
LOCAL WELL-POSEDNESS OF A DISPERSIVE NAVIER-STOKES SYSTEM

C. DAVID LEVERMORE AND WEIRAN SUN

A. We establish local well-posedness and smoothing results for the Cauchy problem of a degen-
erate dispersive Navier-Stokes system that arises from kinetic theory. Under assumptions that the initial
data satisfy asymptotic flatness and nontrapping conditions, we show there exists a unique classical so-
lution for a finite time. Due to degeneracies in both dissipation and dispersion for the system, different
components of the solution gain different regularity. Couplings of these components are analyzed using
pseudodifferential operators.

1. I

In this paper we establish the local well-posedness of the Cauchy problem for a dispersive Navier-
Stokes (DNS) system that has the form

(1.1)

∂tρ + ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ⊗ u) + ∇x(ρθ) = ∇x · Σ + ∇x · Σ̃ ,
∂t(ρe) + ∇x · (ρeu + ρθu) = ∇x · (Σu + q) + ∇x · (Σ̃u + q̃) ,

(ρ, u, θ)(x, 0) = (ρin, uin, θin)(x) ,

where ρ(x, t) is the mass density, u(x, t) is the bulk velocity, and θ(x, t) is the temperature at a position
x ∈ Rd and time t ≥ 0. We assume that d ≥ 2. Here the total energy density ρe is given by

ρe = 1
2ρ|u|2 + d

2ρθ ,

while the classical Navier-Stokes stress tensor −Σ and heat flux −q are given by

(1.2) Σ = µ(θ) Dxu , q = κ(θ)∇xθ ,

where Dxu = ∇xu + (∇xu)T − 2
d∇x · uI is the strain-rate tensor while µ(θ) ≥ 0 and κ(θ) ≥ 0 are the

coefficients of shear viscosity and heat conductivity. Dispersive corrections to the stress tensor Σ̃ and
the heat flux q̃ are given by

(1.3)

Σ̃ = τ1(ρ, θ)
(
∇2

x θ − 1
d ∆xθI

)
+ τ2(ρ, θ)

(
∇xθ ⊗ ∇xθ − 1

d |∇xθ|2I
)

+ τ3(ρ, θ)
(
∇xρ ⊗ ∇xθ + ∇xθ ⊗ ∇xρ − 2

d∇xρ · ∇xθI
)
,

q̃ = τ4(ρ, θ)
(
∆xu + d−2

d ∇x∇x · u
)

+ τ5(ρ, θ) Dxu · ∇xθ + τ6(ρ, θ) Dxu · ∇xρ

+ τ7(ρ, θ)
(
∇xu − (∇xu)T

)
· ∇xθ ,

where τi(ρ, θ) for i = 1, · · · , 7 are additional transport coefficients.
Gas dynamical systems with terms of the form (1.1) can be systematically derived from classical

kinetic equations such as the Boltzmann equation in small mean-free-path regimes [12]. They arise as
the first correction to the classical compressible Navier-Stokes system. When so derived, the transport
coefficients µ(θ), κ(θ), and τi(ρ, θ) for i = 1, · · · , 7 have forms that depend on details of the underlying
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kinetic equation. In particular, the transport coefficients τi(ρ, θ) for i = 1, · · · , 6 will satisfy the
relations

(1.4) τ4 =
θ

2
τ1 ,

τ2

θ
+

2τ5

θ2 = ∂θ

(
τ4

θ2

)
, θτ3 + τ6 = 2∂ρτ4 .

The resulting DNS system (1.1) inherits an entropy structure from the kinetic equation in which the
mathematical entropy density η is given by

η = ρ log
(
ρ

θd/2

)
.

Direct calculation from system (1.1) shows that η satisfies

(1.5) ∂tη + ∇x ·
(
η u +

q
θ

+
q̃
θ

)
= −

(
Σ

θ
: ∇xu +

q
θ2 · ∇xθ

)
−

(
Σ̃

θ
: ∇xu +

q̃
θ2 · ∇xθ

)
.

It follows from the constitutive relations (1.2) that
Σ

θ
: ∇xu +

q
θ2 · ∇xθ =

µ

2θ
|Dxu|2 +

κ

θ2 |∇xθ|2 ≥ 0 ,

while it follows from constitutive relations (1.3) and (1.4) that

Σ̃ :
∇xu
θ

+ q̃ · ∇xθ

θ2 = ∇x ·
(
τ1

2θ
Dxu · ∇xθ

)
.

One thereby sees that the dispersion terms containing Σ̃ and q̃ contribute only to the entropy flux in the
entropy equation (1.5). DNS systems (1.1) derived from kinetic equations therefore formally dissipate
the entropy in the same way as the compressible Navier-Stokes system, but transport it differently.

The above calculation indicates that the DNS system is formally well-posed over domains without
boundary. The main goal of our paper is to establish the local well-posedness of the DNS system.
Because our theory is local in time, we will not need the entropy structure of the system, and so will
not assume that (1.4) holds. We will however assume that µ(θ), κ(θ), and τi(ρ, θ) for i = 1, · · · , 7 are
smooth functions of ρ and θ with µ(θ), κ(θ), and τ1(ρ, θ)τ4(ρ, θ) being strictly positive whenever ρ and
θ are bounded away from zero.

Remark 1.1. We believe that the entropy structure would play an important role in any global well-
posedness result for the DNS system with large initial data.

In our proof of local well-posedness, dispersive regularization plays a crucial role. We use the
fact that solutions of dispersive equations gain spatial differentiability provided the initial data satisfy
certain asymptotic flatness conditions at infinity. This type of smoothing was noticed by Kato when
he showed in [7] that solutions of the 1D KdV equation gain half a spatial derivative compared to its
initial data. This kind of smoothing has since been generalized by various authors to more general
dispersive equations and systems [4, 8]. In general, solutions of dispersive equations with order m
gain m−1

2 derivatives locally for positive times [4].
Based on Kato’s smoothing effect, various well-posedness results have been established for semi-

linear or quasi-linear dispersive equations and systems with strict or uniform dispersive effects [10, 5].
However, these existing results do not apply directly to the DNS system because its dispersion is de-
generate. To see this, one first observes that the mass equation has no terms that are dissipative or
dispersive. Another degeneracy occurs in the energy equation where the dispersive term ∇x · q̃ is

∇x · q̃ =
2(d−1)

d τ4 ∆x∇x · u + lower order terms .

The leading order term in ∇x · q̃ gives the dispersive effect for the velocity field. It is clear that the in-
compressible part, i.e., the divergence free part of the velocity field u vanishes in this term. Therefore,
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if u is decomposed into the divergence free part and the gradient part as done in the Hodge decom-
position, then only the gradient component of u has a dispersive effect. These degeneracies suggest
to decompose the DNS system into a strictly dispersive subsystem and a nondispersive subsystem.
We apply the technique by Kenig, Ponce, and Vega in [10] to treat the principle part of the strictly
dispersive subsystem. The coupling of the strictly dispersive and nondispersive parts will be treated
using both dissipative and dispersive regularization. Our main theorem will imply the following.

Theorem 1.1. Well-Posedness Theorem. In dimension d ≥ 2, let s1, s ∈ R+ such that s1 ≥ d/2 + 6
and s = max{s1 + 6,N + d/2 + 4} where N = N(d, 3, 0) ∈ N is given in Theorem 2.1. Let ρ̄ > 0 and
θ̄ > 0 be constants. Let the functions ρin, uin, and θin satisfy:

• the boundedness and asymptotic flatness condition

(1.6) ‖ρin − ρ̄‖Hs+1 + ‖(uin, θin − θ̄)‖Hs +
∑

1≤|α|≤s1

(∥∥∥〈x〉2∂αxρin
∥∥∥

H1 +
∥∥∥〈x〉2∂αx (uin, θin)

∥∥∥
L2

)
≤ Cin < ∞ ,

where α ∈ Nd denote multi-indices with |α| = α1 + α2 + · · · + αd and we define 〈x〉2 4= 1 + |x|2;
• there exists a constant αin > 0 such that for every x ∈ Rd

(1.7)
αin ≤ ρin(x) , αin ≤ θin(x) , αin ≤ µ(θin) , αin ≤ κ(θin) ,

αin ≤ 4(d−1)2

d3 · τ1(ρin(x), θin(x))τ4(ρin(x), θin(x))
ρin(x)2 ;

• the Hamiltonian defined by

(1.8) hin(ξ, x) =
2(d−1)

d3/2

(
τ1(ρin(x), θin(x))τ4(ρin(x), θin(x))

ρin(x)2

) 1
2

|ξ|3

generates a flow that is nontrapping.

Then for some T0 > 0 depending only on Cin, αin, and d there exist unique functions ρ, u, and θ with

(1.9)
ρ − ρ̄ ∈ C([0,T0]; H s′+1) ∩ L∞([0,T0]; H s′+1) ,

(u, θ − θ̄) ∈ C([0,T0]; H s′) ∩ L∞([0,T0]; H s′) ,

for any 0 ≤ s′ < s such that (ρ, u, θ) solves the DNS initial-value problem (1.1).

Here L2 denotes the Lebesgue space L2(Rd;Rm) where Rm is the Euclidian space implied by the
context, and ‖ · ‖L2 denotes its norm. Similarly, H s denotes the Sobolev space H s(Rd;Rm) where Rm

is the Euclidian space implied by the context, and ‖ · ‖Hs denotes its norm.
To prove the above theorem, we construct an approximating sequence of solutions by adding an

artificial hyperviscosity term to the DNS system (1.1). An a priori estimate is established that is
independent of the artificial hyperviscosity. Then using this a priori estimate and letting the artificial
hyperviscosity term vanish, we show that the approximating sequence converges to a solution of the
original system. Uniqueness is also shown by the a priori estimate.

This paper is laid out as follows. In Section 2 we establish an estimate for a linear system that
we will later use to construct our approximating sequence of solutions to the DNS system (1.1) plus
an artificial hyperviscosity. In Section 3 we establish the a priori estimate for this regularized DNS
system. In section 4 we show the existence of the approximating sequence and the convergence of
this sequence to the unique solution to the original DNS system.
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2. E   A L S

In this section we establish the key estimate for a linear system associated with a regularization of
the DNS system (1.1). One can see from the proof that the same estimate holds for the analogous
linear system associated with the original DNS system (1.1).

2.1. Regularized DNS System. Our regularized system is obtained by first expressing the DNS
system (1.1) as a system for the evolution of the fluid variables (ρ, u, θ) and then adding a fourth-order
artificial hyperviscosity term to each dynamical equation. The result is the regularized DNS system

(2.1)

∂tρ = −ε ∆2
xρ − ρ∇x · u − u · ∇xρ ,

∂tu = −ε ∆2
xu +

1
ρ
∇x · Σ +

1
ρ
∇x · Σ̃ − 1

ρ
∇x(ρθ) − u · ∇xu ,

∂tθ = −ε ∆2
xθ + 2

d

1
ρ
∇x · q + 2

d

1
ρ
∇x · q̃ + 2

d

Σ̃ : ∇xu
ρ

+ 2
d

Σ : ∇xu
ρ

− 2
dθ∇x · u − u · ∇xθ ,

(ρ, u, θ)(x, 0) = (ρin, uin, θin)(x) ,

where Σ and q are given by (1.2) while Σ̃ and q̃ are given by (1.3). The structure of this system
becomes explicit if we express Σ, Σ̃, q, and q̃ in terms of the fluid variables (ρ, u, θ). It follows from
(1.3) that ∇x · Σ̃ and ∇x · q̃ have the forms

(2.2)

∇x · Σ̃ = d−1
d τ1(ρ, θ)∆x∇xθ + Aρ(ρ, θ,∇xρ,∇xθ) : ∇2

x ρ + Aθ(ρ, θ,∇xρ,∇xθ) : ∇2
x θ

+ Bρ(ρ, θ,∇xρ,∇xθ) · ∇xρ + Bθ(ρ, θ,∇xρ,∇xθ) · ∇xθ ,

∇x · q̃ =
2(d−1)

d τ4(ρ, θ)∆x∇x · u + Au(ρ, θ,∇xρ,∇xθ)
...∇2

x u + τ5(ρ, θ)Dxu : ∇2
x θ

+ τ6(ρ, θ)Dxu : ∇2
x ρ + Bu(ρ, θ,∇xρ,∇xθ) : ∇xu ,

where

Aρ(ρ, θ,∇xρ,∇xθ) : ∇2
x ρ = τ3(ρ, θ)∇xθ∆xρ + d−2

d τ3(ρ, θ)∇xθ : ∇2
x ρ ,

Aθ(ρ, θ,∇xρ,∇xθ) : ∇2
x θ =

[(
∂ρτ1 + d−2

d τ3

)
∇xρ +

(
∂θτ1 + d−2

d τ2

)
∇xθ

]
· ∇2

x θ

+
[(

1
d∂ρτ1 + τ3

)
∇xρ +

(
1
d∂θτ1 + τ2

)
∇xθ

]
∆xθ ,

Au(ρ, θ,∇xρ,∇xθ)
...∇2

x u =
[(
∂ρτ4 + τ6

)
∇xρ +

(
∂ρτ4 + τ5 + τ7

)
∇xθ

]
· ∆xu

+
[(

d−2
d ∂ρτ4 + d−2

d τ6

)
∇xρ +

(
d−2

d ∂θτ4 + d−2
d τ5 − τ7

)
∇xθ

]
· (∇x∇x · u) ,

while Bρ, Bθ have the forms

a1(ρ, θ)(∇xρ · ∇xθ)I + a2(ρ, θ)|∇xθ|2I + a3(ρ, θ)∇xρ ⊗ ∇xθ

+ a4(ρ, θ)∇xθ ⊗ ∇xρ + a5(ρ, θ)∇xθ ⊗ ∇xθ ,

with a1, · · · , a5 being given by the functional forms of τ1, τ2, τ3 and Bu is of the form

b1(ρ, θ)∇xρ ⊗ ∇xθ + b2(ρ, θ)∇xθ ⊗ ∇xρ + b3(ρ, θ)∇xθ ⊗ ∇xθ ,

where b1, b2, b3 are determined by the functional forms of τ5, τ6, and τ7. Notice that the forms of
Bρ and Bθ are not uniquely specified above, but the specific choice of Bρ and Bθ does not affect our
subsequent arguments. The main structure of Bθ, Bρ, and Bu is that they are d × d tensors of linear
combinations of quadratic forms of ∇xρ, ∇xθ.
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The regularized DNS system (2.1) thereby has the form

(2.3)

∂tρ = −ε ∆2
xρ − ρ∇x · u − u · ∇xρ ,

∂tu = −ε ∆2
xu +

1
ρ
∇x · [µDxu

]
+ d−1

d

τ1

ρ
∆x∇xθ +

Aρ

ρ
: ∇2

x ρ +
Aθ

ρ
: ∇2

x θ

+
Bρ

ρ
· ∇xρ +

Bθ

ρ
· ∇xθ − 1

ρ
∇x(ρθ) − u · ∇xu ,

∂tθ = −ε ∆2
xθ + 2

d

1
ρ
∇x · [κ∇xθ] +

4(d−1)
d2

τ4

ρ
∆x∇x · u

+ 2
d

Au

ρ

...∇2
x u + 1

d

τ1 + 2τ5

ρ
Dxu : ∇2

x θ + 2
d

τ6

ρ
Dxu : ∇2

x ρ

+ 2
d

Bu

ρ
: ∇xu + 1

d

τ2

ρ
∇xθ · Dxu · ∇xθ + 1

d

τ3

ρ
∇xρ · Dxu · ∇xθ

+ 1
d

µ

ρ
|Dxu|2 − 2

dθ∇x · u − u · ∇xθ .

(ρ, u, θ)(x, 0) = (ρin, uin, θin)(x) ,

2.2. Associated Linear System. The linear system associated with the regularized DNS system (2.3)
is obtained by replacing certain (ρ, u, θ) by a given state (ρ̂, û, θ̂). Specifically, it is the linear system
for (ρ̃, ũ, θ̃) given by

(2.4)

∂tρ̃ = −ε ∆2
xρ̃ − ρ̂∇x · ũ − û · ∇xρ̃ ,

∂tũ = −ε ∆2
xũ +

1
ρ̂
∇x ·

[
µ(θ̂)Dxũ

]
+ τ̂1∆x∇xθ̃ + Âρ : ∇2

x ρ̃ + Âθ : ∇2
x θ̃

+ B̂ρ · ∇xρ̃ + B̂θ · ∇xθ̃ − ∇xθ̃ − θ̂
ρ̂
∇xρ̃ − û · ∇xũ ,

∂tθ̃ = −ε ∆2
xθ̃ + 2

d

1
ρ̂
∇x ·

[
κ(θ̂)∇xθ̃

]
+ τ̂4∆x∇x · ũ + Âu ...∇2

x ũ + τ̂5Dxû : ∇2
x θ̃ + τ̂6Dxû : ∇2

x ρ̃

+ B̂u : ∇xũ + τ̂2∇xθ̂ · Dxũ · ∇xθ̂ + τ̂3∇xρ̂ · Dxũ · ∇xθ̂

+ 1
d

µ(θ̂)
ρ̂

Dxû : Dxũ − 2
d θ̂∇x · ũ − û · ∇xθ̃ .

(ρ̃, ũ, θ̃)(x, 0) = (ρin − ρ̄, uin, θin − θ̄)(x) ,

where

(2.5)

τ̂1 = d−1
d

τ1(ρ̂, θ̂)
ρ̂

,

τ̂4 =
4(d−1)

d2

τ4(ρ̂, θ̂)
ρ̂

,

Âρ =
Aρ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

B̂ρ =
Bρ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

τ̂2 = 1
d

τ2(ρ̂, θ̂)
ρ̂

,

τ̂5 = 1
d

τ1(ρ̂, θ̂) + 2τ5(ρ̂, θ̂)
ρ̂

,

Âθ =
Aθ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

B̂θ =
Bθ(ρ̂, θ̂,∇xρ̂,∇xθ̂)

ρ̂
,

τ̂3 = 1
d

τ3(ρ̂, θ̂)
ρ̂

,

τ̂6 = 2
d

τ6(ρ̂, θ̂)
ρ̂

,

Âu = 2
d

Au(ρ̂, θ̂,∇xρ̂,∇xθ̂)
ρ̂

,

B̂u = 2
d

Bu(ρ̂, θ̂,∇xρ̂,∇xθ̂)
ρ̂

.

The linear system (2.4) is satisfied by (ρ̃, ũ, θ̃) = (ρ − ρ̄, u, θ − θ̄) when (ρ̂, û, θ̂) = (ρ, u, θ) solves (2.3).
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Notation. Henceforth we will use Ψm (with various sup-indices to specify the equations in which
they appear) to denote any pseudo-differential operator (ΨDO) of order m. The reason to unify the
lower order terms in this way is because the specific forms of those terms change when we apply
various operators to either system (2.1) or its linearized form (2.4). However, it will be clear from the
calculation that the estimates of various norms depend only on the orders of those lower order terms
while their specific forms are not essential. We will denote the space of all mth order symbols as S m.
For every p(ξ, x) ∈ S m, we define the norm |p|( j)

S m as

(2.6) |p|( j)
S m = sup

{
‖〈ξ〉−m+α∂αξ∂

β
x p(·, ·)‖L∞(Rd×Rd) : α, β ∈ Nd, |α + β| ≤ j

}
,

where 〈ξ〉 = (1+ |ξ|2)1/2. The following theorem is a classical result for ΨDO’s (c.f. [2, 6] for a proof).

Theorem 2.1. Let m, s ∈ R. Let p(ξ, x) ∈ S m be the symbol of a pseudo-differential operator Ψp. Then
Ψp is a bounded linear operator from Hm+s(Rd) to H s(Rd). Moreover, there exist N = N(d,m, s) ∈ N
and c = c(d,m, s) such that

(2.7) ‖Ψp f ‖Hs ≤ c |p|(N)
S m ‖ f ‖Hm+s for every f ∈ Hm+s(Rd) .

With this notation the linear system (2.4) has the form

(2.8)

∂tρ̃ = −ε ∆2
xρ̃ + Ψ

ρ
1(ρ̃, ũ) ,

∂tũ = −ε ∆2
xũ +

1
ρ̂
∇x ·

[
µ(θ̂)Dxũ

]
+ τ̂1∆x∇xθ̃ + Ψu

2(ρ̃, θ̃) + Ψu
1(ρ̃, θ̃) − û · ∇xũ ,

∂tθ̃ = −ε ∆2
xθ̃ + 2

d

1
ρ̂
∇x ·

[
κ(θ̂)∇xθ̃

]
+ τ̂4∆x∇x · ũ + Ψθ

2(ρ̃, ũ, θ̃) + Ψθ
1ũ − û · ∇xθ̃ ,

where

(2.9)

Ψ
ρ
1(ρ̃, ũ) = −ρ̂∇x · ũ − û · ∇xρ̃ ,

Ψu
2(ρ̃, θ̃) = Âρ : ∇2

x ρ̃ + Âθ : ∇2
x θ̃ ,

Ψu
1(ρ̃, θ̃) = B̂ρ · ∇xρ̃ + B̂θ · ∇xθ̃ − ∇xθ̃ − θ̂

ρ̂
∇xρ̃ ,

Ψθ
2(ρ̃, ũ, θ̃) = Âu ...∇2

x ũ + τ̂5Dxû : ∇2
x θ̃ + τ̂6Dxû : ∇2

x ρ̃ ,

Ψθ
1ũ = B̂u : ∇xũ + τ̂2∇xθ̂ · Dxũ · ∇xθ̂ + τ̂3∇xρ̂ · Dxũ · ∇xθ̂

+ 1
d

µ(θ̂)
ρ̂

Dxû : Dxũ − 2
d θ̂∇x · ũ − û · ∇xθ̃ .

One can see that the symbols of these first and second order operators are first and second order poly-
nomials in ξ respectively with their coefficients depending algebraically upon (ρ̂, θ̂,∇xρ̂,Dxû,∇xθ̂).
We drop the tildes on (ρ̃, ũ, θ̃) and write the regularized system (2.8) as

(2.10) ∂t(ρ, u, θ) = −ε ∆2
x(ρ, u, θ) +L(ρ̂, û, θ̂)(ρ, u, θ) ,

where the linear operator L is defined through (2.8) and has the form

(2.11) L(ρ̂, û, θ̂)(ρ, u, θ) =


L1(ρ̂, û, θ̂)(ρ, u, θ)
L2(ρ̂, û, θ̂)(ρ, u, θ)
L3(ρ̂, û, θ̂)(ρ, u, θ)

 =


Ψ
ρ,0
1 (ρ, u)

Ψu
Du + Ψu

3θ + Ψu,0
2 (ρ, θ) + Ψu,0

1 (ρ, u, θ)
Ψθ

Dθ + Ψθ
3u + Ψθ,0

2 (ρ, u, θ) + Ψθ,0
1 (u, θ)

 ,

where
Ψ
ρ,0
1 (ρ, u) = Ψ

ρ
1(ρ, u) , Ψu,0

2 (ρ, θ) = Ψu
2(ρ, θ) , Ψθ,0

2 (ρ, u, θ) = Ψθ
2(ρ, u, θ) ,



LOCAL WELL-POSEDNESS OF A DISPERSIVE NAVIER-STOKES SYSTEM 7

Ψu,0
1 (ρ, u, θ) = Ψu

1(ρ, u, θ) − û · ∇xũ , Ψθ,0
1 (u, θ) = Ψθ

1(u, θ) − û · ∇xθ̃ ,

Ψu
Du =

1
ρ̂
∇x ·

[
µ(θ̂)Dxu

]
, Ψu

3θ = τ̂1∆x∇xθ ,

Ψθ
Dθ = 2

d

1
ρ̂
∇x ·

[
κ(θ̂)∇xθ

]
, Ψθ

3u = τ̂4∆x∇x · u .
Here Ψ

ρ
1, Ψu

2, Ψθ
2 are defined in (2.9).

The discussion of degeneracies in the introduction suggests that we decompose the velocity field u
into its divergence free part Pu and its gradient part Qu. Because ∇x · (Dxu) = ∆xu + d−2

d ∇x∇x · u, we
have

(2.12) P∇x · (Dxu) = ∆xPu , Q∇x · (Dxu) = 2d−1
d ∆xQu .

We can then decompose system (2.8) by using the facts that

(2.13)

1
ρ̂
∇x ·

[
µ(θ̂)Dxu

]
= µ̂∇x · (Dxu) +

1
ρ̂
∇xµ(θ̂) · Dxu ,

2
d

1
ρ̂
∇x ·

[
κ(θ̂)∇xθ

]
= κ̂∆xθ + 2

d

1
ρ̂
∇xκ(θ̂) · ∇xθ ,

where

µ̂ =
µ(θ̂)
ρ̂

, κ̂ = 2
d

κ(θ̂)
ρ̂

,

and that

(2.14)
P
(
µ̂∇x · (Dxu)

)
= µ̂ P∇x · (Dxu) +

[
P , µ̂

]∇x · (Dxu) ,

Q
(
µ̂∇x · (Dxu)

)
= µ̂Q∇x · (Dxu) +

[
Q , µ̂

]∇x · (Dxu) .

Although the symbols of the projection operators P and Q have singularities at ξ = 0, we can still
treat them as pseudo-differential operators of order zero because they are homogeneous operators of
order zero [11]. Therefore, by noticing that |ξ| = ξ · ξ|ξ| where ξ

|ξ| is homogeneous of order zero, one
can view |ξ| as the symbol of a first order pseudo-differential operator. This further implies that |ξ|k
for any integer k can be viewed as the symbol of an operator of order k. Therefore by the symbolic
calculus, the above commutator operators

[
P , µ̂

]
and

[
Q , µ̂

]
are of order −1. It follows from (2.12),

(2.13), and (2.14), that system (2.8) decomposes into its nondispersive part

(2.15)

∂tρ = −ε ∆2
xρ − û · ∇xρ − ρ̂∇x · Qu ,

∂tPu = −ε ∆2
xPu + µ̂∆xPu + ΨPu,1

2 (ρ, θ) + ΨPu,1
1 (ρ, Pu,Qu, θ) ,

(ρ, Pu)(x, 0) = (ρin, Puin)(x) ,

and its strictly dispersive part

(2.16)

∂tQu = −ε ∆2
xQu + 2d−1

d µ̂∆xQu + ∇x (τ̂1∆xθ) + Ψ
Qu,1
2 (ρ, θ) + Ψ

Qu,1
1 (ρ, Pu,Qu, θ) ,

∂tθ = −ε ∆2
xθ + κ̂∆xθ + τ̂4∆x∇x · Qu + Ψθ,1

2 (ρ, Pu,Qu, θ) + Ψθ,1
1 (Pu,Qu, θ) ,

(Qu, θ)(x, 0) = (Quin, θin)(x) ,

where
ΨPu,1

2 (ρ, θ) = P Ψu,0
2 (ρ, θ) − P(∇xτ̂1∆xθ) ,

Ψ
Qu,1
2 (ρ, θ) = Q Ψu,0

2 (ρ, θ) − Q(∇xτ̂1∆xθ) ,

Ψθ,1
2 (ρ, Pu,Qu, θ) = Ψθ,0

2 (ρ, Pu, θ) + Ψθ,0
2 (ρ,Qu, θ) ,
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ΨPu,1
1 (ρ, Pu,Qu, θ) = P Ψu,0

1 (ρ, Pu, θ) + P
(
1
ρ̂
∇xµ(θ̂) · Dx(Pu)

)
+

[
P , µ̂

]∇x · Dx(Pu) ,

+ P Ψu,0
1 (ρ,Qu, θ) + P

(
1
ρ̂
∇xµ(θ̂) · Dx(Qu)

)
+

[
P , µ̂

]∇x · Dx(Qu) ,

Ψ
Qu,1
1 (ρ, Pu,Qu, θ) = Q Ψu,0

1 (ρ, Pu, θ) + Q
(
1
ρ̂
∇xµ(θ̂) · Dx(Pu)

)
+

[
Q , µ̂

]∇x · DxPu

+ Q Ψu,0
1 (ρ,Qu, θ) + Q

(
1
ρ̂
∇xµ(θ̂) · Dx(Qu)

)
+

[
Q , µ̂

]∇x · DxQu ,

Ψθ,1
1 (Pu,Qu, θ) = Ψθ,0

1 (Pu, θ) + Ψθ,0
1 (Qu, θ) + 2

d

1
ρ̂
∇xκ(θ̂) · ∇xθ .

Notice that the nondispersive part and strictly dispersive part couple through the lower order terms
Ψθ,1

2 , ΨPu,1
1 , Ψ

Qu,1
1 , and Ψθ,1

1 .

2.3. Assumptions for the Estimate. In order to obtain bounds on the solutions of linear system (2.8)
we make the following assumptions on (ρ̂, û, θ̂). These assumptions are the key to choosing the proper
space for our well-posedness result.
A1. Asymptotic flatness. There exists constants cA,T1 > 0 such that ∀(x, t) ∈ Rd × [0,T1],

(2.17)
∣∣∣∂t(ρ̂, û, θ̂)(x, t)

∣∣∣ +
∣∣∣∇x(ρ̂, û, θ̂)(x, t)

∣∣∣ +
∣∣∣∂t∇x(ρ̂, û, θ̂)(x, t)

∣∣∣ ≤ cA

〈x〉2

with 〈x〉2 4= 1 + |x|2.
A2. Regularity. There exists T2 > 0 such that (ρ̂, û, θ̂)(x, t) ∈ CN+1

b (Rd × [0,T2]) where N =

N(d, 3, 0) is again given by Theorem 2.1. Here CN+1
b (Rd × [0,T2]) is the set of functions that have

continuous bounded derivatives up to order N + 1. Again use cA to denote the uniform upper bound
of the coefficients of Ψ2 in CN

b (Rd × [0,T2]).
A3. Lower bounds. There exists a constant α0 > 0 such that ρ̂, θ̂ ≥ α0 > 0. This together with the

uniform bounds on ρ̂, θ̂ guarantees the existence of a constant τ0 > 0 such that 1
τ0
≥ τ̂1/τ̂4 ≥ τ0 > 0.

A4. Nontrapping condition. Let hin(ξ, x) =
√
τ̂1(x, 0)τ̂4(x, 0) |ξ|3 as defined in (1.8) and Hhin be the

corresponding Hamiltonian flow. Then Hhin is nontrapping, that is, if (Ξ, X)(t; ξ, x) is a solution to

dΞ

dt
= −∇xhin(Ξ, X) , Ξ(0) = ξ ,

dX
dt

= ∇ξhin(Ξ, X) , X(0) = x ,

then for any ξ , 0,
|X(t)| → ∞ as t → ±∞ .

Remark 2.1. It is sufficient to verify the nontrapping condition for |ξ| = 1 because the Hamiltonian
flow satisfies the dilation scaling Ξ(t; λξ, x) = λΞ(λ2t; ξ, x), X(t; λξ, x) = X(λ2t; ξ, x).

Remark 2.2. Let q(ξ, x, t) be the symbol of any of the second order ΨDO’s in the system except the
dissipation. Then by (2.17), q is a homogeneous second order polynomial in ξ and

|∂tq(ξ, x, t)| + |q(ξ, x, t)| ≤ cA

〈x〉2 |ξ|
2 , ∀(x, t) ∈ Rd × [0,T1] .
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Notation. Henceforth constants that depend only on the initial data will have a 0 subscript. Constants
that depend on the constants that appear in the above assumptions will have an A subscript.

The asymptotic flatness assumption A1 and the nontrapping condition A4 will be required by the
following lemma, which is due to Chihara [3]. We refer to [3, 5, 10] and references therein for
discussions about the necessity of the nontrapping condition for the L2-well-posedness of dispersive
equations.

Lemma 2.1. Let θR(ξ) ∈ C∞(Rd) be a cutoff function such that θR(ξ) = 1 for |ξ| ≥ 2R, θR(ξ) = 0 for
|ξ| < R, and 0 < θR(ξ) < 1 otherwise. Let Cin and αin be the constants in (1.6) and (1.7) such that

√
τ̂1(x, 0)τ̂4(x, 0) ≥

√
αin , |∇x(ρ̂, û, θ̂)(x, 0)| ≤ 2Cin

〈x〉2 ,

and Hhin nontrapping. Then there exists p(ξ, x) ∈ S 0 real and constants c1, c2 which depend on Cin

and αin, such that

(2.18) HθRhin p ≥ c1
|ξ|2
〈x〉2 − c2 , ∀(ξ, x) ∈ Rd × Rd .

Moreover, finitely many seminorms of p given by (2.6) have bounds that depend only on the constants
Cin and αin.

Remark 2.3. We will show in Lemma 2.2 that given the assumptions A1 and A2, the bound (2.18)
propagates for a finite time.

2.4. Linear Estimate. The main result of this section is the following bound on solutions of the
linear system (2.10). Because this estimate is a priori, we assume that (ρ, u, θ) is a smooth solution to
(2.10). Note that the regularity guaranteed byA2 is enough for the proof.

Theorem 2.2. Let (ρ̂, û, θ̂)(t, x) ∈ C([0,T ]; H∞) be functions that satisfy assumptionsA1 −A4. Then
for every solution (ρ, u, θ) ∈ C([0,T ]; H∞) of the linear system (2.10) there exists T > 0 depending on
the constants c0, cA, and αin in the assumptions and c > 0 depending on Cin and αin such that

(2.19) sup
[0,T ]

(
‖ρ‖2H1 + ‖(u, θ)‖2L2

)
(t) +

∫ T

0
‖∇x(u, θ)‖2L2(s) ds ≤ c

(
‖ρin − ρ̄‖2H1 + ‖(uin, θin − θ̄)‖2L2

)
.

Both c and T are independent of ε.

Proof. The proof of Theorem 2.2 has six steps. We begin with estimates for (Qu, θ) derived from
subsystem (2.16). This subsystem has nondegenerate dispersive terms.
Step 1. Projection of the equation for Qu. Let ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd be the Fourier variable. For
1 ≤ k ≤ d, let pk(ξ) be the symbol of the Riesz transform

pk(ξ) = −i
ξk

|ξ| .

Then pk’s are homogenous of order zero. Let Ψpk be the ΨDO with the symbol pk(ξ). For u =

(u1, u2, . . . , ud), abbreviate the scalar function
∑d

k=1 Ψpkuk as Ψp0u. Apply Ψp0 to the equation for Qu.
The resulting equations for Ψp0u is

(2.20)
∂t(Ψp0u) = −ε ∆2

x(Ψp0u) + 2d−1
d µ̂∆x(Ψp0u) + (−∆x)

1
2 (τ̂1∆xθ)

+ Ψ
p0
2 (ρ, θ) + Ψ

p0
1

(
ρ, Pu, Ψp0u, θ

)
,
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where
Ψ

p0
2 (ρ, θ) = Ψp0 Ψu,0

2 (ρ, θ) − Ψp0 (∇xτ̂1∆xθ) , Ψ
p0,1
2 (ρ) + Ψ

p0,2
2 (θ) ,

Ψ
p0
1 (ρ, Pu, Ψp0u, θ) = Ψp0 Ψ

Qu,1
1

(
ρ, Pu,

(
Ψp1Ψp0u, · · · , ΨpdΨp0u

)
, θ

)

+ 2d−2
d [Ψp0 , µ̂]∆xPu + 2d−2

d

d∑

k=1

[Ψpk , µ̂]∆xΨpkΨp0u .

Here we applied that Qu =
(
Ψp1Ψp0u, · · · , ΨpdΨp0u

)
and the operators Ψp0 and ∆2

x commute over Rd.
Next, we rewrite the equation for θ as

∂tθ = −ε ∆2
xθ + κ̂∆xθ + τ̂4(−∆x)

3
2 (Ψp0u) + Ψθ,2

2

(
ρ, Pu, Ψp0u, θ

)
+ Ψθ,2

1

(
ρ, Pu, Ψp0u, θ

)
,

where
Ψθ,2

2

(
ρ, Pu, Ψp0u, θ

)
= Ψθ,1

2

(
ρ, Pu,

(
Ψp1Ψp0u, · · · , ΨpdΨp0u

)
, θ

)

, Ψθ,2,1
2 (ρ, Pu) + Ψθ,2,2

2

(
Ψp0u, θ

)
,

Ψθ,2
1

(
ρ, Pu, Ψp0u, θ

)
= Ψθ,1

1

(
ρ, Pu,

(
Ψp1Ψp0u, · · · , ΨpdΨp0u

)
, θ

)
.

Let ~ω = (Ψp0u, θ)
T = (ω1, ω2)T . Then the system for ~ω has the form

∂t~ω = −ε ∆2
x~ω + ΨD~ω + ΨL0~ω + ΨB0~ω + Ψω

2 (ρ, Pu) + Ψω
1 (ρ, Pu, ~ω) ,

with

ΨD~ω =

(
2d−1

d µ̂∆xω1 0
0 κ̂∆xω2

)
, ΨL0~ω =


(−∆x)

1
2

(
τ̂1 ∆xω2

)

τ̂4 (−∆x)
3
2ω1

 ,

ΨB0~ω =

(
Ψ

p0,2
2 ω2

Ψ2~ω

)
, Ψω

2 (ρ, Pu) =

(
Ψ

p0,1
2 (ρ)

Ψθ,2,1
2 (ρ, Pu)

)
, Ψω

1 (ρ, ~ω, Pu) =

(
Ψ

p0
1 (ρ, Pu, ~ω)

Ψθ,2
1

(
ρ, Pu, ~ω

)
)
.

The leading order of the symbol matrix L0 is given by

L1 =

(
0 −τ̂1 |ξ|3

τ̂4 |ξ|3 0

)
.

Here the off-diagonal terms of L0 can be viewed as third order operators by the comment we made
after (2.14). By the symbol calculus, L1 − L0 is a second order ΨDO. Let B1 be the leading order term
of the second order symbol B0 + (L1 − L0). Then B1 is homogeneous of order 2 on ~ω. Therefore the
system for ~ω has the form

(2.21) ∂t~ω = −ε ∆2
x~ω + ΨD~ω + ΨL1~ω + ΨB1~ω + Ψω

2 (ρ, Pu) + Ψω
1 (ρ, ~ω, Pu) .

Henceforth, we will use Ψm without any sup-index to denote m-th order operators for the reason we
stated before Theorem 2.1.
Step 2. Diagonalization of ΨL1 . The matrix L1 has eigenvalues λ± = ±i

√
τ̂1τ̂4 |ξ|3 θR(ξ). Let

A =

(−i
√
τ̂1/τ̂4

i
√
τ̂1/τ̂4

)
, L =

(
λ+ 0
0 λ−

)
.

Then

A−1 = 1
2

(
i −i√
τ̂4/τ̂1

√
τ̂4/τ̂1

)
, AL1 = LA .

Notation. For any w(x) nonnegative, let H s
w denote the weighted Sobolev space defined as

H s
w
4
=

{
u(x) : wu ∈ H s} ,
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with the norm
‖u‖Hs

w = ‖wu‖Hs .

Note that for the weight function w = 〈x〉2 = 1 + |x|2, the norm ‖u‖Hs
〈x〉2

is equivalent to the norm∑
|α|≤s ‖〈x〉2Dα

x u‖L2 for every u ∈ H s
〈x〉2 .

Both A and A−1 are zeroth order symbols. The operator ΨA is therefore a multiplication — i.e.
ΨA~ω = A~ω. Then as an operator, A is invertible on H s, H s

〈x〉−2 , and H s
〈x〉2 for every s byA2 andA3.

Multiply (2.21) by A to obtain

(2.22)
∂t~β = ∂t(A~ω) = −ε A∆2

x~ω + AΨD~ω + AΨL1~ω + AΨB1~ω + (∂tA)~ω

+ AΨ2ρ + AΨ2Pu + Ψ1(ρ, Pu, ~ω) + Ψ0

(
ΨqQu

)
.

Rewrite each term on the right-hand side of (2.22) respectively to obtain the system for ~β. First,

ε A∆2
x~ω = ε ∆2

xA~ω + ε
(
ΨR1 A−1

)
A~ω = ε ∆2

x
~β + ε ΨR2

~β ,

where ΨR1 = A∆2
x − ∆2

xA and ΨR2 = ΨR1 A−1 are third order ΨDO’s with seminorms bounded by the
constants cA and τ0.

Second,
AΨB1~ω = AΨB1 A−1~β .

Because both A and A−1 are of zeroth order, AΨB1 A−1 is still a second order (matrix) operator and we
use ΨB2 to denote this operator. Notice that there exists a T1 > 0 depending on cA such that B2 satisfies

(2.23) |B2(ξ, x, t)| ≤ c0,1|ξ|2
〈x〉2 , ∀(x, t) ∈ Rd × [0,T1] , |ξ| ≥ 2R ,

with c0,1 depending only on the initial data.
Next,

AΨDA−1 = 1
2

(−i
√
τ̂1/τ̂4

i
√
τ̂1/τ̂4

) (
2d−1

d µ̂∆x 0
0 κ̂∆x

) (
i −i√
τ̂4/τ̂1

√
τ̂4/τ̂1

)

=


(

d−1
d µ̂ + 1

2 κ̂
)
∆x 0

0
(

d−1
d µ̂ + 1

2 κ̂
)
∆x

 +


0

(
− d−1

d µ̂ + 1
2 κ̂

)
∆x(

− d−1
d µ̂ + 1

2 κ̂
)
∆x 0

 + Ψr1 ,

where Ψr1 is a first order ΨDO. Therefore,

AΨD~ω =
(

d−1
d µ̂ + 1

2 κ̂
)

∆x~β +


0

(
−d−1

d µ̂ + 1
2 κ̂

)
∆x(

−d−1
d µ̂ + 1

2 κ̂
)
∆x 0

 ~β + Ψr1 A−1~β .

Notice that although the second term on the right side of the above equation is of second order, there
is no contribution from the diagonal. Combine this term with ΨB2 and use ΨB3 to denote this new
second order operator and B3 satisfies the same property as B2 in (2.23).

Next, we study the structure of AΨL1 . Using the fact that AL1 = LA, we have

AΨL1 = ΨLA + (ΨAL1 − ΨLA) + (ΨLA − ΨLA) = ΨLA + (ΨLA − ΨLA) .

Let B4 be the symbol matrix corresponding to the leading order of ΨLA−ΨLA. By the symbol calculus,

B4 =

d∑

k=1

(∂ξk L) (∂xk A) .
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By assumptionsA1 −A3, there exist T2, c0,2 > 0 such that

|B4(ξ, x, t)| ≤ c0,2|ξ|2
〈x〉2 , ∀(x, t) ∈ Rd × [0,T2], |ξ| ≥ 2R .

Combine ΨB3 with ΨB4 and use ΨB to denote this second order operator. Let

T3 = min{T1,T2} , c0,3 = min{c0,1, c0,2} .
Then the diagonal of B satisfies that

|Bdiag(ξ, x, t)| ≤ c0,3|ξ|2
〈x〉2 , ∀(x, t) ∈ Rd × [0,T3], |ξ| ≥ 2R .

For the rest of the terms on the right-hand side of (2.22),

(∂tA) ~ω = (∂tA)A−1~β = Ψ0~β , AΨ2A−1 = Ψ2 , AΨ1A−1 = Ψ1 .

Overall the system for ~β has the form

(2.24)
∂t~β = −ε ∆2

x
~β + ε ΨR2

~β +
(

d−1
d µ̂ + 1

2 κ̂
)
∆x~β + ΨL ~β + ΨB ~β

+ Ψ2(ρ, Pu) + Ψ1(ρ, Pu, ~β) + Ψ0

(
ΨqQu

)
.

Step 3. Diagonalization of ΨB. Write

ΨB = ΨBdiag + ΨBanti =

(
ΨB11 0

0 ΨB22

)
+

(
0 ΨB12

ΨB21 0

)
.

We show in the following that ΨBanti can be eliminated using ΨL. To this end, let

h(ξ, x, t) =
√
τ̂1τ̂4|ξ|3 , h̃(ξ, x, t) = h−1(ξ, x, t) θR(ξ) .

Then Ψh̃ is of order −3 uniformly in t and Ψh̃Ψh = I + Ψr2 with Ψr2 of order −1 uniformly in t.
Define the operators

T12 = i
2 ΨB12Ψh̃ , T21 = − i

2 ΨB21Ψh̃ , T =

(
0 T12

T21 0

)
,

and the diagonalizing transformation Λ of order 0

Λ = I − T .

Because T is of order −1, its S 0 seminorm is of order O(R−1). Therefore by taking R large enough
one can assume that Λ is invertible on H s, H s

〈x〉2 , and H s
〈x〉−2 with the operator norm between 1/2 and

2. The inverse of Λ is also of order 0 with operator norm between 1/2 and 2.
To diagonalize ΨB, apply the transformation Λ to system (2.24). First,

εΛ∆2
x + εΛΨR2 = ε∆2

xΛ + ε(Λ∆2
x − ∆2

xΛ)Λ−1Λ + ε(ΛΨR2Λ
−1)Λ = ε∆2

xΛ + εΨR3Λ ,

with ΨR3 = (Λ∆2
x − ∆2

xΛ)Λ−1 + ΛΨR2Λ
−1 being a third order ΨDO. The seminorms of ΨR3 depend on

the constants cA and τ0.
Second,

Λ∂t~β = ∂t(Λ~β) − (∂tΛ)Λ−1Λ~β ,

where (∂tΛ)Λ−1 is a zeroth order operator.
Next, by the facts that the symbol of T is in S −1 and that

ΛΨBdiag − ΨBdiagΛ = −TΨBdiag + ΨBdiagT ,

it is clear that ΛΨBdiag = ΨBdiagΛ + Ψ1Λ.
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Similarly,

ΛΨBanti = ΨBantiΛ + Ψ1Λ , Λ
(

d−1
d2 µ̂ + κ̂

)
∆x =

(
d−1
d2 µ̂ + κ̂

)
∆xΛ + Ψ1Λ ,

ΛΨ1 = Ψ1Λ + Ψ0Λ , ΛΨ2 = Ψ2 + Ψ1 ,

For the term ΛΨL − ΨLΛ, we have

ΛΨL − ΨLΛ = ΨLT − TΨL = i
(
Ψh 0
0 −Ψh

) (
0 T12

T21 0

)
− i

(
0 T12

T21 0

) (
Ψh 0
0 −Ψh

)

= i
(

0 ΨhT12 + T12Ψh

−[ΨhT21 + T21Ψh] 0

)
.

Because ΨhT12 = T12Ψh + Ψ1, we have
i(ΨhT12 + T12Ψh) = 2iT12Ψh + Ψ1 = −ΨB12 + Ψ1 ,

−i(ΨhT21 + T21Ψh) = −2iT21Ψh + Ψ1 = −ΨB21 + Ψ1 .

Therefore,
ΛΨL + ΛΨBanti = ΨLΛ + Ψ1 .

Let ~z = Λ~β. Then the system for ~z has the form

(2.25)
∂t~z = −ε ∆2

x~z + εΨR3~z +
(

d−1
d2 µ̂ + κ̂

)
∆x~z + ΨL~z

+ ΨBdiag~z + Ψ2ρ + Ψ2Pu + Ψ1(ρ, Pu,~z) + Ψ0

(
ρ, Pu, ~z, ΨqQu

)
,

where R3 is a third order operator.
Step 4. Regularized Pu and ρ. By utilizing the dispersive operator ΨL as in Step 3, we can eliminate
the second order term including θ in the equation for Pu and the first order term ρ∇x · u in the mass
equation.

To this end, write θ in terms of~z = (z1, z2)T . Recall that~z = ΛA~ωwhere Λ and A are both invertible.
Solve ~ω in terms of ~z to obtain

~ω = A−1Λ−1~z = A−1
(
Λ11 Λ12

Λ21 Λ22

)
~z = 1

2

(
i −i√
τ̂4/τ̂1

√
τ̂4/τ̂1

) (
Λ11z1 + Λ12z2

Λ21z1 + Λ22z2

)
,

which shows that
θ =

√
τ̂4/τ̂1

(
(Λ11 + Λ21)z1 + (Λ12 + Λ22)z2

)
.

Hence,
Ψ2θ = Ψ2

( √
τ4/τ1
d (Λ11 + Λ21)

)
z1 + Ψ2

( √
τ4/τ1
d (Λ12 + Λ22)

)
z2

4
= ΨΓ1z1 + ΨΓ2z2 .

Because Λkl is of zeroth order for all 1 ≤ k, l ≤ 2, ΨΓ1 and ΨΓ2 are both second order operators with
seminorms bounded by the constants cA and τ0.

Now define
T1 = iΨΓ1Ψh̃ , T2 = iΨΓ2Ψh̃ .

The operators T1 and T2 are of order −1 and

T1Ψih + ΨΓ1 = −ΨΓ1Ψh̃Ψh + ΨΓ1 , −T2Ψih + ΨΓ2 = −ΨΓ2Ψh̃Ψh + ΨΓ2 ,

are both first order operators. Upon applying T1 and T2 to the respective equations of system (2.25),
we find that T1z1 and T2z2 obey

(2.26)
∂t(T1z1) = −ε ∆2

x(T1z1) + ε ΨR4z1 + T1Ψihz1 + Ψ1(ρ, Pu,~z) + Ψ0(ρ, Pu, ~z, ΨqQu) ,

∂t(T2z2) = −ε ∆2
x(T2z2) + ε ΨR5z2 − T2Ψihz2 + Ψ1(ρ, Pu,~z) + Ψ0(ρ, Pu, ~z, ΨqQu) ,
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where R4,R5 ∈ S 2. Upon adding the equations in (2.26) to the equation for Pu in system (2.15), we
see that ~y = Pu + T1z1 + T2z2 satisfies

(2.27) ∂t~y = −ε ∆2
x~y + ε ΨR4z1 + ε ΨR5z2 + µ̂∆x~y + Ψ2ρ + Ψ1(ρ,~y,~z) + Ψ0(ρ, ~y, ~z, ΨqQu) ,

where R4,R5 ∈ S 3.
To eliminate the term ρ̂∇x · u in the mass equation, write

ρ̂∇x · u = ρ̂∇x · Qu 4
= ΨΓ3z1 + ΨΓ4z2 .

Define the operators
T3 = iΨΓ3Ψh̃ , T4 = iΨΓ4Ψh̃ .

Then T3 and T4 are of order −2, while the operators T3Ψih + ΨΓ3 and T4Ψih + ΨΓ4 are of order zero.
The equation for % = ρ + T3z1 + T4z2 is

(2.28) ∂t% = −ε ∆2
x% + ε ΨR6z1 + ε ΨR7z2 − ∇x% · u + Ψ0(%, ~y, ~z, ΨqQu) ,

where R6,R7 ∈ S 2.
Step 5. A further transformation. Before defining a further transformation, we prove the following

lemma which is an extension of Lemma 2.1.

Lemma 2.2. There exits T ∗ > 0, depending only on the constants inA1,A3, and Lemma 1, such that
for every t ∈ [0,T ∗) one has

HθRh p = {θRh, p} (ξ, x, t) ≥ c1

2
|ξ|2
〈x〉2 − c̃2 , ∀(ξ, x) ∈ Rd × Rd , |ξ| ≥ 2R ,

where c̃2 depends only on α0 and c0.

Proof. By definition,

HθRh p =

d∑

j=1

(
∂ξ jh ∂x j p − ∂x jh ∂ξ j p

)
θR + r ,

HθRhin p =

d∑

j=1

(
∂ξ jh

in ∂x j p − ∂x jh
in ∂ξ j p

)
θR + rin ,

where

r =

d∑

j=1

h ∂ξ jθR ∂x j p , rin =

d∑

j=1

hin ∂ξ jθR ∂x j p .

By the definition of θR(ξ), we have ∂ξ jθR compactly supported. Therefore, r, rin ∈ S 0 and the bound
of their S 0 seminorms depends only on the constants c0 and α0. For |ξ| > 2R we have

∂ξ jh = 3
√
τ̂1τ̂4|ξ|ξ j , ∂x jh = ∂x j

( √
τ̂1τ̂4

)
|ξ|3 .

Thus, it follows from assumptionA1 that

|∂ξ jh(ξ, x, t) − ∂ξ jh(ξ, x, 0)| ≤ c0,4T ∗

〈x〉2 |ξ|
2 ,

|∂x jh(ξ, x, t) − ∂x jh(ξ, x, 0)| ≤ c0,5T ∗

〈x〉2 |ξ|
3 .
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Therefore, there exist c0,6, c0,7 > 0 such that

∣∣∣HθRh p − HθRhin p
∣∣∣ ≤

d∑

j=1

∣∣∣∂ξ jh − ∂ξ jh
in
∣∣∣ ∣∣∣∂x j p

∣∣∣ +

d∑

j=1

∣∣∣∂x jh − ∂x jh
in
∣∣∣ ∣∣∣∂ξ j p

∣∣∣ + |r| + |rin|

≤ c0,6T ∗

〈x〉2 |ξ|
2 + c0,7 .

Choosing T ∗ small enough and applying Lemma 2.1, we have

HθRh p ≥ HθRhin p −
∣∣∣HθRh p − HθRhin p

∣∣∣ ≥ (
c1 − c0,6T ∗

) |ξ|2
〈x〉2 − c2 − c0,7 ≥ c1

2
|ξ|2
〈x〉2 − c̃2

where c̃2 = c2 + c0,7 depends only on α0 and c0. �

To construct a further transformation, let

q1(ξ, x) = exp
(
Mp(ξ, x)θR(ξ)

)
, q2(ξ, x) = exp

( − Mp(ξ, x)θR(ξ)
)
,

where θR(ξ) is again the cutoff function and M > 0 to be chosen. Then

Ψq1Ψq2 = I + Ψr2 , Ψq2Ψq1 = I + Ψr3 ,

with r2, r3 ∈ S −1. Thus Ψq1 and Ψq2 are invertible and their inverses are of order 0 for large R.
By the calculus of symbols, we have

ΨhΨq1 − Ψq1Ψh = Ψ−i{h,q1} + Ψ1 ,

with

{h, q1} =

d∑

j=1

(
∂ξ jh ∂x jq1 − ∂x jh ∂ξ jq1

)

=

d∑

j=1

(
∂ξ jh M ∂x j pθR − ∂x jh(M∂ξ j p)θR

)
q1 −

d∑

j=1

(
∂x jh Mp∂ξ jθR

)
q1 .

Hence,
{h, q1} = MθR(ξ) (Hh p) q1 + Ψ0 .

Therefore
ΨihΨq1 − Ψq1Ψih = ΨMθRHh pΨq1 + Ψ1 .

A similar computation shows that

ΨihΨq2 − Ψq2Ψih = −ΨMθRHh pΨq2 + Ψ1 .

Step 6. Energy estimate. Consider the system in the following variable

~α =

(
Ψq1 0
0 Ψq2

)
~z 4

= Ψ~z .

Notice that Ψ is invertible and Ψ−1 =

(
Ψ−1

q1
0

0 Ψ−1
q2

)
is also a matrix of order 0.

To compute the system for ~α, multiply system (2.25) by Ψ.

∂t~α = Ψ∂t~z = −ε Ψ∆2
x~z + ε ΨΨR3~z + Ψ

(
d−1

d µ̂ + 1
2 κ̂

)
∆x~z + ΨΨL~z

+ ΨΨBdiag~z + ΨΨ2(%,~y) + ΨΨ1(%,~y,~z) + ΨΨ0(%,~y,~z,ΨqQu) .
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Evaluate each term on the right as follows. First, there exists a R6 ∈ S 3 such that

−εΨ∆2
x~z + εΨΨR3~z = −ε∆2

x~α + εΨR6~α .

Second,
Ψ

(
d−1

d µ̂ + κ̂
)
∆x~z =

(
d−1

d µ̂ + κ̂
)
Ψ∆xΨ

−1~α + Ψ1~α

=
(

d−1
d µ̂ + κ̂

) (Ψq1∆xΨ
−1
q1

0
0 Ψq2∆xΨ

−1
q2

)
~α + Ψ1~α

=
(

d−1
d µ̂ + κ̂

)
∆x~α + Ψ1~α .

Similarly,
ΨΨBdiag~z = ΨΨBdiagΨ

−1~z = ΨBdiag~α + Ψ1~α .

Next,
ΨΨ2(%,~y) = Ψ2(%,~y) , ΨΨ1(%,~y) = Ψ1(%,~y) ,

ΨΨ1~z = ΨΨ1Ψ
−1~α = Ψ1~α , ΨΨ0~z = ΨΨ0Ψ

−1~α = Ψ0~α ,

For the dispersive part,

ΨΨL~z = ΨL~α +

(
Ψq1Ψih − ΨihΨq1 0

0 −(Ψq2Ψih − ΨihΨq2)

)
~z

= ΨL~α +

(−ΨMθRHh p 0
0 −ΨMθRHh p

)
Ψ~z + Ψ1~α .

Therefore, the system for ~α has the form

(2.29)
∂t~α = −ε ∆2

x~α + ε ΨR6~α +
(

d−1
d µ̂ + 1

2 κ̂
)
∆x~α + ΨL~α +

(−ΨMθRHh p 0
0 −ΨMθRHh p

)
~α

+ ΨBdiag~α + Ψ2(%,~y) + Ψ1(%, ~α,~y) + Ψ0(%, ~α,~y, ΨqQu) .

Now we derive the energy estimate for (%, ~α,~y,ΨqQu). First, we multiply (2.29) by ~α and integrate
over Rd to obtain

d
dt
〈~α, ~α〉 = 〈∂t~α , ~α〉 + 〈~α , ∂t~α〉

= −ε 〈∆2
x~α , ~α〉 − ε 〈~α , ∆2

x~α〉 + ε 〈ΨR6~α , ~α〉 + ε 〈~α , ΨR6~α〉
+

〈(
d−1

d µ̂ + 1
2 κ̂

)
∆x~α , ~α

〉
+

〈
~α ,

(
d−1

d µ̂ + 1
2 κ̂

)
∆x~α

〉

+ 〈ΨL~α , ~α〉 + 〈~α , ΨL~α〉

+

〈(−ΨMθRHh p 0
0 −ΨMθRHh p

)
~α , ~α

〉
+

〈
~α ,

(−ΨMθRHh p 0
0 −ΨMθRHh p

)
~α

〉

+ 〈ΨBdiag~α , ~α〉 + 〈~α , ΨBdiag~α〉 + 〈Ψ2~y , ~α〉 + 〈~α , Ψ2~y〉
+ 〈Ψ2% , ~α〉 + 〈~α , Ψ2%〉 + 〈Ψ1~α , ~α〉 + 〈~α , Ψ1~α〉
+ 〈Ψ1~y , ~α〉 + 〈~α , Ψ1~y〉 + 〈Ψ1% , ~α〉 + 〈~α , Ψ1%〉
+ 〈Ψ0~α , ~α〉 + 〈~α , Ψ0~α〉 + 〈Ψ0~y , ~α〉 + 〈~α , Ψ0~y〉
+ 〈Ψ0% , ~α〉 + 〈~α , Ψ0%〉 + 〈Ψ0ΨqQu , ~α〉 + 〈ΨqQu , Ψ0~α〉 .

Now estimate each term above. For the terms containing ε,

−ε 〈∆2
x~α , ~α〉 − ε 〈~α , ∆2

x~α〉 = −2ε ‖∆x~α‖2L2 .
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Because R4 ∈ S 3, it is clear that

ε
∣∣∣〈ΨR4~α , ~α〉

∣∣∣ + ε
∣∣∣〈~α , ΨR4~α〉

∣∣∣ ≤ ε cA,1‖~α‖2
H

3
2
≤ 2ε ‖∆x~α‖2L2 + ε cA,2‖~α‖2L2 .

For the dissipative term,
〈(

d−1
d µ̂ + 1

2 κ̂
)
∆x~α , ~α

〉
+

〈
~α ,

(
d−1

d µ̂ + 1
2 κ̂

)
∆x~α

〉
≤ −c0,7‖∇x~α‖2L2(R2) + cA,3‖~α‖2L2 ,

where c0,7 > 0 depends only on αin.
Next, by the calculus it can be shown that

〈ΨL~α , ~α〉 + 〈~α , ΨL~α〉 = 〈~α , ΨB̂diag
~α〉 ,

where

B̂diag =

(
B̂11 0
0 B̂22

)
, |B̂kk| ≤ c0,8

〈x〉2 |ξ|
2 , ∀(x, t) ∈ Rd × [0,T4] , |ξ| ≥ 2R , k = 1, 2 .

By the fact that B̂diag is real, we can combine 1
2 B̂diag with Bdiag and still denote it Bdiag =

(
B11 0
0 B22

)
.

Notice that |Bkk| ≤ c0,10 |ξ|2
〈x〉2 for k = 1, 2. By taking M large enough we have

−MθRHh p + |Bkk| ≤ c0,11 − 1
2c0,η

|ξ|2
〈x〉2 .

The choice of M depends only on the initial data. Let c′ = c0,η. Then c′ depends only on the data.
By the sharp Gårding inequality,

〈(−ΨMθRHh p + B11 0
0 −ΨMθRHh p + B22

)
~α , ~α

〉
+

〈
~α ,

(−ΨMθRHh p + B11 0
0 −ΨMθRHh p + B22

)
~α

〉

≤ c‖~α‖2
H

1
2
− Re

〈(
Ψc′ |ξ|2/〈x〉2 0

0 Ψc′ |ξ|2/〈x〉2

)
~α , ~α

〉

≤ η‖~α‖2H1 + cη‖~α‖2L2 − Re
〈(

Ψc′ |ξ|2/〈x〉2 0
0 Ψc′ |ξ|2/〈x〉2

)
~α , ~α

〉
.

For the operator Ψc′ |ξ|2/〈x〉2 , because

Ψc′ |ξ|2/〈x〉2 =
1
〈x〉2 Ψc′ |ξ|2 + Ψ1 , Ψc′ |ξ|2 = −c′∆x ,

and

− 1
〈x〉2 ∆x = −∇x ·

(
1
〈x〉2∇x

)
+ Ψ1 ,

we have

Re
〈(

Ψc′ |ξ|2/〈x〉2 0
0 Ψc′ |ξ|2/〈x〉2

)
~α , ~α

〉
≥ c′

∫

Rd

1
〈x〉2 |∇x~α|2 dx −

(
η ‖∇x~α‖2L2 + cη ‖~α‖2L2

)
.

For the first order terms Ψ1
(
~α,~y, %

)
, let η > 0 be small enough. Then

|〈Ψ1~α , ~α〉| + |〈~α , Ψ1~α〉| ≤ η ‖∇x~α‖2L2 + cA,η ‖~α‖2L2 ,

|〈Ψ1~y , ~α〉| + |〈~α , Ψ1~y〉| ≤ η ‖∇x~y‖2L2 + cA,η ‖~α‖2L2 ,

|〈Ψ1% , ~α〉| + |〈~α , Ψ1%〉| ≤ η ‖∇x~α‖2L2 + cA,η ‖%‖2L2 ,

with cA,η depending on η and the bounds cA.
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For the term Ψ2~y, by assumptions A1 and A3, we can choose T5 > 0 small enough such that the
symbol of this second order ΨDO, denoted as F1 satisfies |F1| ≤ c0,9

〈x〉2 |ξ|2 for every (x, t) ∈ Rd × [0,T5).
Therefore we obtain the bound

∣∣∣〈ΨF1~y , ~α〉
∣∣∣ +

∣∣∣〈~α , ΨF1~y〉
∣∣∣ ≤ η ‖∇x~y‖2L2 + c0,η

∫

Rd

1
〈x〉2 |∇x~α|2 dx ,

where c0,η depends on η and the data.
For the Ψ2% term, we need to estimate the H1 norm of %. First, the L2 estimate of % shows that

(2.30) 1
2

d
dt
‖%‖2L2 ≤ cA‖%‖2L2 + ‖~α‖2L2 + ‖~y‖2L2 + ‖ΨqQu‖2L2 .

Differentiate the equation (2.28) for % with respect to xl, 1 ≤ l ≤ d and multiply by ∂l% we obtain
the following equality

1
2

d
dt
‖∂l%‖2L2 − 1

2

∫

Rd
|∂l%|2∇x · u dx +

∫

Rd
∂l%∇x% · ∂lu dx

= −ε 〈∆2
x(∂l%) , ∂l%〉 + 〈ε ∂lΨR6z1 , ∂l%〉 + 〈ε ∂lΨR7z2 , ∂l%〉 + 〈Ψ1~y , ∂l%〉 + 〈Ψ1~z , ∂l%〉 .

Therefore, the energy inequality shows that

(2.31) 1
2

d
dt
‖∂l%‖2L2 ≤ cA,η ‖∂l%‖2L2 + ε ‖~α‖2L2 + η ‖∇x~y‖2L2 + η ‖∇x~α‖2L2 .

By combining (2.30) and (2.31) we obtain the energy estimate for ‖%‖2H1 as

(2.32) 1
2

d
dt
‖%‖2H1 ≤ cA,η ‖%‖2H1 + η ‖∇x~y‖2L2 + η ‖∇x~α‖2L2 + ‖~α‖2L2 + ‖~y‖2L2 + ‖ΨqQu‖2L2 .

Upon adding the above estimates together we conclude that
d
dt

(
‖~α‖2L2 + ‖%‖2H1

)
+ ĉ

∫

Rd
‖∇x~α‖2 dx ≤ − 1

2ε ‖∆x~α‖2L2 + c̃
(
‖~α‖2L2 + ‖%‖2H1 + ‖ΨqQu‖2L2

)

+ η ‖∇x(Ψq1~y)‖2L2 + η ‖∇x(Ψq2~y)‖2L2 + η ‖∇x~α‖2L2 .

That is

(2.33)

d
dt

(
‖~α‖2L2 + ‖%‖2H1

)
+ 1

2 ĉ
∫

Rd
‖∇x~α‖2 dx

≤ − 1
2ε ‖∆x~α‖2L2 + c̃

(
‖~α‖2L2 + ‖%‖2H1 + ‖ΨqQu‖2L2

)
+ c0,η ‖∇x~y‖2L2 ,

by the fact that q1, q2 ∈ S 0 and their norms are given by the initial data. Here c0,η depending on η and
the initial data, c̃ depending on cA, α0, and ĉ depending on µ, κ, α0, and d.

Next we check the energy estimates of ~y. From equation (2.27), it is easy to see that the energy
estimate for ~y is as follows.

(2.34) 1
2

d
dt
‖~y‖2L2 + c0,12‖∇x~y‖2L2 ≤ ηε ‖∆x~α‖2L2 + cA,η ‖~α‖2L2 + cA,η ‖%‖2L2 + cA

(
‖~y‖2L2 + ‖ΨqQu‖2L2

)
.

Take η sufficiently small and add up (2.33) and (2.34).
Multiply the equation for ΨqQu in (2.20) and integrate over Rd. The L2 estimate for ΨqQu is

(2.35)
1
2

d
dt
‖ΨqQu‖2L2 ≤ c

(
‖~α‖2L2 + ‖~y‖2L2 + ‖%‖2L2 + ‖ΨqQu‖2L2

)
.

Then the energy estimate for the entire system is written as

(2.36)
d
dt

(
‖%‖2H1 + ‖(~α, ~y, ΨqQu)‖2L2

)
+ c0‖∇x(~α, ~y, ΨqQu)‖2L2 ≤ cA

(
‖%‖2H1 + ‖(~α, ~y, ΨqQu)‖2L2

)
.
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By the Gronwall inequality we have

sup
0≤t≤T

(
‖%‖2H1 + ‖(~α, ~y, ΨqQu)‖2L2

)
+

∫ T

0
‖∇x~α, ~y)‖2L2(s) ds

≤ c′eT K0
(
‖%(0)‖2H1 + ‖(~α(0), ~y(0), ΨqQu(0))‖2L2

)

≤ c′
(
‖%(0)‖2H1 + ‖(~α(0), ~y(0), ΨqQu(0))‖2L2

)
,

where c′ depends only on the initial data and θ0 which is the lower bound of ρ, θ, K0 depends on cA, α0

and T > 0 is chosen to be small enough such that the second inequality is true.
Hence, using the fact that the equivalence of ‖%‖2H1 +‖~α‖2L2 +‖~y‖2L2 +‖ΨqQu‖2L2 and ‖ρ‖2H1 +‖u‖2L2 +‖θ‖2L2

depends only on the data, we conclude that there exist T > 0 depending on cA, α0, and c > 0 depending
only on the data and α0 such that

sup
[0,T ]

(
‖ρ‖2H1 + ‖(u, θ)‖2L2

)
(t) +

∫ T

0
‖∇x(u, θ)‖2L2(s) ds ≤ c

(
‖ρin‖2H1 + ‖(uin, θin)‖2L2)

)
.

This completes the proof of Theorem 2.2. �

3. A P E

Based on the linear estimate (2.19), we can now establish the a priori estimate for the nonlinear
regularized system (2.3), which has the abstract form

(3.1)
∂tU = −ε ∆2

xU +L(U)U ,

U(x, 0) = (ρin, uin, θin) ,

where U = (ρ, u, θ) and L is given by (2.11).
We begin by defining the following norms. Let s > s1 be two integers such that

(3.2) s1 > d/2 + 6, s = max{s1 + 6,N + d/2 + 4} ,
where N = N(d) is given in A2. Let ρ̄, θ̄ > 0 be two constants such that the initial data (ρin, uin, θin)
satisfy (1.6). For (ρ, u, θ) : Rd × [0,T ]→ R × Rd × R satisfying

(3.3)
ρ − ρ̄ ∈ C([0,T ]; H s+1) , (u, θ − θ̄) ∈ C([0,T ]; H s) ,

〈x〉2∂αx (ρ, u, θ) ∈ C([0,T ]; L2) , ∀α ∈ Nd , 1 ≤ |α| ≤ s1 ,

define
‖|(ρ − ρ̄, u, θ − θ̄)‖|T

= sup
[0,T ]

‖ρ(t) − ρ̄‖Hs+1 + ‖(u, θ − θ̄)(t)‖Hs +
∑

1≤|α|≤s1+1

(
‖〈x〉2∂αxρ(t)‖H1 + ‖〈x〉2∂αx (u, θ)(t)‖L2

) .

Define

λ = ‖ρin − ρ̄‖Hs+1 + ‖(uin, θin − θ̄)‖Hs +
∑

1≤|α|≤s1

(
‖〈x〉2∂αxρin‖H1 + ‖〈x〉2∂αx (uin, θin)‖L2

)
< ∞ ,

Suppose there exists a constant α0 > 0 such that ρin, θin, µ(θin), κ(θin) ≥ 2α0 > 0. Given T, M > 0,
define the space XT,M by

XT,M =
{
(ρ, u, θ)(t, x) : ‖|(ρ − ρ̄, u, θ − θ̄)‖|T ≤ M , ρ, θ ≥ α0 > 0, (ρ, u, θ)(0) = (ρin, uin, θin)

}
.
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Let

(3.4) M0 = 4cλ ,

with c being the constant in (2.19). Suppose 2c > 1. Then the a priori estimate for system (2.3) states

Lemma 3.1. Let ρ̄, θ̄ > 0 be two constants and Ū = (ρ̄, 0, θ̄). Let U = (ρ, u, θ) be a solution to
system (2.3) satisfying (3.3) with ρ, θ ≥ α0 > 0. Then there exists Tα0 > 0 independent of ε such that
‖|U − Ū‖|Tα0

≤ M0, where M0 is defined in (3.4).

Proof. First, by the linear estimate for (3.1), there exists T1 > 0 independent of ε such that

sup
[0,T1]

(
‖ρ(t) − ρ̄‖H1 + ‖(u, θ − θ̄)(t)‖L2

)
≤ M0 .

Next we check the bounds of (ρ − ρ̄, u, θ − θ̄) in higher order norms and norms with the weight
〈x〉2. For any multi-index α with 0 ≤ |α| ≤ s, apply ∂αx to the nonlinear system (2.3). The resulting
system for ∂αx U = (∂αxρ, ∂

α
x u, ∂αxθ) is

(3.5)

∂t(∂αxρ) = −ε ∆2
x(∂

α
xρ) +L1(U)(∂αx U) + Ψ

ρ
0
(
∂γxρ, ∂

γ
xu

)
+ fα,0 ,

∂t(∂αx u) = −ε ∆2
x(∂

α
x u) +L2(U)(∂αx U) + Ψu

2(∂γxρ, ∂
γ
xθ) + Ψ1(∂γxU) + Ψ0(∂γxU) + fα,1 ,

∂t(∂αxθ) = −ε ∆2
x(∂

α
xθ) +L3(U)(∂αx U) + Ψ2(∂γxρ, ∂

γ
xu, ∂γxθ) + Ψ1(∂γxU) + Ψ0(∂γxU) + fα,2 ,

where γ denotes any multi-index satisfying |γ| = |α|, and ( fα,0, fα,1, fα,2) are functions depending
on

(
∂σx U

)
|σ|≤|α|−1. Assuming that the lower derivatives of orders no more than |α| − 1 of (ρ, u, θ)

are bounded, we treat them as forcing terms. The coefficients of the additional second order terms
Ψ2 depend on ∇γ1

x U where γ1 is any multi-index such that |γ1| ≤ 3. Those coefficients satisfy the
assumptions A1, A2. The coefficient of Ψ1,Ψ0 in the above system also depend on ∇γ2

x U for any γ2

such that |γ2| ≤ 3. The assumptions A1, A2 are also satisfied for L1, L2, L3 when the solution U
satisfies (3.3) with s, s1 given in (3.2). Therefore, we conclude that the same linear estimate (2.19)
applies for ∂αx (ρ, u, θ) for every 0 ≤ |α| ≤ s — that is, there exists T2 > 0 such that

sup
[0,T2]

(
‖ρ‖2H|α|+1 + ‖(u, θ)‖2H |α|

)
+

∫ T2

0
‖∇x(u, θ)‖2H |α|(s) ds

≤ c
(
‖ρin‖2H|α|+1 + ‖(uin, θin)‖2H|α| +

∫ T2

0
‖( fα,0, fα,1, fα,2)‖2L2(s) ds

)
,

where c depends only on the data and α0. Because ( fα,0, fα,1, fα,2) ∈ L∞(0,T1; L2(Rd)), the last term
including the forcing can be made arbitrarily small by taking T2 small. Therefore, there exists a time
T3 > 0 independent of ε such that

(3.6) sup
[0,T3]

(
‖ρ − ρ̄‖Hs+1 + ‖(u, θ − θ̄)‖Hs

)
≤ M0/2 .

Next, we estimate the bounds on 〈x〉2∂αx (ρ, u, θ) for 1 ≤ |α| ≤ s1. We will show that the system
for 〈x〉2∂αx (ρ, u, θ) has a similar structure as those for (ρ, u, θ) and ∂αx (ρ, u, θ) so that the linear estimate
(2.19) again applies.

For each 1 ≤ l ≤ d and multi-index β such that 1 ≤ |β| ≤ s1 + 3, the system satisfied by xl ∂
β
xU has

the form
∂t(xl∂

β
xρ) = −ε ∆2

x(xl∂
β
xρ) +L1(U)(xl∂

β
xU) + Ψ0(xl∂

γ
xρ, xl∂

γ
xu) + fl,0 ,

∂t(xl∂
β
xu) = −ε ∆2

x(xl∂
β
xu) +L2(U)(xl∂

β
xU) + Ψ2(xl∂

γ
xρ, xl∂

γ
xθ) + Ψ1(xl∂

γ
xU) + Ψ0(xl∂

γ
xU) + fl,1 ,

∂t(xl∂
β
xθ) = −ε ∆2

x(xl∂
β
xθ) +L3(U)(xl∂

β
xU) + Ψ2(xl∂

γ
xU) + Ψ1(xl∂

γ
xU) + Ψ0(xl∂

γ
xU) + fl,2 ,
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with γ ∈ Nd such that |γ| = |β|. Similar as in (3.5), we have the coefficients of Ψ2,Ψ1,Ψ0 sat-
isfying A1,A2, and ( fl,0, fl,1, fl,2) depend only on the H s1+6 norm of (ρ, u, θ) and thereby is well-
controlled when s ≥ s1 + 6. Consequently, the linear estimate holds for (xl∂

β
xρ, xl∂

β
xu, xl∂

β
xθ) for each

l = 1, 2, · · · , d, that is, there exists T4 > 0 such that for every 1 ≤ l ≤ d and multi-index γ such that
0 ≤ |γ| ≤ s1 + 2,

sup
[0,T4]

(
‖xl ∇xρ‖2H |γ| + ‖xl ∇x(u, θ)‖2H|γ|−1

)
+

∫ T4

0
‖∇x (xl u, xl θ)) ‖2H|γ|(s) ds

≤ c
(
‖xl ∇xρ

in‖2H|γ| + ‖xl ∇x(uin, θin)‖2H |γ|−1 +

∫ T4

0
‖( fl,0, fl,1, fl,2)‖2L2(s) ds

)
.

Similarly, for each 1 ≤ l ≤ d and multi-index α satisfying 1 ≤ |α| ≤ s1, the system for x2
l ∂

α
x U has

the form

∂t(x2
l ∂

α
xρ) = −ε ∆2

x(x2
l ∂

α
xρ) +L1(U)(x2

l ∂
α
x U) + Ψ0(x2

l ∂
γ
xρ, x2

l ∂
γ
xu) + gl,0 ,

∂t(x2
l ∂

α
x u) = −ε ∆2

x(x2
l ∂

α
x u) +L2(U)(x2

l ∂
α
x U) + Ψ2(x2

l ∂
γ
xρ, x2

l ∂
γ
xθ) + Ψ1(x2

l ∂
γ
xU) + Ψ0(x2

l ∂
γ
xU) + gl,1 ,

∂t(x2
l ∂

α
xθ) = −ε ∆2

x(x2
l ∂

α
xθ) +L3(U)(x2

l ∂
α
x U) + Ψ2(x2

l ∂
γ
xU) + Ψ1(x2

l ∂
γ
xU) + Ψ0(x2

l ∂
γ
xU) + gl,2 ,

where gl,k = gl,k

((
xl∂

σ1
x (ρ, u, θ), ∂σ2

x (ρ, u, θ)
)
|σ1 |≤s1+3, |σ2 |≤s1+2

)
for k = 0, 1, 2. Again the linear estimate

applies. Therefore, there exists T5 > 0 sufficiently small such that for every 1 ≤ |α| ≤ s1 − 1, we have

sup
[0,T5]

(
‖x2

l ∇xρ‖2H|α| + ‖x2
l ∇x(u, θ)‖2H|α|−1

)
+

∫ T5

0

∥∥∥∥∇x

(
x2

l u, x2
l θ

)∥∥∥∥
2

H|α|
(s) ds

≤ c
(
‖x2

l ∇xρ
in‖2H|α| + ‖x2

l ∇x(uin, θin)‖2H|α|−1 +

∫ T5

0
‖ (gl,0, gl,1, gl,2

) ‖2L2(s) ds
)
.

Thus, by taking T6 = min{T3,T4,T5} sufficiently small, we have

(3.7) sup
[0,T6]


∑

1≤|α1 |≤s1+1

‖〈x〉2 ∂α1
x ρ‖L2 +

∑

1≤|α2 |≤s1

‖〈x〉2 ∂α2
x (u, θ)‖L2

 ≤ M0/2 .

Upon adding (3.6) and (3.7), we conclude that there exists Tα0 > 0 independent of ε such that

(3.8) ‖|(ρ − ρ̄, u, θ − θ̄)‖|Tα0
≤ M0 .

We thereby finish the proof of Lemma 3.1. �

4. L E P

Based on Lemma 3.1, we can now prove the local existence of classical solutions to the nonlinear
system (1.1). To show this, we first establish the existence of solutions to the regularized DNS system
in Lemma 4.1. Then using Lemma 3.1, we conclude that the sequence of solutions to the regular-
ized system exists on a time interval which is independent of ε. Finally, in the Main theorem, the
convergence of this sequence of solutions is proved. Uniqueness is also proved in the Main Theorem.

Let U = (ρ, u, θ), Ū = (ρ̄, 0, , θ̄), U in = (ρin, uin, θin) where U in satisfies the condition (1.6). Define
the operator Γ = Γε on XT,M by

(4.1) Γ(ρ, u, θ) = Γ(U) = e−εt∆
2
xU in +

∫ t

0
e−ε(t−t′)∆2

x
(L(U)U

)
(t′) dt′ .
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Then

(4.2) Γ(ρ, u, θ) − Ū = e−εt∆
2
x(U in − Ū) +

∫ t

0
e−ε(t−t′)∆2

x
(L(U)(U − Ū)

)
(t′) dt′ .

Use the contraction mapping theorem to show the local existence of the solution to the regularized
DNS system for each 0 < ε < 1.

Lemma 4.1. For each ε ∈ (0, 1) there exists Tε = O(ε3) such that the operator Γ defined in (4.1)
defines a contraction mapping on XTε ,M0 where M0 is defined in (3.4). Therefore, the regularized
system (3.1) has a unique solution in XTε ,M0 .

Proof. Study the semigroup generated by −ε∆2
x. Let β be a multi-index such that |β| = 3. Then for

any g ∈ L2,

‖∂βx e−εt∆
2
xg‖L2 ≤ C

ε3/4t3/4 ‖g‖L2 ,

where C > 0 is a generic constant. Because L is of order three, for any multi-indices α1, α2 such that
|α1| ≤ s + 1, |α2| ≤ s, we have

sup
[0,Tε,1]

‖∂α1
x (Γ(ρ) − ρ̄) ‖L2 ≤ ‖∂α1

x (ρin − ρ̄)‖L2 +

∫ Tε,1

0

∥∥∥∥∂α1
x e−ε(Tε,1−t′)∆2

x
(L1(U)(U − Ū)

)∥∥∥∥
L2

(t′) dt′

≤ ‖∂α1
x (ρin − ρ̄)‖L2 +

c0,sT
1/4
ε,1

ε3/4 M2
0 ,

sup
[0,Tε,1]

‖∂α2
x

(
Γ(u, θ) − (0, θ̄)

)
‖L2 ≤ ‖∂α2

x (uin, θin − θ̄)‖L2

+

∫ Tε,1

0

∥∥∥∥∂α2
x e−ε(Tε,1−t′)∆2

x (L2,L3) (U)(U − Ū)
∥∥∥∥

L2
(t′) dt′

≤ ‖∂α2
x (uin, θin − θ̄)‖L2 +

c0,sT
1/4
ε,1

ε3/4 M2
0

(
1 + Mks

0

)
,

where c0,s > 0 depends on α0, s, and ks > 0 depends only on s. Therefore,

(4.3) sup
[0,Tε,1]

‖Γ(U) − Ū‖Hs ≤ ‖U in − Ū‖Hs +
c0,sT

1/4
ε,1

ε3/4 M2
0

(
1 + Mks

0

)
≤ λ + M0/4 ≤ M0/2 ,

by choosing Tε,1 = O(ε3) small enough.
Next, we show that the weighted norm

∑
1≤|α|≤s1

‖〈x〉2∂αxΓ(U)‖L2 is also bounded by M0/2 for a
sufficiently short time. The argument is similar to the one in Section 3. Notice that for any 1 ≤ l ≤ d,
|α| ≤ s1 + 3, a direct calculation shows that xl ∂

α
xΓ(U) satisfies

∂t
(
xl ∂

α
xΓ(U)

)
= −ε ∆2

x
(
xl∂

α
xΓ(U)

)
+L(U)

(
xl ∂

α
x U

)
+ F ,

where F = F
(
∂
β
x Γ(U), ∂γx U

)
|γ|,|β|≤s1+6

is a C∞ function in its variables. Because Γ(U) and U are

bounded in L∞([0,Tε,1]; H s) for s ≥ s1 + 6, the function F is bounded in L∞([0,Tε,1]; L2). Moreover,
there exists a polynomial Q1(x) > 0 such that

sup
[0,Tε,1]

‖F‖L2 ≤ Q1(M0) .
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Using the fact that xl ∂
α
x U is bounded in L2 for any α ≤ s1, similar calculation as above shows that for

Tε,2 ≤ Tε,1,

sup
[0,Tε,2]

∑

1≤|α|≤s1

‖xl ∂
α
xΓ(U)‖L2 ≤

∑

1≤|α|≤s1

‖xl ∂
α
x U in‖L2 +

c0,s1T
1/4
ε,2

ε3/4 M2
0

(
1 + M

ks1
0

)
+ Tε,2Q1(M0)

≤ λ + M0/4 ≤ M0/2 ,

by choosing Tε,2 = O(ε3) small enough. Here c0,s1 > 0 depends on α0, s1, and ks1 > 0 depends only
on s1.

Similarly, for each 1 ≤ l ≤ d, x2
l ∂

α
xΓ(U) satisfies

∂t

(
x2

l ∂
α
xΓ(U)

)
= −ε ∆2

x

(
x2

l ∂
α
xΓ(U)

)
+L(U)

(
x2

l ∂
α
x U

)
+ G ,

where G = G
(
xl ∂

σ1
x Γ(U), xl ∂

σ2
x U, ∂βx Γ(U), ∂γxU

)
|σ1 |,|σ2 |,|γ|,|β|≤s1+3

is a C∞ function in its variables. Be-

cause xl ∂
σ
x Γ(U) is shown above to be bounded in L∞([0,Tε,2]; L2) for any |σ| ≤ s1 +3, and Γ(U),U are

bounded in L∞([0,Tε,2]; H s) for s ≥ s1 + 6, the function G is bounded in L∞([0,Tε,2]; L2). Moreover,
there exists a polynomial Q2(x) > 0 such that

sup
[0,Tε,2]

‖G‖L2 ≤ Q2(M0) .

Using the fact that x2
l ∂

α
x U is bounded in L2 for any α ≤ s1, a calculation similar to the one above

shows that for 0 < Tε,3 ≤ Tε,2,

(4.4)
sup

[0,Tε,3]

∑

1≤|α|≤s1

‖xl ∂
α
xΓ(U)‖L2 ≤

∑

1≤|α|≤s1

‖xl ∂
α
x U in‖L2 +

c0,s1T
1/4
ε,3

ε3/4 M2
0

(
1 + M

ks1
0

)
+ Tε,3Q2(M0)

≤ λ + M0/4 ≤ M0/2 ,

by choosing Tε,3 = O(ε3) small enough. Here c0,s1 > 0 depends on α0, s1, and ks1 > 0 depends only
on s1.

For the positivity of Γ(ρ) and Γ(θ), notice that Γ(U) satisfies the linear equation

∂tΓ(U) = −ε ∆2
xΓ(U) +L(U)U ,

with L(U)U sufficiently smooth. Therefore, for the initial data ρin, θin ≥ 2α0 > 0, if we choose Tε,4

small, we have Γ(ρ),Γ(θ) ≥ α0 > 0.
Upon combining the positivity with (4.3) and (4.4), we conclude that Γ maps XTε ,M0 into itself for

Tε = min{Tε,k}4k=1 sufficiently small.
To show Γ(U) is a contraction mapping on XTε ,M0 , for any U1,U2 ∈ XTε ,M0 consider the difference

equation for Γ(U1) − Γ(U2):

∂t

(
Γ(U1) − Γ(U2)

)
= −ε ∆2

x

(
Γ(U1) − Γ(U2)

)
+

(
L(U1)U1 − L(U2)U2

)
.

Similar calculation shows that there exists a polynomial Q3(M0) such that

‖|Γ(U1) − Γ(U2)‖|XTε ,M0
≤ cε,s,s1T

1/4
ε Q3(M0)‖|U1 − U2‖|XTε ,M0

.

Therefore, by choosing Tε sufficiently small, Γ : XTε ,M0 → XTε ,M0 is a contraction mapping. Therefore,
there exists a solution (ρε , uε , θε) ∈ XTε ,M0 to the regularized nonlinear system (3.1). �

We show in the following lemma that the lifespan of U can be extended from Tε to T0 > 0 which
is independent of ε.
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Lemma 4.2. There exists T0 > 0 independent of ε such that the solution U = (ρ, u, θ) to the regular-
ized system (2.3) exists on [0,T0] and satisfies that ‖|U‖|T0 ≤ M0.

Proof. The proof is done by a bootstrapping argument together with Lemma 3.1. We need to show
that there exists T0 > 0 independent of ε such that the bounds ρ, θ ≥ α0 > 0 hold over [0,T0]. These
bounds together with Lemma 3.1 imply that ‖|U‖|T0 ≤ M0. Because the right-hand side of system
(2.3) is bounded by a function of M0 independent of ε, we see that ‖(∂tρ, ∂tθ)‖L∞ is bounded with an
upper bound independent of ε. Therefore, the time interval over which ρ, θ are strictly bounded below
by α0 depends only on M0. In particular, it does not depend on ε. That is, given ρin, θin ≥ 2α0 > 0,
and ‖|U‖|T0 ≤ M0, there exists T̂ independent of ε such that ρ, θ ≥ α0 > 0 over [0, T̂ ]. Therefore,
there exists T0 ≥ min{T̂ ,Tα0}, where Tα0 is given by Lemma 3.1, such that ρ, θ > α0 over [0,T0] and
‖|U‖|T0 ≤ M0. �

Finally, we state and prove the Main theorem.

Main Theorem. Under the hypotheses that the Hamiltonian flow generated by the the symbol

hin(ξ, x) =
√
τ̂1(x, 0)τ̂4(x, 0)|ξ|3

is nontrapping, there exists N = N(d) ∈ Z+ and two constants ρ̄, θ̄ > 0 such that given the initial data
(ρin, uin, θin) satisfying the condition

‖ρin − ρ̄‖Hs+1 + ‖(uin, θin − θ̄)‖Hs +
∑

1≤|α|≤s1

(
‖〈x〉2∂αxρin‖H1 + ‖〈x〉2∂αx (uin, θin)‖L2

)
< ∞ ,

where s1 ≥ d/2 + 6, s = max{s1 + 6,N + d/2 + 4}, there exists T0 > 0 independent of ε such
that system (2.2) has a unique solution (ρε , uε , θε) in XT0,M0 . Moreover, there exists (ρ, u, θ) such that
ρ − ρ̄ ∈ C([0,T0]; H s) ∩ L∞([0,T0]; H s+1), (u, θ − θ̄) ∈ C([0,T0]; H s−1) ∩ L∞([0,T0]; H s) satisfying

ρε − ρ̄ −→ ρ − ρ̄ in C([0,T0]; H s) ,

(uε , θε − θ̄) −→ (u, θ − θ̄) in C([0,T0]; H s−1) ,

〈x〉2∂αxρε −→ 〈x〉2∂αxρ in C([0,T0]; H1) ,

〈x〉2∂αx (uε , θε) −→ 〈x〉2∂αx (u, θ) in C([0,T0]; L2) ,


as ε → 0 ,

for any 1 ≤ |α| ≤ s1 and (ρ, u, θ) is the unique solution to the original DNS system (1.1).

Proof. The first part has been shown in Lemma 4.1 and Lemma 3.1. The convergence of approxi-
mate solutions (ρε , uε , θε) is shown by the standard high-low technique [13]. Basically, we will show
that (ρε , uε , θε) converges in C(0,T0; L2). Then by using the interpolation and uniform bounds on
(ρε , uε , θε), we prove the convergence of (ρε , uε , θε) in C(0,T0; H s−1).

For ε, ε′ > 0, let % = ρε − ρε′ , v = uε − uε
′
, η = θε − θε′ and study the system for (%, v, η).

(4.5)

∂t% = −ε ∆2
x% − (ε − ε′) ∆2

xρ
ε′ +L1(ρε , uε , θε)(%, v) + Ψ0,1(%, v) ,

∂tv = −ε ∆2
xv − (ε − ε′) ∆2

xu
ε′ +L2(ρε , uε , θε)(%, v, η) + Ψ1,2(%, v, η) ,

∂tη = −ε ∆2
xη − (ε − ε′) ∆2

xθ
ε′ +L3(ρε , uε , θε)(%, v, η) + Ψ1,3(%, v, η) .

where Ψk, j are kth-order ΨDOs with their coefficients depending on (ρε , uε , θε) and (ρε
′
, uε

′
, θε

′
) for

k = 0, 1 and j = 1, 2, 3. The terms in Ψ1,2(%, v, η) involving µ and τ1 have the forms

1
ρε
∇x ·

[
η
µ(θε) − µ(θε

′
)

θε − θε′ Dxuε
′
]
− % 1

ρερε′
∇x · [µ(θε

′
)Dxuε

′
] .
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The terms in Ψ1,2(%, v, η) involving τ1 have the forms

d−1
d

1
ρε
τ1(θε

′
) − τ1(θε)

θε − θε′ η∆x∇xθ
ε′ + % d−1

d

1
ρερε′

τ1(θε
′
)∆x∇xθ

ε′ .

The terms in Ψ1,2(%, v, η) involving Aρ defined in (2.2) have the forms
d∑

m=1

Aρ(ρε , θε ,∇xρ
ε ,∇xθ

ε) − Aρ(ρε , θε ,∇xρ
ε ,∇xθ

ε′)
∂xmθ

ε − ∂xmθ
ε′ ∂xmη : ∇2

x ρ
ε′

+

d∑

m=1

Aρ(ρε , θε ,∇xρ
ε ,∇xθ

ε′) − Aρ(ρε , θε ,∇xρ
ε′ ,∇xθ

ε′)
∂xmρ

ε − ∂xmρ
ε′ ∂xm% : ∇2

x ρ
ε′

+
Aρ(ρε , θε ,∇xρ

ε′ ,∇xθ
ε′) − Aρ(ρε , θε

′
,∇xρ

ε′ ,∇xθ
ε′)

θε − θε′ η : ∇2
x ρ

ε′

+
Aρ(ρε , θε

′
,∇xρ

ε′ ,∇xθ
ε′) − Aρ(ρε

′
, θε

′
,∇xρ

ε′ ,∇xθ
ε′)

ρε − ρε′ % : ∇2
x ρ

ε′ .

The rest of the terms in Ψ1,2(%, v, η) involving Aθ, Bρ, Bθ, as well as terms in Ψ1,3(%, v, η) have similar
forms as above. The zeroth-order operator in the %-equation in (4.5) has the form

Ψ0,1(%, v) = −%∇x · uε′ − v · ∇xρ
ε′ ,

It is clear that given (ρε − ρ̄, uε , θε − θ̄), (ρε
′ − ρ̄, uε

′
, θε

′ − θ̄) ∈ XT0,M0 , the linear estimate applies to
the above system. Therefore we have

(4.6)
sup
[0,T0]

(
‖%‖2H1 + ‖(v, η)‖2L2

)
≤ c(ε − ε′)

∫ T0

0

(
‖∆2

xρ
ε(·, s)‖2H1 + ‖∆2

xu
ε(·, s)‖2L2 + ‖∆2

xθ
ε(·, s)‖2L2

)
ds

≤ c(ε − ε′)T0M0 .

This shows that (ρε− ρ̄, uε , θε− θ̄) is a Cauchy sequence in C([0,T0]; L2). Because it is also a bounded
sequence in L∞([0,T0]; H s) we conclude that it is a Cauchy sequence in C([0,T0]; H s−1). Thus, there
exists (ρ, u, θ) such that (ρε − ρ̄, uε , θε − θ̄) → (ρ − ρ̄, u, θ − θ̄) in C([0,T0]; H s−1). By the weak
compactness of (ρε − ρ̄, uε , θε − θ̄) in L∞([0,T0]; H s) we see that (ρ, u, θ) ∈ L∞([0,T0]; H s).

By Fatou’s Lemma, for all α ∈ Nd, 1 ≤ |α| ≤ s1

〈x〉2 ∂αx (ρ − ρ̄) ∈ L∞([0,T0]; H1) ,

〈x〉2 ∂αx (u, θ − θ̄) ∈ L∞([0,T0]; L2) ,

By interpolation it is clear that for each 1 ≤ l ≤ d and each α ∈ Nd with 1 ≤ |α| ≤ s1 one has

xl ∂
α
xρ

ε −→ xl ∂
α
xρ in C([0,T0]; H1) ,

xl ∂
α
x uε −→ xl ∂

α
x u in C([0,T0]; L2) ,

xl ∂
α
xθ

ε −→ xl ∂
α
xθ in C([0,T0]; L2) ,


as ε → 0 .

Apply ∂αx to the system (4.5) for (%, v, η) and multiply the result by 〈x〉2. Using a similar argument
as the L2 convergence (4.6), we can show that for each α ∈ Nd with 1 ≤ |α| ≤ s1 one has

〈x〉2∂αxρε −→ 〈x〉2∂αxρ in C([0,T0]; H1) ,

〈x〉2∂αx uε −→ 〈x〉2∂αx u in C([0,T0]; L2) ,

〈x〉2∂αxθε −→ 〈x〉2∂αxθ in C([0,T0]; L2) ,


as ε → 0 .
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Based on the above results, we see that if we let ε → 0 then (ρ, u, θ) will be a classical solution to
the nonlinear system with (ρ, u, θ) ∈ C([0,T0]; H s−1) ∩C1((0,T0]; H s−4).

To show the uniqueness of the classical solution, notice that if U1 = (ρ1, u1, θ1), U2 = (ρ2, u2, θ2)
are two solutions with the same initial, then the difference U1 − U2 satisfies

(4.7) ∂t(U1 − U2) = L(U1)U1 − L(U2)U2 , (U1 − U2)(x, 0) = 0 ,

Similar as we have done for (4.5), the difference equation (4.7) has the form

∂t(U1 − U2) = L(U1)(U1 − U2) + Ψ1(U1 − U2) .

By the linear estimate in Section 2 with ε = 0, we have

sup
[0,T0]
‖U1 − U2‖L2 ≤ c ‖(U1 − U2)(x, 0)‖H1 = 0 ,

which proves the uniqueness.
The proof for the stability follows similarly by comparing the equations for ∂α1

x U1, ∂αx U2 and the
equations for 〈x〉2∂αx U1, 〈x〉2∂α2

x U2 where α1, α2 ∈ Nd with 1 ≤ |α1| ≤ s, 1 ≤ |α2| ≤ s1 and the linear
estimates for the differences.

Hence, there exists a unique solution (ρ, u, θ) to the original DNS system (1.1) such that

ρ ∈ C ([0,T0]; H s) ∩C1
(
(0,T0]; H s−2

)
∩C

(
[0,T0]; H s1

〈x〉2
)
,

(u, θ) ∈ C
(
[0,T0]; H s−1

)
∩C1

(
(0,T0]; H s−4

)
∩C

(
[0,T0]; H s1−1

〈x〉2
)
,

with s1 ≥ d/2 + 6, s = max{s1 + 6; N + d/2 + 4}. �
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