000), 191-200
10. F. Lin, C. Liu, P. Zhang : On Hydrodynamics of Viscoelastic Fluids, Comm. Pure Appl. Math. 58 (2005), 1437-1471
11. C. Liu, N. J. Walkington : An Eulerian Description of Fluids Containing Visco-Elastic Particles, Arch. Ration. Mech. Anal. 159 (2001), 229-252
12. F. Planchon : An Extension of the Beale-Kato-Majda Criterion for the Euler Equations, Comm. Math. Phys. 232 (2003), 319-326
