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Abstract. We construct the weakly nonlinear-dissipative approximate system for the general
compressible Navier-Stokes system in a periodic domain. It was shown in [11] that because
the Navier-Stokes system has an entropy structure, its approximate system will have Leray-like
global weak solutions. These solutions decompose into an incompressible part governed by an
incompressible Navier-Stokes system, and an acoustic part governed by a nonlocal quadratic
equation which couples it to the incompressible part. We obtain regularity results for the
acoustic part of the solution via a Littlewood-Paley decomposition that extend to this general
setting results found by Masmoudi [18] and Danchin [6] in the γ-law barotropic setting.

1. Introduction

We study the weakly nonlinear-dissipative approximation of the general compressible Navier-
Stokes system over a periodic domain. This approximation governs the long-time behavior of
small perturbations about a constant state when the dissipation is weak. The theory of such
approximations was developed in [11] for general hyperbolic-parabolic systems with an entropy
structure. There it was shown that the entropy structure of the original system endows the
approximate system with a natural Hilbert space structure within which a Leray-like existence
theory of global weak solutions can be established. Here this approximate system is constructed
for the general compressible Navier-Stokes system, in which case we call it the weakly compress-
ible Navier-Stokes system. Its solutions decompose into an incompressible part that is governed
by an incompressible Navier-Stokes system, and an acoustic part that is governed by nonlocal
quadratic equations which couples it to the incompressible part. The nonlocal nature of these
equations arises because they are derived by time-averaging over the fast acoustic dynamics.
We obtain regularity results for the acoustic part of the solution via a Littlewood-Paley decom-
position, which extend to this general setting results found by Masmoudi [18] and Danchin [6]
in the γ-law barotropic setting. This regularity allows us to show that the uniqueness question
for weak solutions reduces to the question of uniqueness for their incompressible parts.

Our starting point is the general compressible Navier-Stokes system for a gas inD-dimensional
periodic spatial domain TD. The system is

(1.1)

∂tρ+∇x ·(ρu) = 0 ,

∂t(ρu) +∇x ·(ρu⊗ u+ pI) = ∇x ·S ,
∂t

(
1
2
ρ|u|2 + ρε

)
+∇x ·

(
1
2
ρ|u|2u+ ρεu+ pu

)
= ∇x ·(S · u− q) .

These equations express the local conservation of mass, momentum, and energy respectively.
Here I denotes the D × D identity matrix. We shall take as the basic dependent variables
the mass density ρ(t, x) ≥ 0, the bulk velocity u(t, x) ∈ RD, and the specific internal energy
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ε(t, x) ≥ 0. The pressure p = p(ρ, ε) is given by a thermodynamic equation of state. The
deviatoric stress tensor S and heat flux q are given by the constitutive relations

(1.2) S = µ
[
∇xu+ (∇xu)

T − 2
D

(∇x ·u)I
]
+ λ(∇x ·u)I , q = −κ∇xθ ,

where the temperature θ = θ(ρ, ε) > 0 is given by a thermodynamic equation of state, while
the shear viscosity coefficient µ = µ(ρ, ε) > 0, the bulk viscosity coefficient λ = λ(ρ, ε) ≥ 0, and
the thermal conductivity coefficient κ = κ(ρ, ε) > 0 come either from some non-equilibrium
(kinetic) theory or from fits to experimental data.

Weakly nonlinear-dissipative approximations of the compressible Navier-Stokes system (1.1)
govern regimes in which the gas is near a global equilibrium and the coefficients of viscosity
and thermal conductivity are small. Because we have assumed that µ > 0 and κ > 0, the only
global equilibria of (1.1) over a periodic domain are the constant states [11]. By a Galilean
transformation, any global equilibrium can then be put into the form (ρ, u, ε) = (ρo, 0, εo) where
ρo and εo are positive constants.

We apply the general theory developed in [11] to derive the averaged equation. For the
compressible Navier-Stokes system, the averaged system has fruitful structural features that
makes it amenable to analytic study. More specifically, let A be the acoustic operator, which
is the linearization of the Navier-Stokes system (1.1) neglecting dissipation about the constant
state (ρo, 0, εo),

(1.3) A


ρ̃

ũ

ε̃

 =


ρo∇x ·ũ

po
ρ

ρo
∇xρ̃+

po
ε

ρo
∇xε̃

po

ρo
∇x ·ũ

 ,

where the coefficients are evaluated at the constant state.
The acoustic operator A has nontrivial null space Null(A) which contains the incompress-

ibility and Boussinesq relations

(1.4) ∇x ·ũ = 0 , po
ρρ̃+ po

εε̃ = 0 .

We call it the incompressible mode, while we call its orthogonal complement space Null(A)⊥

the acoustic mode.
The projection of the avaeraged system on Null(A) is the incompressible Navier-Stokes equa-

tions with Boussinesq relation, while on Null(A)⊥ is a nonlocal quadratic system which is cou-
pled with the projection on incompressible mode and describes how the fast waves propagate.
This is the reason we call the weakly nonlinear-dissipative approximation of the compressible
Navier-Stokes system the weakly compressible Navier-Stokes system.

In the present paper, there are two key novelties. First, we study the fully general gas
dynamics. This means we consider the compressible Navier-Stokes system not only includes the
energy equation, but also without any unphysical restrictions on the pressure law and entropy.
In their studies of incompressible limits of the compressible Navier-Stokes equations, Masmoudi
[18] and Danchin [6] also derived the averaged system which describes the propagation of the
fast oscillation of the acoustic waves, inspired by the work of Schochet [20]. But they only
worked on the γ-law barotropic gases, i.e. p = aργ in (1.1), so that no energy equation is
considered. Thus we generalize the results of Masmoudi and Danchin on the averaged system
from barotropic gases to general gases.
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Second, working in the general setting clarifies the central role played by the entropy, which
is used not only to define a natural Hilbert space in which we prove the global existence and
regularity of the averaged system, but also to illustrate the structure of the incompressible
and acoustic modes. In previous works on the low Mach number limits of γ-law barotropic gas
dynamics, or in the work of Hoff-Zumbrun on the diffusion waves for the isentropic compressible
Navier-Stokes equations [9, 10] in which they also derived the averaged equations, the entropic
structure of the compressible Navier-Stokes was not illustrated.

The outline of this paper is the following: in Section 2, we derive the formal averaged
system of the compressible Navier-Stokes-Fourier system, and describe the projections on the
incompressible mode Null(A) and acoustic mode Null(A)⊥. In Section 4, we use a Littlewood-
Paley decomposition to show that in the time interval of the existence of the regular solution
to the incompressible Navier-Stokes equations, the averaged system in the acoustic mode has
higher regularity.

2. Preliminaries

We begin this section with a review of the framework that was developed in [11] for weakly
nonlinear-dissipative approximations of hyperbolic-parabolic systems with a strictly convex
entropy. We then characterize when the compressible Navier-Stokes system (1.1) fits into this
framework.

2.1. Weakly Nonlinear-Dissipative Approximations. In [11] we studied weakly nonlinear-
dissipative approximations for a class of hyperbolic-parabolic systems with entropy. These
systems have the form

(2.1) ∂tU +∇x ·F (U) = ∇x ·[D(U) · ∇xU ] ,

where U is a vector of densities, F (U) is a twice continuously differentiable flux, and D(U) is
a continuously differentiable diffusion tensor. Moreover, they are assumed to possess a strictly
convex, thrice continuously differentiable, real-valued entropy density H(U) such that classical
solutions of (2.1) also satisfy

(2.2) ∂tH(U) +∇x ·J(U) = ∇x ·[HU(U)D(U) · ∇xU ]−∇xU ·HUU(U)D(U) · ∇xU ,

where the entropy flux J(U) satisfies JU(U) = HU(U)FU(U) while the tensor HUU(U)D(U) is
symmetric and nonnegative definite. Here HU(U), JU(U), and FU(U) denote the derivatives
of H(U), J(U), and F (U) with respect to U while HUU(U) denotes the Hessian of H(U) with
respect to U .

Weakly nonlinear-dissipative approximations of (2.1) govern regimes in which U is close to
a constant state U o and the dissipation is small. If we express the densities U in terms of
any choice of dependent variables V as U = U(V ), so that U o = U(V o), we then define the
matrix Ro by Ro = UV (V o). The weakly nonlinear-dissipative approximation of (2.1) governs

the perturbation Ṽ of V about V o by the system

(2.3) ∂tṼ +AṼ +Q
(
Ṽ , Ṽ

)
= DṼ ,

where the operator A is formally defined by

(2.4) AṼ = (Ro)−1FU(U o)Ro · ∇xṼ ,
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while the averaged operators Q and D are formally defined by

(2.5)

Q
(
Ṽ , Ṽ

)
= lim

T→∞

1

2T

∫ T

−T

esAQ
(
e−sAṼ , e−sAṼ

)
ds ,

DṼ = lim
T→∞

1

2T

∫ T

−T

esADe−sAṼ ds ,

with the operators Q and D given by

(2.6)
Q
(
Ṽ , Ṽ

)
= ∇x ·

[
1
2
(Ro)−1FUU(U o)

(
RoṼ , RoṼ

)]
,

DṼ = ∇x ·
[
(Ro)−1D(U o)Ro · ∇xṼ

]
.

The first two terms in (2.3) are the linearization of (2.1) with respect to V negelecting the
dissipation. The operator A thereby governs the fast dynamics. Nonlinearity and dissipation

will modify the dynamics on longer time scales because the perturbation Ṽ is assumed to be
small while the dissipation is assumed to be weak. The operators Q and D are averages of Q
and D over the fast dynamics that attempt to capture these modifcations.

It was shown in [11] that the entropy structure (2.2) implies that the operator A is skew-
adjoint in the Hilbert space

(2.7) H =

{
Ṽ ∈ L2

(
dx; RD+2

)
:

∫
TD

Ṽ dx = 0

}
.

equipped with the natural inner product

(2.8)
(
Ṽ1, Ṽ2

)
H

=

∫
TD

(
RoṼ1

)T
HUU(U o)RoṼ2 dx ,

The entropy structure implies moreover that Q formally satisfies the cyclic identity

(2.9)
(
Ṽ1,Q

(
Ṽ2, Ṽ3

))
H

+
(
Ṽ2,Q

(
Ṽ3, Ṽ1

))
H

+
(
Ṽ3,Q

(
Ṽ1, Ṽ2

))
H

= 0 ,

and that D formally self-adjoint and satisfies the dissipation relation

(2.10)
(
Ṽ ,DṼ

)
H
≤ 0 .

It was also shown in [11] that over the periodic spatial domain TD these formal relations could
be made rigorous, and that whenever D is strictly dissipative, the weakly nonlinear-dissipative
approximation (2.3) has a Leray-like theory of global weak solutions for initial data in H.

Finally, as was noted in [11], had we made a different choice of dependent variables W , with

the densities U expressed as U = U ′(W ), so that U o = U ′(W o), then the perturbation W̃ of W
about W o is governed by the system

∂tW̃ +A′W̃ +Q′(
W̃ , W̃

)
= D′

W̃ ,

where the operators A′, Q′
, and D′

, are related to the operators A, Q, and D appearing in
(2.3) through the tranformation matrix T = ∂W

(
U−1(U ′(W ))

)∣∣
W=W o as

(2.11) A′ = T−1AT , Q′(
W̃ , W̃

)
= T−1Q

(
TW̃ , TW̃

)
, D′

= T−1DT .
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2.2. Entropy Structure of Gas Dynanics. In this section we show that the compressible
Navier-Stokes system (1.1) is a hyperbolic-parabolic system of the form (2.1) with a strictly
convex entropy that satisfies (2.2). Indeed, it is clear that (1.1) has the form (2.1) with

(2.12) U =

 ρ
ρu

1
2
ρ|u|2 + ρε

 , F (U) =

 ρuT

ρuuT + pI
1
2
ρ|u|2uT + ρεuT + puT

 ,

and some four-tensor D(U) which we will not write down here. We therefore only have to verify
that the compressible Navier-Stokes system has a strictly convex entropy structure.

The equations-of-state for pressure and temperature, p = p(ρ, ε) and θ = θ(ρ, ε), are assumed
to be given by twice continuously differentiable functions over (ρ, ε) ∈ R2

+ that satisfy the
Maxwell relation [4]

(2.13) θ pε = p θε + ρ2θρ , for every ρ > 0 and ε > 0 .

In addition, these functions are assumed to satisfy the inequalities

(2.14) pρ +
p

ρ2
pε > 0 , pρ θε − θρ pε > 0 , for every ρ > 0 and ε > 0 .

These inequalites insure the existence of a strictly convex entropy structure for the compressible
Navier-Stokes system (1.1). They thereby play a leading role in our analysis.

The Maxwell relation (2.13) implies there exists a function σ(ρ, ε) over R2
+ such that

(2.15) σρ =
p

θρ2
, σε = −1

θ
.

This is equivalent to saying σ satisfies the differential relation

(2.16) dσ =
p

θρ2
dρ− 1

θ
dε .

We can thereby identify −σ with the physical specific entropy [4]. The equations of state can
then be expressed in terms of σ as

(2.17) p = ρ2σρ(ρ, ε)

σε(ρ, ε)
, θ = − 1

σε(ρ, ε)
.

For example, for a polytropic γ-law gas one has

(2.18) σ = log

(
ρ

ε
1

γ−1

)
, p = (γ − 1)ρε , θ = (γ − 1)ε ,

where the constant γ > 1 is the adiabatic exponent. Equations (2.15) uniquely determine
σ(ρ, ε) up to an additive constant that is usually normalized to a reference state, but whose
value does not effect the equations of state (2.17).

Now define H(U) = ρ σ(ρ, ε) where U is given by (2.12). It was shown in [8] that H(U) is
a strictly convex function of U if and only if the inequalities (2.14) hold. We will sketch the
argument here because some of its ingredients will be used later. We first introduce the vector
variable V and matrix function R(V ) by

(2.19) V =

ρu
ε

 , R(V ) = UV (V ) =

 1 0 0
u ρI 0

1
2
|u|2 + ε ρuT ρ

 .
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A direct calculation [8] then shows that

(2.20)
1

ρ
R(V )THUU(U)R(V ) =

σρρ + 2
ρ
σρ 0 σρε

0 −σεI 0
σρε 0 σεε

 .

Because −σε = 1/θ > 0, it is clear that HUU(U) is positive definite if and only if the matrix(
σρρ + 2

ρ
σρ σρε

σρε σεε

)
=

1

ρ2θ2

(
θ pρ − p θρ ρ2θρ

ρ2θρ ρ2θε

)
is positive definite .

This will be the case if and only if

(2.21)
(
ρ

p

ρ

)θ pρ − p θρ

ρ2
θρ

θρ θε


ρp
ρ

 = θ

(
pρ +

p

ρ2
pε

)
> 0 ,

and

(2.22) det

θ pρ − p θρ

ρ2
θρ

θρ θε

 =
θ

ρ2

(
pρ θε − θρ pε

)
> 0 ,

where the Maxwell relation (2.13) was used to evaluate the quantities in both (2.21) and (2.22).
Finally, it is clear that (2.21) and (2.22) are equivalent to the inequalities (2.14).

We can then show [11] that

(2.23) ∂t(ρσ) +∇x ·
(
ρuσ +

q

θ

)
= −µ

2

∣∣∇xu+ (∇xu)
T − 2

D
I∇x ·u

∣∣2 − λ |∇x ·u|2 − κ |∇xθ|2 .

Because µ > 0, λ ≥ 0, and κ > 0 the right-hand side above is nonpositive. Because H(U)
is strictly convex, we can see that (2.23) has the form (2.2). The compressible Navier-Stokes
system (1.1) is therfore a hyperbolic-parabolic system with a strictly convex entropy given by
H(U) to which the theory in [11] applies.

The inequalities (2.14) can be understood better by introducing some notation that is com-
mon in thermodynamics, but less so in mathematics [4]. Given any three differntiable quantities
ψ(ρ, ε), φ(ρ, ε), and η(ρ, ε), we define

(2.24)

(
∂ψ

∂φ

)
η

=
ηεψρ − ηρψε

ηεφρ − ηρφε

.

In other words, the subscripted parentheses denote that the enclosed derivative is to be taken
while holding the subscript quantity fixed. The inequalities in (2.14) can then be expressed as

(2.25)

(
∂p

∂ρ

)
σ

> 0 ,

(
∂p

∂ρ

)
θ

> 0 .

Because the first quantity on the left is related to the sound speed cs by [4, 8]

(2.26) c2s =

(
∂p

∂ρ

)
σ

= pρ +
p

ρ2
pε ,

the compressible Euler system associated with (1.1) is hyperbolic if and only if the first in-
equality holds [8]. The second inequality insures that the only stationary solutions of the
compressible Navier-Stokes system (1.1) over TD are constant states [11].
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3. Weakly Compressible Navier-Stokes System

In this section we compute the weakly compressible Navier-Stokes system. More precisely, we
will apply the general recipe for weakly nonlinear-dissipative approximations given by (2.3) to
the compressible Navier-Stokes system (1.1). We will take as our the constant state (ρ, u, ε) =
(ρo, 0, εo) where ρo and εo are positive. We will take as our dependent variables V given by
(2.19). We also see from (2.19) that the matrix Ro = R(V o) = UV (V o) and its inverse are

(3.1) Ro =

 1 0 0
0 ρoI 0
εo 0 ρo

 , (Ro)−1 =
1

ρo

 ρo 0 0
0 I 0
−εo 0 1

 .

The weakly nonlinear-dissipative approximation to the compressible Navier-Stokes system (1.1)
thereby has the form (2.3) where the operator A defined by (2.4) is given by

(3.2) AṼ =


ρo∇x ·ũ

po
ρ

ρo
∇xρ̃+

po
ε

ρo
∇xε̃

po

ρo
∇x ·ũ

 ,

while the averaged operators Q and D are given by (2.5) with the operators Q and D defined
by (2.6) given by

(3.3)

Q
(
Ṽ , Ṽ

)
=


∇x ·(ρ̃ ũ)

∇x ·
(
ũ⊗ ũ+

(
po

ρρ

2ρo
ρ̃2 +

po
ρε

ρo
ρ̃ ε̃+

po
εε

2ρo
ε̃2

)
I

)
∇x ·
(
ε̃ ũ+

(
po

ρ

ρo
ρ̃+

po
ε

ρo
ε̃

)
ũ

)
 ,

DṼ =


0

µo

ρo
∆xũ+

D−2
D
µo + λo

ρo
∇x∇x ·ũ

κoθo
ρ

ρo
∆xρ̃+

κoθo
ε

ρo
∆xε̃

 .

All that remains to be done in order to obtain the weakly compressible Navier-Stokes system
are the two hardest steps — namely, to compute the averaged operators Q and D. That is
central task of this section.

3.1. Structure of the System. We first state the formal structure of the averaged system
(2.3).

Theorem 1. A solution V to system (2.3) with initial condition V in = (ρin, uin, εin)T can be

decomposed orthogonally to PV = (−po
ε

po
ρ
ϑ ,w , ϑ)T and P⊥V = ( 1

co2π , v ,
po

ρo2co2π)T , where (ϑ,w)

satisfies the incompressible Navier-Stokes system

(3.4)

∇x ·w = 0 ,

∂tw + w · ∇xw +∇xp = µo

ρo ∆xw ,

∂tϑ+ w · ∇xϑ = κo

ρoco
p
∆xϑ ,
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with initial data (w, ϑ)|t=0 = (win, ϑin), where win = Πuin, and ϑin = − popo
ρ

ρo 2co 2ρ
in +

po
ρ

co 2 ε
in, while

P⊥V satisfies the non-local quadratic system

(3.5)
∂tP⊥V +AP⊥V +Q2r(PV,P⊥V ) +Q3r(P⊥V,P⊥V ) = µ̄∆xP⊥V ,

P⊥V
∣∣
t=0

= P⊥V in .

More explicitly, (π, v) satisfy the equations

(3.6)
∂tπ + ρoco 2∇x ·v+

(
1
4

+ po
ε

4ρo

)
w·∇xπ +

ρococo
1

4
ϑ∇x ·v

+Qπ
2r(PV,P⊥V ) +Qπ

3r(P⊥V,P⊥V ) = µ̄∆xπ ,

and

(3.7) ∂tv + 1
ρo∇xπ +

co
1

2ρoco∇x(ϑπ) +Qv
2r(PV,P⊥V ) +Qv

3r(P⊥V,P⊥V ) = µ̄∆xv .

The details of the non-local terms in (3.6) and (3.7) will given later.

Remark. An important feature of the averaged system (2.3) is that the projection on the
slow mode (incompressible Navier-Stokes equations) is completely decoupled from that on the
fast motion, so it can be solved separately. One solution is provided by Leray [15]. But the
equation on the fast mode is coupled with slow equation. The coefficient of the nonlocal term
Q2r(PV,P⊥V ) depends on PV . A similar phenomena appears in many other problems related
to the motion of fast oscillating waves [1, 2, 3, 19, 16, 17, 20].

Remark. If we were to use temperature θ rather than specific internal energy ε as the depen-
dent variable then the resulting system is related to the one computed here by (2.11) with T
given by

T =

 1 0 0
0 I 0
θo

ρ 0 θo
ε

−1

.

In the rest of this section, we give a detailed calculations to show Theorem 1. Our first step
will be to give the spectral decomposition of the operator A, which plays a central role in our
analysis. We will then compute the averaged dissipation operator D, followed by the more
complicated averaged quadratic operator Q.

3.2. Acoustic Operator. Because the operatorA is the linearization of the compressible Euler
system about a constant state, the only dynamics associated with it is that of sound waves. It is
thereby called the acoustic operator. The weakly compressible Navier-Stokes system has a nice
structure that it gains because it is an average over the fast acoustic dynamics. Specifically, its
solutions can be decomposed into a so-called incompressible component that lies in Null(A), and
an acoustic component that lies in Range(A). We will see that the incompressible component is
governed by an incompressible Navier-Stokes system, and thereby decouples from the acoustic
component. On the other hand, we will also see that the acoustic component is governed by a
quadratic acoustic system that couples to the incompressible component.
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It is clear from (3.2) that the range and null space of A are given by

(3.8)

Range(A) =


ρoβ
∇xφ
po

ρo β

 : β ∈ L2
0(dx) , φ ∈ H1(dx)

 ,

Null(A) =


 po

εγ
w

−po
ργ

 : γ ∈ L2
0(dx) , w ∈ L2

0(dx; RD) , ∇x ·w = 0

 ,

where L2
0(dx) denotes L2 functions with mean zero.

Because A is skew-adjoint in the Hilbert space H, it follows that Range(A) = Null(A)⊥,
where Null(A)⊥ is the orthognal complement of Null(A) with respect to the the natural inner
product on H given by (2.8). For the weakly compressible Navier-Stokes system we have
H(U) = ρ σ(ρ, ε) where U is given by (2.12), while the matrix Ro is given by (3.1). Because by
(2.20)

(3.9) Ro THUU(U o)Ro =

ρoσo
ρρ + 2σo

ρ 0 ρoσo
ρε

0 −ρoσo
εI 0

ρoσo
ρε 0 ρoσo

εε

 ,

the natural inner product (2.8) becomes

(3.10)

(
Ṽ1, Ṽ2

)
H

=

∫
TD

[
(ρoσo

ρρ + 2σo
ρ) ρ̃1ρ̃2 + ρoσo

ρε

(
ρ̃1ε̃2 + ε̃1ρ̃2

)
+ ρoσo

εε ε̃1ε̃2 − ρoσo
ε ũ1 · ũ2

]
dx .

For the notational simplicity, we henceforth denote this inner product by (· , ·).
The spectral decomposition of A can be characterized in terms of the eigenfunctions of the

Laplacian. Let co denote the speed of sound, which is given by

(3.11) co =

√
po

ρ +
po

ρo 2
po

ε .

Let φν be an eigenfunction of the Laplacian satifying

(3.12) −∆xφν = ν2φν over TD for some ν > 0 .

Then a direct calculation shows that

(3.13) A

±iρoφν
co

ν
∇xφν

±ipo

ρoφν

 =

 ρoco

ν
φν

±ico 2∇xφν
poco

ρoν
φν

 = ±icoν

±iρoφν
co

ν
∇xφν

±ipo

ρoφν

 .

We thereby see that if ν2 is a positive eigenvalue of −∆x with eigenfunction φν then ±icoν
is a conjugate pair of eigenvalues of A with eigenfunctions given above. Because the real and
imaginary parts of these eigenfunctions clearly span Range(A) as given by (3.8), this must be
a complete list of eigenpairs with nonzero eigenvalues.

For periodic domains solutions of (3.12) are given by the Fourier modes. If TD = RD/L,
where L ⊂ RD is some D-dimensional lattice then the Fourier modes are eik·x where k ∈ L∗

and L∗ is the dual lattice of L, which is defined by the property that k · l = 0 mod 2π for every
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k ∈ L∗ and l ∈ L. (So that L∗ = (2πZ)D when L = ZD.) The Fourier mode eik·x solves (3.12)
with ν = |k|. By (3.13) we can thereby construct an eigenfunction basis for A in the form

Hα
k (x) =

 ρo

α sg(k) k
|k|c

o

po

ρo

 eik·x ,

where k ∈ L∗ and α is + or −, and the notation sg(k) stands for a generalized sign function on
RD \{0} : its value is 1 if and only if the first nonzero component of k is positive, −1 elsewhere.
One can check that Hα

k (x) is the eigenvector of A with the eigenvalue icoα sg(k)|k|, with the
norm

(Hα
k , H

α
k ) = −2ρoσo

εc
o 2 = ao 2co 2 ,

where ao =
√
−2ρoσo

ε .

Remark. The relation (3.13) between the spectral representation of the acoustic operator
A and the spectral representation of the Laplacian can be applied to more general bounded
domains. In that case, zero normal velocity boundary conditions for the acoustic operator
corresponds to Neumann boundary conditions for the Laplacian.

The proof of (1) immediately follows the definition of the operator A. The proof of part (2)

follows from (1) and the definition of the inner product associated with H. Suppose AṼ1 = 0,

i.e. Ṽ1 = (ρ̃1, ũ1,−
po

ρ

po
ε
ρ̃1)

T , while ∇x ·ũ1 = 0. Then
(
AṼ1, Ṽ2

)
= 0 implies that u2 is a gradient

and ε̃2 = doρ̃2, where

do =
ρopo

ρσ
o
ρε − ρopo

εσ
o
ρρ − 2po

εσ
o
ρ

ρopo
εσ

o
ρε − ρopo

ρσ
o
εε

.

Again using the thermodynamical relation of the pressure p = −ρ2 σρ(ρ,ε)

σε(ρ,ε)
, we can verify the

identity

do =
po

ρo 2
.

Because the operator A is skew-adjoint, we have the following decomposition of H:

H = H1 ⊕H2 ,

where
H1 = Null(A) , H2 = Range(A) = Null(A)⊥ .

Every Ṽ ∈ H has the unique decomposition

Ṽ = PṼ + P⊥Ṽ ,

where P and P⊥ are projections onto Null(A) and Null(A)⊥ with

P : H −→ H1 , P⊥ : H −→ H2 ,

defined by

(3.14) P

ρ̃ũ
ε̃

 =


popo

ε

ρo 2co 2 ρ̃− po
ε

co 2 ε̃

Πũ

− popo
ρ

ρo 2co 2 ρ̃+
po

ρ

co 2 ε̃

 , P⊥

ρ̃ũ
ε̃

 =


po

ρ

co 2 ρ̃+ po
ε

co 2 ε̃
(I − Π)ũ

popo
ρ

ρo 2co 2 ρ̃+ popo
ε

ρo 2co 2 ε̃

 ,

where Π is the usual Leray projection onto the space of divergence-free vector fields defined by

Π = I −∇x∆
−1∇x · .
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The averaged system (2.3) can be represented in terms of the spectrum of A. Noticing that
the averaged operators Q and D are involved the exponential operators e±sA, which do not
have any effect on the eigenspace associated with the eigenvalue 0, we are only interested in
the spectral space associated with the nontrivial eigenvalues.

We define that

ϑ = −
popo

ρ

ρo 2co 2
ρ̃+

po
ρ

co 2
ε̃ , w = Πũ ,

and

π = po
ρρ̃+ po

εε̃ , v = (I − Π)ũ .

Then we have the following orthogonal decomposition: for every Ṽ ∈ H,

Ṽ = PṼ + P⊥Ṽ =

−po
ε

po
ρ
ϑ

w
ϑ

+

 1
co2π
v

po

ρo2co2π

 .

P⊥Ṽ can be represented by Hα
k :

P⊥Ṽ =
∑
α ,k

(Ṽ , Hα
k )

(Hα
k , H

α
k )
Hα

k .

We denote the coefficient of Hα
k in the above representation of P⊥Ṽ as

(3.15) V α
k =

(Ṽ , Hα
k )

(Hα
k , H

α
k )

=
1

2ρo(co)2
π̂k +

1

2co
α sg(k)

k · v̂k

|k|
.

where f̂k denotes the Fourier coefficient of function f(x).

3.3. Averaged Dissipation Operator. Let η be any eigenvector associated with eigenvalue
0. The exponential operator esA does not affect Null(A). The inner product of PD with η is:(

DV, η
)

= lim
T→∞

1

2T

∫ T

−T

(
De−sAV, η

)
ds

= lim
T→∞

1

2T

∫ T

−T

(PDPV, η) ds+ lim
T→∞

1

2T

∫ T

−T

(
De−sAP⊥V, η

)
ds .

The first term is the resonant term which is independent of s, so is not affected by time
averaging. The second is non-resonant, which is filtered by time averaging. The following
Riemann-Lebesgue lemma, the proof of which can be found in [7], guarantees that this second
term vanishes. Thus we have (

DV, η
)

= (PDPV, η) .

Lemma 1. In the time averaging, the oscillatory integral

(3.16) lim
T→∞

1

2T

∫ T

−T

eisA(k)φ(s) ds

for any integrable function φ(t) vanishes when A(k) 6= 0. The only nonzero contributions that
survive the averaging process are the resonance A(k) = 0. Here A(k) is any polynomial of k so
that (3.16) is integrable.
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Upon applying the above Lemma, we deduce that the projection of the averaged dissipation
operator on Null(A) is given by

(3.17) PDV = PDPV =

−
po

ε

po
ρ

κo

ρoco
p
∆xϑ

µo

ρo Π∆xΠu
κo

ρoco
p
∆xϑ

 ,

where cop is the specific heat capacity at constant pressure, which is given by

cop = −θo

(
∂σ

∂θ

)
p

(ρo, εo) = −θo
po

ε σ
o
ρ − po

ρ σ
o
ε

po
ε θ

o
ρ − po

ρ θ
o
ε

=
co2

po
ε θ

o
ρ − po

ρ θ
o
ε

,

Equilibrium thermodynamics demands that cop > 0.

The projection on Null(A)⊥ is

P⊥DV =
∑
α,k

(
DV,Hα

k

)
(Hα

k , H
α
k )
Hα

k ,

where
(
DV,Hα

k

)
is

(3.18)

(
DV,Hα

k

)
= lim

T→∞

1

2T

∫ T

−T

(
De−sAV, e−sAHα

k

)
ds

=
∑
β,l

lim
T→∞

1

2T

∫ T

−T

V β
l e

−is(β sg(l)|l|−α sg(k)|k|)
(
DHβ

l , H
α
k

)
ds .

Straightforward calculations imply that
(
DHβ

l , H
α
k

)
is nonzero only when k = l. Note that in

this case, by Lemma 1, (3.18) is nonzero if and only if α = β. Simple calculations show that

(DHα
k , H

α
k ) = −µ̄ |k|2 (Hα

k , H
α
k ) .

Thus

(3.19) P⊥DV = −µ̄
∑
α,k

|k|2V α
k H

α
k = µ̄∆xP⊥V ,

where

µ̄ =
2D−1

D
µo + λo

2ρo
+
θo(po

ε)
2

2ρo3co2
κ ,

is always positive for physically meaningful models. Simple calculation shows that the averaged
diffusion term is strictly dissipated, in other words,

−
(
DV, V

)
= −

(
PDV,PV

)
−
(
P⊥DV,P⊥V

)
=
∥∥∥(−po

ε

po
ρ

√
κo∇xϑ ,

√
µo

ρo∇xw ,
√
κo∇xϑ

)∥∥∥2

H
+ µ̄

∥∥P⊥V
∥∥2

H

≥ δo‖V ‖H ,

for some δo > 0. Furthermore,
(
DV, V

)
= 0 if and only if V = 0.

Remark. The original dissipation operator D is only partially elliptic (dissipative). That is
one of the difficulties for the equations of compressible model because the equation of continuity
is just a transport equation, does not have dissipation. From our derivation, after taking time
averaging, the diffusion term in the averaged system is strictly dissipative. This averaged
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dissipation operator appeared in the work of Hoff and Zumbrun [9, 10]. They called it an
“artificial viscosity term ”, applied to the isentropic gas without energy equation. So our
averaged system, when we ignore the nonlinearity, is a natural generalization of the Hoff-
Zumbrun’s so-called “effective artificial viscosity system” [9, 10]. Actually, one of the main
motivation of Hoff-Zumbrun’s consideration is to modify the dissipative operator so that it has
strict parabolicity.

3.4. Averaged Quadratic Operator. By a similar approach, we can compute Q(V , V ). For
any η ∈ Null(A),

(3.20)

(
Q(V , V ), η

)
= lim

T→∞

1

2T

∫ T

−T

(
Q(e−sAV , e−sAV ), η

)
ds

= lim
T→∞

1

2T

∫ T

−T

(I1 + I2 + I3, η) ds ,

where
I1 = Q(PV,PV ) ,

I2 = Q(PV, e−sAP⊥V ) +Q(e−sAP⊥V,PV ) ,

I3 = Q(e−sAP⊥V, e−sAP⊥V ) .

Direct calculations show that

I2 = icoV α
k e

−is�α
k ei(k+l)·x

×


−po

ε

po
ρ
ϑ̂lα sg(k) (k+l)·k

|k| + ρo

co ŵl · (k + l)

co1ϑ̂l(k + l) + α sg(k) [ŵl·(k+l)]k+[k·(k+l)]ŵl

|k|

ϑ̂lα sg(k)k·(k+l)
|k| +

(
po

ρoco + co
)
ŵl · (k + l)

 ,

and

I3 =
i

2
co 2V α

k V
β
l e

−is�αβ
kl ei(k+l)·x

×


ρo

co

(
α sg(k) k

|k| + β sg(l) l
|l|

)
· (k + l)

α sg(k)β sg(l) [k·(k+l)]l+[l·(k+l)]k
|k| |l| + co2(k + l)(

po

ρoco + co
)(

α sg(k) k
|k| + β sg(l) l

|l|

)
· (k + l)

 ,

where
�α

k = coαsg(k)|k| , �αβ
kl = co (α sg(k)|k|+ β sg(l)|l|) ,

co1 =
1

co

(
−po

ε

po
ρ

(
po

ρρ + po
ρε

po

ρo 2

)
+
(
po

ρε + po
εε

po

ρo 2

))
,

co2 =
1

co2

(
ρopo

ρρ +
2popo

ρε

ρo + po 2po
εε

ρo3

)
,

and
w =

∑
l

ŵle
il·x , ϑ =

∑
l

ϑ̂le
il·x ,

with l · û(l) = 0.
Using Lemma 1, in (3.20),

lim
T→∞

1

2T

∫ T

−T

(I2, η) ds = 0 .
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Now we claim that we also have

lim
T→∞

1

2T

∫ T

−T

(I3, η) ds = 0 .

By Lemma 1, the only non-trivial contribution is on the resonant set, �αβ
kl = 0, i.e.

|k| = |l| , α sg(k)|k|+ β sg(l)|l| = 0 .

On this resonant set, it is easy to see that the first and the last component in I3 can factor out
the term α sg(k)|k| + β sg(l)|l|, which is zero, and the second component of I3 can factor out
the term ei(k+l)·xi(k+ l) which is a gradient form. So after time averaging, I3 is in Null(A). So
its inner product with η is zero. Thus PQ(V , V ) = PQ(PV,PV ). A direct calculation yields

(3.21) PQ(PV,PV ) =

−po
ε

po
ρ
w · ∇xϑ

w · ∇xw
w · ∇xϑ

 .

The projection on the acoustic mode P⊥Q(V , V ) is

1

ao 2co 2

∑
δ,m

(
Q(V , V ), Hδ

m

)
Hδ

m =
∑
δ,m

lim
T→∞

1

2T

∫ T

−T

(
I2 + I3, e

−iscoδsg(m)|m|Hδ
m

)
Hδ

m dt

= Q2r(PV,P⊥V ) +Q3r(P⊥V,P⊥V ) ,

where Q2r and Q3r denote the averaged quadratic operator over the two-wave and three-wave
resonant sets respectively. Note that Q2r depends on both the incompressible and acoustic
modes, while Q3r depends only on the acoustic modes.

3.4.1. Two-wave resonant term. Applying Lemma 1 again, we derive

(3.22) Q2r

(
PV,P⊥V

)
=
∑
δ,m

λδ
m · imHδ

m(x) ,

where

λδ
m =

1

ao2

∑
α sg(k)=δ sg(m)

k+l=m
|k|=|m|

V α
k

[
co3ŵl − ρoσo

ε

2k ·m
|k‖m|

ŵl + co4ϑ̂lδ sg(m)
k

|k|
− co1ρ

oσo
ε ϑ̂lδ sg(m)

m

|m|

]
,

where

co3 =
1

co 2

(
ρo 3σo

ρρ + 2ρopoσo
ρε + po2

ρo σ
o
εε + 2ρo 2σo

ρ

)
+
(
poσo

εε + ρo 2σo
ρε

)
,

co4 =
1

co
(
− po

ε

po
ρ
(ρo 2σo

ρρ + 2ρoσo
ρ + poσo

ρε) + ρo 2σo
ρε + poσo

εε

)
.

Using the Maxwell relation, we can simplify co3 and co4 as

co3 =
1

θo
(ρo + po

ε) , co4 = 0 .

Thus,
co3
ao2

=
1

2
+

po
ε

2ρo
.
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Then

(3.23) λδ
m =

∑
α sg(k)=δ sg(m)

k+l=m
|k|=|m|

V α
k

[(
1

2
+

po
ε

2ρo

)
ŵl +

k ·m
|k| |m|

ŵl +
co1
2
ϑ̂lδ sg(m)

m

|m|

]
.

To express the components in (3.22) explicitly, we plug (3.15) into (3.23). In the component
of density, the following two terms can factor out local terms:∑

δ,m

∑
α sg(k)=δ sg(m)

k+l=m
|k|=|m|

1
2ρo(co)2

π̂k

(
1
2

+ po
ε

2ρo

)
ŵl · imρoeim·x

= 1
co 2

(
1
4

+ po
ε

4ρo

)
w · ∇xπ −

∑
δ,m

∑
α sg(k)=δ sg(m)

k+l=m
|k|6=|m|

1
2ρo(co)2

π̂k

(
1
2

+ po
ε

2ρo

)
ŵl · imρoeim·x ,

and ∑
δ,m

∑
α sg(k)=δ sg(m)

k+l=m
|k|=|m|

1
2coα sg(k)k·v̂k

|k|
co
1

2
ϑ̂lδ sg(m) m

|m| · imρ
oeim·x

=
ρoco

1

4co ϑ∇x ·v −
∑
δ,m

∑
α sg(k)=δ sg(m)

k+l=m
|k|6=|m|

1
2coα sg(k)k·v̂k

|k|
co
1

2
ϑ̂lδ sg(m) m

|m| · imρ
oeim·x .

In the component of velocity, the following term can factor out a local term:∑
δ,m

∑
α sg(k)=δ sg(m)

k+l=m
|k|=|m|

1
2ρo(co)2

π̂k
co
1

2
ϑ̂lδ sg(m) m

|m| · imδ sg(m) m
|m|c

oeim·x

=
co
1

4ρoco∇x(ϑπ)−
∑
δ,m

∑
α sg(k)=δ sg(m)

k+l=m
|k|6=|m|

1
2ρo(co)2

π̂k
co
1

2
ϑ̂lδ sg(m) m

|m| · imδ sg(m) m
|m|c

oeim·x

Thus, the density component of Q2r

(
PV,P⊥V

)
can be written as

(3.24) 1
co 2

(
1
4

+ po
ε

4ρo

)
w · ∇xπ +

ρoco
1

4co ϑ∇x ·v + 1
co 2Qπ

2r

(
PV,P⊥V

)
,

where 1
co 2Qπ

2r

(
PV,P⊥V

)
inludes all the other non-local terms in the density component of

Q2r

(
PV,P⊥V

)
. Similarly, the velocity component of Q2r

(
PV,P⊥V

)
can be written as

(3.25)
co
1

4ρoco∇x(ϑπ) +Qv
2r

(
PV,P⊥V

)
,

whereQv
2r

(
PV,P⊥V

)
includes all the non-local terms in the velocity component ofQ2r

(
PV,P⊥V

)
.
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3.4.2. Three-wave resonant term. The 3-wave interaction term Q3r

(
P⊥V,P⊥V

)
can be written

as

Q3r

(
P⊥V,P⊥V

)
= i

co

2ao 2

∑
δ,m

∑
k+l=m

α sg(k)|k|+β sg(l)|l|=δ sg(m)|m|

V α
k V β

l

[
− co2ρ

oσo
εδ sg(m)|m|+ co3

(
α sg(k)

k ·m
|k|

+ β sg(l)
l ·m
|l|

)
− ρoσo

εα sg(k) β sg(l)δ sg(m)
2(k ·m)(l ·m)

|k||l||m|

]
Hδ

m(x) .

We apply basically Masmoudi’s arguments [18] to analyze the structure of the resonant set.

The resonance condition between (k, α), (l, β), (m, δ), namely (Hα
k , H

β
l , H

δ
m) is

(3.26) k + l = m, α sg(k)|k|+ β sg(l)|l| = δ sg(m)|m| .

Hence, 2k · l = 2α sg(k) β sg(l)|k||l|, which means that k is parallel to l, so is parallel to m,
i.e., all the vectors in a 3-waves resonant set are parallel to each other. Rewriting this product
again and using that k is parallel to l, we deduce that k · l = sg(k)sg(l)|k||l|. This yields that
we have α = β and then we can see easily that (3.26) is equivalent to

k + l = m, sg(k)|k|+ sg(l)|l| = sg(m)|m| , α = β = δ .

The above relations mean that we can only get resonances between the triplet (H+
k , H

+
l , H

+
m)

and (H−
k , H

−
l , H

−
m) separately. As Masmoudi mentioned in [18], that is the reason why we have

introduced the notation sg(k). Applying the above analysis of the resonant sets, we can rewrite
Q3r(P⊥V,P⊥V ) as

(3.27) Q3r(P⊥V,P⊥V ) =
∑
α,m

χα
m · imHα

m(x) ,

where

χα
m = Co

∑
α,k,l

k+l=m
sg(k)|k|+sg(l)|l|=sg(m)|m|

V α
k V

α
l αsg(m)

m

|m|
,

where Co = 2co3 − co2ρ
oσo

ε − 2ρoσo
ε . This is a very simple form.

Different with the two-wave resonant term, we can not factor out local terms from three-wave
resonant terms. All terms in Q3r(P⊥V,P⊥V ) are non-local. we denote its density component
by 1

co 2Qπ
3r(P⊥V,P⊥V ), while the velocity component is denoted by Qv

3r(P⊥V,P⊥V ).

4. Existence and Regularity for the Averaged System

4.1. Global Weak Solutions. The existence of global weak solutions theory to the averaged
system (2.3) is a direct consequence of that of general hyperbolic-parabolic system developed in
[11]. Because of the structure of (3.5), it is natural to define weak solutions in the sense of (3.4)
in [11]. The quadratic terms Q2r and Q3r do not contribute in energy estimate, see [11]. The
dissipative term in (3.5) is µ̄∆x, automatically satisfies the structure assumption in Leray-type
global weak solutions to the averaged system of the general hyperbolic-parabolic system with
entropy. As a corollary of Theorem 1 of [11], we state global existence of weak solutions to the
averaged system (3.5).
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Theorem 2. For any given initial data U in ∈ L2, first we solve the incompressible Navier-
Stokes equation (3.4). Using a Leray solution to (3.4), we can find a global weak solution to
(3.5), and the energy inequality holds:

1
2
‖P⊥V (t)‖2

H + µ̄

∫ t

0

‖∇xP⊥V (t′)‖2
H dt′ ≤ 1

2
‖P⊥V in‖2

H .

Remark. In their consideration of compressible incompressible limit of Navier-Stokes equations
for barotropic fluid, Masmoudi [18] and Danchin [6] derived the averaged equations of fast waves,
which are very similar to (3.4) (without equations for temperature) and (3.5). Next, we state
the higher regularity of (3.5) with generalization to the full Navier-Stokes equations.

In this section, we investigate the global well-posedness of the averaged system (3.5) in the
general Sobolev spaces Hs(TD) and the Besov spaces Bs(TD). We introduce the Littlewood-
Paley decomposition to characterize these spaces.

4.2. Littlewood-Paley Decomposition. First, we introduce a couple of smooth radial func-
tions (χ, ϕ) such that χ is supported in the ball {k ∈ RD, |k| ≤ 6/5} supported in {k ∈
RD, 5/6 ≤ |k| ≤ 12/5} and such that

χ(k) +
∑
q∈N

ϕ(2−qk) = 1 for every k ∈ RD .

Denoting

(4.1) hq(x) =
∑
k∈ZN

ϕ(2−qk)eik·x ,

one can then define the periodic dyadic blocks as

∆qu ,
∑
k∈ZN

ϕ(2−qk) ûk e
ik·x =

1

|TD|

∫
TD

hq(y)u(x− y) dy ,

and the low-frequency cut-off by

Squ ,
∑
k∈ZN

χ(2−qk) ûk e
ik·x .

Obviously, ∆pu = 0 for negative enough p (depending on the periodic box TN) and u =
û0 +

∑
q ∆qu in S ′(TN). The dyadic blocks ∆qu are no longer orthogonal in L2(TN) but they

still have some properties of quasi-orthogonality: with our choice of ϕ, we have

∆k∆qu ≡ 0 if |k − q| ≥ 2 and ∆k(Sq−1u∆qu) ≡ 0 if |k − q| ≥ 4 .

The Sobolev spaces and Besov spaces can be characterized by means of Littlewood-Paley de-
composition:

Hs =

u ∈ S ′(TN) : ‖u‖Hs ,

(
|û0|2 +

∑
q∈Z

22sq‖∆qu‖2
L2

) 1
2

< +∞

 ,

Bs
2,1 =

{
u ∈ S ′(TN) : ‖u‖Bs

2,1
, |û0|+

∑
q∈Z

2sq‖∆qu‖Lp < +∞

}
.

In the rest of this paper, for notational simplicity, we use Bs denote to Bs
2,1.
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We will use the energy methods to the averaged equation which is localized in dyadic Fourier
variables according to Littlewood-Paley decomposition. When taking an integrating in time,
we get estimates in space Lr(0, T ;L2) for each dyadic block. This leads to the definition of the
following spaces first introduced by Chemin and Lerner in [5].

L̃r
T (Hs) =

u ∈ S ′([0, T ]× TN) : ‖u‖Hs ,

(
‖û0‖2

Lr
T (L2) +

∑
q∈Z

22sq‖∆qu‖2
Lr

T (L2)

) 1
2

< +∞

 .

Note that L̃r
T (Hs) coincides with Lr(0, T ;Hs) if r = 2. We further denote C̃(X) = L̃∞T (X) ∩

C([0, T ] ;X), and the spaces where solutions of the averaged system belong to

F s
T =

{
V ∈ C̃T (Hs−1) : V ∈ L̃1

T (Hs+1)
}
.

4.3. Higher Regularity. The results of this section closely follow the work of Masmoudi [18]
and Danchin [6]. In the last section, we proved global existence in the sense of Leray to the
averaged system

(4.2) ∂tP⊥V +Q2r(PV ,P⊥V ) +Q3r(P⊥V ,P⊥V ) = µ̄∆xP⊥V ,

for a fixed PV = (−po
ε

po
ρ
ϑ,w, ϑ) and (w, ϑ) is a global weak solution to the incompressible Navier-

Stokes system (3.4).
To prove the global well-posedness of solutions to the averaged system , we need the following

a priori estimates.

Lemma 2. For all s ≥ 0, we have the identities

(4.3)
(
Q2r(PV ,P⊥V ) ,P⊥V

)
Hs = 0 .

and

(4.4)
(
∆qQ2r(PV ,P⊥V ),∆qP⊥V

)
L2 = 0 .

Proof. The proof employ the symmetry of Q2r(PV ,P⊥V ). Noticing that Hα
k = H

α

−k and that

V α
k = V

α

−k (
Q2r(PV ,P⊥V ) ,P⊥V

)
Hs

=i
∑
δ,m

∑
k+l=m

αsg(k)=δsg(m)
|k|=|m|

V α
k V

δ
−m|m|2s

[
(ŵl ·m)(k ·m)

|k‖m|
+

(
1

2
+

1

2

po
ε

ρo

)
ŵl ·m

− co1ρ
oσo

ε θ̂lδ sg(m)|m|
]
.
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In above summation, exchange α and δ, and change k to −m and change m to −k. Notice that
under this changing index, the relation l = m− k is invariant, so(

Q2r(PV ,P⊥V ) ,P⊥V
)

Hs

=i
∑
δ,m

∑
k+l=m

αsg(k)=δsg(m)
|k|=|m|

V α
k V

δ
−m|m|2s

[
− (ŵl ·m)(k ·m)

|k‖m|
−
(

1

2
+

1

2

po
ε

ρo

)
ŵl · k

+ co1ρ
oσo

ε θ̂lα sg(k)|k|
]
.

Notice that u is divergence-free, so ŵl ·m = ŵl · k, then(
Q2r(PV P⊥V ) ,P⊥V

)
Hs = −

(
Q2r(PV ,P⊥V ) ,P⊥V

)
Hs .

Then
(
Q2r(PV ,P⊥V ) ,P⊥V

)
Hs = 0. The proof of the identity (4.4) is similar, so we omit it

here. �

We already know that
(
Q3r(P⊥V ,P⊥V ) ,P⊥V

)
= 0, but for general s > 0,(

Q3r(P⊥V ,P⊥V ) ,P⊥V
)

Hs 6= 0 .

However, we have the following key estimate for Q3r.

Lemma 3. For every V,W ∈ Null(A)⊥,

(4.5) (Q3r(V,W ),W ) . ‖W‖L2‖W‖
B

1
2
‖V ‖H1 ,

and

(4.6) ‖Q3r(V,W )‖Hs . ‖V ‖
B

1
2
‖W‖Hs+1 + ‖W‖

B
1
2
‖V ‖Hs+1 .

The proof of this technical lemma is in [6], inspired by [18]. Based on these a priori esti-
mates, we can prove the following global well-posedness (in the sense that solution PV to the
incompressible Navier-Stokes equation is fixed.)

Theorem 3. Let s ≥ 1, T ∈ (0,+∞], V0 ∈ Hs−1∩Null(A)⊥ and (w, ϑ) ∈ F s
T is a fixed solution

to the incompressible Navier-Stokes system. Then the averaged system (4.2) has a solution V ∈
F s

T which remains in Null(A)⊥ for all time, and uniqueness holds in C([0, T ];L2)∩L2(0, T ;H1).
The solution V satisfies the energy estimates

(4.7) 1
2
‖V (t)‖2

L2 + µ̄

∫ t

0

‖∇xV (τ)‖2
L2 dτ ≤ 1

2
‖V0‖2

L2 ,

and

(4.8) ‖V ‖2
L̃∞T (Hs−1)

+ cµ̄‖V ‖2
L̃1

T (Hs+1)
≤ ‖V0‖2

Hs−1 exp(C
‖V0‖2

L2

µ̄2 ) .

Proof. Given the above technical lemma, the proof of the theorem is standard. We first prove
the a priori estimates, i.e, any solutions V ∈ F s

T satisfies the energy estimates (4.7) and
(4.8). Take the Hs−1 inner product of the averaged system with V . Since, according to (4.3),
(Q2r(PU, V ), V )Hs−1 = 0, we obtain

(4.9) 1
2

d

dt
‖V ‖2

Hs−1 + µ̄‖∇xV ‖2
Hs−1 + (Q3r(V, V ), V )Hs−1 = 0 .

If s = 1, the last term vanishes, so one time integration yields (4.7).
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When s > 1, the inequality (4.6) and Young inequality and embedding H1 ↪→ B
1
2 yield

| (Q3r(V, V ) , V )Hs−1 | ≤ µ̄
2
‖V ‖2

Hs + C
µ̄
‖V ‖2

H1‖V ‖2
Hs−1 .

Plug this above inequality into (4.9) and take integration in time, we get

1
2
‖V (t)‖2

Hs−1 +
µ̄

2

∫ T

0

‖∇xV (τ)‖2
Hs dτ ≤ 1

2
‖V0‖2

Hs−1 +
C

µ̄

∫ T

0

‖V (τ)‖2
H1‖V (τ)‖2

Hs dτ .

The Gronwell inequality yields

1
2
‖V (t)‖2

Hs−1 +
µ̄

2

∫ T

0

‖∇xV (τ)‖2
Hs dτ ≤ 1

2
‖V0‖2

Hs−1e
C
µ̄

∫ T
0 ‖V (τ)‖2

H1 dτ
.

Once the a priori estimates (4.7) and (4.8) have been proved, we can use the classical type of
regularization, for instance, one can use a Galerkin approximation method as we did in the last
section when we proved the global Leray-type solution, to get the existence of a solution to the
averaged system (4.2) in C([0, T ];Hs−1) ∩ L2(0, T ;Hs).

Next, we show that any solution V ∈ C([0, T ];Hs−1) ∩ L2(0, T ;Hs) satisfies the estimate
(4.8) which includes the bounds for the L1 norm in time. Applying the ∆q to (4.2), taking the
L2 product with ∆qV yields

1
2

d

dt
‖∆qV ‖2

L2 +
µ̄

2
‖∇x∆qV ‖2

L2 + (∆qQ3r(V, V ),∆qV )L2 = 0 .

Taking integral in time, then multiplying by 2q(s−1) yields

2q(s−1)‖∆qV ‖L∞t (L2) + cµ̄2q(s+1)‖∆qV ‖L1
t (L2) ≤ 2q(s−1)‖∆V0‖L2 + 2q(s−1)‖∆qQ3r(V, V )‖L1

t (L2) ,

Taking summation in q, we have

‖V ‖2
L̃∞T (Hs−1)

+ c2µ̄2‖V ‖2
L̃1

T (Hs+1)
≤ 2

(
‖V0‖2

Hs−1 + ‖Q3r(V, V )‖2
L̃1

T (Hs−1)

)
.

From (4.6), and noticing the embedding L1
t (H

s−1) ↪→ L̃1
t (H

s−1) and H1 ↪→ B1/2, we have

‖Q3r(V, V )‖L̃1
T (Hs−1) ≤ ‖V ‖L2

t (H1)‖V ‖L2
t (Hs) .

Thus we proved (4.8). �

4.4. Uniqueness of Weak Solutions. Let us now consider the uniqueness of the weak so-
lutions to averaged system in C([0, T ];L2) ∩ L2(0, T ;H1). The property is not known for the
incompressible Navier-Stokes equations for dimension D ≥ 3. This means weak solutions to the
averaged system in Null(A)⊥ have better properties.

Proof. Let V1 and V2 be two weak solutions of the averaged system (4.2) in C([0, T ];L2) ∩
L2(0, T ;H1). Then δV = V1 − V2 satisfies

∂tδV − µ̄∆δV +Q2r(PV, δV ) = −Q3r(V1 + V2, δV ) .

Take inner product for the above equation with δV , and notice the identity for Q2r, we obtain

1

2

d

dt
‖δV ‖2

L2 + µ̄‖∇xδV ‖2
L2 = (Q3r(V1 + V2, δV ), δV ) .

Now apply the inequality (4.5) and Young inequality, we have

| (Q3r(V1 + V2, δV ), δV ) | ≤ C
µ̄
‖V1 + V2‖2

H1‖δV ‖2
L2 + µ̄‖∇xδV ‖2

L2 .

Then the Gronwell inequality ensures that δV ≡ 0. Thus we prove the uniqueness. �
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We state the well-posedness of the averaged system in Besov space Bs. The proof is similar
as for the Sobolev space, thus we omit the proof here.

Theorem 4. Let s ≥ 1, T ∈ (0,+∞], V0 ∈ Bs−1 ∩ Null(A)⊥ and (u, ϑ) ∈ L1([0, T ] ;Bs+1) ∩
C([0, T ] ;Bs−1) is a fixed solution to the incompressible Navier-Stokes equation. Then the aver-
aged system (4.2) has a unique solution V ∈ L1([0, T ] ;Bs+1) ∩ C([0, T ] ;Bs−1) which remains
in Null(A)⊥ for all time. The solution V satisfies the energy estimate

‖V (t)‖2
Bs−1 + cµ̄‖V ‖2

L1
T (Bs+1) ≤ ‖V0‖2

Bs−1 exp(C
‖V0‖2

L2

µ̄2 ) .
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