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Abstract : In this paper, we study the blow-up criterion for smooth solutions to the incompressible
viscoelastic fluid system in R? by using the logarithmic Sobolev inequality. This is a refined version of the
condition given by [6]. Compared with [3] and [5], the blow-up condition is expressed by a single term :
the vorticity with respect to the velocity field.

1. INTRODUCTION

This paper is concerned with the incompressible viscoelastic fluid system in the Oldroyd model

/

Ui+v-VU = VU,
vi+v-Vo—Av=-Vp+ V. (UUT)
(VE)S V-v=0

U(z,0) = Up(x),v(x,0) = vy

(t,z) € (0,4+00) x R?

\

where the matrix U represents the deformation tensor, v is the fluid velocity, and p is the pressure.
The above system is one of the basic macroscopic models for viscoelastic flows, which corresponds to
the so-called Hookean linear elasticity. For the physical background to this equation and various
well-posedness results, one may check [5, 6, 10, 11| and references therein for the details. In
particular, in [6], they have the following necessary condition for blow-up : Let T* > 0 be a
maximal time for the existence of the solution. Then, T* < co = fOT* [|Vu(t)||pedt = 0.

Recently, for the incompressible Euler equation, Planchon [12] established an improved blow-up

criterion in the framework of Besov sapces : There exists a positive constant M such that if

T

limsup/ 1 A5g0(0)||dt > M
e—0 J€Z JT—¢

then v cannot be continued beyond ¢t = 7. Motivated by this result, Cannone-Chen-Miao [3]

obtained the corresponding result for the MHD equation:

vt+v~Vv:—Vp—%VbQ+b-Vb
biy+v-Vb=>b-Vu
Vo=V-b=0

b(x,0) = by(x),v(x,0) = vy

(MHD)

where v and b describe the velocity and the magnetic field vector, respectively. Unfortunately,

they cannot apply the method used in [12] directly, and they overcome this difficulty by obtaining
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a losing estimate for the MHD equation, which is studied in [5], and further established a blow-up
criterion of smooth solution for the MHD equation : Let (vo,by) € B, s > % +1,1<p,q<o0.
Suppose that (v,b) € C([0,T); B;,) N C'([0,T); By ') is the smooth solution to (MHD). There

exists an absolute constant M > 0 such that If

T
limsup/ 145(V % 0) (D)l + [15(V x )(#)[| gt > M

e=0 JEZ JT—e

then v cannot be continued beyond ¢t = T". Now, we want to prove the following theorem.

THEOREM: Let Uy € H® vy € H*! with s > 1. Suppose that v € C([0,T); H*™'), U €
C([0,T); H®) are the smooth solutions to the incompressible viscoelastic fluid system. Then there
exists a constant M > 0 such that

(i) If  lim, osup;eyz fg_g |A;Vu(t)||pedt = 6 < M, then 6 = 0, and the solutions can be
extended beyond T'.

(ii) I limy g sup,ez fTT_J [|&;Vu(t)||Leedt > M, then the solutions blow up at t =T

Remark:  As explained in [12], we cannot say  sup,cz fOT |A;Vo(t)||dt < oo as a non-
blowup condition. But, if we keep {sup,.} inside of the time integration in (8), then we recover
the condition used in [8] in the context of the Navier-Stokes equation. Of course, our criterion is
an improved version of the criterion given by [6], and our result is better than the results in [5]
because we only have one term in the criterion. We started with initial data (vo, Uy) € H*~! x H®
which is less regular than initial data used in [3,5,6,12] because we are using the Laplacian to gain

some derivatives.

2. PROOF OF THEOREM

(1) BIOT-SAVART LAW, LITTLEWOOD-PALEY THEORY

Since the divergence of v is 0, there exists a scalar function v such that v = V*1). Then the vor-
ticity w = V x v satisfies w = —A. Therefore, we can recover v from w by v = V+A~lw, which
is called the Biot-Savart Law. And Vw is the image of w under the singular integral operators of
the Calderon-Zygmund type. One may then freely pass from Vv to w in fOT [|A;Vu(t)||Ledt in the
above theorem since the singular integral operators are bounded on B%, . Now, we briefly intro-

duce the Littlewood-Paley Theory. We first have the following Littlewood-Paley Decomposition.[5]

Proposition 1. Let us denote by D(2) the space of C*° functions whose support is compact
and included in €. Let us define C to be the ring of center 0 of small radius % and great radius 2.
There exist two nonnegative radial functions x and v belonging, respectively, to D(B(0,1)) and
D(C) so that

XEO+) w2 =1, [p—ql=2=v(27) (2% =0

q>0



For example, one can take x € D(B(0, 1)) such that x = 1 on B(0, %) and take ¥ (&) = x(2&) —x(€).
Then we are able to define the Littlewood-Paley decomposition. Let h, h, Ay, Sy be defined as fol-

low. Denoting by F the Fourier transform,
h=F', h=F1x, Dgu=F ($(279%)a), Su=F'(x(27))

The set {S;, Ag}genugoy is the Littlewood-Paley decomposition of unity. Let s € R, p,q € [1,00].

Then the inhomogeneous and homogeneous Besov seminorms are defined, respectively, by

. 1 . 1
5y, = ISoullze + (37 29| Agullt )7, lullg, = (37 291 Aullt,)7

j>-1 jez

[

We also define time dependent seminorms.

. 1 : 1
lulligs;, = I1Soullgze + 1Y 2911 8ull4e)a g ullpop,, = 11027 185ullfr) |l

j>-1 j€z

Let us point out that B3, is a usual Sobolev space H*® and that BS,  is the usual Holder space

00,00

C?®. Now we have the following proposition.
Proposition 2. (a) Bernstein’s inequality : for 1 <a <b, [|A,f||re S Qd(%_%)qHAquLa

(b) Assume that f € L, 1 < p < oo, and suppf C {2772 < |¢| < 27}. Then there exists a
constant Cy, such that — Cyp 27| f||z» < ||D*fllze < Cu27%||f]|Lr

(c) Commutator estimate : ||[f -V, AN1glle S|V fllzee - |29 e
The proof is standard and can be found in [4, 5, 7].

(2) A NEW FORMULATION
With the introduction of the deformation tensor, the incompressibility of the fluid can be repre-
sented as (det U = 1). Moreover, if we denote (V - U); = 9;U", we deduce from (VE) [11]

(V-U)+v-V(V-U)=0

In two space dimension, when V - Uy = 0, (1) ensures that V - U = 0 for all time. Therefore, we
can find a vector ¢ = (¢1, ¢2) such that [10]

U= _8y¢1 - y¢2
angl 8:c¢2



Then (VE) can be reformulated as

(bt+U'V¢IO
VE) ve+v-Vo—Av=-Vp— Zle A¢;V ¢;
V-v=0

gb(l‘,O) = ¢0<I>,U<$, 0) = Vo

(3) A PRIORI ESTIMATE
By taking the localized operator A; to the velocity equation, multiplying by Ajv, and integrating

in the spatial variables, we have

1d

S lAulE + 92501 S o ¥, Aglollall Aol + (85(7 - (VoY) Ago)

where (-, -) denotes the inner product in L? space.

Using the fact ||[v -V, Aj]v]|2 < ||Vol|p~ - [|A;v]| 12, and integrating the last term by parts,

1d

1
5 /|20l + IV A50l[ze S IIVolliel[A0ll7e + 185(VVO)l[72 + SV A7

Multiplying by 276~ and adding them up, we have

i SIVUO) o0 [Fger + V()1 (1)

d
@z + llo()]

Similarly, £||V¢(t)|

i S |Vo)l]=[[Vo(?)]

ws. Therefore,

e (2)

e SV t)]| || V(1)

1e = 4l[V ()]

d . d
aHVWtN He aHVGﬁ(tﬂ

(4) EQUATION OF THE VORTICITY

By applying curl to the velocity equation, we have
wy +v-Vw —Aw =V x (VoAg)

Multiplying by w and integrating in the spatial variables, we obtain that

1d

§£leliz +|[Vwllze S 1AVl 2| Vwllzz S IVl e || A¢|| 2| [Vwllre S (Ve[ [ Val| 2
Here, we use the fact that s > 1. Therefore,

d 2 < 2 4

Zlwllze S IVllze|lwllze + [Vl (3)



Remark:  ||w||rzr2 comes from the estimate of |[Vv|[p1p~ below. But, we are mentioning
||w|[rge 12 before [[Vvl[11 o for convenience. As we'll see later, the vorticity estimates stem from
the lower frequency part of the gradient of the velocity, which is convolved with a nice function.
The vorticity equation almost preserves the Navier-Stokes equation, and we are only concerned
about the L? bound, which is easily obtained from (3).

(5) CALCULATION OF ||Vu|[11
By integrating (1), (2), and (3) in time, we deduce that

t t t
o(t)| e + / o(r)| e < lluolZpems + / 90| 0 (7) s + / Vo)l dr
S Mool Bpees + 1190l 110l g e + T+ [Vl (4)
t
IV < [1IVaollh. + / Vo)l IO S 960l Y + 1190l 131 IV6 e (5)

t
@)z < llwollZ2 +/0 IVO()[sdr < Mwollze + T+ [V 1z0 - (6)
Now, we need to estimate |[V|[p1 . First, we decompose Vo(t) in the following way:

Vo(t) = VS_yo(t) + > VAt + > VAu(t)

lil<N J>N

where N will be determined later. Integrating in the spatial variables, we have that

V@)= S NVS_yo(t)lz= + D (VA= + D IIVA0(0)]|~

l7I<N J>N

On the first term, we use Bernstein’s inequality so that
IVS_yv(t)llr= S 27N S_nVot)llr2 S 27Y|IVo)l]ze < 27 Jw(t)]| 1

where we used the Biot-Savart Law to the last inequality. We estimate the third term by using

Bernstein’s inequality and Young’s inequality

S IVAROll= S Y 2D A0(0]12 =D 27| A50(0)] |12

>N >N j>N
= Y PRl S 27N ()] e
J>N



Let A = min{1l,s — 1} > 0. Integrating in time,

T
1Vollpy e S 27" M[wlliy sz + lolly o} + (2N +1) sup / 1285V o(t)]| o dt
0

lFI<N

T
S 2T ulsgre + elagennd + N+ s [ 18T ot
0

JEZ

Now, we would like to estimate |[v[|11 gs+1. It comes from the estimate of the inhomogeneous heat

equation
H v —Av=—-v-Vo—-V-(VoVo) = f
v(z,0) =vy € H*!

The solution can be expressed as an integral form :
t
v(t) = ey +/ =9 f(s)ds
0

Since s > 1, f = —v - Vv — A¢Ve¢ € LLH*"'. From now on, we assume that 7' > 1 and we

estimate terms in the time interval [1,77]. Then,

[l perr S log T{|o(1)]

wot F | fllpy ey Slog Tl[ol| g + 1 flly e}

Therefore, by the assumption on 7" > 1,

[oll g mees < Jog T{lfool et + [ol123 s + IV EIB2 g} < Tlloollire—s + 1ol 25 e + TVl o-}

But, from (4), |[v][72 ;o S [vollrre-r + V0l Ly o [0l o s + TNV e o

10l S Tllvollzrs-2 + Tllvol e + TNVl py o 0l o1 + T2V Lge 1o

Therefore,

Vol S 27" MTNwllzg e + Tl

~

Hs—1 + T||’U0||§{s—1 + T2||V¢||i§9H5 + T2||V¢||%%°HS}

T
27| Vllpy poe [0l T o + (2N +1) - Sup/ 1AV o(t)]]L~dt
1

JEZ

Tem1 + T2V |i£}°H5 +T?||Vg| ’%,‘}OH}

N+

27NN Jwo |2 + T||vo| == + T'[|wo]

+

T
2TVl e ol es + N+ 1) sup [ 18,500l (7)
Jje€ 1

(6) LOGARITHMIC ESTIMATE

We establish the logarithmic Sobolev inequality in the framework of mixed time-space Besov space.



From (7),

{1 =270l pro 1 HIV 0l g e

S 2 Tlfwollze + Tlleol s + Tlleol s + T2Vl e + T2V 0}
T
+ N+ 1)sp [ 118,Vo(0)mdt
JEZ J1
S 27TVl Lo e + 27N MT? + Tllwol |2 + Tl vol | o1 + T |vol | Fe-1}

T
+ (2N+1)Sup/ 145, Vo(8)| et
1

JEZ
Lot 1(T) = [l e + [0 s + 1V 450
{1 =2 T olB s} - [[90ll g 2o

< 27N (T) 4 27NN T+ (|wol |22 + [|vol

T
?{571} + (2N + 1) sup/ [|A;Vu(t)]| e
JEZ J1

If we choose N ~ Slog(Tu(T)),

bt} (1 log(1+ Tu(T) -sup [ 118,90(0) |t

IVollpee ST +TH{L + [|wol|z2 + [|vo] P
je

By (4), (5), and (6),

u(T) < p(0) + Ty(T) + T(p(0)*1l(T) + {(1 + log(1 + Ty(T))) - Sup/l 18V o) L=dt}p(T)

JEZ

This inequality still holds if the time interval [1,T") is replaced by [I' — o,T). So, we infer that
w1(T') can be dominated by u(T — o) from the following inequality :

u(T) S (T = o) +g(o) - (1) - {1+ log(1 + op(T))} (8)

where g(0) = 0 + o(u(T — 0))* + sup;; fTT_U |A;Vu(t)||Ledt is a function such that g(o) tends

to 0 as o goes to 0. Since o does not depend on T, this completes the proof of the Theorem. B
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