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Abstract

In this paper we extend the micro-macro decomposition based asymptotic-preserving scheme devel-
oped in [3] for the single species Boltzmann equation to the multispecies problems. An asymptotic-
preserving scheme for kinetic equation is very efficient in the fluid regime where the Knudsen number is
small and the collision term becomes stiff. It allows coarse (independent of Knudsen number) mesh size
and large time step in the fluid regime. The difficulty associated with multispecies problems is that there
are no local conservation laws for each species, resulting in extra stiff nonlinear source terms that need to
be discretized properly in order to 1) avoid Newton type solvers for nonlinear algebraic systems and 2)
to be asymptotic-preserving. We show that these extra nonlinear source terms can be solved using only
linear system solvers, and the scheme preserves the correct Euler and Navier-Stokes limits. Numerical
examples are used to demonstrate the efficiency and applicability of the schemes for both Euler and
Navier-Stokes regimes.
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1 Introduction

In kinetic theory, the Boltzmann equation is a fundamental equation to describe the evolution of rarefied
gases. In this paper, we are interested in the multispecies Boltzmann equation for the gas mixture. Such
equations arise in many applications. One example is the atmosphere which must be considered at least
as the mixture of Oxygen and Nitrogen. Other applications of the gas mixture include the problems in
evaporation-condensation or in the nuclear engineering.

Typical computational challenges for the Boltzmann equation include its high dimensionality, and the
existence of multiscale where the Knudsen number–the ratio of the mean free path over a typical length scale
such as the domain size–can have different order of magnitude in different part of the domain. When the
Knudsen number is small, the solution to the Boltzmann equation can be approximated by the compressible
Euler or Navier-Stokes equations via the Chapman-Enskog expansion [9]. This is the so-called fluid dynamic
regime, which is known to be numerical stiff due to the stiff collision term. Our aim is to develop numerical
schemes for the multispecies Boltzmann equation that are efficient in the fluid dynamic regime, namely we
are seeking numerical schemes that can allow macroscopic (or fluid dynamic) mesh size and time step.

The asymptotic-preserving (AP) methods are a general framework for kinetic equations with different
scales of the Knudsen number. According to Jin [13], a scheme for kinetic equation is AP if

• it preserves the discrete analogy of the Chapman-Enskog expansion, namely, it is a suitable scheme
for the kinetic equation, yet, when holding the mesh size and time step fixed and letting the Knudsen
number go to zero, the scheme becomes a suitable scheme for the limiting Euler equations
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• implicit collision terms can be implemented explicitly, or at least more efficiently than using the Newton
type solvers for nonlinear algebraic systems.

Comparing with a multiphysics domain decomposition type method [4, 6, 7, 12, 18, 24], the AP schemes
avoid the coupling of physical equations of different scales where the coupling conditions are difficult to
obtain, and interface locations hard to determine. The AP schemes are based on solving one equation–
the kinetic equation, and they become a robust macroscopic (fluid) solver automatically when the Knudsen
number goes to zero. An AP scheme implying a numerical convergence uniformly in the Knudsen number
was proved by Golse-Jin-Levermore for linear transport equation in the diffusion regime [10]. This result can
be extended to essentially all AP schemes, although the specific proof is problem dependent. For examples of
AP schemes for kinetic equations in the fluid dynamic or diffusive regimes see for examples [5, 15, 16, 17, 11].

An AP scheme for (single species) Boltzmann equation was introduced by Benoune, Lemou and Mieussens
[3] using the micro-macro decomposition of the Boltzmann equation. The micro-macro decomposition writes
the density distribution function as the sum of the local Maxwellian and the non-thermoequalibrium deviator.
A coupled system for the hydrodynamic moments (density, momentum and total energy) and the deviator
can be formed which recovers both Euler and Navier-Stokes equations via the Chapman-Enskog expansion.
It has found theoretical success [21], and has also been used for numerical purposes, see [8, 19]. It was shown
in [8] that a AP scheme can be constructed by using the micro-macro decomposition of the Boltzmann
equation. The scheme is AP in the Euler limit. By suitably resolving the viscous term it is also consistent to
the Navier-Stokes approximation. It is our goal to extend this scheme to multispecies Boltzmann equation.

For multispecies Boltzmann equation, each species does not conserve the momentum and energy, al-
though these quantities for the entire systems are conserved. This feature brings new difficulty for numerical
approximations not encountered in the single species case. The non-conservation of each species introduces
stiff nonlinear source terms that must be discretized with care in order 1) to be AP and 2) to be solved
efficiently by avoiding the iterative Newton solvers for nonlinear algebraic systems. Our discretizations are
designed to satisfy these two properties, as will be shown asymptotically and demonstrated numerically.

For convenience and clarity we will mostly use the simpler multispecies BGK model introduced in [1],
yet for completeness and generality we will also present the framework for the general Boltzmann equation.

The paper is organized as follows. In Section 2, we briefly review the multispecies Boltzmann equation.
We then introduce the consistent BGK model for gas mixtures and its hydrodynamic limits of Euler and
Navier-Stokes equations. In Section 3, we present the micro-macro decomposition method, and use it to
construct the equivalent kinetic/fluid system to the Boltzmann equation. This system is proved to have the
Euler and Navier-Stokes limits via the Chapman-Enskog expansion. Section 4 gives the detailed numerical
approximations based on the kinetic/fluid coupling system. We show that it is AP to the Euler limit, and
is also consistent to the Navier-Stokes approximation for suitably small mesh size and time step. We also
show how the implicit nonlinear source term can be solved via only linear system solvers. In Section 5, some
numerical tests are conducted to validate our model and the schemes. We make some concluding remarks
in section 6.

2 Multispecies models

2.1 The multispecies Boltzmann equation

The Boltzmann equation describes the density distribution of evolution of rarefied gases. For the mixtures,
the Boltzmann equation (refer to [9]) is written as

∂tfi + ξ · ∇xfi =
1

ǫ
Qi(f, f), t > 0, (x, ξ) ∈ R

d × R
d. (1)

fi = fi(t, x, ξ) represents the density distribution function of species-i particles that have position x and
velocity ξ at time t; ǫ is the dimensionless Knudsen number, the mean free path over a typical length scale;
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d is the space dimension. The collision term Qi is defined by

Qi(f, f) =
∑

k=1

Qik(fi, fk),

Qik(fi, fk) =

∫

Rd

∫

B+

(f ′
if

′
k∗ − fifk∗)Bik(Ω · V, |V |)dξ∗dΩ

where Bik(Ω · V, |V |) is the collision kernel; ξ and ξ∗ are the molecular pre-collisional velocities; ξ
′

and ξ′∗
are the post-collisional velocities; f ′

i = f ′
i(t, x, ξ

′

), f ′
k∗ = fk(t, x, ξ′∗), fk∗ = fk(t, x, ξ∗); Ω is an unit vector,

B+ is the semi-sphere defined by Ω · V = 0, V is the relative velocity

V = ξ − ξ∗.

We consider the elastic collisions of two particles: one from species i and the other from species k. Thus,
the post-collisional velocities are {

ξ
′

= ξ − 2µik

mi
Ω[(ξ − ξ∗) · Ω],

ξ
′

∗ = ξ∗ + 2µik

mk
Ω[(ξ − ξ∗) · Ω].

the mass of species i is mi and the reduced mass is µik = mimk/(mi +mk). These velocity relations arise
from the conservation laws for the momentum and energy in the molecules’ collision

miξ +mkξ∗ = miξ
′

+mkξ
′

∗

mi|ξ|2 +mk|ξ∗|2 = mi|ξ
′ |2 +mk|ξ

′

∗|2

If we define the microscopic collision operator

Υ : (ξ, ξ∗) 7→ (ξ
′

, ξ
′

∗),

the collision is reversible and satisfies
Υ ◦ Υ = I

This property gives the following identities:





dξdξ∗ = dξ
′

dξ
′

∗

(ξ − ξ∗) · Ω = −(ξ
′ − ξ

′

∗) · Ω
|ξ − ξ∗| = |ξ′ − ξ

′

∗|.

2.2 Macroscopic quantities

We introduce the notations for macroscopic quantities of each species (i): ni is the number density, ρi

the mass density, ui the average velocity, Ei the total energy, ei the internal energy per particle, Ti the
temperature, given by

ni =

∫
fidξ, ρi = mi

∫
fidξ,

ρiui = mi

∫
fiξdξ,

Ei =
1

2
ρiu

2
i + niei = mi

∫
fi

1

2
|ξ|2dξ,

ei =
d

2
Ti =

mi

2ni

∫
fi|ξ − ui|2dξ.
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We also define global quantities for the mixture: the total mass density ρ, the number density n, the
mean velocity u, the total energy E, the internal energy ne, and the mean temperature T = 2e

d :

ρ =
∑

i

ρi, n =
∑

i

ni,

ρu =
∑

i

ρiui,

E =
d

2
nT +

ρ

2
|u|2 =

∑

i

Ei.

2.3 Properties of the Boltzmann equation

We use the notation in the following:

〈ϕ〉 =

∫
ϕdξ and H = (1, ξ,

|ξ|2
2

).

The macroscopic quantities come from the moments of density distribution function

Ui = 〈miHfi〉 =

(
ρi, ρiui,

1

2
(ρi|ui|2 + dniTi)

)
.

The collision term Qi satisfies the conservation laws of mass, the total momentum and the total energy





〈miQi〉 = 0,∑

i

〈miξQi〉 = 0,

∑

i

〈mi
1
2 |ξ|2Qi〉 = 0.

(2)

Moreover, the H-theorem holds:

∑

i

〈miQi log fi〉 ≤ 0 for any fi > 0,

the ”=” is satisfied at the equilibrium, which implies Qi(f, f) = 0 (∀i) and fi is the local Maxwellian

fi = Mi(U) = ni(
mi

2πT
)d/2 exp(−mi|ξ − u|2

2T
) (3)

where ui = uk = u, Ti = Tk = T for any i and k (see [9]).

2.4 The multispecies BGK model

Consider the consistent BGK model introduced in [1] for the Maxwell molecules

dfi

dt
= ∂tfi + ξ · ∇xfi =

1

ǫ
Qi :=

νi

ǫ
(M̃i − fi) (4)

νi is the collision frequency defined as νi =
∑

k nkχik; χik is the interaction coefficient

χik =

∫

B+

(cosω)2Bik(ω)dω

with the collision angle ω = Ω · V/|V |; and

M̃i = ni(
mi

2πT̃i

)d/2 exp(−mi|ξ − ũi|2

2T̃i

)
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is a Maxwellian distribution with ũi and T̃i defined below.
For the Maxwell molecule, the collision kernel Bik(Ω · V, |V |) is only related with the collision angle ω

between the relative velocity V and unit vector Ω

Bik(Ω · V, |V |) = Bik(ω).

Thus, the moments of the collision operator can be obtained as

〈miQi〉 = 0, (5)

〈miξQi〉 = νiρi(ũi − ui) =
∑

k

2µikχiknink[uk − ui], (6)

〈mi
1

2
|ξ|2Qi〉 = νi(Ẽi − Ei) =

∑

k

2µikχiknink

[
(uk − ui)ui +

2

mi +mk

(
ek − ei +mk

|uk − ui|2
2

)]
. (7)

Note that the momentum and energy are not conserved for each species.
From (5)-(7), the ũi and T̃i in M̃i have the expression (ẽi = d

2 T̃i):

miνiũi = miνiui +
∑

k

2µikχiknk(uk − ui), (8)

νiẽi = νiei −
miνi

2
|ũi − ui|2 +

∑

k

2µikχiknk
2

mi +mk
·
(
ek − ei +mk

|uk − ui|2
2

)
. (9)

Taking moments on the BGK model (4), (5)-(7) gives the macroscopic equations:





∂tρi + ∇x · (ρiui) = 0,
∂tρiui + ∇x · (ρiui ⊗ ui + Pi) = 1

ǫ

∑
k

2µikχiknink[uk − ui],

∂tEi + ∇x · (Eiui + Piui + qi) = 1
ǫ

∑
k

2µikχiknink

[
(uk − ui) · ui + 2

mi+mk

(
ek − ei +mk

|uk−ui|
2

2

)]
,

(10)
where Pi is a d× d stress tensor; qi is the heat flux of species i.

It was shown in [1] that the BGK model possesses the following properties:

• the non-negativity of densities

• the exchange relations of momentum and energy complies with those of the Maxwell particles

• the indifferentiability principle holds: when all species are the same (the same mass and all χik ≡ χ,
∀i, k), the model will degenerate into the single species BGK model

• the equilibrium distributions are local Maxwellians as (3) with mean velocity u and mean temperature
T

• the H theorem holds true.

2.5 The fluid dynamics approximations of the multispecies BGK model

At the zero Knudsen number limit (ǫ→ 0), all Qi = 0. From (8) - (9), we have ũi = ui = u and T̃i = Ti = T
(see [1]). Thus,

fi = Mi = ni(
mi

2πT
)d/2 exp(−mi|ξ − u|2

2T
),

and the macroscopic equations (10) become the Euler system

∂tρi + ∇x · (ρiu) = 0,

∂tρu+ ∇x · (ρu⊗ u+ nT ¯̄I) = 0,

∂tE + ∇x · ((E + nT )u) = 0,
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with the pressure P = nT ¯̄I , where ¯̄I is the unit matrix, and the heat flux q = 0.
When ǫ≪ 1, the Chapman-Enskog expansion was used in [1] to get the Navier-Stokes equation as

∂tρi + ∇x · (ρiu) = −∇x · (Ji),

∂t(ρu) + ∇x · (ρu⊗ u+ P ) = 0, (11)

∂tE + ∇x · [(E + P )u+ q] = 0,

with

Ji = ρi(ui − u),

P = nT ¯̄I − η

(
∇xu+ (∇xu)

T − 2

d
(∇x · u) ¯̄I

)
, (12)

q =
d+ 2

2
T
∑

i

ni(ui − u) − κ∇xT,

where the viscosity coefficient η = ǫT
∑

i
ni

νi
, the thermal conductivity coefficients κ = ǫd+2

2 T
∑

i
ni

miνi
, and

Ji is the diffusion velocity

Ji = −ǫ
∑

k

Lik
∇x (nkT )

ρk
+O(ǫ2),

in which Lik is a symmetric matrix depending only on the densities.

3 A kinetic/fluid formulation

3.1 Micro/Macro decomposition

For each species i, as was done is [21, 3], we decompose the distribution function fi = fi(t, x, ξ) into the sum
of its Maxwellian Mi(Ui) and gi = fi−Mi

ǫ

fi = Mi(Ui) + ǫgi, (13)

where the Maxwellian is

Mi(Ui) = ni

(
mi

2πTi

)d/2

exp

(
−mi|ξ − ui|2

2Ti

)
. (14)

The Maxwellian for species i has the same moments as the density distribution function fi

〈Hfi〉 = 〈HMi〉 (15)

thus,
〈Hgi〉 = 0.

One can use a projection method to separate the macroscopic and microscopic quantities Mi and gi. Con-

sider the Hilbert space L2
Mi

=

{
ϕ| ϕ

(
Mi

ni

)− 1
2 ∈ L2(Rd)

}
, the scalar product (ϕ, ψ)Mi

=

〈
ϕψ
(

Mi

ni

)−1
〉
.

Define the space DMi =Span
{
Mi, ξMi, |ξ|2Mi

}
, then the orthogonal basis of DMi is

B =

{
Mi

ni
,
ξ − ui√
Ti/mi

Mi

ni
,

(
|ξ − ui|2
2Ti/mi

− d

2

)
Mi

ni

}
,

and the orthogonal projection in L2
Mi

onto DMi is ΠMi(ϕ):

ΠMi(ϕ) =
1

ni

[
〈ϕ〉 +

(ξ − ui) · 〈(ξ − ui)ϕ〉
Ti/mi

+

( |ξ − ui|2
2Ti/mi

− d

2

)
2

d

〈( |ξ − ui|2
2Ti/mi

− d

2

)
ϕ

〉]
Mi.

One can establish the following properties of ΠMi(ϕ) as in [3]:
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Lemma 1. As the definition of Mi and gi in (13)(14), we have

(I − ΠMi)(∂tMi) = ΠMi(gi) = ΠMi(∂tgi) = 0.

Proof. We know that

∂tMi =

[
∂tρi

ρi
+
mi(ξ − ui)

Ti
· ∂tui +

(
mi |ξ − ui|2

2Ti
− d

2

)
∂tTi

Ti

]
Mi

clearly belongs to DMi . Thus, ΠMi(∂tMi) = ∂tMi. Since 〈Hgi〉 = 0, 〈H∂tgi〉 = ∂t 〈Hgi〉 = 0. So it implies
ΠMi(gi) = ΠMi(∂tgi) = 0.

Now apply the operator (I − ΠMi) to (1),

(I − ΠMi) (∂tMi + ξ · ∇xMi) + ǫ(I − ΠMi) (∂tgi + ξ · ∇xgi) =
1

ǫ
(I − ΠMi)Qi.

Using Lemma 1 one obtains:

∂tgi + (I − ΠMi)(ξ · ∇xgi) =
1

ǫ

[
1

ǫ
(I − ΠMi)Qi − (I − ΠMi)(ξ · ∇xMi)

]
. (16)

Taking the moments of (1), it gives:

∂t 〈miHMi〉 + ∇x · 〈miξHMi〉 + ǫ∇x · 〈miξHgi〉 =
1

ǫ
〈miHQi〉.

The macroscopic quantities Ui are defined as 〈miHMi〉. Let F (Ui) = 〈miξHMi〉 be the flux vector of Ui.
Then, The equations for macroscopic quantities are

∂tUi + ∇x · F (Ui) + ǫ∇x · 〈miξHgi〉 =
1

ǫ
〈miHQi〉. (17)

The coupled system (16)-(17) gives a kinetic/fluid formulation of the multispecies Boltzmann equation. Next
we will show that the system is equivalent to the Boltzmann equation (1), which essentially follows the proof
in [3].

Proposition 2. (i) Let fi be a classical solution of the Boltzmann equation (1) with initial data fi(t =
0, x, ξ) = f0(x, ξ), and Mi = Mi(Ui) its associated Maxwellian given in (14). Then the pair (Ui, gi), where
Ui = 〈miHMi〉 and gi = fi−Mi

ǫ , is a solution to the coupled system (16)-(17) with the corresponding initial
data

U (t = 0) = U0 = 〈miHfi0〉 and gi (t = 0) = gi0 =
fi0 −Mi0

ǫ
. (18)

(ii) Conversely, if (Ui, gi) satisfies system (16)-(17) with the initial data (18) such that 〈miHgi0〉 = 0, then
fi = Mi + ǫgi is a solution to the Boltzmann equation (1) with initial data fi0 = Mi (Ui0)+ ǫgi0 and we have
Ui = 〈miHfi〉 and 〈miHgi〉 = 0.

Proof. (i) is straightforward due to the construction of the coupled system (16)-(17). Consider (ii), we have
from (16)

ǫ∂tgi + ξ · ∇xMi + ǫξ · ∇xgi =
1

ǫ
(I − ΠMi)Qi + ΠMi(ξ · ∇xMi) + ǫΠMi(ξ · ∇xgi).

Adding ∂tMi to the above equations gives,

∂tfi + ξ · ∇xfi =
1

ǫ
Qi +

[
∂tMi + ΠMi(ξ · ∇xfi) −

1

ǫ
ΠMiQi

]
.

∂tMi + ΠMi(ξ · ∇xfi) − 1
ǫ ΠMiQi belongs to the space DMi . On the other hand, (17) is equivalent to〈

H(∂tMi + ξ · ∇xfi − 1
ǫQi)

〉
= 0, which implies ∂tMi + ΠMi(ξ · ∇xfi) − 1

ǫ ΠMiQi is orthogonal to the space
DMi . Consequently, ∂tMi + ΠMi(ξ · ∇xfi) − 1

ǫ ΠMiQi = 0 and fi satisfies the Boltzmann equation.
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Corresponding to (16)-(17), the kinetic/fluid system from the multispecies BGK model (4) is:

∂tgi + (I − ΠMi)(ξ · ∇xgi) =
1

ǫ

[νi

ǫ
(I − ΠMi)M̃i − νigi − (I − ΠMi)(ξ · ∇xMi)

]
, (19)

∂tUi + ∇x · F (Ui) + ǫ∇x · 〈miξHgi〉 =
1

ǫ
〈miHQi〉. (20)

The calculation on the first term of the right side (19) gives

(I − ΠMi)M̃i = M̃i −Mi

[
1 +

ξ − ui

Ti/mi
· (ũi − ui) +

( |ξ − ui|2
2Ti/mi

− d

2

)(
T̃i − Ti

Ti
+

|ũi − ui|2
Ti/mi

)]
(21)

= M̃i −
(
Mi + ∂uiMi · (ũi − ui) + ∂TiMi(T̃i − Ti +mi|ũi − ui|2)

)
.

In the next two sections we will show that the kinetic/fluid system (19) - (20) recovers the fluid ap-
proximation of the Euler and CNS equations as the standard Chapman-Enskog expansion on the BGK
model.

3.2 The Euler system

As ǫ→ 0, Qi = 0 ⇒ 〈HQi〉 = 0. The equations in (5) - (7) imply that ui = uk = u, Ti = Tk = T . Under the
common velocity and temperature,

fi = Mi(U) = ni

( mi

2πT

)d/2

exp

(
−mi|ξ − u|2

2T

)
, (22)

and
gi = 0.

Hence, the equation (20) automatically turns into the Euler equations:

∂tρi + ∇x · (ρiu) = 0,

∂tρu+ ∇x · (ρu⊗ u+ nT ¯̄I) = 0, (23)

∂tE + ∇x · [(E + nT )u] = 0.

3.3 Chapman-Enskog expansion and the Navier-Stokes system

When ǫ≪ 1, from (10), the states of species are close to the equilibrium after the collision process (see [1]):

ui − u ∼ O(ǫ) and Ti − T ∼ O(ǫ). (24)

Consequently, (I −ΠMi)M̃i in (21) is the difference of M̃i and its linear approximation at Mi with a second
order residual, which means

(I − ΠMi)M̃i ∼ O(ǫ2). (25)

Thus, (19) gives

gi = − 1

νi
(I − ΠMi)(ξ · ∇xMi) +O(ǫ). (26)

Through the calculations as in [2], we have

(I − ΠMi)(ξ · ∇xMi) =

[
B :

(
∇xui + (∇xui)

T − 2

d
(∇x · ui)

¯̄I

)
+A · ∇xTi√

Ti

]
Mi +O(ǫ),

where ¯̄I is the identity matrix, and

A =

( |ξ − ui|2
2Ti/mi

− d+ 2

2

)
ξ − ui√
Ti

, B =
1

2

[
(ξ − ui) ⊗ (ξ − ui)

2Ti/mi
− |ξ − ui|2

dTi/mi

¯̄I

]
.
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Plugging the leading term of (26) into (20),

∂tUi + ∇x · F (Ui) =
1

ǫ
〈miHQi〉 + ǫ∇x ·

〈
miξH

1

νi
(I − ΠMi)(ξ · ∇xMi)

〉
+O(ǫ2). (27)

Note

ǫ

〈
miξH

1

νi
(I − ΠMi)(ξ · ∇xMi)

〉
= −




0
σi

σiui + qi


 ,

which is nothing but the CNS system’s viscosity and heat conduction parts for the species i. The rescaled
viscosity tensor is

σi = −ηi

(
∇xui + (∇xui)

T − 2

d
(∇x · ui)

¯̄I

)

with the viscosity coefficient ηi = ǫTi
ni

νi
. The heat flux is

qi = −κi∇xTi

with the thermal conductivity coefficient κi = ǫd+2
2 Ti

ni

miνi
.

From (27), the CNS equations of species i can be written as

∂tρi + ∇x · (ρiu) = −∇x · (ρiui − ρiu) , (28a)

∂tρiui + ∇x · (ρiui ⊗ ui + niTi
¯̄I + σi) =

1

ǫ
〈miξQi〉 +O(ǫ2), (28b)

∂tEi + ∇x · [(Ei + niTi)ui + σiui + qi] =
1

ǫ

〈mi

2
|ξ|2Qi

〉
+O(ǫ2). (28c)

(28a) is exactly the same with the first equation of CNS for the mixture (11)-(12). To prove that the system
(28) is the approximation to (11)-(12) in O(ǫ2), we need the following lemma.

Lemma 3. If ui − uk ∼ O(ǫ) and Ti − Tk ∼ O(ǫ) (ǫ≪ 1), then:

∑

i

ρiui ⊗ ui = ρu⊗ u+O(ǫ2), (29)

∑

i

niTi = nT +O(ǫ2), (30)

∑

i

1

2
ρi |ui|2 ui =

1

2
ρ |u|2 u+O(ǫ2). (31)

Proof. We prove (29), which is equivalent to

ρ
∑

i

ρiui ⊗ ui = ρu⊗ ρu+O(ǫ2 )̇. (32)

Recall the definition of ρ, u and T :

ρ =
∑

i

ρi, ρu =
∑

i

ρiui,

n
d

2
T +

ρ

2
|u|2 =

∑

i

Ei =
∑

i

ni
d

2
Ti +

ρi

2
|ui|2, (33)

and write the vector ui =
(
u

(j)
i

)
j=1,2,...,d

. When j 6= s, the left hand side in (32) is

(LHS)j,s =
∑

k

ρk

∑

i

ρiu
(j)
i u

(s)
i =

∑

k

∑

i

ρkρiu
(j)
i u

(s)
i ,

9



while the right hand side in (32) is

(RHS)j,s =
∑

k

ρku
(s)
k

∑

i

ρiu
(j)
i =

∑

k

∑

i

ρkρiu
(j)
i u

(s)
k .

Thus,

(LHS − RHS)j,s =
∑

k

∑

i

ρkρiu
(j)
i

(
u

(s)
i − u

(s)
k

)
.

The subscript i and k are exchangeable; then

(LHS − RHS)j,s =
∑

k

∑

i

ρkρiu
(j)
k

(
u

(s)
k − u

(s)
i

)
.

Add up these two results, we can get

(LHS − RHS)j,s =
1

2

∑

k

∑

i

ρkρi

(
u

(j)
i − u

(j)
k

)(
u

(s)
i − u

(s)
k

)
∼ O(ǫ2)

as in (29). The same approach with the energy conservation in (33) indicates that

n
d

2
T −

∑

i

ni
d

2
Ti =

∑

i

ρi

2
|ui|2 −

ρ

2
|u|2 ∼ O(ǫ2)

as in (30), which is only the case j = s in (32). Multiplying the equation (31) by the total mass density ρ,
the left hand side is

LHS =
ρ

2

∑

i

ρi |ui|2 ui =
1

2

∑

j

∑

i

ρjρi |ui|2 ui,

while the right hand side

RHS =
ρ

2
ρ |u|2 u =

1

2
ρ
∑

i

ρi |ui|2 u+O(ǫ2 )̇ =
1

2

∑

j

∑

i

ρjρi |ui|2 uj +O(ǫ2 )̇.

We have

LHS − RHS =
1

2

∑

j

∑

i

ρjρi |ui|2 (ui − uj) .

Exchange the subscript i and j and we finally prove the result

LHS − RHS =
1

2

∑

j

∑

i

ρjρi |ui|2 (ui − uj) ∼ O(ǫ2)

as in (31).

Recalling the conservation laws (2) and summing up the second moments (28b) for all species, we obtain
the momentum equations of the compressible Navier-Stokes system for the mixture:

∂t(ρu) + ∇x · (ρu ⊗ u+ P ) = 0, (34)

P = nT ¯̄I − η

(
∇xu+ (∇xu)

T − 2

d
(∇x · u) ¯̄I

)
+O(ǫ2).

The viscosity coefficient: η = ǫT
∑

i
ni

νi
.

10



Summing up the energy equation (28c) for all species and using (31) lead to

∑

i

(Ei + niTi)ui =
∑

i

(
1

2
ρi |ui|2 ui +

d+ 2

2
niTiui

)

=
1

2
ρ |u|2 u+

d+ 2

2
nTu+

∑

i

d+ 2

2
niTi (ui − u) +O(ǫ2)

=
1

2
ρ |u|2 u+

d+ 2

2
nTu+

d+ 2

2
T
∑

i

ni (ui − u) +O(ǫ2)

(note that the third term is O(ǫ)). Therefore, we obtain the third equation of CNS :

∂tE + ∇x · [(Eu + P )u+ q] = 0, (35)

q =
d+ 2

2
T
∑

i

ni(ui − u) − κ∇xT +O(ǫ2),

κ = ǫd+2
2 T

∑
i

ni

miνi
is the thermal conductivity coefficient.

Thus, the system (28a)-(28c) is a second order in ǫ approximation of the CNS system arising from the
Chapman-Enskog expansion of the BGK system (11)-(12) derived in [1].

4 Asymptotic-preserving numerical approximations

In this section, we will present an asymptotic-preserving numerical approximation of the coupling system
(19)-(20). Given the fixed time step and space mesh size, we will show that our numerical scheme approxi-
mates the discretization of the Euler system with error O(ǫ), thus asymptotically preserves the Euler limit.
It is also consistent with the CNS system if ∆x,∆t≪ ǫ.

This scheme is an extension of the scheme [3] for single species, and it recovers the method of [3] if there
is only one species.

4.1 Time discretization

In the first step, we give the AP time discretization. Space and velocity discretizations will be studied in
the next subsection. We denote a fixed time step ∆t and a sequence of discrete time tl = l∆t, l ∈ N. Thus,
gl

i(x, ξ) = gi(tl, x, ξ), U
l
i (x) = Ui(tl, x).

In the kinetic equation (19), the term νi

ǫ2 (I − ΠMi)M̃i is O(1) from (25), thus is not a stiff term; so it
will be treated explicitly. For the stability independent of ǫ, we treat gi term in the collision part implicitly.
This semi-implicit scheme on the kinetic equation has the expression

gl+1
i − gl

i

∆t
+ (I − ΠMl

i
)(ξ · ∇xg

l
i) =

1

ǫ

[
νl

i

ǫ
(I − ΠMl

i
)M̃i

l
− νl

ig
l+1
i − (I − ΠMl

i
)(ξ · ∇xM

l
i )

]
. (36)

Now, we discretize the second equation (20). In (20), there are three scales: O(1
ǫ ) collision term; O(1)

convection term and O(ǫ) diffusion term. The latest two terms essentially come from the molecule convection.
We will use splitting method to separately calculate the collision and convection terms in (20)

U
l+ 1

2

i − U l
i

∆t
+ ∇x · F (U l

i ) + ǫ∇x ·
〈
miξHg

l
i

〉
= 0, (37)

U l+1
i − U

l+ 1
2

i

∆t
=

1

ǫ

〈
miHQ

l+1
i

〉
. (38)

11



We order these steps in the following way:

U
l+ 1

2

i − U l
i

∆t
=

1

ǫ

〈
miHQ

l+ 1
2

i

〉
, (39)

gl+1
i − gl

i

∆t
+

(
I − Π

M
l+ 1

2
i

)(
ξ · ∇xg

l
i

)

=
1

ǫ

[
ν

l+ 1
2

i

ǫ

(
I − Π

M
l+ 1

2
i

)
M̃i

l+ 1
2 − ν

l+ 1
2

i gl+1
i −

(
I − Π

M
l+ 1

2
i

)(
ξ · ∇xM

l+ 1
2

i

)]
, (40)

U l+1
i − U

l+ 1
2

i

∆t
+ ∇x · F (U

l+ 1
2

i ) + ǫ∇x ·
〈
miξHg

l+1
i

〉
= 0. (41)

Although (39) is fully implicit, note the results in (5)-(7), one can write it as

ρ
l+ 1

2

i − ρl
i

∆t
= 0,

ρ
l+ 1

2

i u
l+ 1

2

i − ρl
iu

l
i

∆t
=

1

ǫ

∑

k

2µikχikn
l+ 1

2

i n
l+ 1

2

k

[
u

l+ 1
2

k − u
l+ 1

2

i

]
, (39

′

)

E
l+ 1

2

i − El
i

∆t
=

1

ǫ

∑

k

2µikχikn
l+ 1

2

i n
l+ 1

2

k

[(
u

l+ 1
2

k − u
l+ 1

2

i

)
u

l+ 1
2

i

+
2

mi +mk

(
e

l+ 1
2

k − e
l+ 1

2

i +mk

∣∣∣ul+ 1
2

k − u
l+ 1

2

i

∣∣∣
2

/2

)]
.

This implicit scheme satisfies the conservation laws as well as the limit properties (see Remark 5). Simplify
the above and we will obtain a linear system

n
l+ 1

2

i = nl
i, (42)

u
l+ 1

2

i − ul
i =

∆t

ǫ

∑

k

2χik
mkn

l+ 1
2

k

mk +mi

[
u

l+ 1
2

k − u
l+ 1

2

i

]
, (43)

E
l+ 1

2

i − El
i =

∆t

ǫ

∑

k

4mimk

(mi +mk)2
χikn

l+ 1
2

i n
l+ 1

2

k

[
1

2
(mi −mk)u

l+ 1
2

k u
l+ 1

2

i +
E

l+ 1
2

k

n
l+ 1

2

k

− E
l+ 1

2

i

n
l+ 1

2

i

]
. (44)

Suppose that there are K species in the mixture, let −→u = (u1 u2 ... uK). Due to (42), (43) is a linear system

for −→u . Once −→u l+ 1
2 is obtained, (44) is a linear system for

−→
E = (E1 E2 ... EK). Thus, although the right

hand side of (39) is nonlinear, we only need to solve linear systems. (40) is clearly linear for gl+1
i which can

be obtained easily.

Proposition 4. (i) The time discretizations as (39) - (41) give a scheme consistent with the Euler system
(23) when ǫ→ 0;

(ii) for small ǫ, the scheme (39) - (41) is asymptotically the O(ǫ2) approximation to an explicit time
discretization of CNS system (11) - (12).

Proof. (i) When ǫ → 0, the implicit collision scheme (39) leads to u
l+ 1

2

i = ul+ 1
2 and T

l+ 1
2

i = T l+ 1
2 for ∀i,

and (41) becomes the following forward Euler discretization in time of the Euler system:

(Euler):
U l+1 − U l+ 1

2

∆t
+ ∇x · F (U l+ 1

2 ) = 0. (45)

(ii) From (21), the first term in the right hand side of (40) is O(1). The semi-implicit scheme in equation
(40) yields

gl+1
i = − 1

ν
l+1/2
i

(
I − Π

M
l+ 1

2
i

)(
ξ · ∇xM

l+ 1
2

i

)
+O(ǫ).
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Applying it into (41), we get

U l+1
i − U

l+ 1
2

i

∆t
+ ∇x · F (U

l+ 1
2

i ) = ǫ∇x ·
〈
miξH

1

ν
l+1/2
i

(
I − Π

M
l+ 1

2
i

)(
ξ · ∇xM

l+ 1
2

i

)〉
+O(ǫ2), (46)

which is an O(ǫ2) approximation to the forward Euler discretization in time of CNS for species i (27). The
summation over all species is also consistent with multispecies CNS as ui − u ∼ O(ǫ) and Ti − T ∼ O(ǫ),
which has been proved in Section 3.3.

Remark 5. In this paper, we derive the implicit scheme (42)-(44) for the collision process of the consistent
BGK model (4). Although the collision term is a nonlinear function of the macroscopic quantities, the
Maxwell particle relations (5)-(7) provide a method to solve a linear system. It is easy to check that the

scheme has the conservation property during the collision (39
′

), namely ρ
l+ 1

2

i = ρl
i,
∑

i ρ
l+ 1

2

i u
l+ 1

2

i =
∑

i ρ
l
iu

l
i

and
∑

iE
l+ 1

2

i =
∑

i E
l
i. It also satisfies that at the limit (ǫ = 0) u

l+ 1
2

i = u
l+ 1

2

k and T
l+ 1

2

i = T
l+ 1

2

k for ∀i, k.

4.2 Space discretization

The terms that need the spatial discretizations include: the fluxes on the left-hand side of both (40) and
(41); and the diffusion term in (41). The convection terms will be discretized by upwind scheme. For the
diffusion term, the central differences defined on two staggered grids is used. Since in (41) gi’s influence on
Ui is O(ǫ) as diffusion, the explicit central discretization for the leading term of (I −ΠMi)(ξ · ∇xMi) in (41)
will be taken. The critical steps are shown in the remainder of this section.

We use a uniform grid xm+ 1
2

and define xm the center of the cell
[
xm− 1

2
, xm+ 1

2

]
. The mesh size ∆x =

xm+ 1
2
− xm− 1

2
= xm+1−xm, m ∈ N. The macroscopic U l

i of species i are discretized at the grid center points

as U l
i,m = Ui(tl, xm) while the microscopic gl

i are at the grid end points as gl
i,m+ 1

2

= gi(tl, xm+ 1
2
, ξ). The

velocity is discretized evenly in a bounded domain. The rectangular quadratures are applied to approximate
the integrals with respect to the velocity. For a simplified expression, we will not explicitly express the
discrete velocity for the microscopic functions. The numerical scheme for the system (39) - (41) is

U
l+ 1

2

i,m − U l
i,m

∆t
=

1

ǫ
〈miHQ

l+ 1
2

i,m 〉, (47)

(MM):
gl+1

i,m+ 1
2

− gl
i,m+ 1

2

∆t
+

(
I − Π

M
l+1/2

i,m+1/2

)(
ξ · ∂xg

l
i,m+ 1

2

)
(48)

=
1

ǫ



ν

l+ 1
2

i,m+ 1
2

ǫ
(I − Π

M
l+1/2

i,m+1/2

)M̃
l+ 1

2

i,m+ 1
2

− ν
l+ 1

2

i,m+ 1
2

gl+1
i,m+ 1

2

− (I − Π
M

l+1/2

i,m+1/2

)


ξ

M
l+ 1

2

i,m+1 −M
l+ 1

2

i,m

∆x




 ,

U l+1
i,m − U

l+ 1
2

i,m

∆t
+
Fm+ 1

2
(U

l+ 1
2

i ) − Fm− 1
2
(U

l+ 1
2

i )

∆x
+ ǫ

〈
miξH

gl+1
i,m+ 1

2

− gl+1
i,m− 1

2

∆x

〉
= 0. (49)

The flux term in (48) is approximated by a first order upwind scheme

ξ · ∂xg
l
i,m+ 1

2

≈
Φm+ 1

2
(gl

i) − Φm− 1
2
(gl

i)

∆x
,

where
Φm+ 1

2
(gl

i) = ξ+gl
i,m+ 1

2

+ ξ−gl
i,m+ 3

2

(we define ξ± = ξ±|ξ|
2 ). The projection operator ΠMi,m+1/2

is chosen by ΠMi,m+1/2
≈ ΠMi,m

+ΠMi,m+1

2 . The
fluid flux Fm+ 1

2
in (49) is discretized by the kinetic flux vector splitting scheme in [22]:

Fm+ 1
2
(U

l+ 1
2

i ) =
〈
miH

(
ξ+M l

i,m + ξ−M l
i,m+1

)〉
. (50)
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The asymptotic behavior of scheme when ǫ ≪ 1 can be understood as following. For ǫ ≪ 1, the leading
order in (48) gives

gl+1
i,m+ 1

2

≈ − 1

ν
l+1/2
i,m+1/2

(
I − Π

M
l+1/2

i,m+1/2

)
ξ

M
l+ 1

2

i,m+1 −M
l+ 1

2

i,m

∆x


 .

Plugging it into (49) gives

(NS/MM):
U l+1

i,m − U
l+ 1

2

i,m

∆t
+
Fm+ 1

2
(U

l+ 1
2

i ) − Fm− 1
2
(U

l+ 1
2

i )

∆x
(51)

=
ǫ

∆x

〈
miξH


 1

ν
l+1/2

i,m+ 1
2

(I − Π
M

l+1/2

i,m+1/2

)(ξ
M

l+ 1
2

i,m+1 −M
l+ 1

2

i,m

∆x
) − 1

ν
l+1/2

i,m− 1
2

(I − Π
M

l+1/2

i,m−1/2

)(ξ
M

l+ 1
2

i,m −M
l+ 1

2

i,m−1

∆x
)



〉
,

which is a second order approximation of the CNS equation (27). Thus the scheme is asymptotic preserving
(AP) for the Euler limit (∆x,∆t = O(1), ǫ≪ 1). (51) is also consistent to the CNS if ∆x,∆t ≪ O(ǫ).

To reduce numerical viscosity, we will use the second order upwind scheme (in the sense of Van Leer in
[25]) to reduce the numerical viscosity. Such a scheme needs to use the slope limiter. In our numerical tests,
the classical minmod slope limiter (see [20]) is applied.

For numerical comparisons, we also present the schemes for the BGK model and the CNS equations in
the following two subsections.

4.3 A numerical approximation of the BGK model

To discretize the 1-D BGK model:
∂tfi + ξ∂xfi =

νi

ǫ

(
M̃i − fi

)
,

we use the splitting method: solve the collision process by implicit scheme and the convection process by
first order explicit upwind scheme:

(Si):
f

l+ 1
2

i,m − f l
i,m

∆t
=
ν

l+ 1
2

i,m

ǫ

(
M̃

l+ 1
2

i,m − f
l+ 1

2

i,m

)
≡ 1

ǫ
Q

l+ 1
2

i,m , (52)

f l+1
i,m − f

l+ 1
2

i,m

∆t
+

Φm+ 1
2
(f

l+ 1
2

i ) − Φm− 1
2
(f

l+ 1
2

i )

∆x
= 0. (53)

Here f l
i,m = fi(tl, xm) and Φm+ 1

2
(f

l+ 1
2

i ) = ξ+f
l+ 1

2

i,m +ξ−f
l+ 1

2

i,m+1. The conservation of mass leads to ν
l+ 1

2

i,m = νl
i,m;

M̃
l+ 1

2

i,m is a nonlinear function of the moments of f
l+ 1

2

i,m , which is U
l+ 1

2

i,m . We take the moments of (52):

U
l+ 1

2

i,m − U l
i,m

∆t
=

1

ǫ

〈
miHQ

l+ 1
2

i,m

〉
.

The same process (42)-(44) will solve U
l+ 1

2

i,m by inverting linear systems. Consequently, we get M̃
l+ 1

2

i,m , and

solve (52) for f
l+ 1

2

i,m .

4.4 A numerical approximation of the CNS equations

In the 1-D CNS, the pressure P = nT and the equations (11) are:

∂tρi + ∂x(ρiu) = −∂xJi,

∂t(ρu) + ∂x(ρu2 + nT ) = 0, (54)

∂tE + ∂x [(E + nT )u] = ∂x

(
κ∂xT − 3

2
T
∑

i

Ji

mi

)
.
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Here the thermal conductivity coefficients κ = ǫ 3
2T
∑

i
ni

miνi
, and the diffusion velocity Ji = −ǫ∑k Lik

∂x(nkT )
ρk

,

of which Lik is defined in [1] as a function of densities. The left hand side are the same as the Euler equations,
and we will replace them by ∂tU + ∂xF (U) and implement the kinetic flux vector splitting scheme (50) on
the flux terms. The right hand side is the diffusion terms which are discretized by the central discretization

(NS)
U l+1

m − U l
m

∆t
+
F l

m+ 1
2

(U l) − F l
m− 1

2

(U l)

∆x
(55)

=
1

∆x




−
(
J l

i,m+ 1
2

− J l
i,m− 1

2

)

0(
κl

m+ 1
2

T l
m+1−T l

m

∆x − 3
2T

l
m+ 1

2

∑
i

Jl

i,m+ 1
2

mi

)
−
(
κl

m− 1
2

T l
m−T l

m−1

∆x − 3
2T

l
m− 1

2

∑
i

Jl

i,m−
1
2

mi

)


 ,

where

J l
i,m+ 1

2

= −ǫ
∑

k

Ll
ik,m+ 1

2

ρl
k,m+ 1

2

(
nl

k,m+1T
l
m+1 − nl

k,mT
l
m

∆x

)
.

The quantities at the half grid Tm+ 1
2
, κm+ 1

2
, ρk,m+ 1

2
and Lik,m+ 1

2
will be estimated by the average of the

nearby two grids as Tm+ 1
2
≈ Tm+1+Tm

2 .

5 Numerical results

Without loss of generality, all numerical examples studied in this paper will be conducted for a two-species
mixture. We first show the numerical results for the one-dimensional BGK model (4), to investigate the
behavior of the mixture. We then present several numerical solutions of the one-dimensional coupling system
using (47)-(49) corresponding to the solution of the BGK model (52)-(53). To illustrate the asymptotic
preserving properties, we will check that our scheme of (47)-(49) is AP to the Euler system (45) to O(ǫ), as
well as captures the CNS asymptotics (55) with suitable mesh size and time step.

For convenience, we will denote our numerical schemes as following: micro/macro decomposition scheme
(47)-(49) as (MM); the implicit scheme (52)-(53) for BGK model as (Si); the numerical scheme (55) for CNS
as (NS); the kinetic scheme for Euler equations (45) as (Euler); and the approximation of (MM) to CNS
(51) as (NS/MM).

5.1 A space homogeneous problem

We first use the implicit scheme (Si) for the BGK model in the space homogeneous case, to check our scheme
and the behavior of the mixture in the collision process. The initial condition is

{
ma = 1, , na = 1, ua = 0.5, Ta = 1

mb = 1.5, nb = 1.2, ub = 0.1, Tb = 0.1.

There are 200 velocity grid points in the range [−10, 10] and the time step ∆t = 5 × 10−4. In Fig 1, the
velocities and temperatures of species a and b converge along with the different Knudsen number ǫ = 0.05
and 0.01. It shows that the smaller the Knudsen number ǫ is, the faster velocities and temperatures converge
into the equilibrium.

5.2 A stationary shock problem

In this example, we test the coupling system for a stationary shock. We give the initial macroscopic data on
the left-hand side, while the right-hand side data are given by the Rankine-Hugoniot relations:

{
ma = 1,mb = 1.5, na = nb = 1, ua = ub = 1.5, Ta = Tb = 0.4, for x ≤ 0;

ma = 1,mb = 1.5, na = nb = 1.4019, ua = ub = 1.07, Ta = Tb = 0.8605, for x > 0.
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The computational domain in space is [−0.5, 0.7] discretized by a uniform grids ∆x = 0.005. We use a
velocity grid of 200 points in domain [−10, 10]. To satisfy the CFL condition, the time step is taken as
∆t = ∆x

10 .
Firstly, in Fig 2 the results by our scheme (MM) show that the density distribution function converges to

the Maxwellian with diminishing Knudsen number ǫ. The results match well with the BGK model (Si) for
the stationary shock, shown in Fig 3. We illustrate the asymptotic behavior of scheme for different values
of ǫ (ǫ = 10−θ, θ ∈ N), and plot the density, velocity and temperature of the mixture as the functions of x
in Fig 4, comparing them with the exact solution of the stationary shock. There exits the oscillation in the
stationary shock when ǫ → 0, which results from the numerical viscosities of the finite difference method
(see [14]).

Then we compare the relative numerical difference in l1 norm with the Euler limit and investigate the
convergence speed. Both micro/macro decomposition scheme (MM) and implicit BGK scheme (Si) converge
to the Euler limit in O(ǫ). We observe that the slope in Fig 5 is about 1 as expected, except when ǫ is O(1),
where the Euler equations are not accurate approximations to the Boltzmann equation.

5.3 Sod problem

We use the classical Sod problem [23] with the initial condition:

{
na = 1, nb = 1.2, ua = ub = 0, Ta = Tb = 1, for x ≤ 0;

na = 0.125, nb = 0.2, ua = ub = 0, Ta = Tb = 0.1, for x > 0.

We compare our micro/macro decomposition scheme (MM) with the implicit scheme on BGK (Si) and the
Euler system (Euler). The computational domain in space is [−0.5, 0.5] discretized by the uniform grids
∆x = 0.005. We use a velocity grid of 200 points in domain [−10, 10]. To satisfy the CFL condition, the
time step is taken as ∆t = ∆x

10 . Fig 6 shows that (MM) and (Si) are almost the same for the different
regimes: ǫ = 1 (kinetic regime); ǫ = 0.01 (transition regime) and ǫ = 1.0 × 10−5 (fluid regime). Fig 7
illustrates the asymptotic behavior of (MM) for the density, velocity and the temperature of the mixture
under the different Knudsen number ǫ, with its limit (Euler). We also compare the CNS system (NS) with
our schemes (MM) and its asymptotics (NS/MM) in Fig 8, which indicates that (NS), NS/MM and (MM)
all match well even for small ǫ.

6 Conclusion

In this work, we extend the micro-macro decomposition based asymptotic-preserving scheme, developed in
[3] for single species Boltzmann equation, to multispecies Boltzmann equation. In addition to the essential
properties of the scheme [3], we overcome the additional stiff source terms due to the nonconservative
momentum and total energy for each species. The discretization is asymptotic-preserving in the Euler limit,
and is also consistent to the Navier-Stokes limit with suitably small time step and mesh size. Moreover, the
nonlinear source terms can be solved by only using linear system solvers. Numerical experiments demonstrate
the efficiency and correct asymptotic behavior of this scheme.
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Figure 1: Space homogeneous solution by (Si): the convergence of the velocities and temperatures between
species a and b, with different Knudsen numbers ǫ = 0.05 on the top, and ǫ = 0.01 on the bottom.
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Figure 2: Stationary shock: density distribution function fb as a function of velocity v at point x = 0, given
by the scheme (MM) with different Knudsen numbers ǫ = 3−θ, at t = 0.1.
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Figure 3: Stationary shock: density distribution function fb as a function of velocity v at point x = 0, given
by the scheme (MM) with different Knudsen numbers ǫ = 1 and ǫ = 0.01, comparing with the implicit
scheme for BGK model (Si) at t = 0.1.
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Figure 4: Stationary shock: the asymptotic properties of the scheme (MM) with different ǫ = 10−θ at
t = 0.1. Profiles of mass density ρ on the top, mean velocity u in the middle, and mean temperature T on
the bottom, as a function of space x.
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Figure 5: Stationary shock: the relative error between (MM) and (Euler), and between (Si) and (Euler) for
different ǫ = 2−θ, θ = 0, 1, 2, 3, ..., 25 at t = 0.1.
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Figure 6: Sod problem: compare the mean velocity u given by the scheme (MM) with the implicit scheme Si

for the BGK model under different regimes: kinetic regime (ǫ = 1), transition regime (ǫ = 10−2) and fluid
regime (ǫ = 10−5) at t = 0.1.
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Figure 7: Sod problem: the asymptotic properties of the scheme (MM) with different ǫ = 10−θ at t = 0.1.
Profiles of mass density ρ on the top, mean velocity u in the middle, and mean temperature T on the bottom,
as a function of space x.
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Figure 8: Sod problem: compare the schemes (MM), (NS) and (NS/MM) at ǫ = 0.001,∆x = 0.005, ∆x
∆t = 100

and t = 0.1.
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