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Abstract

As an important model in quantum semiconductor devices, the
Schrödinger-Poisson equations have generated widespread interests in
both analysis and numerical simulations in recent years. In this paper,
we present Gaussian beam methods for the numerical simulation of the
one-dimensional Schrodinger-Poisson equations. The Gaussian beam
methods for high frequency waves outperform the geometrical optics
method in that the former are accurate even around caustics. The
purposes of the paper are first to develop the Gaussian beam methods,
based on our previous methods for the linear Schrödinger equation, for
the Schrödinger-Poisson equations, and then check their validity for
this weakly-nonlinear system.
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1 Introduction

The main purpose of this paper is to extend our Gaussian beam method
[22], developed for the linear Schrödinger equation, to the one-dimensional
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nonlinear Schrödinger-Poisson equations

iε∂tΨε = −ε2

2
∂xxΨε + V εΨε, x ∈ R, t ≥ 0, (1.1)

∂xxV ε = b(x)− c |Ψε(t, x)|2 , Eε = ∂xV ε, (1.2)

subject to the WKB initial condition

Ψε(0, x) = A0(x)eiS0(x)/ε. (1.3)

Here Ψε = Ψε(t, x) is the highly oscillatory wave function of wave length
O(ε) (in the so-called semiclassical regime where the re-scaled Plank con-
stant ε is small). The electric potential V ε = V ε(t, x) interacts with the
wave function Ψε in a self-consistent way through the Schrödinger equation
(1.1) and the Poisson equation (1.2). In the poisson equation (1.2), b(x) ≥ 0
denotes the fixed positive charged background. The constant c could be ±1,
corresponding to focusing (‘+’) or defocusing (‘-’) potential respectively.

The Schrödinger-Poisson equations are a mean-field model for the linear
N -particle Schrödinger equation with Coulomb potential [6, 7, 13], which is
based on the Pauli’s exclusion principle and the molecular chaos assumption.
It is widely used in quantum semiconductor devices modeling [36] and the
quantum transport theory [2, 1].

The direct simulation of the Schrödinger-Poisson equations is expensive
since the wave length O(ε) is extremely small in the semiclassical regime.
The standard time-splitting spectral method [3, 4] and its adaptive version
[5] need the mesh size to be of O(ε) and the time step to be of O(1) to capture
the correct physical observables. The finite difference methods [34, 35] are
even worse since the mesh size and the time step are restricted to be o(ε).

One efficient alternative approach is to study the semiclassical limit of the
Schrödinger-Poisson equations. When taking the rescaled Planck constant
ε → 0 , one can derive the Vlasov-Poisson equations [28, 33, 48] in the phase
space

∂tf + ξ∂xf − ∂xV ∂ξf = 0 x, ξ ∈ R, t ≥ 0, (1.4)

∂xxV = b(x)− c

∫ ∞

−∞
f(t, x, ξ)dξ, E = ∂xV, (1.5)

or the Euler-Poisson equations in the physical space [30]

∂tρ + ∂x(ρu) = 0, x ∈ R, t ≥ 0, (1.6)
∂t(ρu) + ∂x(ρu2) = −ρ∂xV, (1.7)

∂xxV = b(x)− cρ. (1.8)

There are many papers discussing mathematical analysis and numerical
methods for those equations [8, 11, 12, 24, 37], such as the existence and
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uniqueness of suitable weak solution to Vlasov-Poisson equations [9, 19, 29,
32, 49] and numerical methods for capturing the multi-valued solutions to
the Euler-Poisson equations [14, 27, 31].

A well-known drawback to the semiclassical approach is that it can not
give accurate solutions around caustics. The Gaussian beam methods, de-
veloped for the high frequency linear waves [43, 46, 45, 39, 40, 22, 23, 25, 26]
and also in the setting of quantum mechanics [15, 16, 17], on the other
hand, are efficient asymptotic methods that give accurate solutions even
around caustics ([44]). The key idea of the Gaussian beam methods is to
complexify the phase function S(t, x) off the beam center. Moreover, the
imaginary part of S(t, x) should be chosen delicately so that the solution
decays exponentially. In this paper, we extend the Gaussian beam methods,
proposed previously by the authors [22] for the linear Schrödinger equa-
tion, to the weakly nonlinear Schrödinger-Poisson equation (1.1)-(1.2). The
original Gaussian beam methods were developed for linear high frequency
waves, based on the linear superposition principle. It is of great mathe-
matical and numerical interests to see if the methods can be extended to
(at least weakly-) nonlinear problems. In this paper, we propose a class of
Gaussian beam methods, in both Lagrangian and Eulerian frameworks, for
the Schrödinger-Poisson equations, and check their validity for this weakly
nonlinear system.

Our numerical studies show that the Gaussian beam methods can indeed
be extended to this one-dimensional, weakly nonlinear system. Indeed, con-
vergent results can be observed, even around caustics, for both the focusing
and defocusing cases, when ε → 0.

A main feature of our Eulerian Gaussian beam method is that only a
few (complex-valued) Liouville equations like (1.4) are solved. Thus the
computational methods are similar to that of geometrical optics [21, 10, 20].
As a result, the local level-set techniques [41, 42, 38] can also be applied to
further reduce the computational cost.

The paper is organized as follows. In Section 2 we systematically present
the Gaussian Beam methods, in both Lagrangian and Eulerian frameworks,
for solving (1.1)-(1.2). We conduct numerical experiments in Section 3 to
verify the validity and convergence of the numerical methods, and give some
conclusive remarks in Section 4.

2 The Gaussian beam method

In this section, we introduce the Gaussian beam method in details for solv-
ing the Schrödinger-Poisson system (1.1)-(1.2). The main procedure is to
solve the Poisson equation (1.2) and the Schrödinger equation (1.1) itera-
tively. Suppose the solution Ψε(tn, x) at time tn are given, then the solution
Ψε(tn+1, x) at time tn+1 = tn + ∆t is computed as follows:
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• Step 1. We solve the Poisson equation (1.2) first to get the potential
V ε,n(x) by some Poisson solvers.

• Step 2. With V ,ε,n(x) given in step 1, Ψε(tn+1, x) is computed by solv-
ing the Schrödinger equation (1.1) using the Gaussian beam method
on a fixed time interval ∆t.

The Poisson solvers and the Gaussian beam method are given in the follow-
ing Section 2.1 and 2.2 respectively.

2.1 Poisson solvers

We use the finite difference method to solve the Poisson equation (1.2)
equipped with general boundary conditions (Dirichlet, Neumann etc). Sup-
pose the domain of x is [xl, xr] and the mesh point is xj = xl + j∆x, j =
1, · · · , N where ∆x is the mesh size and xr = xl + (N + 1)∆x, then the po-
tential V ε,n(x) and the electric field En,ε(x) are solved by the linear system:

V ε,n
j+1 − 2V ε,n

j + V ε,n
j−1

∆x2
= bj − c

∣∣∣Ψn,ε
j

∣∣∣
2
, En,ε

j =
V ε,n

j+1 − V ε,n
j−1

2∆x
,

where V ε,n
j , En,ε

j , bj , Ψn,ε
j are the approximation of V ε(tn, xj), Eε(tn, xj),

b(xj), Ψε(tn, xj) respectively.
If the periodic boundary condition is considered for (1.2), the pseudo

spectral method will be applied for faster performance. By using the fourier

transform F , we can get F(V ε,n)k = (
xr − xl

2πk
)2

(
F(b− c |Ψn,ε|2)k

)
, and

we set F(V ε,n)0 = 0 for each n. Inverse fourier transform follows after
updating F(b−c |Ψn,ε|2)k and F(V ε,n)k. Remark that the periodic boundary
condition forces the following compatibility constraint:

∫ xr

xl

b(x)− c |Ψε(t, x)|2 dx = 0,

which explains why we could set F(V ε,n)0 = 0 for each n.

2.2 Gaussian beam method

In this subsection we describe how to solve (1.1) on a fixed time interval ∆t
by the Gaussian beam methods [22] and discuss the issue of constructing
the potential V ε,n+1(x) from the summation of the Gaussian beams. Since
the potential V ε,n(x) is given for computing Ψε(tn+1, x), we denote it as V
for simplicity.
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2.2.1 Lagrangian formulation

The Lagrangian Gaussian beam ansatz is

ϕε
la(t, x, y0) = A(t, y)eiT (t,x,y)/ε,

where y = y(t, y0) and T (t, x, y) is given by

T (t, x, y) = S(t, y) + p(t, y)(x− y) +
1
2
M(t, y)(x− y)2,

here S, p ∈ R, A,M ∈ C. The time evolution equations of these quantities
can be written as a set of ODEs ([22])

dy

dt
= p, (2.1)

dp

dt
= −∂yV, (2.2)

dM

dt
= −M2 − ∂yyV, (2.3)

dS

dt
=

1
2
|p|2 − V, (2.4)

dA

dt
= −1

2
(
Tr(M)

)
A. (2.5)

The Lagrangian Gaussian beam summation solution to the Schrödinger
equation (1.1) at time tn+1 is constructed as

Φε
la(t

n+1, x) =
∫

R

(
1

2πε

) 1
2

rθ(x− y(tn+1, yn))ϕε
la(t

n+1, x, yn)dyn. (2.6)

where yn = y(tn) and rθ ∈ C∞
0 (R), rθ ≥ 0 is a truncation function with

rθ ≡ 1 in a ball of radius θ > 0 about the origin. The initial conditions at
t = 0 come from the approximation of the initial condition (1.3) ([18]):

y(tn, y0) = y0, (2.7)
p(tn, y0) = ∂xS0(y0), (2.8)

M(tn, y0) = ∂xxS0(y0) + iI, (2.9)
S(tn, y0) = S0(y0), (2.10)
A(tn, y0) = A0(y0). (2.11)

The discrete form of (2.6) is given as

Φε
la(t

n+1, x) =
Nyn∑

j=1

(
1

2πε

) 1
2

rθ(x− y(tn+1, yj
n))ϕε

la(t
n+1, x, yj

n)∆yn, (2.12)

where yj
n’s are the Lagrangian mesh points, and Nyn is the number of the

beams at time tn.
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For the evolution from tn+1 to tn+2, we need to construct V ε,n+1, ∂yV
ε,n+1

and ∂2
yV ε,n+1 from the beam summation solution (2.6) which is done by the

following procedure:

• Step 1, compute (2.6) on a fixed gird of x, then solve V ε,n+1(x) and
En+1,ε(x) = ∂xV ε,n+1 from (1.2) by some Poisson solver given in Sec-
tion 2.1. Interpolate V ε,n+1(x) and ∂xV ε,n+1 to get their values on
the Lagrangian mesh points yj

n. Note that V ε,n+1(x) and ∂xV ε,n+1

are the integration functions of the density |Ψε|2 which implies that
they are oscillatory but with very small oscillatory magnitudes (for
example, see Figure 6 of [19]). This feature implies that if one imple-
ments the interpolation on a coarse mesh gird, although the numerical
result could not capture the small scale oscillations, it provides good
approximation for the envelope of the solution, which in fact is very
close to the true solution due to the oscillation amplitude is very small.

• Step 2, directly compute ∂yyV
ε,n+1 for each yj

n using the Poisson equa-
tion (1.2), i.e.

∂yyV
ε,n+1 = b(y)− c |Φε

la|2 .

The reason we have to compute ∂yyV
ε,n+1 directly instead of using

interpolation is that, the oscillatory magnitude of ∂yyV
ε,n+1 is compa-

rable to that of the density |Ψε|2.
Note that we have two sets of meshes here: one is the Eulerian mesh for x,
and the other is the Lagrangian mesh for y. The values exchanged between
these two meshes are through high order interpolation. This inevitably
complicates the algorithms and the notations which could be avoided by the
Eulerian formulation below.

2.2.2 Eulerian formulation

For the Eulerian formulation of the Gaussian beam approximation, we have

ϕε
eu(t, x, y, ξ) = A(t, y, ξ)eiT (t,x,y,ξ)/ε,

with
T (t, x, y, ξ) = S(t, y, ξ) + ξ(x− y) +

1
2
M(t, y, ξ)(x− y)2.

Define the linear Liouville operator as

L = ∂t + ξ∂y − ∂yV ∂ξ,

then the Eulerian Gaussian beam method is constructed by solving the fol-
lowing Liouville equations:

Lφ = 0, (2.13)

LS =
1
2
|ξ|2 − V, (2.14)

Lf = 0. (2.15)
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where φ ∈ C, and S, f ∈ R. M and amplitude A are computed by

M(t, y, ξ) = −∂yφ(∂ξφ)−1,

A(t, y, ξ) = (det(∂ξφ)−1f)1/2.

The Eulerian Gaussian beam summation solution to the Schrödinger
equation(1.1) is constructed via

Φε
eu(tn+1, x) =

∫

R

∫

R

(
1

2πε

) 1
2

rθ(x− y)ϕε
eu(tn, x, y, ξ)δ(Re[φ])dξdy, (2.16)

in which δ is the Dirac delta function.
According to [22], the initial data for (2.13)-(2.15) are given by

φ(0, y, ξ) = −iy + (ξ − ∂yS0(y)), (2.17)
S(0, y, ξ) = S0(y), (2.18)
f(0, y, ξ) = A2

0(y). (2.19)

The construction of V ε,n+1, ∂yV
ε,n+1 and ∂yyV

ε,n+1 from (2.16) is sim-
ple in the Eulerian framework since every quantity is computed in a fixed
grid. All we need to do is to take the same mesh for x as that for y and
solve (1.2) by some Poisson solver given in Section 2.1. For the numerical
computation of (2.16), the discretized delta function integration method [47]
is recommended since it avoids the difficulty of computing singular integrals
[22].

3 The numerical examples

In this section, we will present both focusing and defocusing numerical re-
sults of the Schrödinger-Poisson equations (1.1)-(1.2) by using the Gaussian
beam method proposed in section 2. In our computations, the initial con-
dition is always chosen in the WKB form (1.3). We compute the reference
solution Ψε using the Strang splitting spectral method [3, 4, 5] with mesh
size ∆x and time step ∆t small enough. We always take a large computa-
tional domain such that the periodic boundary condition does not introduce
a significant error to the whole problem. To diminish the cut-off error, the
truncation parameter θ appears in (2.16) is picked fairly large as we dis-
cussed in [22]. We will denote solutions obtained by (2.16) as Φε

GB.

Example 1. Consider the 1D Schrödinger-Poisson equation on computa-
tional domain [−0.5, 0.5] with a focusing potential

Vxx =
√

2π

10
− |ψ(x)|2 .
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(ε,Ny) ( 1
256 , 128) ( 1

1024 , 256) ( 1
4096 , 512)

l1 error 1.12× 10−2 3.93× 10−3 9.22× 10−4

l2 error 4.09× 10−2 1.47× 10−2 3.80× 10−3

l∞ error 3.09× 10−1 1.09× 10−1 3.09× 10−2

Table 1: the l1, l2 and l∞ errors of the wave amplitude for ε =
1

256 , 1
1024 , 1

4096 for Example 1.

(ε,Ny) ( 1
256 , 128) ( 1

1024 , 256) ( 1
4096 , 512)

l1 error 8.16× 10−3 2.60× 10−3 8.35× 10−4

l2 error 3.20× 10−2 9.24× 10−3 2.94× 10−3

l∞ error 1.74× 10−1 5.30× 10−2 1.95× 10−2

Table 2: the l1, l2 and l∞ errors of the wave amplitude for ε =
1

256 , 1
1024 , 1

4096 for Example 2.

The initial conditions are given by

A0(x) = e−25x2
, S0(x) =

1
π

cos(x).

At time t = 0.4, we output the l1, l2 and l∞ error of the wave amplitude
in Table 1. We can see the convergence rate in ε is of order 0.9006 in the
l1 norm. Here the number of Gaussian beams Ny is optimized with ε, see
discussion in [22]. In Figure 1, we plot the wave amplitude and absolute
error for different ε.

Example 2. Consider the 1D defocusing Schrödinger-Poisson equation

Vxx = −
√

2π

10
+ |ψ(x)|2 .

with same boundary condition and initial data as in Example 1. At time
t = 0.4, the l1, l2 and l∞ error of the wave amplitude are also given in Table
2. We can see the convergence rate in ε is of order 0.8221 in the l1 norm.
The wave amplitude and absolute error for different ε are plotted in Figure
2.

Example 3. Consider the same defocusing potential as in Example 2. The
initial conditions are changed to be

A0(x) = e−25x2
, S0(x) = 0.

In this example, we examine the convergence when there is no caustics. This,
along with the above two caustic examples, will show that the Gaussian
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Figure 1: Example 1, the Schrödinger-Poisson solution |Ψε| versus the Gaus-
sian beams solution |Φε

eu| for ε = 1
256 , 1

1024 , 1
4096 . The left figures are the

comparisons of the wave amplitude at t = 0.4; the right figures plot the
errors ||Φε

GB| − |Ψε||.
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Figure 2: Example 2, the Schrödinger-Poisson solution |Ψε| versus the Gaus-
sian beams solution |Φε

eu| for ε = 1
256 , 1

1024 , 1
4096 . The left figures are the

comparisons of the wave amplitude at t = 0.4; the right figures plot the
errors ||Φε

GB| − |Ψε||.
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(ε,Ny) ( 1
256 , 16) ( 1

1024 , 32) ( 1
4096 , 64)

l1 error 3.31× 10−2 9.40× 10−3 2.45× 10−3

l2 error 4.26× 10−2 1.25× 10−2 3.30× 10−3

l∞ error 1.05× 10−1 3.28× 10−2 8.92× 10−3

Table 3: the l1, l2 and l∞ errors of the wave amplitude for ε =
1

256 , 1
1024 , 1

4096 for Example 3.

beam method we propose here gives satisfactory results from the numerical
point of view. We evolve the solution to time t = 0.5, and the l1, l2 and l∞

errors of the wave amplitude are given in Table 3. The convergence rate in
ε is of order 0.9389 in the l1 norm. In Figure 3, the wave amplitude and
absolute error are plotted for different ε. We remark that since the solution
is not as oscillatory as in the last two examples, only a very small number
of beams are needed to get the accurate solution.

4 Conclusion

In this paper, we extended the Gaussian beam methods, in both Lagrangian
and Eulerian framework, to the one dimensional Schrödinger-Poisson equa-
tions. Using the method introduced in [22], the Schödinger equation (1.1)
can be directly simulated in each time step. For the poisson equation (1.2),
the potential function and its derivatives only need to be constructed at
mesh points. Such a setup makes the Gaussian beam method valid and effi-
cient for solving the one-dimensional Schrödinger-Poisson equations. Several
examples have been given to confirm the convergence and accuracy.

It will be of interest to study the method in higher space dimension,
which will be the subject of our future study.
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