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Abstract. We study the acoustic limit from the Boltzmann equation in the
framework of classical solutions. For a solution Fε = µ+ε

√
µfε to the rescaled

Boltzmann equation in the acoustic time scaling

∂tFε + v ·∇xFε =
1

ε
Q(Fε, Fε) ,

inside a periodic box T3, we establish the global-in-time uniform energy esti-
mates of fε in ε and prove that fε converges strongly to f whose dynamics is
governed by the acoustic system. The collision kernel Q includes hard-sphere
interaction and inverse-power law with an angular cutoff.

1. Introduction. The acoustic system is the linearization about the homogeneous
state of the compressible Euler system. After a suitable choice of units, in this
model the fluid fluctuations (ρ, u, θ) satisfy

∂tρ +∇x ·u = 0 , ρ(x, 0) = ρ0(x) ,

∂tu +∇x(ρ + θ) = 0 , u(x, 0) = u0(x) ,

∂tθ + 2
3∇x ·u = 0 , θ(x, 0) = θ0(x) .

(1.1)

In this paper, we consider the periodic boundary condition, i.e x ∈ T3.
This is one of the simplest system of fluid dynamical equations imaginable, being

essentially the wave equation. It may be derived directly from the Boltzman equa-
tion as the formal limit of moment equations for an appropriately scaled family of
Boltzmann solutions as the Knudsen number tends to zero.

The program initiated by Bardos, Golse, and Levermore [1] was to derive the
fluid limits which include incompressible Stokes, Navier-Stokes, Euler equations,
and acoustic system from the DiPerna-Lions renormalized solutions. This program
has been developed with great success during the last decade, here we only men-
tion [1, 2, 3, 4, 10, 11, 12] among others. In particular, Golse and Saint-Raymond
[4] justified the first complete incompressible Navier-Stokes limit from the Boltz-
mann equation without any compactness assumption. On the other hand, higher
order approximations with the unified energy method have been shown by Guo
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[7] to give rise to a rigorous passage from the Boltzmann equations to the Navier-
Stokes-Fourier systems beyond the Navier-Stokes approximations in the framework
of classical solutions.

Surprisingly, the status for rigorously deriving the acoustic system from DiPerna-
Lions solutions of Boltzmann equation is still incomplete. This is mainly because
DiPerna-Lions solutions do not have some properties which are formally satisfied
such as local conservation laws. In [2], the acoustic limit was justified for Maxwell
molecular collisions under some assumption on the amplitude of fluctuations. The
result was significantly improved in [3] to a large class of hard potentials and the
assumption of the amplitude of fluctuations was relaxed to the order εm with m > 1

2 .
Recently, the borderline case m = 1

2 was covered in [9] for soft potentials.
In this paper, we take the first step to establish the acoustic limit from the

Boltzmann equation in the framework of classical solutions. Working with classical
solutions has several advantages than working with the DiPerna-Lions solutions.
For example, the classical solutions automatically satisfy local conservation laws
and have good regularities; the nonlinear interaction can be controlled by linear
dissipation for small solutions.

We employ the nonlinear energy method developed by Guo [5, 6, 7] in recent
years which has been turned out to be applicable to other problems, for instance
see [8]. We justify the limit for the case that the amplitude of fluctuation is ε,
which is not being optimal. However, our work has advantages in that we can
treat for a large class of collision kernels in a rather uniform way, including hard
potentials, soft potentials and especially Landau kernels which were not covered
in the framework of the renormalized solutions. Furthermore, different dissipation
mechanisms for macroscopic parts and microscopic parts in the limit process are
clearly presented by the energy dissipation rate. To our best knowledge, this is the
first global-in-time acoustic limit result in the class of classical solutions.

The paper is organized as follows: the next section contains the formulation of
the Boltzmann equation for different collision kernels. Some preliminary lemmas
regarding the estimates on the collision operators are listed in Section 3. Then
we give a very brief formal derivation. Section 5 and 6 are devoted to the energy
estimates.

2. Formulation and Notations. Consider the following rescaled Boltzmann equa-
tion:

∂tFε + v ·∇xFε =
1
ε
Q(Fε, Fε) (2.1)

In this paper, as in [7], we consider two classes of collision kernels, the first is given
by the standard Boltzmann collision operator Q(G1, G2):

Q(G1, G2) =
∫

R3×S2
|u− v|γB(θ)|{G1(v′)G2(u′)−G1(v)G2(u)}dudω, (2.2)

where −3 < γ ≤ 1, B(θ) ≤ C| cos θ|, v′ = v−[(v−u)·ω]ω and u′ = u+[(v−u)·ω]ω.
These collision operators cover hard-sphere interactions and inverse-power law with
an angular cutoff. The hard potential means 0 ≤ γ ≤ 1, and the soft potential
means −3 < γ < 0.

The second class is the Landau collision operator

Q(G1, G2) =
∑

1≤i,j≤3

∂i

∫
φij(v − u){G1(u)∂jG2(v)−G2(v)∂jG1(u)}du , (2.3)
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where ∂i = ∂vi and

φij ≡
1
|v|

{
δij −

vivj

|v|2

}
. (2.4)

Let
Fε = µ + ε

√
µfε

be the perturbation around the global Maxwellian

µ =
1

(2π)3/2
e−

|v|2
2 .

Define L, the linearized collision operator, as follows

Lg ≡ − 1
√

µ
{Q(µ,

√
µg) +Q(

√
µg, µ)}, (2.5)

and the nonlinear collision operator Γ as

Γ(g, h) =
1
√

µ
Q(
√

µg,
√

µh). (2.6)

The rescaled Boltzmann equation (2.1) is written in terms of the perturbation fε

as follows:

∂tfε + v · ∇xfε +
1
ε
Lfε = Γ(fε, fε). (2.7)

We first recall that the operator L ≥ 0, and for any fixed (t, x), the null space of L is
generated by [

√
µ, v

√
µ, |v|2√µ]. For any function f(t, x, v) we thus can decompose

f = Pf + (I−P)f

where Pf (the hydrodynamic part) is the L2
v projection on the null space for L for

given (t, x). We can further denote

Pf = {ρf (t, x) + v · uf (t, x) + ( |v|
2

2 − 3
2 )θf (t, x)}√µ. (2.8)

Here we define the hydrodynamic field of f as

[ρf (t, x), uf (t, x), θf (t, x)]

which represents the density, velocity and temperature fluctuations physically.
In order to state our results precisely, we introduce the following norms and

notations. We use 〈· , ·〉 to denote the standard L2 inner product in R3
v, while we

use (· , ·) to denote the L2 inner product either in T3×R3 or in T3 with corresponding
the L2 norm ‖ · ‖. We use the standard notation Hs to denote the Sobolev space
W s,2. For the Boltzmann collision operator (2.2), we define the collision frequency
as

ν(v) ≡
∫

R3
|v − v′|γµ(v′)dv′, (2.9)

which behaves like |v|γ as |v| → ∞. It is natural to define the following weighted
L2 norm to characterize the dissipation rate.

|g|2ν ≡
∫

R3
g2(v)ν(v)dv, ‖g‖2ν ≡

∫
T3×R3

g2(x, v)ν(v)dvdx.

For the Landau operator (2.3). let

σij(v) =
∫

R3

1
|v − u|

{
δij −

(v − u)i(v − u)j

|v − u|2

}
µ(u) du . (2.10)
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The natural norms are given by the σ-norm

|g|2σ ≡
∑

1≤i,j≤3

∫ 3

R
{σij∂

ig∂jg + σijv
ivjg2}dv ,

‖g‖2σ ≡
∑

1≤i,j≤3

∫
R3×T3

{σij∂
ig∂jg + σijv

ivjg2}dvdx .

We also use a unified notation for the dissipation as |g|D and ‖g‖D to denote either
|g|ν or |g|σ, ‖g‖ν or ‖g‖σ respectively. Let the weight function w(v) be

w(v) ≡ |(1 + |v|2) 1
2 .

For both Boltzmann and Landau kernels we have

‖w−3/2g‖ ≤ C‖g‖D . (2.11)

See [7] for the details.
In order to be consistent with the hydrodynamic equations, we define

∂β
α = ∂α1

x1
∂α2

x2
∂α3

x3
∂β1

v1
∂β2

v2
∂β3

v3
(2.12)

where α = [α1, α2, α3] is related to the space derivatives, while β = [β1, β2, β3] is
related to the velocity derivatives.

We now define instant energy functionals and the dissipation rate.

Definition 1 (Instant Energy) For N ≥ 8, for some constant C > 0, an
instant energy functional EN,l(f)(t) ≡ EN,l(t) satisfies:

(i) for hard potentials with 0 ≤ γ ≤ 1 in (2.2)

1
C
EN,l(t) ≤

∑
|α|≤N+1

‖∂αf‖2 +
∑

|α|+|β|≤N

‖wl∂β
αf‖2 ≤ CEN,l(t) ; (2.13)

(ii) for soft potentials with −3 < γ < 0 in (2.2)

1
C
EN,l(t) ≤

∑
|α|≤N+1

‖∂αf‖2 +
∑

|α|+|β|≤N

‖w{l−|β|}|γ|∂β
αf‖2 ≤ CEN,l(t) ; (2.14)

(iii) for the Landau kernel (2.3),

1
C
EN,l(t) ≤

∑
|α|≤N+1

‖∂αf‖2 +
∑

|α|+|β|≤N

‖wl−|β|∂β
αf‖2 ≤ CEN,l(t). , (2.15)

for all functions f(t, x, v).

Definition 2 (Dissipation Rate) For N ≥ 8, the dissipation rate DN (t) is
defined as

(i) for hard potentials with 0 ≤ γ ≤ 1 in (2.2)

DN,l(t) =
∑

|α|≤N+1

(
ε‖∂αPf‖2(t) +

1
ε
‖∂α(I−P)f‖2ν

)
+

1
ε

∑
|α|+|β|≤N

‖wl∂β
α(I−P)f‖2ν ;

(2.16)
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(ii) for soft potentials with −3 < γ < 0 in (2.2)

DN,l(t) =
∑

|α|≤N+1

(
ε‖∂αPf‖2(t) +

1
ε
‖∂α(I−P)f‖2ν

)
+

1
ε

∑
|α|+|β|≤N

‖w{l−|β|}|γ|∂β
α(I−P)f‖2ν .

(2.17)

(iii) for the Landau kernel (2.3),

DN,l(t) =
∑

|α|≤N+1

(
ε‖∂αPf‖2(t) +

1
ε
‖∂α(I−P)f‖2ν

)
+

1
ε

∑
|α|+|β|≤N

‖wl−|β|∂β
α(I−P)f‖2ν .

(2.18)

Both the instant energy and the dissipation rate are carefully designed to capture
the structure of the rescaled Boltzmann equation (2.1) in the acoustic regime. For
soft potentials, EN,l and DN,l involve a weight function in v which depends on the
number of velocity derivatives ∂β . This is designed to control the velocity derivatives
for the streaming terms v · ∇x by a weak dissipation rate as proposed in [7]. In
particular, the dissipation rates in (2.16), (2.17), (2.18) in which the hydrodynamic
part has ε scale reflect that we do not observe the dissipation in the limit, which is
exactly the case of the acoustic system.

We state the main result of this article.

Theorem 2.1. Let N ≥ 8. Let 0 < ε ≤ 1
4 be given. Suppose fε(0, x, v) = fε

0 (x, v)
satisfies the mass, momentum, and energy conservation laws

(fε
0 , [1, v, |v|2]√µ) = 0, (2.19)

and Fε(0, x, v) = µ + εfε
0 (x, v) ≥ 0. If EN,l(fε)(0) is sufficiently small, then there

exists a unique global-in-time solution fε(t, x, v) to (2.7), and moreover there exists
an instant energy functional EN,l(fε)(t) such that

d

dt
EN,l(fε)(t) +DN,l(fε)(t) ≤ 0. (2.20)

In particular, we have the following global energy bound:

sup
0≤t≤∞

EN,l(fε)(t) ≤ EN,l(fε)(0). (2.21)

Remark 2.2. The global existence of solutions fε to (2.7) follows from the a priori
global energy bound (2.21) by rather standard method. In this article, we focus on
proving the uniform bound.

Remark 2.3. Note that due to the weak dissipation (2.16), we cannot deduce the
time decay estimate from the energy inequality (2.20) unlike the incompressible
Navier-Stokes-Fourier case in [7, 8]. Indeed, physically, we do not expect any time
decay of our instant energy EN,l(fε)(t), since the acoustic system preserves the
initial energy for all time. See Lemma 4.2.
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3. Basic estimates of collision operators. In this section, we sum up some
basic estimates of collision operators for various kernels considered in this paper.
The proofs can be found in [7]. The following is the coercivity of L.

Lemma 3.1. There exists δ > 0 such that for any f ∈ L2(R3
v)

〈Lf, f〉 ≥ δ|(I−P)f |2ν . (3.1)

Lemma 3.2. For hard potential with γ ≥ 0, there exits C|β|, C > 0 such that

(w2l∂β
αLf , ∂β

αf) ≥ 1
2
‖wl∂β

αf‖2ν − C|β|‖f‖2ν , (3.2)

(∂β
αΓ(f, g), ∂β

αh) ≤ C{‖wl∂β1
α1

f‖ · ‖wl∂β2
α2

g‖ν + ‖wl∂β1
α1

g‖ · ‖wl∂β2
α2

f‖ν}‖wl∂β
αh‖ν .

(3.3)
where l ≥ 0, and summation is for |α| + |β| ≤ N with β1 + β2 ≤ β and α2 ≤ α
componentwise.

Lemma 3.3. For the inverse power law with −3 < γ < 0, for any l ≥ 0, there exist
C|β| , C > 0 such that

(w{2l−2|β|}|γ|∂β
αLf , ∂β

αf) ≥ 1
2
‖w{l−|β|}|γ|∂β

αf‖2ν − C|β|‖f‖2ν , (3.4)

(w{2l−2|β|}|γ|∂β
αΓ(f, g) , ∂β

αh) ≤ C{‖w{l−|β1|}|γ|∂β1
α1

f‖ · ‖w{l−|β2|}|γ|∂β2
α2

g‖ν

+ ‖w{l−|β1|}|γ|∂β1
α1

g‖ · ‖w{l−|β2|}|γ|∂β2
α2

f‖ν}

× ‖w{l−|β|}|γ|∂β
αh‖ν ,

(3.5)

where the summation is taken over |α1| + |β1| ≤ |α| + |β| ≤ [N
2 ] + 4, and α2 ≤ α

and β2 ≤ β componentwise.

Lemma 3.4. For the Landau kernel, for any l ≥ 0, there exist C|β|, C > 0, such
that

(w2l−2|β|∂β
αLf , ∂β

αf) ≥ 1
2
‖wl−|β|∂β

αf‖2σ − C|β|‖f‖2σ , (3.6)

(w2l−2|β|∂β
αΓ(f, g) , ∂β

αh) ≤ C{‖wl−|β1|∂β1
α1

f‖ · ‖wl−|β2|∂β2
α2

g‖σ

+ ‖wl−|β1|∂β1
α1

g‖ · ‖wl−|β2|∂β2
α2

f‖σ}

× ‖wl−|β|∂β
αh‖σ ,

(3.7)

where the summation is taken over |α| + |β| ≤ N , and β1 + β2 ≤ β and α2 ≤ α
componentwise.

As a direct consequence of (3.3) in the above lemmas, we can estimate the pure
spatial derivatives for the nonlinear collision operator Γ.

Lemma 3.5. Let ζ(v) be a smooth function that decays exponentially, then there
is a given instant energy functional EN,0(f) and Cζ > 0, such that for summation
over α1 + α2 = α, |α| ≤ N ,

(∂αΓ(f , g) , ∂αh) ≤ {E1/2
N,0(f)‖∂α2g‖ν + E1/2

N,0(g)‖∂α2f‖ν}‖∂α3h‖ν ,∥∥∥∥∫
∂αΓ(f , g)ζ dv

∥∥∥∥ ≤ Cζ{E1/2
N,0(f) · ‖∂α2g‖ν + E1/2

N,0(g) · ‖∂α2f‖ν} .
(3.8)
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4. Derivation of Acoustic System. In this section, we derive the acoustic system
as the hydrodynamic limit of solutions fε to the rescaled Boltzmann equation (2.7).
Since we have the uniform energy bound in ε by Theorem 2.1, there exists the
unique limit f of fε in ε and we remark that due to higher order energy bound, all
the limits in the below are strongly convergent. First, by letting ε → 0 in (2.7), one
finds that Lf = 0. Thus f can be written as follows:

f = {ρ + v · u +
(
|v|2
2 − 3

2

)
θ}√µ,

for ρ, u, θ are functions of t, x. In order to determine the dynamics of ρ, u, θ,
project (2.7) onto {√µ, v

√
µ, ( |v|

2

2 − 3
2 )
√

µ}: by collision invariants, first we get

〈∂tfε + v · ∇xfε, {1, v, ( |v|
2

3 − 1)}√µ〉 = 0

and take the limit ε → 0 to get

〈∂tf + v · ∇xf, {1, v, ( |v|
2

3 − 1)}√µ〉 = 0

Since f = Pf , this is equivalent to

∂tρ +∇x ·u = 0

∂tu +∇x(ρ + θ) = 0

∂tθ + 2
3∇x ·u = 0

(4.1)

Thus we have shown the following proposition on the mathematical derivation of
the acoustic system from the Boltzmann equation.

Proposition 4.1. Assume that Fε = µ + ε
√

µfε solves the rescaled Boltzmann
equation (2.1) where fε is obtained from Theorem 2.1. Then there exists the hydro-
dynamic limit f of fε such that f = Pf , and furthermore its macroscopic variables
ρ, u, θ solve the acoustic system (4.1).

The acoustic system is a linear system and it is globally well-posed in the Sobolev
space.

Lemma 4.2. The acoustic system (4.1) is globally well-posed in Hs(T3) space, for
any s ≥ 0. Moreover, we obtain the following estimates:

d

dt
{||ρ1||2Hs + ||u1||2Hs + 3

2 ||θ1||2Hs} = 0 (4.2)

Proof. The existence of solutions can be verified, for instance by solving the ordinary
differential equation after taking Fourier transform in x ∈ T3. The energy estimates
give rise to the conservation of energy (4.2). The uniqueness is easily deduced.

5. uniform spatial energy estimates. In this section, we shall establish a uni-
form spatial energy estimate for fε, a solution to (2.7):

∂tfε + v · ∇xfε +
1
ε
Lfε = Γ(fε, fε)

For the convenience, we rewrite the fluid part Pfε as follows:

Pfε = {aε(t, x) + bε(t, x) · v + cε(t, x)|v|2}√µ

Our goal is to estimate aε(t, x), bε(t, x), and cε(t, x) in terms of (I−P)fε.
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Lemma 5.1. Assume fε is a solution to (2.7) satisfying conservation of mass,
momentum and energy:

(fε(t), [1, v, |v|2]√µ) = 0. (5.1)

Then there exists C1 > 0 such that

ε
∑

|α|≤N+1

‖∂αPfε‖2 ≤ ε
dG(t)

dt
+

C1

ε

∑
|α|≤N+1

‖∂α(I−P)fε‖2ν + C1ε
∑
|α|≤N

‖∂αΓ(fε, fε)‖‖2

(5.2)

where G(t) is defined as

−
∑
|α|≤N

∫
T3

(〈(I−P)∂αfε , ζij〉 · ∂j∂αbε − 〈(I−P)∂αfε , ζc〉 · ∇x∂αcε) dx

−
∑
|α|≤N

∫
T3

(〈(I−P)∂αfε , ζ〉 · ∇x∂αaε − ∂αbε · ∇x∂αaε) dx .

(5.3)

Here ζij(v) , ζc(v) , ζa(v) are some fixed linear combinations of the basis

[
√

µ, vi
√

µ, vivj
√

µ, vi|v|2
√

µ]

for 1 ≤ i , j ≤ 3, and f‖ is the L2
v projection of f onto the subspace generated by the

same basis. It is obvious that |G(t)| ≤ CEN,0(t).

Proof. The proof is similar to the one of Lemma 6.1 in [7]. For the clear presentation
of this article, we provide the key ingredients and estimates and point out the
difference. From the conservation of mass, momentum, and energy (5.1), it follows
that ∫

T3
aε(t, x)dx =

∫
T3

bε(t, x)dx =
∫

T3
cε(t, x)dx = 0

By Poincaré inequality, it suffices to estimate

∇x∂αaε, ∇x∂αbε, ∇x∂αcε,

for |α| ≤ N . First, we use the local conservation laws: Multiply
√

µ, v
√

µ, |v|2√µ

with (2.7) and integrate in v ∈ R3. By the collision invariants, we obtain

∂ta
ε =

1
2
〈v · ∇x(I−P)fε, |v|2

√
µ〉

∂tc
ε +

1
3
∇x · bε = −1

6
〈v · ∇x(I−P)fε, |v|2

√
µ〉

∂tb
ε +∇xaε + 5∇xcε = −〈v · ∇x(I−P)fε, v

√
µ〉

(5.4)

The second ingredient of the proof is the macroscopic equations. By plugging
fε = Pfε + (I−P)fε into (2.7), we get

{∂ta
ε + ∂tb

ε · v + ∂tc
ε|v|2}√µ + v · {∇xaε +∇xbε · v +∇xcε|v|2}√µ

= −{∂t + v · ∇x}(I−P)fε −
1
ε
L(I−P)fε + Γ(fε, fε)

Fix t, x, and compare the coefficients on both sides in front of

[
√

µ, vi
√

µ, vivj
√

µ, vi|v|2
√

µ].
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Then we get the following macroscopic equations as

∂ic
ε = lεc + hε

c (5.5)

∂tc
ε + ∂ib

ε
i = lεi + hε

i (5.6)

∂ib
ε
j + ∂jb

ε
i = lεij + hε

ij , i 6= j (5.7)

∂tb
ε
i + ∂ia

ε = lεbi + hε
bi (5.8)

∂ta
ε = lεa + hε

a (5.9)

Here the linear parts lεc , l
ε
i , l

ε
ij , l

ε
bi, l

ε
a are of the form

〈−{∂t + v · ∇x}(I−P)fε −
1
ε
L(I−P)fε, ζ〉 (5.10)

where ζ is a linear combination of the basis

[
√

µ, vi
√

µ, vivj
√

µ, vi|v|2
√

µ],

and accordingly, hε
c, h

ε
i , h

ε
ijh

ε
bi, h

ε
a are defined as 〈Γ(fε, fε), ζ〉 with the same choices

of ζ.
Following the proof of Lemma 6.1 in [7], we first deduce

‖∇∂αbε‖2 ≤ − d

dt

∫
T3
〈(I−P)∂αfε, ζij〉 · ∂j∂αbεdx

+ C‖∇x∂α(I−P)fε‖ν{‖∇∂αaε‖+ ‖∇∂αcε‖}
+ C{‖∂α(I−P)fε‖2ν + ‖∇x∂α(I−P)fε‖2ν}

+
C

ε
{‖∇x∂α(I−P)fε‖ν + ‖∂α(I−P)fε‖ν}‖∇∂αbε‖+ C‖∂αhε

‖‖ · ‖∇∂αbε‖.

Note that the difference from the estimate in [7] so far is that the scaling parameter
ε is absent in the t-derivative term due to the acoustic scaling. Now multiply it by
ε and apply the Cauchy-Schwarz inequality to get

ε‖∇∂αbε‖2 ≤ −ε
d

dt

∫
T3
〈(I−P)∂αfε, ζij〉 · ∂j∂αbεdx +

ε2

2
{‖∇∂αaε‖2 + ‖∇∂αcε‖2}

+
C

ε
{‖∇x∂α(I−P)fε‖2ν + ‖∂α(I−P)fε‖2ν}+ Cε‖∂αhε

‖‖
2 +

ε

2
‖∇∂αbε‖2.

By the same token, we obtain the similar estimates on ∇∂αcε and ∇∂αaε as follows:

ε‖∇∂αcε‖2 ≤ −ε
d

dt

∫
T3
〈(I−P)∂αfε, ζc〉 · ∇x∂αcεdx +

ε2

2
‖∇∂αbε‖2

+
C

ε
{‖∇x∂α(I−P)fε‖2ν + ‖∂α(I−P)fε‖2ν}+ Cε‖∂αhε

‖‖
2 +

ε

2
‖∇∂αcε‖2,

ε‖∇∂αaε‖2 ≤ −ε
d

dt
{
∫

T3
〈(I−P)∂αfε, ζ〉 · ∇x∂αaεdx +

∫
T3

∂αbε · ∇x∂αaεdx}+
ε2

2
‖∇∂αbε‖2

+
C

ε
{‖∇x∂α(I−P)fε‖2ν + ‖∂α(I−P)fε‖2ν}+ Cε‖∂αhε

‖‖
2 +

ε

2
‖∇∂αaε‖2.

By absorbing the hydrodynamic terms in the right hand sides into the left hand
sides, we obtain the desired estimates (5.2).

Next we perform the energy estimates of spatial derivatives.
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Lemma 5.2. Assume that fε is a solution to equation (2.7) and satisfies (5.1);
then there exists a constant C1 ≥ 1 such that the following energy estimate is valid:

d

dt
{C1

∑
|α|≤N+1

‖∂αfε‖2 − εδG(t)}+ δ
∑

|α|≤N+1

{ε‖∂αPfε‖2 +
1
ε
‖∂α(I−P)fε‖2ν}

≤ 2C1

∑
|α|≤N+1

(∂αΓ(fε, fε), ∂αfε) + εδ
∑
|α|≤N

‖∂αΓ(fε, fε)‖‖2

≤ C{E1/2
N,0(fε) + EN,0(fε)}DN,0(fε)

(5.11)

Proof. We take ∂α of (2.7) and sum over α to get

1
2

d

dt
‖∂αfε‖2 +

δ

ε
‖(I−P)∂αfε‖2ν ≤ (∂αΓ(fε, fε), ∂αfε) .

By Lemma 5.1, there is a constant C1 ≥ 1 such that

δ

2ε

∑
|α|≤N+1

‖∂α(I−P)fε‖2ν

≥ δε

2C1

∑
|α|≤N+1

‖∂αPfε‖2 −
δε

2C1

dG

dt
− δε

2

∑
|α|≤N

‖∂αΓ(fε, fε)‖‖2 .

(5.12)

Multiply by C1 and collecting terms, we deduce the first inequality in (5.11). By
the nonlinear estimate in (3.8), it is easy to derive that for |α| ≤ N

‖∂αΓ(fε , fε)‖‖2 ≤ CEN,0(fε)DN,0(fε) , (5.13)

and

(∂αΓ(fε , fε) , ∂αfε) ≤ CE1/2
N,0(fε)‖ε1/2∂αfε‖ν‖ε−1/2∂α(I−P)fε‖ν

≤ CE1/2
N,0(fε)DN,0(fε) .

(5.14)

Thus, the second inequality in (3.8) follows and this finishes the proof of the lemma.

6. The first order remainder. In this section we finish the proof of Theorem
2.1. We already established a pure spatial energy estimate for all collision kernels
in Lemma 5.2. For general derivatives ∂β

α, different collision kernels require differ-
ent weight functions, we treat separately in two cases: hard potentials then soft
potentials and Landau kernel.

6.1. Proof of hard potential case of Theorem 2.1.

Proof. First note that for the hydrodynamic part Pfε,

‖∂β
αPfε‖ ≤ C‖∂αPfε‖

which has been estimated in Lemma 5.2. In order to prove Theorem 2.1, it remains
to estimate the remaining microscopic part ∂β

α(I−P)fε for |α|+ |β| ≤ N . We take
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∂β
α of equation (2.7) and sum over |α|+ |β| ≤ N to get

∂t∂
β
α(I−P)fε + v · ∇x∂β

α(I−P)fε +
1
ε
∂β

αL(I−P)fε

+
(

∂t∂
β
αPfε + v ·∇x∂β

αPfε +
(

β1

β

)
∂β1v ·∇x∂β−β1

α fε

)
= ∂β

αΓ(fε , fε) ,

(6.1)

where |β1| = 1. Taking the inner product with w2l∂β
α(I−P)fε, we get

d

dt

{
1
2
‖wl∂β

α(I−P)fε‖2
}

+
1
ε
(w2l∂β

αL(I−P)fε , ∂β
α(I−P)fε)

+
(

∂t∂
β
αPfε + v ·∇x∂β

αPfε +
(

β1

β

)
∂β1

α v ·∇x∂β−β1
α fε , w2l∂β

α(I−P)fε

)
≤

(
w2l∂β

αΓ(fε , fε) , ∂β
α(I−P)fε

)
.

(6.2)

By the linear estimate (3.2), we have

1
ε
(w2l∂β

αL(I−P)fε , ∂β
α(I−P)fε) ≥

1
2ε
‖wl∂β

α(I−P)fε‖2ν −
C

ε
‖∂α(I−P)fε‖2ν .

(6.3)
From the local conservation laws (5.4) and the estimate (5.13),

‖w2l∂t∂
β
αPfε‖ ≤ C

∑
|α|≤N

(‖∂t∂αaε‖+ ‖∂t∂αbε‖+ ‖∂t∂αcε‖)

≤ C

 ∑
|α|≤N+1

‖∂αfε‖ν +
∑
|α|≤N

‖∂αhε
‖‖


≤ C

 ∑
|α|≤N+1

‖∂αfε‖ν + E1/2
N,0(fε)D1/2

N,0(fε)

 .

(6.4)

We also have

‖w2lv ·∇x∂β
αPfε‖ ≤ C

∑
|α|≤N

‖∇x∂αPfε‖ ≤ C
∑

|α|≤N+1

‖∂αPfε‖ . (6.5)

Thus the first two inner products in the second line of (6.2) is bounded by

1
8ε

∑
|α|+|β|≤N

‖∂β
α(I−P)fε‖2ν + C

 ∑
|α|≤N+1

‖∂αfε‖2ν + E1/2
N,0(fε)DN,0(fε)

 . (6.6)

The last term in the second line of (6.2) is bounded by

C|(∂β1v ·∇x∂β−β1
α (I−P)fε , w2l∂β

α(I−P)fε)|

+ C|(∂β1v ·∇x∂β−β1
α Pfε , w2l∂β

α(I−P)fε)|

≤ C‖∇x∂β−β1
α (I−P)fε‖2ν +

1
8ε
‖wl∂β

α(I−P)fε‖2ν + Cε‖∂αPfε‖2

≤ CεDN,l(fε) +
1
8ε
‖wl∂β

α(I−P)fε‖2ν + Cε‖∂αPfε‖2 ,

(6.7)

since ν(v) is bounded from below for hard potential.
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Now we estimate the nonlinear term in (6.2). By the nonlinear estimate in (3.3),

(w2l∂β
αΓ(fε, fε) , ∂β

α(I−P)fε) ≤ CE1/2
N,l (fε)‖ε1/2wl∂αfε‖ν‖ε−1/2wl∂α(I−P)fε‖ν

≤ CE1/2
N,l (fε)DN,l(fε) .

(6.8)

Using the coercivity of L (3.1) and absorbing a total of 1
ε‖w

l∂β
α(I−P)fε‖2ν from

the right-hand side, we have∑
|α|+|β|≤N

(
d

dt

{
1
2
‖wl∂β

α(I−P)fε‖2
}

+
1
4ε
‖wl∂β

α(I−P)fε‖2ν
)

≤ C
∑
aaN

‖∂αfε‖2ν + C
(
E1/2

N,l (fε) + ε
)
DN,l(fε) .

(6.9)

Multiplying (6.9) by a factor and adding a large multiple K of (5.11), we have

d

dt
(K{C1

∑
|α|≤N+1

‖∂αfε‖2 − εδG(t)}+ 2
∑

|α|+|β|≤N

‖wl∂β
α(I−P)fε‖2) +DN,l(fε)

≤ CK

(
E1/2

N,l (fε) + EN,l(fε) + ε
)
DN,l(fε) .

(6.10)

Notice that
‖wl∂β

αPfε‖2 ≤ C‖∂αPfε‖2 ≤ C‖∂αfε‖2 , (6.11)
and

G(t) ≤ C
∑
aaN

‖∂αPfε‖(‖I−P∂αfε‖+ ‖∂αPfε‖) . (6.12)

Thus we can redefine the instant energy by

EN,l(fε) = K{C1

∑
|α|≤N+1

‖∂αfε‖2− εδG(t)}+2
∑

|α|+|β|≤N

‖wl∂β
α(I−P)fε‖2 (6.13)

for ε sufficiently small. By a standard continuity argument, we deduce our main
estimate (2.20) by letting EN,l(fε) be sufficiently small initially.

6.2. Proof of soft potential and Landau cases for Theorem 2.1. We follow
the same idea as in the hard potential case to establish (2.20) for both soft poten-
tial and Landau kernels. First, for soft potential cases, we take inner product of
w2(l−|β|)|γ|∂β

α(I−P)fε with the equation (6.1) and sum over |α|+ |β| ≤ N to get

d

dt

{
1
2
‖w{l−|β|}|γ|∂β

α(I−P)fε‖2
}

+
1
ε
(w2{l−|β|}|γ|∂β

αL(I−P)fε , ∂β
α(I−P)fε)

+
(

∂t∂
β
αPfε + v ·∇x∂β

αPfε +
(

β1

β

)
∂β1

α v ·∇x∂β−β1
α fε , w2{l−|β|}|γ|∂β

α(I−P)fε

)
≤

(
w2{l−|β|}|γ|∂β

αΓ(fε , fε) , ∂β
α(I−P)fε

)
,

(6.14)

for |β1| = 1. By the linear estimate (3.4), we have
1
ε
(w2{l−|β|}|γ|∂β

αL(I−P)fε , ∂β
α(I−P)fε)

≥ 1
2ε
‖w{l−|β|}|γ|∂β

α(I−P)fε‖2ν −
C

ε
‖∂α(I−P)fε‖2ν .

(6.15)
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From the local conservation laws (5.4), we have

‖w2{l−|β|}|γ|∂t∂
β
αPfε‖ ≤ C

 ∑
|α|≤N+1

‖∂αfε‖ν + E1/2
N,0(fε)D1/2

N,0(fε)

 . (6.16)

We also have

‖w2{l−|β|}|γ|v ·∇x∂β
αPfε‖ ≤ C

∑
|α|≤N

‖∇x∂αPfε‖ ≤ C
∑

|α|≤N+1

‖∂αPfε‖ . (6.17)

Note that ‖ · ‖ν is equivalent to ‖wγ/2 · ‖, the first two inner products in the second
line of (6.14) is bounded by

1
8ε

∑
|α|+|β|≤N

‖w{l−|β|}|γ|∂β
α(I−P)fε‖2ν+C

 ∑
|α|≤N+1

‖∂αfε‖2ν + E1/2
N,0(fε)DN,0(fε)

 .

(6.18)
The weight function w|β|γ is so designed to treat the last term in the second line of
(6.14)

C|(∂β1v ·∇x∂β−β1
α (I−P)fε , w2{l−|β|}|γ|∂β

α(I−P)fε)|

+ C|(∂β1v ·∇x∂β−β1
α Pfε , w2{l−|β|}|γ|∂β

α(I−P)fε)|

≤ C‖wl+|β−β1|γ∇x∂β−β1
α (I−P)fε‖2ν +

1
8ε
‖w{l−|β|}|γ|∂β

α(I−P)fε‖2ν + Cε‖∂αPfε‖2

≤ CεDN,l(fε) +
1
8ε
‖w{l−|β|}|γ|∂β

α(I−P)fε‖2ν + Cε‖∂αPfε‖2 .

(6.19)

The nonlinear term in (6.14) is estimated by (3.5),

(w2{l−|β|}|γ|∂β
αΓ(fε, fε) , ∂β

α(I−P)fε)

≤ CE1/2
N,l (fε)‖ε1/2w{l−|β|}|γ|∂αfε‖ν‖ε−1/2w{l−|β|}|γ|∂α(I−P)fε‖ν

≤ CE1/2
N,l (fε)DN,l(fε) .

(6.20)

The rest of the proof is similar to the hard potential case, the nonlinear estimate
(2.20) can be deduced by letting

EN,l(fε) = K{C1

∑
|α|≤N+1

‖∂αfε‖2 − εδG(t)}

+ 2
∑

|α|+|β|≤N

‖w{l−|β|}|γ|∂β
α(I−P)fε‖2 .

(6.21)

To establish the estimate (2.20) for the Landau case for which the power of weight is
γ = −1. We follow the same procedure as in the soft potential case. Take the inner
product with w2l−2|β|∂β

α(I−P)fε for equation (6.1) to get (6.14) with γ = −1. All
the estimates for the soft potential case can applied for the case γ = −1. So we
omit the details here.
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