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Abstract. We study integrability properties of a general version of the Boltz-
mann collision operator for hard and soft potentials in n-dimensions and in-
tegrable angular cross section on the n − 1-dimensional sphere (Grad cut-off
assumption). A rearrangement of the collisional integrals allows us to write the
collision operator as a weighted convolution, where the weight is given in turn
by an operator invariant under rotations. Using a symmetrization technique
in L

p we prove a Young’s inequality for for the gain part of the collisional inte-
gral in the case of of variable hard potentials, which is optimal for Maxwellian
molecule type models in L

2. Further, we find an inedited form of the Hardy-
Littlewood-Sobolev inequality in the soft potentials case, which corresponds
to singular collision kernels. In all cases, the inequality constants are explicitly
given by formulas depending on the integral of the angular cross section. We
also obtain estimates with Maxwellian weights for variable hard potentials. All
these estimates are valid for conservative or dissipative interactions between
particles.

1. Introduction

The nonlinear Boltzmann equation is a classical model for a gas at low or mod-
erate densities. The gas in a spatial domain Ω ⊆ Rn, n ≥ 2, is modeled by the
evolution of the mass density function f(x, v, t), (x, v) ∈ Ω × Rn, modeling the
probability of finding a particle at position x, with velocity v at the time t ∈ R.
The transport equation for f reads

(∂t + v · ∇x)f = Q(f, f) , (1.1)

where Q(f, f) is a quadratic integral operator, expressing the change of f due to
instantaneous binary collisions of particles. The precise form of Q(f, f) will be
introduced below, for both conservative (elastic) [12] and dissipative (inelastic)
interactions [11]. The Q(f, f) operator factorizes as the difference of two positive
operators, usually denoted by the Q+(f, f)(x, v, t) rate of gain of probability due
to two pre-collisional velocities for which one of them will take the direction v and
the Q−(f, f)(x, v, t) rate of loss of probability due to particles that get knocked out
of the direction v.
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In addition, these operators depend on the form of their collision kernels which
model the collision frequency depending on the intramolecular potentials between
interacting particles. More specifically, these kernels depend on functions of the
relative speed and on the scattering angle, the latter modeled by an angular func-
tion referred as the angular cross section. In all the cases we assume that the
angular cross section is modeled by an integrable angular function on the Sn−1

sphere (this condition, in the theory of the Boltzmann equation, is called the Grad

cut-off assumption). The collisional kernels are further divided into the following
classes: variable hard potentials, corresponding to unbounded forms of the rela-
tive speed, modeling stronger collision rates, and soft potentials modeling weaker
collision rates, both as the relative speed is larger; and Maxwell molecule type of
interactions where collisional kernels are independent of the relative speed. Soft
potential kernels give place to singular term in the collisional integral.

It is the purpose of this work to investigate the Lr-integrability of the gain
operator as a bilinear form Q+(f, g)(x, v, t) acting on probability mass densities f
and g, and to search for exact representation formulas for the inequality constants
and possible optimal estimates depending on the Lp and Lq norms of f and g,
respectively.

In order to achieve these results, we use a rearrangement of the collisional inte-
grals that allows us to write the gain term of the collision operator as a weighted
convolution, where the weight is given by a suitable bilinear operator invariant un-
der rotations. This representation exhibits the convolution nature of the collisional
operators. Following the initial idea developed in [2], we approach the convolution
estimates by using an Lp-radial symmetrization technique. We prove a Young’s
inequality for variable hard potentials, which is optimal for Maxwellian molecule
type models in L2, both for conservative and dissipative interactions.

Furthermore, we find a completely new Hardy-Littlewood-Sobolev type inequal-
ity for collision kernels corresponding to soft potentials, where the weighted con-
volution structure contains a singular kernel. In all cases, the inequality constants
are given by explicit formulas depending only on certain integrability conditions
of the angular cross section. We also obtain estimates with Maxwellian weights
for variable hard potentials. All these estimates are valid for elastic or inelastic
interactions between particles.

We point out that our work extends and improves the work of Gustafsson [17]
on finding Young’s inequality for the Q+ operator, developed by interpolation ar-
guments (Riesz-Thorin) for the cases (p, q, r) = (1, p, p) and (p, 1, p). In the more
general case (p, q, r) Gustafsson used a nonlinear interpolation theorem whose ar-
guments lead to rather poor and non-explicit constants in general. A crucial point
in his argument is the restriction of collisions to be neither frontal nor grazing, so
it uses a pointwise cut-off of the angular cross section both for angles near zero
or π (i.e. the constant in his Young’s inequality blows up at the endpoints). In
addition he requires the standard integrability of the angular kernel. See also [21]
for a different approach to the result of Gustafsson under the same restrictions.

Our work considerably improves both [17] and [21], as it removes the pointwise
cut-off restriction for the angular cross section for head-on and grazing collisions.
Our estimates are constructive and provide exact constants which depend only on
integrability of the angular collisional cross section in both cases, hard spheres and
variable hard potentials, which are sharp (best) constants for the case of Maxwell
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molecules type in L2 for both conservative and dissipative interactions. The con-
servative interaction case of this result was first proved by two of the authors [2],
and here we give a simplified argument to represent the weighted convolution struc-
ture of the gain operator. In the context of Boltzmann equation, sharp constants
in these inequalities are important since one hopes to control the gain by the loss
operator in order to obtain regularity.

The new type of convolution estimates treated in this paper is in the case of
singular collision kernels in relative speed (soft potentials), for which a Hardy-
Littlewood-Sobolev inequality is obtained with exact constant representations as
well. Our work is also motivated by the ones of Beckner [5] on the sharp constants
for convolution estimates, and Lieb [18] on the sharp Hardy-Littlewood-Sobolev
inequality. Both of these works use radial rearrangement techniques to reduce the
problem to radial functions, and this is essentially one of the core ideas of this paper
as well (see Lemma 3 below).

As a consequence of these convolutions estimates of collision integrals with sin-
gular potentials, we have recently used them to obtain classical solutions and Lp-
stability for the Cauchy problem associated to the Boltzmann equation for soft
potentials, with integrable cross section, and initial data near vacuum or near local
Maxwellian distribution [4].

In summary, the main contributions of the inequalities presented in this paper
when compared to the previous literature are: simpler proofs; extensions to the full
range of exponents p, q, r; extensions to dissipative (inelastic) interactions and soft
potentials and exact and optimal constants depending on integral conditions on the
angular cross section in the collision kernel.

1.1. Preliminaries. In this paper we study the integrability properties of the gain
part of the Boltzmann collision operator in the case of inelastic collisions. This
operator is commonly denoted by Q+ and can be defined via duality by the formula

∫

Rn

Q+(f, g)(v)ψ(v) dv :=

∫

Rn

∫

Rn

f(v)g(v∗)

∫

Sn−1

ψ(v′)B(|u|, û · ω) dω dv∗ dv,

(1.2)
where the functions f, g, ψ ∈ C0(R

n) (continuous with compact support). The
symbol û represents the unitary vector in the direction of u (û = u/|u|) and dω is the
surface measure on the sphere Sn−1. The variables v, v∗ (pre-collision velocities),
v′, v′∗ (post-collision velocities) and u (relative velocity) are related by

u = v − v∗ , v′ = v − β

2
(u− |u|ω) and v + v∗ = v′ + v′∗ (1.3)

The inelastic properties of the collision operator are encoded in the positive scalar

function β : [0,∞) → [12 , 1] defined by β(z) := 1+e(z)
2 , where parameter e is the so-

called restitution coefficient which enjoys the following two properties that assure
micro-reversibility of the interactions:

(i) z 7→ e(z) is absolutely continuous and non-increasing.
(ii) z 7→ ze(z) is non-decreasing.

The dependence of the restitution coefficient on the physical variables is commonly

given by z = |u|
√

1−û·ω
2 , i.e. the restitution coefficient e, and thus β, depends only
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on the impact velocity

β

(
|u|

√
1−û·ω

2

)
=

1 + e

(
|u|

√
1−û·ω

2

)

2
. (1.4)

We point out that the model for e could be more complex (for example assuming
dependence on macroscopic variables like temperature), however this will not be
the case in this paper.
The particle interaction is elastic when the parameter β = 1, and is referred as
sticky particles when β = 1/2. A complete discussion of the physical aspects of
the restitution coefficient can be found in [11]. Standard models for the restitution
coefficient, for example constant restitution coefficient and viscoelastic hard spheres,
satisfy the assumptions (i) and (ii) above. We refer the interested reader to [1], [6],
[10], [16] and [20] for additional numerical and mathematical references that use
this class of models.

The nature of the interactions modeled byQ+ is encoded in the kernelB(|u|, û·ω)
modeled by strength of intramolecular potentials, and many physical models accept
the representation (henceforth assumed)

B(|u|, û · ω) = |u|λb(û · ω) with − n < λ.

Depending on the parameter λ the interaction receives different names: soft-potentials
when −n < λ < 0, meaning that larger relative velocity corresponds to a weaker
collision frequency; Maxwell molecules type of interactions when λ = 0, of collision
frequency independent of the relative velocity; variable hard-potentials when λ > 0,
meaning that larger relative velocity corresponds to stronger collision frequency.
The (nonnegative) angular cross section part of the collision kernel b(û·ω) is required
to satisfy integrability with respect to the unit direction σ in the n− 1dimensional
sphere, where σ has the direction of the conservative post collisional velocity. This
condition is called the Grad cut-off assumption.

∫

Sn−1

b(û · ω)dω <∞.

We refer to [10] and [14] for a detailed discussion on the inelastic collision operator.

1.2. Description of the results. In [2], Alonso and Carneiro present the Lp-
analysis of the operator Q+ in the elastic case (restitution coefficient e ≡ 1) for the
case of Maxwell type of interactions and variable hard potentials (i.e. 0 ≤ λ ≤ 1).
It is the purpose of this paper to extend the results of [2] to the more general setting
of inelastic interactions, as well as to soft potentials and the case corresponding to
Maxwellian weighted estimates for variable hard potentials.

Let ψ and φ be bounded and continuous functions. Define the bilinear operator

P(ψ, φ)(u) :=

∫

Sn−1

ψ(u−)φ(u+)b(û · ω) dω , (1.5)

where the symbols u+ and u−, commonly known as Bobylev’s variables, are defined
by

u− := β
2 (u− |u|ω) and u+ := u− u− = (1 − β)u + β

2 (u + |u|ω). (1.6)

The operator (1.5) was first introduced by A. V. Bobylev in a slightly different
setting. Indeed, in [7] and [8] he shows that in the elastic Maxwell molecules case
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(i.e. λ = 0 and β ≡ 1), we have

̂Q+(f, g) = P(f̂ , ĝ) . (1.7)

Later, it was noticed that such relation was still valid for any constant β 6= 1. In
[13] one can find a complete presentation of the use of the Fourier transform in the
analysis of the Boltzmann collision operator, including the explicit computation of
the relation (1.7).

From equations (1.2) and (1.5) we obtain the following relation between the
operators Q+ and P

∫

Rn

Q+(f, g)(v)ψ(v) dv =

∫

Rn

∫

Rn

f(v)g(v − u)P(τvRψ, 1)(u) |u|λ du dv, (1.8)

where τ and R are the translation and reflection operators

τvψ(x) := ψ(x− v) and Rψ(x) := ψ(−x).
Representation (1.8) shows that the integrability properties of the collision operator
Q+ are closely related to those of the bilinear operator P . A similar approach was
carried out in [15] which relates the operator Q+ to a slightly different angular
averaging operator.

In Section 2 we develop the Lp-analysis of the operator P , exploiting a sym-
metrization method introduced in [2] that will provide sharp constants in some of
our inequalities. Generally, the constants appearing in this paper will depend on
(explicit) the integral conditions on the angular collision kernel.

In Section 3 we prove a full Young’s inequality for hard potentials. For this,
consider the weighted Lebesgue spaces Lp

k(Rn) (p ≥ 1, k ≥ 0) defined by the norm

‖f‖Lp
k(Rn) =

(∫

Rn

|f(v)|p
(
1 + |v|pk

)
dv

)1/p

.

We prove the following.

Theorem 1. Let 1 ≤ p, q, r ≤ ∞ with 1/p+ 1/q = 1 + 1/r. Assume that

B(|u|, û · ω) = |u|λb(û · ω) ,

with λ ≥ 0. For α ≥ 0, the bilinear operator Q+ extends to a bounded operator

from Lp
α+λ(Rn) × Lq

α+λ(Rn) → Lr
α(Rn) via the estimate

∥∥Q+(f, g)
∥∥

Lr
α(Rn)

≤ C ‖f‖Lp
α+λ(Rn) ‖g‖Lq

α+λ(Rn). (1.9)

The constant depends on C = C(n, α, p, q, b, β) determined in Lemma 4.

Young-type inequalities reveal the convolution nature of the operator Q+ and
were first introduced in the work of Gustafsson [17] under restrictive conditions
on the angular cross section, assuming pointwise cut-off away from zero (grazing
collisions) and π (head on collisions). These estimates also appear in the work of
Mouhot and Villani [21, Theorem 2.1] under the same restrictive conditions as in
the work of Gustafsson [17].

In removing the restriction of pointwise cut-off away from zero and π for the
studies of the Lp integrability of the Q+ operator, we point out that Gamba, Pan-
ferov and Villani [15, Lemma 4.1] studied first these estimates in the case (p, 1, p)
with polynomial weights using only the integrability of the angular cross section.
Later, Bobylev, Gamba and Panferov [10] introduced an angular averaging esti-
mate to obtain moment decay formulas to the gain operator by getting polynomial
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weighted estimates in (1, 1, 1) for variable hard potentials, in the conservative (elas-
tic) or dissipative (inelastic) interactions case (with constant restitution coefficient)
for bounded angular cross section. These estimates were recently extended, in the
conservative case, to singular and integrable cross sections with a given growth rate
in the singularity, and they were used in the study of the regularity and asymptotic
Gaussian bounds for solutions of the space homogeneous Boltzmann equation [3]
and [14]. The conditions of the growth rate for the estimates in [14] are necessary
in order to obtain moment decay rates of the gain operator Q+ with respect to
the same moment of the loss operator Q−, i.e. a better control of the constants of
polynomial weighted (1, 1, 1) estimates for the Q+.

In Section 4 we prove a Hardy-Littlewood-Sobolev inequality for the collision
operator in the case of soft potentials which corresponds to a convolution structure
with a singular kernel. This is an inedited result under any condition on the angular
cross section, which in the most general case for our result must be integrable in
the Sn−1 dimensional sphere.

Theorem 2. Let 1 < p, q, r <∞ with −n < λ < 0 and 1/p+1/q = 1+λ/n+1/r.
For the kernel

B(|u|, û · ω) = |u|λ b(û · ω),

the bilinear operator Q+ extends to a bounded operator from Lp(Rn) × Lq(Rn) →
Lr(Rn) via the estimate

∥∥Q+(f, g)
∥∥

Lr(Rn)
≤ C ‖f‖Lp(Rn) ‖g‖Lq(Rn). (1.10)

Theorem 2 reinforces the convolution character ofQ+(f, g), basically establishing
that, in the case of soft potentials, it behaves as f ∗g∗|u|λ. The constants we obtain
for the two inequalities above are explicit, but generally not sharp. Only in the cases
α = λ = 0, (p, q, r) = (2, 1, 2) and (p, q, r) = (1, 2, 2) we find the sharp constant for
the Young’s inequality (1.9) (see the remark after Theorem 5). In fact, the quest
for the sharp forms of these inequalities in the other cases, which could be seen as
analogues of the remarkable works of Beckner [5] and Lieb [18], seems inaccessible
at this time.

Finally, in Section 5, we apply the Young’s inequality for hard potentials to
obtain estimates for the collision operator with Maxwellian weights. These weighted
inequalities are important tools in the study of propagation of moments [10] and
L1 − L∞ comparison principles [14].

2. Radial Symmetrization and the operator P
Let G = SO(n) be the group of rotations of Rn (orthonormal transformations

of determinant 1), in which we will use the variable R to designate a generic rota-
tion. We assume that the Haar measure dµ of this compact topological group is
normalized so that ∫

G

dµ(R) = 1.

Let f ∈ Lp(Rn), p ≥ 1. We define the radial symmetrization f⋆
p by

f⋆
p (x) =

(∫

G

|f(Rx)|p dµ(R)

) 1
p
, if 1 ≤ p <∞. (2.1)
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and

f⋆
∞(x) = ess sup|y|=|x||f(y)| (2.2)

where the essential sup in (2.2) is taken over the sphere of radius |x| with respect to
the surface measure over this sphere. The rearrangement f⋆

p defined in (2.1)-(2.2)
can be seen as an Lp-average of f over all the rotations R ∈ G and it satisfies the
following properties:

(i) f⋆
p is radial.

(ii) If f is continuous (or compactly supported) then f⋆
p is also continuous (or

compactly supported).
(iii) If g is a radial function then (fg)⋆

p(x) = f⋆
p (x)g(x).

(iv) Let dν be a rotationally invariant measure on Rn. Then
∫

Rn

|f(x)|p dν(x) =

∫

Rn

|f⋆
p (x)|p dν(x).

In particular,
‖f‖Lp(Rn) = ‖f⋆

p‖Lp(Rn).

Our first result of this section is the following.

Lemma 3. Let f, g, ψ ∈ C0(R
n) and 1/p + 1/q + 1/r = 1, with 1 ≤ p, q, r ≤ ∞.

Then ∣∣∣∣
∫

Rn

P(f, g)(u)ψ(u) du

∣∣∣∣ ≤
∫

Rn

P(f⋆
p , g

⋆
q )(u)ψ⋆

r (u) du.

Proof. From (1.4), (1.5) and (1.6) we observe that for any rotation R one has

P(f, g)(Ru) = P(f ◦R, g ◦R)(u).

Therefore,
∣∣∣
∫

Rn

P(f, g)(u)ψ(u) du
∣∣∣ =

∣∣∣
∫

Rn

P(f, g)(Ru)ψ(Ru) du
∣∣∣

=
∣∣∣
∫

Rn

P(f ◦R, g ◦R)(u)ψ(Ru) du
∣∣∣

≤
∫

Rn

∫

Sn−1

|f(Ru−)| |g(Ru+)| |ψ(Ru)|b(û · ω) dω du.

(2.3)

Note that the left hand side of (2.3) is independent of R. Thus, an integration over
the group G = SO(n) leads to

∣∣∣
∫

Rn

P(f, g)(u)ψ(u) du
∣∣∣

≤
∫

Rn

∫

Sn−1

(∫

G

|f(Ru−)||g(Ru+)||ψ(Ru)| dµ(R)

)
b(û · ω) dω du.

(2.4)

An application of Hölder’s inequality with exponents p, q and r yields
∫

G

|f(Ru−)| |g(Ru+)| |ψ(Ru)| dµ(R) ≤ f⋆
p (u−) g⋆

q (u+)ψ⋆
r (u),

which together with equation (2.4) proves the lemma. �

Lemma 3 shows that Lp-estimates for the operator P will follow by considering
radial functions. If f : Rn → R is radial, we define the function f̃ : R+ → R by

f(x) = f̃(|x|).
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In addition, for any p ≥ 1 and α ∈ R we have
∫

Rn

f(x)p |x|α dx =
∣∣Sn−1

∣∣
∫ ∞

0

f̃(t)p tn−1+α dt. (2.5)

Hence, if we define the measure να on Rn by

dνα(x) = |x|αdx ,

and the measure σα
n on R+ by

dσα
n (t) = tn−1+αdt ,

equation (2.5) translates to

||f ||Lp(Rn, dνα) =
∣∣Sn−1

∣∣
1
p ||f̃ ||Lp(R+, dσα

n ). (2.6)

In the following computation we show how the operatorP simplifies to a 1-dimensional
operator when applied to radial functions. If f and g are radial, then

P(f, g)(u) =

∫

Sn−1

f̃
(
|u−|

)
g̃

(
|u+|

)
b(û · ω) dω

=

∫

Sn−1

f̃
(
a1(|u|, û · ω)

)
g̃
(
a2(|u|, û · ω)

)
b(û · ω) dω

=
∣∣Sn−2

∣∣
∫ 1

−1

f̃
(
a1(|u|, s)

)
g̃
(
a2(|u|, s)

)
b(s) (1 − s2)

n−3
2 ds.

(2.7)

The functions a1 and a2 are defined on R+ × [−1, 1] → R+ by

a1(x, s) = β x
(

1−s
2

)1/2
and a2(x, s) = x

[(
1+s
2

)
+ (1 − β)2

(
1−s
2

)]1/2
. (2.8)

We conclude from (2.7) that

P̃(f, g)(x) =
∣∣Sn−2

∣∣
∫ 1

−1

f̃ (a1(x, s)) g̃ (a2(x, s)) dξb
n(s) , (2.9)

where the measure ξb
n on [−1, 1] is defined as

dξb
n(s) = b(s)(1 − s2)

n−3
2 ds .

In virtue of equation (2.9) we define the following bilinear operator for any two
bounded and continuous functions f, g : R+ → R,

B(f, g)(x) :=

∫ 1

−1

f (a1(x, s)) g (a2(x, s)) dξb
n(s). (2.10)

Remark. It is worth to notice that in the case of constant parameter β (which
includes elastic interactions) the functions a1 and a2 of the variable interactions
are actually functions of the form a1 = xα1(s) and a2 = xα2(s); that is a1 and a2

are first order homogeneity in their radial part and their angular part is a positive,
bounded by unity function of the angular parametrization s. This property is
a signature of compactness properties of the spectral structure associated to the
bilinear form (2.10) (see [9]).

For the operator in (2.10) we have the following bound.
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Lemma 4. Let 1 ≤ p, q, r ≤ ∞ with 1/p+ 1/q = 1/r. For f ∈ Lp(R+, dσα
n ) and

g ∈ Lq(R+, dσα
n ) we have

‖B(f, g)‖Lr(R+, dσα
n ) ≤ C ‖f‖Lp(R+, dσα

n) ‖g‖Lq(R+, dσα
n) , (2.11)

where the constant C is given in (2.15). In the case of constant restitution coefficient

e, corresponding to a constant parameter β = (1 + e)/2, one can show that

C(n, α, p, q, b, β) = β
−n+α

p

∫ 1

−1

(
1−s
2

)−n+α
2p

[(
1+s
2

)
+ (1 − β)2

(
1−s
2

)]−n+α
2q dξb

n(s)

(2.12)
is sharp.

Proof. Using Minkowski’s inequality and Hölder’s inequality with exponents p/r
and q/r we obtain

∥∥B(f, g)
∥∥

Lr(R+, dσα
n )

≤
∫ 1

−1

(∫ ∞

0

|f(a1(x, s))|r |g(a2(x, s))|r dσα
n(x)

) 1
r

dξb
n(s)

≤
∫ 1

−1

(∫ ∞

0

|f(a1(x, s))|p dσα
n (x)

) 1
p

(∫ ∞

0

|g(a2(x, s))|q dσα
n (x)

) 1
q

dξb
n(s).

Since the function z → ze(z) is non-decreasing, the change of variables y = a1(x, s)
is valid for any fixed s ∈ [−1, 1), and its inverse Jacobian satisfies

∣∣∣∣
da1

dx

∣∣∣∣ ≥
1

2

(
1−s
2

) 1
2 . (2.13)

Moreover, using the fact that β ≥ 1/2, we arrive at

(∫ ∞

0

|f(a1(x, s))|p dσα
n(x)

) 1
p
≤ 2

n+α
p

(
1−s
2

)−n+α
2p ‖f‖Lp(R+, dσα

n) .

Using a similar analysis for the change of variables y = a2(x, s), exploiting the fact
that β is non-increasing, we obtain

∣∣∣∣
da2

dx

∣∣∣∣ ≥
[(

1+s
2

)
+ (1 − β0)

2
(

1−s
2

)] 1
2 , (2.14)

where β0 = β(0). We then arrive at

(∫ ∞

0

|g(a2(x, s))|q dσα
n (x)

) 1
q
≤

[(
1+s
2

)
+ (1 − β0)

2
(

1−s
2

)]−n+α
2q ‖g‖Lq(R+, dσα

n) ,

This gives (2.11) with constant

C = 2
n+α

p

∫ 1

−1

(
1−s
2

)−n+α
2p

[(
1+s
2

)
+ (1 − β0)

2
(

1−s
2

)]−n+α
2q dξb

n(s) . (2.15)

In the case of constant β, the Jacobians (2.13) and (2.14) can be explicitly computed
and the proposed change of variables leads to the constant (2.12). To prove that
the constant (2.12) is the best possible in this case, one can consider the sequences
{fǫ} and {gǫ} with ǫ > 0 defined by

fǫ(x) =

{
ǫ1/p x−(n+α−ǫ)/p for 0 < x < 1 ,

0 otherwise.
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and

gǫ(x) =

{
ǫ1/q x−(n+α−ǫ)/q for 0 < x < 1 ,

0 otherwise.

Clearly,

‖fǫ‖Lp(R+, dσα
n) = ‖gǫ‖Lq(R+, dσα

n) = 1 ,

and one can check that

‖B(fǫ, gǫ)‖Lr(R+, dσα
n ) → C ,

as ǫ → 0, where C is the constant defined in (2.12). The detailed argument is
outlined in [2], in the case β = 1. �

From Lemma 3 we have

‖P(f, g)‖Lr(Rn, dνα) ≤ ‖P(f⋆
p , g

⋆
q)‖Lr(Rn, dνα) ,

where 1/p+ 1/q = 1/r. Using equations (2.6), (2.9) and Lemma 4 we obtain

‖P(f⋆
p , g

⋆
q )‖Lr(Rn, dνα) =

∣∣Sn−1
∣∣
1
r

∥∥∥ ˜P(f⋆
p , g

⋆
q)

∥∥∥
Lr(R+, dσα

n )

=
∣∣Sn−1

∣∣
1
r

∣∣Sn−2
∣∣ ‖B(f̃⋆

p , g̃
⋆
q )‖Lr(R+, dσα

n )

≤ C
∣∣Sn−1

∣∣
1
r

∣∣Sn−2
∣∣ ‖f̃⋆

p ‖Lp(R+, dσα
n) ‖g̃⋆

q‖Lq(R+, dσα
n )

= C
∣∣Sn−2

∣∣ ‖f‖Lp(Rn, dνα) ‖g‖Lq(Rn, dνα) ,

(2.16)

and thus we have proved the following result.

Theorem 5. Let 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q = 1/r, and α ∈ R. The bilin-

ear operator P extends to a bounded operator from Lp(Rn, dνα) × Lq(Rn, dνα) to

Lr(Rn, dνα) via the estimate

‖P(f, g)‖Lr(Rn, dνα) ≤ C ‖f‖Lp(Rn, dνα) ‖g‖Lq(Rn, dνα) .

Moreover, in the case of constant restitution coefficient e, the constant

C =
∣∣Sn−2

∣∣ β−n+α
p

∫ 1

−1

(
1−s
2

)−n+α
2p

[(
1+s
2

)
+ (1 − β)2

(
1−s
2

)]−n+α
2q dξb

n(s)

is sharp.

Remark. A simple application of Theorem 5 provides a sharp estimate for the
L2-norm in the case of Maxwell molecules and constant parameter β.

Corollary 6. Let f ∈ L1(Rn) and g ∈ L2(Rn). Then

∥∥Q+(f, g)
∥∥

L2(Rn)
=

∥∥∥ ̂Q+(f, g)
∥∥∥

L2(Rn)
=

∥∥∥P(f̂ , ĝ)
∥∥∥

L2(Rn)

≤ C0 ‖f̂‖L∞(Rn) ‖ĝ‖L2(Rn) ≤ C0 ‖f‖L1(Rn) ‖g‖L2(Rn).
(2.17)

The constant is given by

C0 =
∣∣Sn−2

∣∣
∫ 1

−1

[(
1+s
2

)
+ (1 − β)2

(
1−s
2

)]−n
4 dξb

n(s) .

Similarly, for f ∈ L2(Rn) and g ∈ L1(Rn) we have
∥∥Q+(f, g)

∥∥
L2(Rn)

≤ C1 ‖f‖L2(Rn) ‖g‖L1(Rn), (2.18)
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where

C1 =
∣∣Sn−2

∣∣ β−n
2

∫ 1

−1

(
1−s
2

)−n
4 dξb

n(s).

Proof. The calculation of the constants C0 and C1 follow directly from Theorem
5. To guarantee that C0 is indeed the sharp constant in the inequality (2.17) we

need approximating sequences
˜̂
f ǫ and ˜̂gǫ slightly different from those presented in

the end of the proof of Lemma 4, since we would like to impose the additional

constraint f ≥ 0 to have ‖f̂‖L∞(Rn) = ‖f‖L1(Rn). Heuristically, this can be done

by considering f = δ(x) the Dirac delta and so f̂ ≡ 1. In practice we should choose
fǫ a Gaussian approximation of the identity by putting

˜̂
f ǫ(x) = e−πǫ2x2

,

and

˜̂gǫ(x) =

{
ǫ1/2 x−(n−ǫ)/2 for 0 < x < 1 ,

0 otherwise.

A similar consideration applies to the inequality (2.18). Inequalities (2.17) and
(2.18) are particular cases of the Young’s inequality for Q+ that will be treated in
the next section. These are the only cases where we are able to explicitly find the
sharp constant. �

3. Young’s inequality for hard potentials

The goal of this section is to prove Theorem 1. First we treat the case α = λ = 0.
The main idea is to use the relation (1.8) that establishes a connection between the
operators Q+ and P , and then use the knowledge from the previous section. From
(1.8) we have

I :=

∫

Rn

Q+(f, g)(v)ψ(v) dv =

∫

Rn

∫

Rn

f(v)g(v − u)P(τvRψ, 1)(u) du dv. (3.1)

The exponents p, q, r in Theorem 1 satisfy 1/p′ + 1/q′ + 1/r = 1, and thus we can
regroup the terms conveniently and use Hölder’s inequality

I =

∫

Rn

∫

Rn

(
f(v)

p
r g(v − u)

q
r

) (
f(v)

p
q′ P(τvRψ, 1)(u)

r′

q′

)

(
g(v − u)

q
p′ P(τvRψ, 1)(u)

r′

p′

)
du dv ≤ I1 I2 I3,

(3.2)

where

I1 :=

(∫

Rn

∫

Rn

f(v)pg(v − u)q du dv

)1
r

I2 :=

(∫

Rn

∫

Rn

f(v)pP(τvRψ, 1)(u)r′

du dv

) 1
q′

I3 :=

(∫

Rn

∫

Rn

g(v − u)qP(τvRψ, 1)(u)r′

du dv

) 1
p′

=

(∫

Rn

∫

Rn

g(v)qP(1, τ−vψ)(u)r′

du dv

) 1
p′

.
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Recall that τ and R are unitary operators in the Lp spaces, thus, from (3.2) and
Theorem 5 we obtain

I ≤ C ‖f‖Lp(Rn) ‖g‖Lq(Rn) ‖ψ‖Lr′(Rn),

with constant given by

C =
∣∣Sn−2

∣∣
(

2
n
r′

∫ 1

−1

(
1−s
2

)− n
2r′ dξb

n(s)

) r′

q′

(∫ 1

−1

[(
1+s
2

)
+ (1 − β0)

2
(

1−s
2

)]− n
2r′ dξb

n(s)

) r′

p′

,

(3.3)

which concludes the proof in this case. In the case where α + λ > 0, we shall use
two additional inequalities. From the energy dissipation we have |v′|2 + |v′∗|2 ≤
|v|2 + |v∗|2 and thus

|v′|α = |v − u−|α ≤
(
|v|2 + |v∗|2

)α/2 ≤ 2α/2 (|v|α + |v − u|α) . (3.4)

Also, we shall use

|u|λ ≤ (|v − u| + |v|)λ ≤ 2λ
(
|v − u|λ + |v|λ

)
. (3.5)

Let ψα(v) = ψ(v)|v|α and repeat the procedure above for the case α = λ = 0 using
(3.4) and (3.5) to obtain

∫

Rn

Q+(f, g)(v)ψα(v) dv =

∫

Rn

∫

Rn

f(v)g(v − u)P(τvRψα, 1)(u) |u|λ du dv

≤ 4 2α/2 2λC ‖f‖Lp
α+λ(Rn) ‖g‖Lq

α+λ(Rn) ‖ψ‖Lr′(Rn).

This proves that
∥∥Q+(f, g)(v)|v|α

∥∥
Lr(Rn)

≤ 2α/2 2λ+2 C ‖f‖Lp
α+λ(Rn) ‖g‖Lq

α+λ(Rn).

A similar reasoning provides
∥∥Q+(f, g)(v)

∥∥
Lr(Rn)

≤ 2λ+1 C ‖f‖Lp
α+λ

(Rn) ‖g‖Lq
α+λ

(Rn) ,

and finally
∥∥Q+(f, g)(v)

∥∥
Lr

α(Rn)
≤ 21/r 2α/2 2λ+2 C ‖f‖Lp

α+λ(Rn) ‖g‖Lq
α+λ(Rn) , (3.6)

with C given in (3.3). This concludes the proof.

4. Hardy-Littlewood-Sobolev inequality for soft potentials

In this section we study the collision operator for soft potentials and prove The-
orem 2. From (1.8) we have

I :=

∫

Rn

Q+(f, g)(v)ψ(v) dv =

∫

Rn

∫

Rn

f(v)g(v − u)P(τvRψ, 1)(u) |u|λ du dv

=

∫

Rn

f(v)

(∫

Rn

τvRg(u)P(τvRψ, 1)(u) |u|λdu

)
dv. (4.1)

Applying Hölder’s inequality and then Theorem 5 to the inner integral of (4.1),
with (p, q, r) = (a,∞, a), we obtain
∫

Rn

τvRg(u)P(τvRψ,1)(u) |u|λdu ≤ ‖P(τvRψ, 1)‖La(Rn, dνλ) ‖τvRg‖La′(Rn, dνλ)
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≤ C1 ‖τvRψ‖La(Rn, dνλ) ‖τvRg‖La′(Rn, dνλ)

= C1

[(
|ψ|a ∗ |u|λ

)
(v)

]1/a [(
|g|a′ ∗ |u|λ

)
(v)

]1/a′

,

where 1/a+ 1/a′ = 1 (a to be chosen later), and the constant C1 given by

C1 =
∣∣Sn−2

∣∣ 2
n+λ

a

∫ 1

−1

(
1−s
2

)−n+λ
2a dξb

n(s) .

We note that this choice of integrability exponents allowed to get rid of the inte-
grand singularity at s = −1, thus, producing a uniform control with respect to the
inelasticity parameter β.

Therefore we obtain

I ≤ C1

∫

Rn

f(v)
[(
|ψ|a ∗ |u|λ

)
(v)

]1/a [(
|g|a′ ∗ |u|λ

)
(v)

]1/a′

dv. (4.2)

Applying Hölder’s inequality in (4.2) with exponents 1/p+ 1/b+ 1/c = 1 (b and c
to be chosen later) we arrive at

I ≤ C1 ‖f‖Lp(Rn)

∥∥|ψ|a ∗ |u|λ
∥∥1/a

Lb/a(Rn)

∥∥∥|g|a
′ ∗ |u|λ

∥∥∥
1/a′

Lc/a′(Rn)
(4.3)

We now use the classical Hardy-Littlewood-Sobolev inequality to obtain
∥∥|ψ|a ∗ |u|λ

∥∥
Lb/a(Rn)

≤ C2 ‖ψ‖a
Lad(Rn) (4.4)

and ∥∥∥|g|a
′ ∗ |u|λ

∥∥∥
Lc/a′(Rn)

≤ C3 ‖g‖a′

La′e(Rn)
, (4.5)

where

1 +
a

b
=

1

d
− λ

n
and 1 +

a′

c
=

1

e
− λ

n
.

The constants C2 and C3 (generally not sharp) are explicit in [19, p. 106]. Finally
putting together (4.4) and (4.5) with (4.3) we arrive at

I ≤ C1 C
1/a
2 C

1/a′

3 ‖f‖Lp(Rn) ‖g‖La′e(Rn) ‖ψ‖Lad(Rn). (4.6)

To conclude the proof of the theorem it would suffice to have in (4.6) the relations
a′e = q and ad = r′. Now it comes the moment to choose our variables. All the
inequalities we used above will be well-posed if the following relations are satisfied

(∗)





1

a
+

1

a′
= 1, 1 ≤ a ≤ ∞

1

p
+

1

b
+

1

c
= 1, 1 < b, c <∞

1 +
a

b
=

1

d
− λ

n
, b > a, 1 < d <∞

1 +
a′

c
=

1

e
− λ

n
, c > a′, 1 < e <∞

a′e = q

ad = r′



14 R. J. ALONSO, E. CARNEIRO AND I. M. GAMBA

The last two equations determine d and e in terms of a. The remaining linear
system (in the variables 1/a, 1/a′, 1/b and 1/c) in undetermined because of the
original relation

1

p
+

1

q
= 1 +

λ

n
+

1

r
.

One can check that the choice

1

b
=

1

r′
− 1

a

(
1 +

λ

n

)

and
1

c
=

1

q
− 1

a′

(
1 +

λ

n

)

with any 1/a in the non-empty interval

max

{
1

r′(2 + λ
n )
, 1 − 1

q(1 + λ
n )

}
<

1

a
< min

{
1

r′(1 + λ
n )
, 1 − 1

q(2 + λ
n )

}

provides a solution for (∗).

Remark. For a quadratic operator Q+(f, f), the angular cross section function
b can be defined in the lower half sphere, so just integrability of b as an angular
function on the sphere is enough to control the estimates.

5. Inequalities with Maxwellian weights

As an application of the ideas of Section 3, we now prove a Young type esti-
mate for the non-symmetric Boltzmann collision operator with Maxwellian weights.
These inequalities have been important in the study of propagation of moments [10]
and L1 − L∞ comparison principles [14], still for the case of inelastic collisions de-
pending on the function β. The main contribution of this section relies in the
generality of the statements and the extension to inelastic interactions.

Throughout this section we will assume that the angular kernel b(s) vanishes for
s < 0 (non-symmetric assumption). For any a > 0 define the global Maxwellian as

Ma(v) := exp
(
−a|v|2

)
.

Theorem 7. Let 1 ≤ p, q, r ≤ ∞ with 1/p+ 1/q = 1 + 1/r. Assume that

B(|u|, û · ω) = |u|λ b(û · ω) ,

with λ ≥ 0. Then, for a > 0,
∥∥Q+(f, g) M−1

a

∥∥
Lr(Rn)

≤ C ‖f M−1
a ‖Lp

λ(Rn) ‖g M−1
a ‖Lq(Rn). (5.1)

Proof. Using (1.2) and (1.3) we obtain

I :=

∫

Rn

Q+(f, g)(v)
(
M−1

a ψ
)
(v) dv

=

∫

Rn

∫

Rn

f(v)g(v − u)

∫

Sn−1

(
M−1

a ψ
)
(v′) |u|λ b(û · ω) dω du dv. (5.2)

From the energy dissipation we have |v′|2 + |v′∗|2 ≤ |v|2 + |v∗|2, and thus

M−1
a (v′) ≤ M−1

a (v)M−1
a (v∗)Ma(v′∗). (5.3)
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Using (5.3) in (5.2) we obtain

I ≤
∫

Rn

∫

Rn

(
M−1

a f
)
(v)

(
M−1

a g
)
(v − u)

∫

Sn−1

ψ(v′) Ma(v′∗) |u|λ b(û · ω) dω du dv.

(5.4)

Recall from (2.7) and (2.8) that

|u+| = a2(|u|, û · ω) = |u|
[(

1+û·ω
2

)
+ (1 − β)2

(
1−û·ω

2

)]1/2
.

Since b(û · ω) vanishes for û · ω ≤ 0 one has that, in the support of b,
[(

1+û·ω
2

)
+ (1 − β)2

(
1−û·ω

2

)]1/2 ≥ 1√
2
,

thus yielding

|u| ≤
√

2 |u+|.
Therefore,∫

Sn−1

ψ(v′) Ma(v′∗) |u|λ b(û · ω) dω

=

∫

Sn−2

ψ(v − u−)Ma(v − u+) |u|λ b(û · ω) dω

≤ 2λ/2

∫

Sn−2

ψ(v − u−)Ma(v − u+)
∣∣u+

∣∣λ b(û · ω) dω.

(5.5)

In addition, note that

Ma(v − u+)|u+|λ ≤ 2λ Ma(v − u+)
(
|v − u+|λ + |v|λ

)
≤ Cλ,a (1 + |v|λ), (5.6)

where the constant Cλ,a depends on λ and a. Using (5.6) and (5.5) in expression
(5.4) we arrive at

I ≤ 2λ/2Cλ,a

∫

Rn

∫

Rn

(
M−1

a f
)
(v)(1 + |v|λ)

(
M−1

a g
)
(v − u)P(τvRψ, 1)(u) du dv.

We now have arrived at the same expression given in (3.1), with f(v) changed by(
M−1

a f
)
(v)(1 + |v|λ) and g(v) changed by

(
M−1

a g
)
(v). Repeating the argument

for the Young’s inequality in Section 3 we will conclude that
∥∥Q+(f, g) M−1

a

∥∥
Lr(Rn)

≤ 2λ/2Cλ,a2C ‖f M−1
a ‖Lp

λ(Rn) ‖g M−1
a ‖Lq(Rn), (5.7)

with C given by (3.3). This concludes the proof. �
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