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Abstract. We derive semi - classical approximations to quantum transport models in thin slabs
with applications to SOI (Silicon Oxide on Insulator) - type semiconductor devices via a sub - band
approach. In the regime considered the forces acting on the particles across the slab are much larger
than the forces in the lateral direction of the slab. In a semi - classical limit the transport picture
can be described on large time scales by a system of sub - band convection - diffusion equations
with an inter - band collision operator, modeling the transfer of mass (charge) between the different
eigenspaces and driving the system towards a local Maxwellian equilibrium.
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1. Introduction. Sub - band approximations to quantum mechanical transport
are employed to reduce the computational complexity of the general quantum trans-
port models. They are applicable in situations where the simulation domain exhibits
a small aspect ratio. The basic starting point of sub - band models is the three
dimensional Schrödinger equation of the form

(1.1) i~∂tψ = Hψ = − ~
2

2m
∆Xψ + V ψ

where ψ(X, t), X ∈ Ω ⊆ R3, t > 0 is the wave function, and V (X) is the potential.
~ is Planck’s constant and m denotes the mass of the particle. The meaning of the
term ’small aspect ratio’ is that the spatial variable X and the simulation domain Ω
are factored into

(1.2) X = (x, y), Ω = Ωx × Ωy, Ωx ⊆ Rdx , Ωy ⊆ Rdy , dx + dy = 3 ,

i.e. a ’classical’ dimension, with the variable x varying on a larger spatial scale and
a ’quantum’ dimension, with the variable y varying on a much smaller spatial scale.
So, |Ωy| << |Ωx| holds. This allows for semiclassical approximations of the trans-
port picture, such as Boltzmann equations, hydrodynamic models, or drift - diffusion
approximations, in the ’classical’ x− direction, while transport in the ’quantum’ y−
direction is treated by the full Schrödinger equation. Besides reducing the compu-
tational complexity, one of the big advantages of sub - band models is, that they
allow for a simple treatment of open quantum systems, since the interaction with the
outside world, i.e. the boundary conditions, can be treated classically in the classical
direction.

This paper is concerned with sub - band models in a regime where the force (the
gradient ∇yV ) in the quantum direction is much stronger than the force ∇xV in the
classical direction. As will be demonstrated, this regime is present in solid state semi-
conductor devices, such as SOI (=Semiconductor - Oxide - on Insulator) structures.
The usual approaches to sub - band modeling [2], [14], [10] yield a decoupled system
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of semi - classical sub - band equations, which are of the same form as classical trans-
port equations, except that the potential energy is replaced by the eigenfunction of the
Hamiltonian in the quantum (y−) direction. Sub-band models corresponding to the
regime considered in this paper, on the kinetic level, i.e. the level of the Schrödinger
equation, have been studied in [3], [4]. The basic result of this paper is, that in the
regime described above and using a collision mechanism relaxing the system to a local
thermodynamic equilibrium, the semiclassical limit of sub - band transport models
can be described by a system of drift diffusion equations of the form

(1.3) ∂tnα = ∇x · [∇xnα − Eαnα] + Q[n]α, α = 0, 1, ... ,

where nα is the particle density in the sub - band (the eigenspace) number α, Eα is
the sub - band energy (the eigenvalue number α of the Schrödinger equation ) and the
operator Q models the scattering between sub - bands (the transfer of the quantum
states from one eigenspace to the other). If the forces in the quantum direction y are
of moderate size, then the scattering operator Q can be neglected, and the theory
developed in the existing literature, applies. The physical significance of the inter-
band collision operator Q lies in the fact that it introduces a notion of equilibrium
into the subband diffusion equations (1.3). As is shown in Section 5, the operator Q
drives the system (1.3) towards an equilibrium of the form nα = c(x)e−Eα , α = 0, 1, ...
In the absence of Q the relative size of the sub-band densities nα (the occupation
probabilities of the different eigenspaces) has to be supplied externally through the
boundary conditions.

The general framework of sub - band models
The basic idea of sub - band models is to expand the three dimensional model (1.1)
into eigenfunctions of the part of the Hamiltonian acting in the quantum direction
y. That is, we assume that the operator Hy = − ~2

2m∆y + V (x, y) has a complete
set of eigenfunctions wα(x, y) (which are still dependent on the classical direction x),
forming an orthonormal system. They satisfy
(1.4)

(a) − ~2

2m
∆ywα + V (x, y)wα = Eα(x)wα, (b)

∫
wα(x, y)wα′(x, y) dy = δαα′ , ∀x .

For the rest of this paper, it will be important to use the self adjoint property of the
Hamiltonian H. We therefore, reformulate the Schrödinger equation (1.1) and the
eigenvalue problem (1.4) weakly as

(1.5) i~
∫

Ωx×Ωy

u∂tψ dxdy =

∫

Ωx×Ωy

~2

2m
(∇xu · ∇xψ +∇yu · ∇yψ) + uV ψ dxdy + Γ(

∫

∂Ωx×Ωy

un · ∇xψ dydσ(x))

(1.6)
∫

Ωy

~2

2m
∇yv · ∇ywα + vV (x, y)wα dy = Eα(x)

∫

Ωy

vwα dy, α = 0, 1, .. ,

for all test functions u(x, y) and v(y). Note, that the weak formulation (1.5)-(1.6)
implies that the system is closed in the y− direction, i.e. there are no boundary
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integrals over the y− boundary ∂Ωy in (1.5)-(1.6). This implies, that the boundary
conditions in the y− direction are such that there is no particle flux through the
boundary ∂Ωy. The quantum system is open in the x− direction because of the
boundary term Γ in (1.5). (n and σ(x) in (1.5) denote the normal vector on ∂Ωx and
the corresponding surface element.) The precise form of Γ, modeling the injection of
particles into the system in the classical x− direction, is a quite complicated matter,
treated in [5] in detail. It is of no relevance in this paper, since we will treat the
boundary terms in the x− direction in a classical approximation anyway.

The wave function ψ in (1.5) is expanded into the eigenfunctions wα, i.e. ψ(x, y, t) =∑
α φα(x, t)wα(x, y) holds. This gives the infinite system of sub -band Schrödinger

equations

(1.7) i~∂tφα = G[φ]α =
∑

α′
Gαα′(x,∇x)φα′ , α = 0, 1, ... ,

where the matrix operator G and the sub - band Hamiltonians Gαα′ are given by

G[φ]α =
∑

α′
Gαα′(x,∇x)φα′ =

∑

α′

∫

Ωy

wαH[φα′wα′ ] dy

Testing the Schrödinger equation (1.5) with u(x, y) = r(x)wα(x, y), where r(x) is a
test function vanishing on the boundary ∂Ωx, and using (1.6) gives the operators
Gαα′(x,∇x) in their weak form as

(1.8)
∫

Ωx

r(x)Gαα′(x,∇x)φ(x) dx =

∫

Ωx

δαα′(
~2

2m
∇xr · ∇xφ + rEαφ) +

~2

2m
(raαα′ · ∇xφ + φaα′α · ∇xr + rbαα′φ) dx

where the dx dimensional vectors aαα′ and the coefficients bαα′ are given by

(1.9) aαα′ =
∫

Ωy

(∇xwα)wα′ dy, bαα′ =
∫

Ωy

(∇xwα) · (∇xwα′) dy

It is important to note that the Hamiltonian in (1.1) is a self adjoint operator, and
that this property is of course preserved after expansion into any orthonormal system.
That is, (1.8) is invariant under the the exchange r ↔ φ, α ↔ α′. In their strong
formulation the operators Gαα′ are given by

(1.10) Gαα′(x,∇x)φ(x) = δαα′ [− ~
2

2m
∆xφ + Eαφ] +

~2

2m
[2Aαα′ · ∇xφ + Bαα′(x)φ]

where the vectors Aαα′ and the coefficients Bαα′ are given in terms of aαα′ and bαα′

as

(1.11) Aαα′ =
1
2
(aαα′ − aα′α), Bαα′ = bαα′ −∇x · aα′α .

We remark that, as a consequence of the Hamiltonian being self adjoint, the coefficient
vectors Aαα′ are antisymmetric, i.e. Aαα′ = −Aα′α holds. This will be important for
the well posedness of the sub - band drift diffusion system (1.3).
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If the coupling coefficients Aαα′ , Bαα′ in (1.10) are neglected, the matrix operator
G in (1.7) becomes diagonal, and allows for the separate solution of a lower dimen-
sional Schrödinger equation for each index α (each sub - band), in which the potential
energy V (x, y) is replaced by the sub - band energy Eα(x), computed from the solu-
tion of the eigenvalue problem (1.4). The tacit, and often not explicitly stated, reason
for this approach is, that the coupling coefficients Aαα′ , Bαα′ in (1.11) depend on the
derivatives of the eigenfunctions wα(x, y) with respect to the classical direction x, and
this dependence is assumed to be weak. As will be seen, this is the consequence of a
potential energy V , whose gradients in the y− direction are of moderate size. Con-
sidering strong forces in the quantum direction y, and including the coupling terms
in (1.7), considerably complicates the transport picture and the involved algebra. To
obtain a semi - classical approximation in the classical x− direction, it will be nec-
essary to consider self - adjoint matrices of Wigner functions instead of sequences
of real Wigner functions for the diagonal terms. Indeed, the semiclassical limit on
the kinetic level, i.e. the rigorous derivation of a sub - band Vlasov- or Boltzmann
equation as studied [2], is still an unresolved problem in this regime. This paper is
concerned with the diffusive regime, where the transport picture is augmented by a
strong collision operator, driving the system towards a local thermodynamic equilib-
rium. A semiclassical limit, yielding the system (1.3) for the sub - band densities nα

can then be obtained in a straight forward manner - at least on a purely formal level.
This paper is organized as follows. In Section 2 we define more precisely the

asymptotic regime considered in this paper and introduce an appropriate dimension-
less formulation of the sub - band Schrödinger system (1.7). In section 3 we carry
out the diffusive limit in the usual regime of strong collisions and large time scales.
Section 4 is concerned with the actual formulation of the sub - band drift diffusion
equation, i.e. the computation of the transport coefficients. In Section 5 we carry
out the semiclassical limit, giving the main result of the paper, i.e. the system (1.3).
Section 6 is devoted to some numerical experiments. Some of the more technical
calculations are deferred to the Appendix in Section 7.

2. The asymptotic regime . The coupling coefficients Aαα′ , Bαα′ in the sub
- band Schrödinger operators Gαα′ in (1.10) are given in terms of the eigenfunctions
wα(x, y). So, in order to estimate their impact, it is necessary to examine the spatial
structure of these eigenfunctions. First, we define by ε << 1 the aspect ratio of the
geometry. That is, ε is defined as the ratio of the length scales of the domains Ωy and
Ωx in (1.2). We note, that adding a purely x− dependent potential to the potential
V (x, y) in the eigenvalue problem (1.4) will not impact the eigenfunctions wα, but just
shift the spectrum Eα(x). This creates a certain ambiguity in the relation between
the eigenfunctions wα and the potential V . We resolve this ambiguity by projecting
the potential onto functions with zero mean in the y− direction. That is, we write
V (x, y) as

V (x, y) = V0(x) + V1(x, y), V0(x) =
1
|Ωy|

∫

Ωy

V (x, y) dy,

∫
V1(x, y) dy = 0, ∀x

The eigenvalue problem (1.4) can now be solved by

(2.1) (a) − ~2

2m
∆ywα + V1(x, y)wα = λα(x)wα, (b) Eα(x) = V0(x) + λα(x) .

Note, that V1(x, y) is uniquely determined since in mean in y− direction vanishes
for all x. In the presence of only moderate forces in the y− direction, V1(x, y) is a
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function with mean 0, varying over a domain Ωy of order O(ε), with a moderate size
gradient ∇yV1(x, y), i.e. V1 = O(ε) has to hold. This, in turn, makes the eigenvalue
problem (2.1)(a) almost independent of the classical variable x, and therefore the
coupling coefficients Aαα′ , Bαα′ in (1.9) and (1.11) will be of order O(ε) as well. This
corresponds to the regime where the coupling coefficients can be neglected, and the
sub-band Schrödinger equations are become uncoupled in the non- self consistent case.
This paper is concerned with the opposite regime, when the forces in the y− direction
are large, and V1 is of the same order of magnitude as V0.

2.1. Scaling and dimensionless formulation.
• We scale the spatial variables x and y with the characteristic length scales

of their respective domains, setting x = Lxs, y = εLys, where ε << 1 is the
aspect ratio of the dimensions in the quantum direction y and the classical
direction x.

• We scale the potential V and the band energy Eα by the ambient temperature
T of the system, setting V (x, y) = TVs(xs, ys) and Eα(x) = TEsα(xs)

• We scale time by the time scale corresponding to the length scale L in the
classical direction and the energy scale T , setting t = tsL

√
m
T

• We scale the eigenfunctions wα in (1.4) by wα(x, y) = (εL)−dy/2wsα(xs, ys)
and the sub - band wave functions φα by φα(x, t) = L−dx/2φαs(xs, ts)

• We scale the sub - band Hamiltonian Gαα′ by the characteristic energy scale
T .

This yields the scaled version of the eigenvalue problem (1.4)

(2.2) −h2
y

2
∆ywsα(xs, ys) + Vswsα = Esα(xs)wsα, hy =

~
εL
√

mT

and the scaled sub - band system

(2.3) (a) ihx∂tφsα =
∑

α′
Gαα′(xs,∇xs)φsα′ , hx =

~
L
√

mT

(b) Gαα′(xs,∇xs)φ(xs) = δαα′ [−h2
x

2
∆xsφ + Esαφ] +

h2
x

2
[2As

αα′ · ∇xsφ + Bs
αα′φ]

(c) As
αα′(xs) =

1
2

∫
wsα′(xs, ys)∇xswsα(xs, ys)− wsα(xs, ys)∇xswsα′(xs, ys) dys,

(d) Bs
αα′(xs) =

∫
∇xswsα(xs, ys)·∇xswsα′(xs, ys)−∇x·[wsα(xs, ys)∇xswsα′(xs, ys)] dys .

Here hx = ~
L
√

Tm
is the dimensionless Planck constant, relative to the scale of the

classical direction x, and hy = hx

ε is the Planck constant relative to the scales in
the classical coordinate x. The original premise, that the transport picture is of a
quantum mechanical nature in the y− direction and classical in the x− direction,
means that hy = O(1) and hx = O(ε) << 1 holds. We will drop the subscript s for
the scaled variables from here on.
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2.2. Wigner matrices. The goal of this paper is to derive a macroscopic (semi-
classical) approximation to the quantum system described in the previous sections. To
this end, we need to include collisions in the transport picture, i.e. some mechanism
which drives the quantum system to an equilibrium. Including collision mechanisms
which yield reasonably simple macroscopic equations into quantum transport equa-
tions is a complicated subject and has so far only be solved on a semi - heuristic basis.
First and foremost, it requires the consideration not of a single Schrödinger equation
for a single wave function as in Section 1, but the transport equations for a mixed
state, using a formulation either via density matrices or Wigner functions. We recall
that the density matrix ρ(x, y, x′, y′, t) of a mixed state is given by

(2.4) ρ(x, y, x′, y′, t) =
∑

n

γnψn(x, y, t)ψn(x, y, t)ψn(x′, y′, t)

with γn the occupation probability of state number n and ψn the wave function of the
state, where each ψn satisfies a Schrödinger equation as in (1.1) with the same given
potential V . Expanding the density matrix ρ as well as the individual wave functions
ψn into the eigenfunctions wα(x, y) in (2.2) gives.

ρ(x, y, x′, y′, t) =
∑

αα′
wα(x, y)Rαα′(x, x′, t)wα′(x′, y′), Rαα′(x, x′, t) =

∑
n

γnφnα(x, t)φnα′(x′, t)∗

Using the fact that each of the sub - band wave functions φnα satisfy the same sub
- band Schrödinger equation (2.3) gives the commutator equation (or Heisenberg
equation) for the expanded density matrix Rαα′ of the form
(2.5)
ihx∂tRαα′ = [G, R]αα′ , [G, R]αα′(x, x′) =

∑

β

Gαβ(x,∇x)Rβα′(x, x′)−Gα′β(x′,∇x′)Rαβ(x, x′) .

In this paper we are interested in a semiclassical approximation to the solution of the
Heisenberg equation (2.5). To this end, it will be more convenient to consider the
Wigner - Weyl transform of the Heisenberg equation (2.5) in the classical direction x
only. We recall [17] that for a density matrix r(x, x′), x ∈ Rdx the Wigner function
f(x, p) is given by the Wigner - Weyl transform f = Wr, defined by

(2.6) f(x, p) = (Wr)(x, p) = (2π)−dx

∫
r(x− hx

2
η, x +

hx

2
η)eiη·p dη ,

where hx denotes the (scaled) Planck constant, measuring how far away from a clas-
sical regime we are, and p is the (scaled) momentum vector. The inverse Wigner -
Weyl transform is given by

(2.7) r(x, x′) = (W−1f)(x, x′) =
∫

f(
x + x′

2
, p) exp[

ip

hx
· (x− x′)] dp

We define the sub-band Wigner functions fαα′(x, p) by fαα′(x, p) = (WRαα′)(x, p),
and transform the expanded Heisenberg equation (2.5) accordingly. This gives the
system of transport equations

(2.8) ∂tfαα′ + L[f ]αα′ = 0, L[f ]αα′ =
i

hx
W([G,W−1f ]αα′) .

The computation of the Wigner - transformed commutator L is a rather tedious
exercise, which is carried out in the Appendix in Section 7. The operator L consists
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of a diagonal part L0
αα′ and a coupling operator Lc, depending on the coefficients

Aαα′ , Bαα′ in (2.3)(c)(d). L is of the form

(2.9) (a) L[f ]αα′ = L0
αα′fαα′ − Lc[f ]αα′

(b) L0
αα′f(x, p) = p · ∇xf(x, p)− 1

ihx
[Eα(x +

ihx

2
∇p)− Eα′(x− ihx

2
∇p)]f(x, p)

(c) Lc[f ]αα′ =
∑

β

Aαβ(x+
ihx

2
∇p)(p− ihx

2
∇x)fβα′(x, p)+Aα′β(x−i

hx

2
∇p)(p+

ihx

2
∇x)fαβ(x, p)

− ihx

2
Bαβ(x + i

hx

2
∇p)fβα′(x, p) +

ihx

2
Bα′β(x− i

hx

2
∇p)fαβ(x, p)

The operators in (2.9) are defined via Fourier transforms in the usual sense of pseudo
differential operators [16]. So, c.f.

Eα(x +
ihx

2
∇p)f(x, p) = (2π)−dx

∫
Eα(x− hx

2
η)f(x, q)eiη·(p−q) dqdη

holds. The particle density in the sub - band α is given by the expansion coefficient
of the diagonal of the original density matrix ρ in (2.4), i.e.

nα(x, t) = Rαα(x, x, t),
∫

ρ(x, y, x, y, t) dy =
∑
α

nα(x, t)

holds. The inverse formula (2.7) implies that the particle density Rαα(x, x) is given
in terms of the sub - band Wigner functions fαα′ as

nα(x, t) = Rαα(x, x, t) =
∫

fαα(x, p) dp .

2.3. Collisions. The subject of this paper is the derivation of macroscopic ap-
proximations to the sub-band Wigner equation (2.8). We therefore need to include a
collision mechanism into the ballistic transport picture described by (2.8). Modeling
collision mechanisms in a a fully quantum mechanical setting is a quite complicated
matter (see [13] [11], [1], [15] for an overview). However, since the final result of the
present paper is a drift - diffusion equation, the only information about the micro-
scopic collision mechanism entering the macroscopic model is the form of the integral
invariants of the collisions and the kernel of the operator. We therefore use a simple
BGK operator. We define a Maxwellian, i.e. a notion of local thermodynamic equi-
librium, at a given ambient temperature (T = 1 in the dimensionless formulation),
which is parameterized by its sub - band densities. So, we have a sub-band density
matrix M

(m)
αα′ (x, x′), dependent on the parameter vector (m1,m2, ..) with

M (m)
αα (x, x) = mα(x), ∀α

and its Wigner - transformed expansion into the sub - band basis functions M(m)

(2.10) M(m)
αα′ (x, p) = W[M (m)

αα′ (x, x′)],
∫
M(m)

αα (x, p) dp = mα(x), ∀α .
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We introduce scattering into the transport picture by augmenting the ballistic trans-
port equation (2.8) by the BGK - type collision operator

(2.11) ∂tfαα′ + L[f ]αα′ +
1
τ

(fαα′ −M(n)
αα′) = 0, nα =

∫
fαα(x, p) dp ,

thus conserving the particle density in each sub-band and relaxing the system to-
wards an equilibrium of the form fαα′ = M(n)

αα′ . The local equilibrium Maxwellian
M (m)(x, y, x′, y′) is chosen as the maximizer of the relative Von Neumann entropy,
given the particle densities in each sub-band; i.e. M (m) is the solution of the con-
strained optimization problem

Trace[R · (I − G − ln(R))] → max, Rαα(x, x) = mα(x), ∀α, ∀x .

According to the theory, developed in [8] , [9] The density matrix M (m) is given as
the integral kernel of the operator exponential

(2.12) M
(m)
αα′ (x, x′) = exp[−G − δ(x− x′)δαα′χ

(m)
α (x)]

where the Lagrange multipliers χ
(m)
α (x) have to be chosen such that

M (m)
αα (x, x) =

∫
M(m)

αα (x, p) dp = mα(x), ∀α, ∀x

holds. Here the matrix exponential in (2.12) has to be understood in terms of the
spectral decomposition of the operator. Let ψν

a(x) denote the eigenfunctions of the
operator G + δ(x− x′)δαα′χ

(m)
α (x). So, the they satisfy the problem

G[ψν ]α(x) + χ(m)
α (x)ψν

α(x) = λνψν
α(x), ν = 1, 2, .., ∀α, ∀x

with λν the corresponding eigenvalues, or, expanding the Hamiltonian G,

(2.13)
∑

β

Gαβ(x,∇x)ψν
β(x) + χ(m)

α (x)ψν
α(x) = λνψν

α(x), ν = 1, 2, .., ∀α, ∀x .

The sub-band density matrix M (m) is then given as

M
(m)
αα′ (x, x′) =

∑
ν

ψν
α(x)e−λν ψν

α′(x
′) .

The matrix exponential in (2.12) makes the local entropy maximizer non-locally de-
pendent on the macroscopic densities. Consequently, the local sub-band equilibria
M(n)

αα′ will depend on the whole sequence {nα, α = 1, 2, ..} of macroscopic sub-band
densities. To derive the semi-classical limit of the sub-band drift diffusion system, we
will need an asymptotic expression for the sub-band Maxwellians M(n)

αα′ in powers of
hx. We refer the reader to the papers [8] , [9], [6] for the background on maximum
entropy closures of the form (2.12).

Remark:
• The collision operator in (2.11) conserves the particle density nα for each

sub - band. This means that inter - band scattering due to thermodynamic
effects is negligible, which is consistent with the small aspect ratio of the
domain Ω. So, scattering between the sub - bands is due only to the large
cross - directional fields, and the resulting coupling of the bands through the
operator Lc in (2.9).
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• In the absence of the coupling operator Lc, it would only be necessary to
consider the diagonal terms in equation (2.11), i.e. (Lf)αα′ would depend
only on fαα′ , and we could obtain a closed system for the diagonal Wigner
functions fαα(x, p).

• In this scenario (if we neglect the coupling operator Lc) we could immediately
carry out (at least formally) the semiclassical limit, by sending hx → 0. For
hx → 0, the diagonal terms in equation (2.11) would reduce to ∂tfαα + p ·
∇xfαα − ∇xEα · ∇pfαα + 1

τ (fαα −M(n)
αα ) = 0. Standard asymptotics for a

small relaxation time τ << 1 would then give the standard Drift - Diffusion
system for the sub - band densities nα. This would give the standard Drift
- Diffusion equations for each sub - band, where the potential energy V is
replaced by the sub - band energy Eα for each α.

3. Asymptotics for small relaxation times. In this section we carry out
the standard Chapman - Enskog asymptotic expansion for small relaxation times τ in
(2.11), leading to a set of macroscopic transport equations for the sub - band densities
nα. Our choice of a BGK - type collision operator implies that the collision operator
in (2.11) can be written as a projection operator. We define the projection operator
P as

(3.1) (Pf)αα′(x, p) = M(n[f ])
αα′ (x, p), n[f ]α(x) =

∫
fαα(x, p) dp

⇒
∫

(Pf)αα(x, p) dp =
∫

fαα(x, p) dp .

So, P projects onto a Maxwellian M preserving the density nα for each sub - band.
Using the projection operator P, the transport equation (2.11) can be rewritten as

(3.2) τ [∂tf + (Lf)] + (I − P)f = 0,

with I the identity operator. We decompose f into f = a + τb with a = Pf and
τb = (I − P)f . (This means we make the Ansatz that (I − P)f is of order O(τ),
which will turn out to be justified.) Using the projections P and I − P on equation
(3.2) gives

(3.3) (a) ∂ta + PL(a + τb) = 0, (b) τ∂tb + (I − P)L(a + τb) + b = 0,

Equation (3.3)(a) will yield the macroscopic transport equation, while (3.3)(b) yields
the constitutive law for the fluxes in the limit τ → 0. Sending τ → 0 in (3.3)(b) gives
b = −(I −P)La + O(τ). Inserting this into (3.3)(a) gives

(3.4) ∂ta + PLa− τPL(I − P)La = O(τ2),

In general, there are two possible regimes to consider. The first one is the regime
where PLa 6= 0 holds. In this case the third term in (3.4) is a small perturbation of
the other terms and the resulting transport equations are of a Navier - Stokes type.
The second regime is valid in the case that PLa = 0 holds in (3.4). In this case, we
obtain, up to higher order terms in τ , the equation

(3.5) ∂ta = τPLLa + O(τ2) .
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(3.5) represents a closed system of equations for the sub - band particle densities
nα(x, t). Integrating the diagonal terms of (3.5) with respect to p gives, using the
definition (3.1) of the projection operator P and the definition (2.10) of the parame-
terized Maxwellian M,

(3.6) ∂tnα(x) = τ

∫
(LLM(n))αα(x, p) dp ,

which is a diffusion equation, since the operator L (the spatial derivatives) is applied
twice. Note, that in this case, we are using the ’wrong’ time scale, and that the
macroscopic densities nα evolve on the larger t

τ diffusion time scale.

4. The quantum Drift - Diffusion equation . In this section we employ the
Chapman - Enskog expansion from Section 3 to the sub - band Wigner system (2.11).
It turns out that, in the given regime, the long time behavior of the sub - band Wigner
system is described by a diffusive equation (i.e. PLa = 0 holds in (3.4)). Therefore,
the result of this section is a quantum drift - diffusion system (given by equations
(4.12)-(4.14) in Section 4.3 ), which is still quite complicated. To derive the quantum
drift diffusion system it is first necessary to compute the moments of the operator L.
This is done in Section 4.1. The quantum drift diffusion system (4.12)-(4.14) is given
in terms of the moments of the parameterized subband Maxwellian M(n)

αα′ . In order
to compute these moments it is beneficial to express the Maxwellian as the solution
of a Bloch equation in Section 4.2.

4.1. The moments of the operator L. To derive the macroscopic transport
picture, it is necessary to compute the moments the operator L, given in (2.9). Given
its rather complicated structure in the presence of the coupling operator Lc, this is a
quite complicated endeavor. The deeper structural reason for the fact that this will
yield sufficiently simple and local diffusion equations is, that the original Hamiltonian
in the Schrödinger equation (1.1) is polynomial in the momentum operator i∇x and,
consequently, the operator L in (2.9) is polynomial in the momentum variable p. This
allows us to express the moments of L[f ] in terms of the moments of the Wigner
function f . Before we start, we will simplify the operator L in (2.9). We recall that
quantum mechanical density matrices have to be self adjoint operators, and that the
commutator equation preserves this property. For the original density matrix to be self
adjoint means that ρ(x, y, x′, y′, t) = ρ(x′, y′, x, y, t)∗ holds. This translates in the sub -
band expansion into the relation Rαα′(x, x′) = Rα′α(x′, x)∗ for the density matrix R in
(2.5) and, into the relation fαα′(x, p) = fα′α(x, p)∗ for the Wigner function f in (2.8).
Note, that this relation implies that the diagonal elements fαα of the Wigner matrix,
which are used to compute physically observable quantities, are real. This symmetry
has to be invariant under the transport operator L to guarantee self adjointness, and
we will use this structure to simplify the operator. In other words, if we define the
adjoint of a Wigner matrix as fadj

αα′(x, p) = fα′α(x, p)∗, then L[fadj ] = L[f ]adj has to
hold, in order for the transport equation (2.11) to preserve the self adjoint property
of the Wigner matrix f . We use this fact by writing the operator L in (2.9) as

L[f ] = L[f ] + L[fadj ]adj

where the operator L is given, according to (2.9) as
(4.1)

(a) L[f ]αα′ = L0[f ]αα′−Lc[f ]αα′ , (b) L0[f ]αα′(x, p) =
p

2
·∇xfαα′(x, p)− 1

ihx
Eα(x+i

hx

2
∇p)fαα′(x, p)
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(c) Lc[f ]αα′ =
∑

β

Aαβ(x+
ihx

2
∇p)(p− ihx

2
∇x)fβα′(x, p)− ihx

2
Bαβ(x+i

hx

2
∇p)fβα′(x, p)

or, in matrix notation

(d) Lc[f ] = A(x +
ihx

2
∇p)(p− ihx

2
∇x)f(x, p)− ihx

2
B(x + i

hx

2
∇p)f(x, p)

We note, that taking the adjoint of a Wigner matrix, does not operate on the mo-
mentum variable p, and therefore the same self - adjoint structure will be present in
the moment system. We introduce the notation

mk
j fαα′ =

∫
pk

j fαα′(x, p) dp ,

and have the following

Lemma 4.1. Let Cαα′(x) be a matrix function and fαα′(x, p) be a Wigner matrix.
Then the moment mk

ν(C(x + ihx

2 ∇p)f) is given by
(4.2)

(a) m0(C(x+
ihx

2
∇p)f) = Cm0f, (b) m1

ν(C(x+
ihx

2
∇p)f) = Cm1

νf− ihx

2
(∂xν C)m0f

Proof:
Using the usual definition of pseudo differential operators, the k− th moment for
k = 0, 1 is given by

mk
νCf = (2π)−dx

∫
pk

νC(x− hx

2
η)f(x, q) exp[iη · (p− q)] dqdpdη

Using the variable shift p → p + q in the integral and the binomial theorem gives

mk
νCf = (2π)−dx

∫
(pν + qν)kC(x− hx

2
η)f(x, q) exp[iη · p] dqdpdη

= (2π)−dx

∫ ∑

j

(
k

j

)
C(x− hx

2
η)mk−j

ν f(x)(−i∂ην )j exp[iη · p] dpdη

Integration by parts gives

mk
νCf = (2π)−dx

∫ ∑

j

(
k

j

)
(− ihx

2
∂xν )jC(x− hx

2
η)mk−j

ν f(x) exp[iη · p] dpdη

=
∑

j

(
k

j

)
[(− ihx

2
∂xν )jC(x)]mk−j

ν f(x)

The result is obtained by setting k = 0 and k = 1.

We will use Lemma 4.1 repeatedly to compute the zero and first order moments of
L[f ]. To simplify the computation we will first compute only the zero and first order
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moments of the operator L[f ] and compute the moments of L[f ] using the symmetry
relation L[f ] = L[f ] + L[fadj ]adj .

We start with the zero order moment and obtain from (4.1) and (4.2)(a)

(4.3) (a)m0L0[f ]αα′ =
1
2

∑
ν

∂xν
m1

νfαα′ − Eα

ihx
m0fαα′ ,

(b) m0Lc[f ]αα′ =
∑

ν

(Aνm1
νf)αα′ − ihx

2

∑
ν

(Aν∂xν
m0f)αα′ − ihx

2
(Bm0f)αα′

Similarly, we obtain for the first order moment from (4.1) and (4.2)(b)

(4.4) (a) m1
µL0[f ]αα′ =

1
2

∑
ν

∂xν
m2

µνfαα′ − 1
ihx

Eαm1
µfαα′ +

1
2
m0fαα′∂xµ

Eα

(b) m1
µLc[f ]αα′ =

∑
ν

(Aνm2
µνf)αα′− ihx

2

∑
ν

(∂xµ
Aν ·m1

νf)αα′− ihx

2

∑
ν

(Aν∂xν
m1

µf)αα′

−h2
x

4

∑
ν

(∂xµAν · ∂xν m0f)αα′ − ihx

2
(Bm1

µf)αα′ − h2
x

4
(∂xµB ·m0f)αα′

In order to compute the moments mjL[f ] from the moments mjL[f ], given by (4.3)-
(4.4), it is notationally convenient to define the matrix anti - commutator as
(4.5)
{U, V }αα′ = (UV )αα′+(UV adj)adj

αα′ = (UV )αα′+(V Uadj)αα′ =
∑

β

UαβVβα′+U∗
α′βVαβ .

Note that, for a hermitian matrix U with Uαβ = U∗
βα, the definition (4.5) reduces to

the usual definition of the matrix anti - commutator. Finally we remark, that for a
self adjoint matrix V with Vαβ = V ∗

βα, the diagonal of the anti - commutator (4.5) is
given by

(4.6) {U, V }αα =
∑

β

UαβVβα + U∗
αβV ∗

βα = 2Re(UV )αα

Using the relation L[f ] = L[f ] + L[fadj ]adj , we obtain from (4.3)-(4.4)

(4.7) (a) m0L[f ] = m0L0[f ]−m0Lc[f ]

(b) m0L0[f ]αα′ = ∇x · (m1f)− Eα − Eα′

ihx
(m0f)αα′

(c) m0Lc[f ]αα′ =
∑

ν

{Aν ,m1
νf}αα′ − hx

2

∑
ν

{iAν , ∂xν m0f}αα′ − hx

2
{iB,m0f}αα′

(4.8) (a) m1
µL[f ] = m1

µL0[f ]−m1
µLc[f ]
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(b)m1
µL0[f ]αα′ =

∑
ν

∂xν
m2

µνfαα′ − Eα − Eα′

ihx
m1

µfαα′ + ∂xµ
(
Eα + Eα′

2
)m0fαα′

(c) m1
µLc[f ]αα′ =

∑
ν

{Aν , m2
µνf}αα′ − hx

2

∑
ν

{i∂xµ
Aν ,m1

νf}αα′

−hx

2

∑
ν

{iAν , ∂xν
m1

µf}αα′−h2
x

4

∑
ν

{∂xµ
Aν , ∂xν

m0f}αα′−hx

2
{iB, m1

µf}αα′−h2
x

4
{∂xµ

B, m0f}αα′

4.2. The local Maxwellian M(n). In order to formulate the macroscopic equa-
tions given in the τ → 0 limit by the Chapman - Enskog expansion of Section 3, we
need to use a formulation of the local Maxwellians M(n) in (3.1) which is more
amenable to asymptotics. This is achieved by expressing the operator exponential in
the definition (2.12) via the solution of a Bloch equation. The basic idea of a Bloch
equation is to express the matrix exponential as the integral kernel of the semigroup
solution operator of a diffusion equation. If the density matrix M (n) is given as the
matrix exponential

M (n) = exp[−G − χ(n)] ,

then M (n) can be computed as the solution of
(4.9)

(a) ∂sRαα′(x, x′, s) = −1
2
[(Gαβ(x,∇x)Rβα′+Gβα′(x′,∇x′)Rαβ ]−χ

(n)
α (x) + χ

(n)
α′ (x′)

2
Rαα′

(b) R(x, x′, 0) = δαα′δ(x− x′)

evaluated at s = 1. So M
(n)
αα′(x, x′) = Rαα′(x, x′, 1) holds. In other words, in the same

way the function e−sz can be expressed as the solution of the ordinary differential
equation du

ds = −zu, u(0) = 1 the integral kernel of the operator exp[−G − χ(n)]
can be expressed as the solution of the evolution equation (4.9). The validity of the
formulation of M(n) via the Bloch equation (4.9) can easily be verified by expanding
the density matrix R in to the eigenfunctions ψν

α(x) of the Hamiltonian G + χ(n) in
(2.13) (see [12] for details). In order to compute the local Maxwellian in the sub -
band Wigner picture, we have to use the Wigner transform of (4.9), and compute
M(n) = W[M (n)] via M(n) = R(x, p, s = 1), R(x, p, s) = W[R(x, x′, s)]. We have
the following

Theorem 4.2. The local Maxwellian M(n) can be computed as M(n)(x, p) =
R(x, p, s = 1) with R the solution of the initial value problem

(4.10) ∂sR = K[R], Rαα′(x, p, s = 0) = δαα′ ,

where the matrix operator K is the Wigner transformed anti - commutator in (4.9).
The operator K is of the form K[R] = K[R] + K[Radj ]adj. with K defined by

(4.11) (a) K = K0 −Kc
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(b) K0[R]αα′ =
h2

x

16
∆xRαα′− ihx

4
p·∇xRαα′−|p|

2

4
Rαα′−1

2
(Eα+χ(n)

α )(x+
ihx

2
∇p)Rαα′

(c) Kc[R]αα′ =
∑

νβ

Aν
αβ(x+

ihx

2
∇p)(

ihxpν

2
+

h2
x

4
∂xν )Rβα′+

h2
x

4

∑

β

Bαβ(x+
ihx

2
∇p)Rβα′

The proof of Theorem 4.2 is an exercise in the use of the Wigner transform, similar
to the derivation of the form of the operator L in (4.1). It deferred to the Appendix
in Section 7.2.

The theorem actually implies that, using the BGK - type collision operator de-
fined in (2.11), we are in the diffusion regime of the Chapman - Enskog expansion in
Section 3. In addition to being self adjoint, the Wigner matrix R, and consequently
the Maxwellian M, satisfies an anti - symmetry in the momentum vector p. From
the definition (4.11) of the operator K we see that, in addition to the self adjoint
relation Rαα′(x, p) = Rα′α(x, p)∗ the Wigner matrix R also satisfies the symmetry
Rαα′(x, p) = Rαα′(x,−p)∗. (Using the definition of pseudo differential operators, it is
easily verified that the transformation Rαα′(x, p) → Rαα′(x,−p)∗ commutes with the
operator K, and therefore this symmetry is preserved by the Bloch equation (4.10).)
This implies for the moments of the Maxwellian mkM(n) that the zero order moment
m0M(n)

αα′ is purely real whereas the first order moment vector m1M(n)
αα′ is purely

imaginary. Using the formulas (4.7) for the zero order moments of the diagonal of the
operator L we have

m0L0[M(n)]αα = ∇x · (m1M(n)
αα )

m0Lc[M(n)]αα =

∑
ν

2Re(Aν ,m1
νM(n))αα−hx

∑
ν

Re(iAν , ∂xν m0M(n))αα−hxRe(iB, m0M(n))αα = 0

Now the diagonal m1M(n)
αα has to be on one hand purely imaginary, and, on the other

hand purely real because M(n) is self adjoint. Therefore m1M(n)
αα = 0 holds, and

we obtain in sum total m0L[M(n)]αα = 0. Therefore the projection operator P in
Section 3 satisfies PLM(n) = 0 and we obtain the diffusion equation (3.6) as a result
of the Chapman - Enskog expansion in Section 3.

4.3. The quantum drift diffusion system. We now turn to the actual form
of the drift - diffusion equation (3.6), i.e. to the computation of the diagonal term∫ LL[M]αα. Unfortunately, this involves the computation of all the moments of the off
- diagonal terms of L[M(n)] as well. We define the Wigner matrix q by q = L[M(n)],
and, combining (4.7) with (4.6) and setting f = q, we obtain, according to the previous
section, the diffusion equation

(4.12)
1
τ

∂tnα = m0LL[M]αα = m0L[q]αα =

∇x · (m1q)αα +
dx∑

ν=1

Re[−2Aνm1
νq + ihxAν∂xν m0q)]αα + hxRe[iBm0q]αα .
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The moment matrices m0q and m1
µq, µ = 1, .., dx are readily computed from (4.7)-

(4.8), setting f = M(n), as

(4.13) (a) m0qαα′ = m0L[M(n)]αα′ = m0L0[M(n)]αα′ −m0Lc[M(n)]αα′

(b) m0L0[M(n)]αα′ = ∇x · (m1M(n))− Eα − Eα′

ihx
(m0M(n))αα′

(c) m0Lc[M(n)]αα′ =
∑

ν

{Aν ,m1
νM(n)}αα′−hx

2

∑
ν

{iAν , ∂xν
m0M(n)}αα′−hx

2
{iB,m0M(n)}αα′

(4.14) (a) m1
µq = m1

µL[M(n)]αα′ = m1
µL0[M(n)]αα′ −m1

µLc[M(n)]αα′

(b) m1
µL0[M(n)]αα′ =

∑
ν

∂xν
m2

µνM(n)
αα′−

Eα − Eα′

ihx
m1

µM(n)
αα′+∂xµ

(
Eα + Eα′

2
)m0M(n)

αα′

(c) m1
µLc[M(n)]αα′ =

∑
ν

{Aν ,m2
µνM(n)}αα′

−hx

2

∑
ν

{i∂xµAν ,m1
νM(n)}αα′−hx

2

∑
ν

{iAν , ∂xν m1
µM(n)}αα′−h2

x

4

∑
ν

{∂xµAν , ∂xν m0M(n)}αα′

−hx

2
{iB,m1

µM(n)}αα′ − h2
x

4
{∂xµB,m0M(n)}αα′

Equation (4.12) represents the continuity equation in the sub-band formulation, and
equations (4.13) and (4.14) form the constitutive relations for the current densities
and energies. The system of equations given by (4.12)- (4.14) forms a closed system
for the scalar variables nα, once the moments mjM(n) of the equilibrium density
M(n) are expressed in terms of the sub - band densities nα. Unfortunately, the full
sub - band quantum drift diffusion system (4.12)- (4.14) is still quite complicated,
especially since the moments mjM(n) of the equilibrium density will depend non -
locally on the sub - band densities nα. We will therefore derive in the next section
the semiclassical limit (the formal limit hx → 0). As will be seen in the next sec-
tion, the local Maxwellians M(n)

αα′ reduce to their classical counterparts in this limit,
i.e. limhx→0M(n)

αα′ = (2π)−dx/2δαα′nα exp(−|p|
2

2 ) holds. This drastically reduces the
complexity of the system (4.12)-(4.14). Note, however, that it is not enough to sim-
ply replace the local Maxwellian by its semiclassical limit in (4.13)-(4.14) because of
the presence of the O(h−1

x ) terms in the off diagonal elements of the moment matri-
ces m0q, m1q. We therefore need higher order asymptotic expressions for the local
Maxwellians M(n)

αα′ , which will be obtained from an asymptotic solution of the Bloch
equation (4.10).
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5. The semiclassical limit of the quantum drift - diffusion equation. In
order to carry out the formal limit hx → 0 in the quantum drift diffusion system of
the previous section, it is necessary to derive asymptotic expressions for the moments
of the equilibrium Wigner matrices M(n) in (4.12) (4.13) (4.14). The easiest way to
derive these asymptotic expressions in the Wigner transport picture is to formally
expand the solution of the Bloch equation (4.10). (This is the real reason for the
formulation of the operator exponential via the Bloch formalism). This is essentially
the same approach as followed in [6]. We have the following

Theorem 5.1. The moments of the subband Maxwellian M(n) are given up to
terms of order O(h2

x) by

(5.1) (a) m0M(n)
αα′ = δαα′nα, (b) m1M(n)

αα′ = ihx
nα′ − nα

ln(nα)− ln(nα′)
Aαα′ + O(h2

x),

(c) m2
νjM(n)

αα′ = δαα′δνjnα + O(h2
x)

The proof of Theorem 5.1 is deferred to the Appendix in Section 7.2.

The result (5.1) appears somewhat unusual at first glance, since the asymptotic
expression for the first order moments contains an O(hx) term, whereas asymptotic
expansions to thermal equilibrium solutions are usually expansions in ~2 [6]. The
reason for this is the presence of first order derivatives in the Hamiltonian G. A
term of the form h2

x∇x in the Hamiltonian results in a term hxp under the Wigner
transform, yielding an O(hx) term in the corresponding matrix exponential. Note,
that the moment matrices m0M(n)

αα′ and m2M(n)
αα′ are real and symmetric in the

indices α, α′ while the first order moment matrices m1M(n)
αα′ are purely imaginary

and antisymmetric in α, α′. Thus the O(hx) term does not appear in the diagonal of
M(n), and therefore does not contribute to any physical observables.

From (4.13) we can conclude that the zero order moment m0q is (at least formally)
of order O(hx), since m1M(n) = O(hx) holds and M0(n) is up to O(h2

x) a diagonal
matrix. Thus, the terms involving m0q in the continuity equation (4.12) constitute
an order O(h2

x) perturbation, and in the semiclassical limit hx → 0 the continuity
equation becomes

(5.2)
1
τ

∂tnα = ∇x · (m1q)αα − 2
∑

µ

Re(Aµm1
µq)αα

Using the asymptotic expressions (5.1)(a)(c) in the formula (4.14) for m1q, we obtain

m1
µqαα′ = m1

µL[M(n)]αα′ =

δαα′∂xµnα−(Eα−Eα′)A
µ
αα′

nα′ − nα

ln(nα)− ln(nα′)
+δαα′nα∂xµEα−(Aµ

αα′nα′+Aµ
α′αnα)+O(h2

x)

or, using the anti - symmetry of the matrices Aµ,

(5.3) m1
µqαα′ =
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δαα′(∂xµ
nα + nα∂xµ

Eα) + Aµ
αα′(nα − nα′)(1 +

Eα − Eα′

ln(nα)− ln(nα′)
) + O(h2

x)

Inserting (5.3) into (5.2), we observe first that, because of the antisymmetry of the
matrices Aµ, the diagonal term m1qαα is simply given by m1qαα = ∇xnα +nα∇xEα.
Also, because of this antisymmetry, the diagonal term m1qαα does not contribute to
the diagonal of the matrix product Aµm1

µq. Thus, inserting (5.3) into (5.2), we obtain

(5.4)
1
τ

∂tnα = ∇x · (∇xnα + nα∇xEα) + Q[n]α

Q[n]α = −2
∑

µβ

Aµ
αβAµ

βα(nβ − nα)(1 +
Eβ − Eα

ln(nβ)− ln(nα)
)

or

(5.5) Q[n]α =
∑

β

καβ(nβ − nα)(1 +
Eβ − Eα

ln(nβ)− ln(nα)
), καβ = 2

∑
µ

(Aµ
αβ)2 ≥ 0

Equation (5.4) represents the sub-band drift diffusion equation in the formal semi-
classical limit. Note, that the sub-band densities nα will evolve on a slower O( 1

τ ),
or diffusion - , time scale than the solution of the underlying kinetic equation. The
collision operator Q in (5.5) models the scattering, i.e. the transfer of mass, from
one eigenspace or sub-band to the other. We point out that this scattering mecha-
nism is not due to the collisions introduced in Section 2.2, which conserve mass in
each sub-band, but to the strong forces in the quantum direction. (The scattering
coefficients are proportional to the coefficients (Aµ

αα′)
2, and they in turn depend on

the variation of the potential in the y− direction in Section 2). The inter-band colli-
sion operator Q is of a somewhat unusual form since, due to its nonlinear structure
and the dependence on the eigenvalues Eα, it cannot be separated into the usual in-
and outscattering terms. It does, however, exhibit the usual desired properties of
a collision operator, namely its kernel is given by the physically correct equilibrium
distribution and it dissipates a relative entropy. We summarize these properties in

Theorem 5.2. The inter sub-band collision operator Q[n] in (5.5) has the fol-
lowing properties.

1. Q[n] conserves the total mass independently of how many sub-bands are used
in the expansion, i.e. if N terms are used in the eigenfunction expansion
(α = 1, .., N) then

∑N
α=1 Q[n]α = 0 holds for any N .

2. The kernel of Q is given by multiples of the Maxwell distribution e−Eα , i.e. the
kernel of Q consists of densities nα = ce−Eα , α = 1, .., N with an arbitrary
function c(x).

3. Q dissipates locally the relative entropy E =
∑

α nα(ln(nα) + Eα − 1), i.e.∑N
α=1(ln(nα) + Eα)Q[n]α ≤ 0 holds.

Proof:
The statements 1-3 are most easily proven by introducing chemical potentials and
writing the collision operator Q in a weak form. We define the chemical potentials
φα, α = 1, .., N by the relation nα = exp(φα−Eα). In terms of the chemical potentials
Q in (5.5) can be written as

Q[n]α =
∑

β

καβ
nβ − nα

ln(nβ)− ln(nα)
(φβ − φα)
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In order to write Q in weak form we test against the vector uα, α = 1, .., N and form
the sum
N∑

α=1

uαQ[n]α =
N∑

α,β=1

uακαβ
nβ − nα

ln(nβ)− ln(nα)
(φβ−φα) =

N∑

α,β=1

uβκαβ
nβ − nα

ln(nβ)− ln(nα)
(φα−φβ) .

For the second equality we have used the fact that the matrix elements καβ are
symmetric because of the anti-symmetry of the coefficients Aαβ in (5.5). Thus we can
express the sum as

(5.6)
N∑

α=1

uαQ[n]α = −1
2

N∑

α,β=1

καβ
nβ − nα

ln(nβ)− ln(nα)
(uβ − uα)(φβ − φα)

Setting uα = 1, α = 1, .., N in (5.6) gives
∑

α Q[n]α = 0, proving the first statement.
Setting φα = ln(c), nα = ce−Eα , α = 1, .., N in (5.6) gives

∑N
α=1 uαQ[n]α =

0, ∀u, and therefore Q[n]α = 0, ∀α, proving the second statement.
Finally, setting uα = φα, α = 1, .., N gives

∑N
α=1 φαQ[n]α =

∑N
α=1[ln(nα) +

Eα]Q[n]α ≤ 0, since the coefficients καβ non - negative and the logarithm is a mono-
tonically increasing function. This proves the third statement.

We conclude this section by reversing the scaling of Section 2.1 and formulating the re-
sulting quantum drift diffusion system in the original dimensional variables. Recalling
the original scaling in Section 2.1 we re-scale

nα(x, t) → 1
ntot

nα(Lx, t0L

√
m

T
), Eα(x) → 1

T
Eα(Lx), Q[n] → L2

ntotT
Q[n], τ → τ

t0

with the original time scale t0 in Section 2.1 given by t0 = L
√

m
T , L the characteristic

length in x− direction, T the ambient temperature and m the mass of the particle.
The scaling factor ntot for the sub-band particle densities will not appear in the
unscaled equations and has to be determined by initial conditions and the boundary
conditions in the x− direction. This gives the unscaled diffusion equation

m

τ
∂tnα = ∇x · (T∇xnα + nα∇xEα) + Q[n]α

We recall that the coupling coefficients Aαβ are given in terms of the eigenfunctions
wα(x, y) by (1.9) and (1.11) and (2.3)(c). Re-scaling

wα(x, y) → (εL)dy/2wα(Lx, εLy), Aµ
αβ(x) → LAµ

αβ(Lx), καβ(x) → L2καβ(Lx),

gives

καβ = 2
∑

µ

(Aµ
αβ)2, Aµ

αβ =
1
2

∫

Ωy

wβ(x, y)∂xµwα(x, y)− wα(x, y)∂xµwβ(x, y) dy

where the wα are now the solutions of the unscaled eigenvalue problem (1.6), noma-
lized to

∫
Ωy

wαwβ dy = δαβ . Finally, the unscaled collision operator Q is now of the
form

Q[n]α =
∑

β

καβ(nβ − nα)(T +
Eβ −Eα

ln(nβ)− ln(nα)
) .
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The asymptotics used in this paper were based on the assumptions that the relaxation
time τ is smaller then the kinetic time scale t0 and that the scaled Planck constant
hx for the transport in x− direction is small, i.e. that τ

L

√
T
m << 1 and ~

L
√

mT
<< 1

holds.

6. Numerical Results. In this section we present some numerical results, elu-
cidating the asymptotic theory derived in the previous sections. Ideally, one would
like to numerically compare solutions of the original Schrödinger equations to the sub
- band approximations derived in this paper. This would involve a solution of the fully
three dimensional Schrödinger equation for a mixed state (i.e. a solution for the six
dimensional density matrix) including the non - local collision mechanisms used here,
which is beyond the scope of this paper. So, the purpose of this section is threefold,
namely

• To demonstrate the conditions under which the regime discussed in this paper
is valid.

• To study the effect of the inter - band collision operator on solutions of the
resulting drift diffusion equations.

• To study the convergence of the sub - band expansion, i.e. how many terms
are necessary in a simple example.

In order to address the first point, we generate a potential which roughly describes the
actual physical situation in a SOI (Silicon Oxide on Insulator) semiconductor device,
and compute the coupling coefficients Aαα′ corresponding to this example. In a self -
consistent calculation, the potential would have to be computed from a self consistent
solution of Poisson’s equation using the densities n(x, t) =

∑
α nα(x, t). The present

paper is concerned with the non - self consistent case. So, we compute an approximate
potential V , obtained from a simple classical Boltzmann model of the form

(6.1) −∇x · (edi∇xV ) + ni exp(V − φ)−D = 0 ,

where edi is the dielectric constant, φ is a a simple approximate chemical potential,
satisfying ∆xφ = 0, ni is the intrinsic particle density and D is some background
concentration (the doping concentration of the device). The simulation domain is
depicted in the left panel of Figure 6.1, where the green area denotes the actual
simulation domain, in the yellow areas (the oxide) V satisfies the Laplace equation.
The bias applied to the device is modeled by applying Drichlet boundary conditions
to the Laplace equation for the chemical potential φ at the interfaces between the
oxide (yellow) and the simulation domain (green). The corresponding potential (as
the solution of equation (6.1) is depicted in the right panel of Figure 6.1. Computing
the eigenfunctions wα(x, y), according to (1.4), yields the coupling coefficients Aαα′ ,
defined in (1.11). They are depicted for the case of three sub - bands, in dimensionless
form in the left panel of Figure 6.2. Note, that they are antisymmetric Aαβ = −Aβα

holds. The size of the coupling coefficients Aαβ in dimensionless variables verifies
that, under the given biasing conditions, the coupling terms in the Hamiltonian G in
Section 1 cannot be neglected. In the right panel of Figure 6.2 we show the densities
nα computed from the diffusion equation (5.4)-(5.5) in logarithmic scale, using three
terms in the sub - band expansion. To investigate the effect of the coupling operator
on the sub-band drift diffusion system, we solve the system with and without the
coupling operator Q, using the potential depicted in Figure 6.1. Figure 6.3 shows
the particle and current densities (on a linear scale) for each sub-band as well as the
total particle and current densities. Note that, in the one dimensional steady state
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Fig. 6.1. Left Panel: Schematic, green=simulation domain, blue= metal contacts, yel-
low=insulaing oxide. Right Panel: Potential V from the Boltzmann model (6.1).
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Fig. 6.2. Left Panel: Band energies Eα(x). Right Panel: Coupling coefficients Aαβ(x) for the
first three terms in the sub-band expansion.

case, without the coupling operator Q the current densities are constant in space. We
see that the scattering between the different eigenspaces produces a significant (30%
) reduction in the total current. Finally, we solve the same problem using 8 terms
in the sub-band expansion. Figure 6.4 shows the corresponding particle densities
on a logarithmic scale. We see, that the last 4 expansion terms do not contribute
significantly to the over all solution any more.

7. Appendix.

7.1. The sub-band Hamiltonian in the Wigner picture . To write the
commutator [G, R] in Section 2 in the Wigner transformed variables, i.e. to compute
the operators L0

αα′ , Lc in (2.9), it is necessary to express general linear differential
operators acting on the x− and x′− variables in terms of the Wigner - Weyl transform
and its inverse (2.6)-(2.7). We have the following

Proposition 7.1. Let the linear differential operator D(x,∇x) be given by
D(x,∇x) = C(x)∇k

x then, under the Wigner - Weyl transform (2.6), the differen-
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Fig. 6.4. Comparison between the coupled and uncoupled case for three sub-bands. Left 4
Panels: particle densities. Right 4 panels: current densities. Solid lines: with coupling, Dashed
lines: without coupling. Second bottom panel from left: total particle density. Fourth bottom panel
from left: total current density.

tial operator D, acting on the variable x, becomes

(7.1) (a) W[D(x,∇x)r(x, x′)](x, p) = C(x+
ihx

2
∇p)

∑

j

2−j

(
k

j

)
(
ip

hx
)k−j ·∇j

xf(x, p)

and the same differential operator D, acting on the variable x′, becomes

(b) W[D(x′,∇x′)r(x, x′)](x, p) = C(x− ihx

2
∇p)

∑

j

2−j

(
k

j

)
(− ip

hx
)k−j · ∇j

xf(x, p)

Proof: We first use the inverse Wigner - Weyl transform, given by (2.7) and obtain

D(x,∇x)r(x, x′) = C(x)∇k
x

∫
f(

x + x′

2
, q) exp[

iq

hx
· (x− x′)] dq

= C(x)
∫ ∑

j

(
k

j

)
2−j(

iq

hx
)k−j · ∇j

xf(
x + x′

2
, q) exp[

iq

hx
· (x− x′)] dq .



SUB-BAND DIFFUSION MODELS 21

Using the Wigner - Weyl transform (2.6) on this expression gives

W[D(x,∇x)r](x, p) = (2π)−dx

∫
C(x−hx

2
η)

∑

j

(
k

j

)
2−j(

iq

hx
)k−j ·∇j

xf(x, q) exp[iη·(p−q)] dqdη ,

which is the usual definition of (7.1)(a) in pseudo differential operator notation.
(7.1)(b) is obtained in a similar manner.

Remark: In general the expressions pk−j · ∇j
x in (7.1) have to be understood in

tensor notation. We will only use Proposition 7.1 with k = 0, 1, 2, i.e. for 1,∇x, |∇x|2,
where the meaning of these terms is quite self -evident.

As a consequence of Proposition 7.1, a part of the Hamiltonian Gαα′ in (2.3)(b)
of the form Cαα′(x)∇k

x yields a contribution of the form

i

hx

∑

jβ

2−j(
i

hx
)k−j

(
k

j

)
[Cαβ(x+i

hx

2
∇p)pk−j ·∇j

xfβα′(x, p)−(−1)k−jCα′β(x−i
hx

2
∇p)pk−j ·∇j

xfαβ(x, p)]

to the Wigner transformed commutator L[f ] = i
hx
W[G,W−1f ] in (2.8).

For the free Hamiltonian −h2
x

2 δαα′∆x we have k = 2, Cαα′ = −h2
x

2 δαα′ , and the
corresponding contribution to L is

p · ∇xfαα′(x, p)

For the term involving the sub - band energy Eα in (2.3) we have k = 0, Cαα′(x) =
δαα′Eα(x), and consequently a contribution of the form

i

hx
[Eα(x +

ihx

2
)− Eα′(x− ihx

2
∇p)]fαα′(x, p)

Note, that the these first two terms are diagonal in the index α, and yield the usual
uncoupled sub-band equations. This gives the operator L0

αα′ in (2.9)(b). We now turn
to the coupling terms. For the first coupling term of the form h2

xAαα′φ in (2.3)(b) we
have k = 1, Cαα′ = h2

xAαα′ , and consequently a contribution of the form

ihx

1∑

j=0

∑

β

2−j(
i

hx
)1−j [Aαβ(x+i

hx

2
∇p)p1−j∇j

xfβα′(x, p)−(−1)1−jAα′β(x−i
hx

2
∇p)p1−j∇j

xfαβ(x, p)]

= −
∑

β

Aαβ(x + i
hx

2
∇p) · pfβα′(x, p) + Aα′β(x− i

hx

2
∇p) · pfαβ(x, p)

+
ihx

2

∑

β

Aαβ(x + i
hx

2
∇p)∇xfβα′(x, p)−Aα′β(x− i

hx

2
∇p)∇xfαβ(x, p)

For the second coupling term in (2.3), involving the coefficient B, we have k =
0, Cαα′ = h2

x

2 Bαα′ , and consequently a contribution of the form

ihx

2

∑

β

[Bαβ(x + i
hx

2
∇p)fβα′(x, p)−Bα′β(x− i

hx

2
∇p)fαβ(x, p)]

This gives the operator Lc in (2.9)(c).
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7.2. The asymptotic form of the local thermal equilibrium. Proof of
Theorem 4.2: The operator K in (4.11) is the Wigner transform of G + χ. So

K[f ] = −1
2
W[(G + χ(m))[R]], f = W[R]

holds. Again we use Proposition 7.1 together with the form (2.3) of the sub-band
Hamiltonian G. Setting C = h2

x

4 δαα′ , k = 2 in (7.1) gives

W[
h2

x

4
δαα′∆xR] = δαα′ [

h2
x

16
∆xf +

ihx

4
p · ∇xf − |p|2

4
f ]

Setting C = − 1
2 (Eα(x) + χ

(m)
α (x)), k = 0 in (7.1) gives

W[−1
2
(Eα(x) + χ(m)

α (x))R] = −1
2
(Eα + χ(m)

α )(x +
ihx

2
∇p)f

This establishes the operator K0 in (4.11)(b). To compute Kc we set C = h2
x

2 Aαα′ , k =
1 in (7.1) and obtain

W[
h2

x

2
AαβRβα′ ] = Aαβ(x +

ihx

2
∇p)(

ihx

2
pfβα′ +

h2
x

4
∇xfβα′)

Proof of Theorem 5.1: In order to prove the result it is sufficient to expand
the operators K0,Kc in the Bloch equation (4.11) up to (inclusively) terms of order
hx. That is we consider the system

∂sRαα′(x, p, s) = K[R] = K[R] + K[Radj ]adj

K[R] = K0[R]−Kc[R] = − ihx

4
p·∇xRαα′−|p|

2

4
Rαα′−1

2
(Eα+χ(n)

α )Rαα′− ihx

4
∇x(Eα+χ(n)

α )·∇pRαα′

− ihx

2

∑

νβ

Aν
αβpνRβα′ + O(h2

x)

We note that the sub-band energy Eα can be absorbed into the Lagrange multiplier
χ

(n)
α which has to be determined by the sub-band densities nα anyway. Using the

definition of the operator K via the adjoint we obtain

∂sRαα′(x, p, s) = K[R]αα′ = −|p|
2

2
Rαα′−χ

(n)
α + χ

(n)
α′

2
Rαα′− ihx

4
(∇xχ(n)

α −∇xχ
(n)
α′ )·∇pRαα′

− ihx

2

∑

νβ

[Aν
αβpνRβα′ −Aν

α′βpνRαβ ] + O(h2
x), Rαα′(x, p, 0) = δαα′
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We use the integrating factor Λαα′(x, p, s) = exp[− s|p|2
2 − s

2 (χ(n)
α + χ

(n)
α′ )] an set

Rαα′ = Λαα′Uαα′ , giving

Λαα′∂sUαα′ = − ihx

4
(∇xχ(n)

α −∇xχ
(n)
α′ )·∇p(Λαα′Uαα′)− ihx

2

∑

νβ

[Aν
αβpνΛβα′Uβα′−Aν

α′βpνΛαβUαβ ]+O(h2
x)

subject to the initial condition Uαα′(x, p, s = 0) = δαα′ . Expanding Uαα′ into U0
αα′ +

hxU1
αα′ + ... gives for the zero order term U0

αα′(x, p, s) = δαα′ . The first order term
satisfies the initial value problem

Λαα′∂sU
1
αα′ = − i

4
(∇xχ(n)

α −∇xχ
(n)
α′ )·∇p(Λαα′δαα′)− i

2

∑

νβ

[Aν
αβpνΛβα′δβα′−Aν

α′βpνΛαβδαβ ]

subject to homogeneous initial conditions. This gives, using the anti - symmetry of
the matrices Aν

Λαα′∂sU
1
αα′ = − i

2

∑
ν

Aν
αα′pν(Λα′α′ + Λαα), U1

αα′(x, p, s = 0) = 0

or, using the expression for the integrating factor Λαα′

∂sU
1
αα′ = −i cosh(

s

2
(χ(n)

α − χ
(n)
α′ ))

∑
ν

Aν
αα′pν , U1

αα′(x, p, s = 0) = 0

⇒ U1
αα′(x, p, s) = −2i

sinh( s
2 (χ(n)

α − χ
(n)
α′ ))

χ
(n)
α − χ

(n)
α′

∑
ν

Aν
αα′pν ,

Consequently, the sub-band Maxwellian M(n) is then given by

M(n)
αα′ = Rαα′ |s=1 = Λαα′(U0

αα′ + hxU1
αα′)|s=1 + O(h2

x) ⇒

M(n)
αα′(x, p) = exp[−|p|

2

2
−1

2
(χ(n)

α +χ
(n)
α′ )][δαα′−2ihx

sinh( 1
2 (χ(n)

α − χ
(n)
α′ ))

χ
(n)
α − χ

(n)
α′

∑
ν

Aν
αα′pν ]+O(h2

x)

or

M(n)
αα′(x, p) = exp(−|p|

2

2
)[δαα′e

−χ(n)
α − ihx

e−χ
(n)
α′ − e−χ(n)

α

χ
(n)
α − χ

(n)
α′

∑
ν

Aν
αα′pν ] + O(h2

x)

Computing the moments of the sub-band Maxwellian up to order O(h2
x) gives

m0M(n)
αα′(x) = (2π)dxδαα′e

−χ(n)
α , m1

µM(n)
αα′(x) = −(2π)dxihx

e−χ
(n)
α′ − e−χ(n)

α

χ
(n)
α − χ

(n)
α′

Aµ
αα′ ,

m2
µνM(n)

αα′(x) = (2π)dxδµνδαα′e
−χ(n)

α .

The Lagrange multipliers χ
(n)
α have to be chosen such that on the diagonal m0M(n)

αα =
nα holds. Therefore we obtain the relation nα = (2π)dxe−χ(n)

α and, up to terms of
order O(h2

x),

m0M(n)
αα′(x) = δαα′nα, m1

µM(n)
αα′(x) = ihx

nα′ − nα

ln nα − ln nα′
Aµ

αα′
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m2
µνM(n)

αα′(x) = δµνδαα′nα .
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