LOCAL WELL-POSEDNESS OF A GHOST EFFECT SYSTEM
C. DAVID LEVERMORE, WEIRAN SUN, AND KONSTANTINA TRIVISA

AsstracT. We establish the local well-posedness result for the Gapobblem of a ghostféect system
from gas dynamics that derives from kinetic theory. We shbat this system has a unique classical
solution for a finite time for all initial data whose deviat® from nonzero background values lie in
Sobolev spaces of ficiently high order and such that its initial temperatureasitive everywhere.

1. INTRODUCTION

In this paper we prove the local well-posedness of a ghfietiesystem (cf. Sone [21]). This
system is non-classical in the sense that it cannot be defreen the compressible Navier-Stokes
system. It describes certain gas dynamical flows that ateciediby temperature variations and can be
derived from kinetic equations by the Hilbert expansiontmet[21]. Maxwell was the first to study
thermal-induced flows [16]. He derived a correction to theiliaStokes stress tensor that depends on
derivatives of the temperature. However, he just studigahmes in which the #ect of this correction
entered only through boundary conditions. Kogan, Galkirg Bridlender [8] subsequently pointed
out that in certain regimes with strong temperature vaetithe correction of Maxwell enters into
the dynamical description of the gas at leading order in therior of the domain. Such regimes
can arise in certain geometries when the gas is confined byretay walls held at dferent uniform
temperatures. We refer the reader to [6, 7, 16, 18, 21, 22tefiedences therein for more information,
including descriptions of devices that operate in thes@meg. In such regimes the classical heat-
conduction equation fails to correctly describe the terapee field of the gas. Indeed, corrections
derived from kinetic equations must be included to accomat®this phenomenon [1, 2, 18, 19, 20,
21, 22, 23, 24, 25]. The moniker “ghogtect” for such systems was coined by Sone [20, 21, 22].

Ghost dfect systems, which are formally derived to describe regimeshich the compressible
Navier-Stokes system is incomplete, are physically relevahe objective of this paper is to provide
a well-posedness result for one such system as a first steggpddire development of rigorous math-
ematical theories related to these regimes. We will do so R¥dor anyd > 2 because at this point
we do not have a satisfactory theory of boundary conditienglbmains with boundary. Our result
plays a role in the investigation of low Mach number limitsatlispersive Navier-Stokes system
[10, 11, 12].

The ghost #ect system we consider describes the evolution of the den@itx), velocity u(t, x),
temperaturé(t, X), and pressure fielB(t, x) of ay-law gas as a function of timee R* and position
x € RY. Let D > d be the dimension of the underlying microscopic physics. ysem has the form

V(ob) = 0,
(9tp+Vx' (pU) = 0,
(1.1) A(pu) + Vy - (U U) + VP =V, -+ V- 3,

ai(c,p8) + Vx - (yc,p6u) = =V - q,
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whereX is the viscous stress,is the thermal stress, is the specific heat capacity at constant volume,
v is the adiabatic exponent, ands the heat flux. Here, > % andy > 1 are constants whilg, £
andq are related to the fluid variables u, andéd through the constitutive relations

% = u(6) (Veu+ (V)" = 5(Vie- W)l
S = 71(p. 0) (V20 - S(AO)) + To(p. 6) (Vi ® Vot — £V:01 )
+73(p.6) (Ve ® Vo + Vs ® Vip — 2V - Vil )

q=-yc,«(0) V.,
whereu(6) > 0O is the coéicient of shear viscosityc, «(6) > O is the coéicient of thermal conduc-
tivity, and 7j(p, 0) for j = 1,2, 3 are transport cdcients that arise from kinetic theory. Our unusual
normalization of the cd&cient of thermal conductivity here will lead to a simplifizat shortly. We
remark that it is the presence of the thermal stiegst is the main source offliiculty in our analysis.
We will impose the boundary conditions that there exist fisiconstantg andé such that

(1.2) p—p and -0 as |x — oo.
Notice that the first equation in (1.1) implies thatis a function oft only. However, our boundary
conditions imply thapd — pf as|x| — oo, wherebyp# is independent af Without loss of generality,
we can sepd = 1. We then use this relation to eliminatérom (1.1). The resulting system if,u, P)
has the form

00 +Uu- V0 = 0V, - [k(0)V0],

(1.3) %(atu+u-vxu)+VxP:VX-Z+Vx'§~3,
Vi - [u—k(@)Vi0] = 0,
where
5 = u(0) (Veu+ (BW)T - 2(Ve- u)l)
£ = #.(0) (V20 - 3(A,0)1) + 22(60) (V0. V,0 - 21%,601)
with

~ 1 A 1 1
71(0) = 7'1(5,9) , 72(6) = 72(5,9) - 9—227'3(5,9) :

We will establish well-posedness for the reduced systeB) gubject to the boundary conditions

(1.4) -6 and u—»0  as|x — oo.

and the initial conditions

(1.5) ©, u)|t=0 = (6", u"),

where the datag{", u") are consistent with the boundary conditions (1.4) andfatie constraints
(1.6) 6" >0, and V- [u" - «(@"V,6"] = 0.

By settingp = 1/6 we will then establish well-posedness for system (1.1).

While the third equation in system (1.3) shows that the systess not describe incompressible
flow, it is a constraint that plays a role similar to that pldy®y the incompressibility condition for
the incompressible Navier-Stokes system. Indeed, thespreB in the motion equation plays the
role of a Lagrangian multiplier by which the constraint givey the third equation is maintained.
Indeed, system (1.3) formally reduces to an incompresslbiger-Stokes system whén-6 is small.
However there are importantfterences between these systems. For one, the constrairgtensy
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(1.3) is nonlinear. The most importantfigirence is the presence of the te¥in- £ in the motion
equation, which will be the main source offitulty in our analysis. This is becauSg- X includes
third-order derivatives ob, which prevents a direct application of integration by pdd obtain a
closed energy inequality for system (1.3). To overcomedifisculty, we observe thal, - X can be
written as

Vi £ = Y V- [F2(O)%b]) — Ve (572(6) A9)
= Ve (71(0) V0 ® Vi) + Vi - (72(6) (V0 ® Vi — 2V, 0171)) .

Notice that the first and second terms on the right-hand sidé.@) are gradients while the third
and fourth terms are second-orderéin The key observation here is that the gradient terms can be
incorporated into the pressure term to produce a new presstnV, where

(1.8) P=P— V- [T2(OV] + $T2(60) A

By introducing this new pressure, we decrease the ordereopénturbation in the motion equation
to second order id. We refer the reader to Sone [21] who uses this same obsamvatianalyze the
structure of the stationary system. The observation goels toaMaxwell [16] who used it to explain
why the thermal stress would nafect the dynamics of incompressible flows away from boundarie
Here we use it to motivate a reformulation of system (1.3)wWbich we can obtain a closed energy
estimate from the dissipation of batrandu.

The main result of this paper establishes the local weledosss of system (1.3), and consequently
of system (1.1), as follows.

(1.7)

Main Theorem. Let the transport coficientsy, «, 71, and7, appearing in system (1.3) be smooth
functions oveR, withu > Oandx« > 0. Letd > 0and s> d/2+ 1. Let the initial data(™, u™) satisfy
the constraints (1.6) such that

(1.9) 6" — 0 e H*'(RY),  u" e HYRY).
Then there exists $ 0 such that system (1.3-1.5) has a unique soluin) with

0 -0 e C([0, T]; H*Y(RY) N L([0, T]; H*2(RY) N C=((0,T) x RY),
(1.10) u e C([0, T]; H¥(R) N L([0, T]; H¥(RY) N C=((0, T) x RY),

ViP € C([0, T]; HS2(R%) n C((0, T) x RY).

Moreover, T depends only " — 6lszey, [IUMlseey, anddo = inf{g"(x) : x € RY) > 0.
The proof of this theorem will be given in the next section.réleve mention that this result leaves
many open questions. For starters, the evident smoothitigeatynamics indicates the result should
extend to larger classes of initial data. Given appropitendary conditions for system (1.3), the
above result should also have extensions to domains withdasies. In that setting it would be
natural to seek global classical solutions that are smatufd®ations of certain stationary solutions.
One could also try to prove similar theorems for gha$éet systems that arise from more general
gases than the-law gases considered here — for example, for systems tls&t fiom general ideal

gases. Finally, given the similarities of system (1.3) wittompressible Navier-Stokes systems, it is
natural to ask if it has a Leray-like theory of global weakugmins.

2. LocaL WELL-POSEDENESS

In this section we establish the local well-posedness dégy$1.3) asserted by our Main Theorem.
The existence is established by an iterative argument. tBetbonvergence of the iterates to a solution
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and the uniqueness of that solution are consequences ofaciaed energy estimate that we obtain
for a reformulation of system (1.3). Finally, we establish tegularity asserted in our Main Theorem.

2.1. Reformulation. In order to obtain the energy estimate, we reformulate sygfe3) in terms of
the new velocity variable

(2.1) V=U-«(0)V,.
In our reformulation we will use the notation
(2.2) Zo(W) := u(6) (Vo + (VW) = B(%- Wl ) .

We will show that system (1.3) expressed in termsfo¥) has the form
O + V- Vb = V- [0x(0)V,8] — 24(0) IV, 01,
(2.3) OV + V- Vv + 0V, p = OV - Zp(V) + F1(6, Vb, VoV) + Fo(6, v, Vo6, V20)
Vy-v=0,
where the specific forms qgd, F1, andF, will be given below. The new pressure teffgp is formed
by combining the original pressure teffiP in (1.3) with other gradient terms that arise during the
calculation.

The derivation of the motion equation in (2.3) begins wite thomentum local conservation law,
which because = 1/6 is

(2.4) at(§)+vx-(%)+vxpz V- So(U) + V- 5.
We will now use (2.1) to re-express this in termsvofirst, we see that

u \Y x(0 \%
(2.5) O (5) = 0 (5) + 0 (% Vx9) = 0 (5) + Vi (0:K1(6)),

whereK;(0) satisfiesK;(6) = «(6)/6. The termV,(9;K1(6)) above can be combined wilf}P in (2.4)
by redefining the pressure.
Second, from (2.1) and the fact tHg¢- v = 0 we obtain

v, (u ® U) _v,. ((V + k(O) Vi) ® (v + K(H)VXG))

7 7
2
(2.6) :vx.(%f’)wx ("(9) (V®VXH+VX9®V))+V ( (z) xe®vxe)
2
:VX-($)+V-V3Kl(9)+VAXK1(9)+VXK1(9)-va+ v, ( (9) x9®vxe)

Third, let the functiork,(6) satisfyK’(6) = «(6). Then from (2.1) and (2.2) we see that
V- Zo(U) = Vi - Zg(V) + Vy - Zo(x(6) Vi)
= Ve Zg(V) + 2V - |u(0) (V2K(6) — SAK(O)1 )]
= Ve Zo(V) + 2 V(- [1(O)VuK2(0)] ) = 2% [x(O)' (6) Vo @ Vi
— Vi (Bu(0)AxKa(0)) -

The two gradient terms aboveV;(Vx . [,u(e)VXKz(H)]) and Vx(%,u(e)Asz(e)), can also be absorbed
into the pressure.

2.7)
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Next, for the ternv, - £, we have
V- £ = Vi [21(0) (V20 - A)] + V- [2200) (Va0 @ Vo0 - 5IV,0P1)]
(2.8) = V(Y- [F1(0)Vf] ) = Vic- [71(0) Vi ® Vot | — Vi (£71(6)A0)
+ Vi [72(0) V0 © V)| — Vi (372(0) V0P -
The three gradient terms aboVE(VX : [%1(9)VX9]), v, (%%1(9)AX9), andv, (%%2(9)|VX9|2) can also be

absorbed into the pressure.
By the first and third equations in (2.3), we have

v vevy 1 v
O (5) + Vy - (T) = 5(8N+ V- VXV) - @(ate +V- VXQ)

(2.9) 1 g
= SO0+ V- V) = = (AuKa(6) - 26(O)V:l) .

whereK3(6) satisfiesK;(6) = 0«(6).
By collecting (2.5-2.9) we see that system (1.3) can be agacas
A0 + V- V0 =V, - [0k(0)V, 8] — 24(8)|V,012
(2.10) OV + V- Vv + 0V, p = OV - Zp(V) + F1(6, Vo, VyV) + Fa(V, 6, V,0, V26) ,
VX V= 0 .
where
p =P+ Ku(0) — 2% - [u(O)VxKa(0)] + Fu(6)AxKa(6)
= V- [F2(0)V] + 271(0) A0 + 2T2(0) V0P,
211)  F = _gv,Ky(0) - Vv = —k(6)V0 - Vv,
\Y
Fo= 2 (AKa(6) = 26(O)V7) — OV - VZK1(6) — VA K1 (6) — 6V - [Ka(0) V0 ® Vif]

with
&(6)
ViK1(0) = W V0, ViKo(0) = k(0) Vi, ViK3(0) = 0k(0) V0,
2
Ka(6) = 2400 (6) + #(6) ~ #(0) - 2.
The boundary conditions (1.4) become
(2.12) 8—6 and v—>0  aslX — oo,

while the initial conditions (1.5) become
(2.13) 0.V, = (".V"),

wherev" = u" — k(@™)V,#". The initial data ", ") are consistent with the boundary conditions
(2.12) and by (1.6) satisfy the constraints

(2.14) 6" > 0, and V,-v"=0.
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2.2. Energy Estimate. We will construct an approximating sequence by iteratiangia linearized
version of system (2.10) that has the form
00 + W - Vi = Vy - [nk() Vx0] — 2x(17) Vi - V6 + Ba(t, X),
OV + W - Vv + nVyp = Vy - Z,(V) + Bo(t, X),
Vi-v=0,
(6, Vo = (8", V"),
where (v, n) are given functions and(, B,) are given forcing terms.

(2.15)

Notation. We always us€(l; X) to denote the space of continuous functions over an intérnvdo a
topological spac&. When it is clear from the context what is meant,will denote either.P(RY) or
LP(RY; RY) for any p € [1, 0], while HS will denote eitheHS(RY) or HS(RY; RY) for any s € R.

Lemma2.l. Let s> g + 1. Suppose there exists T, Nb, andd > 0 such that
n-0eC(0, T H*Y),  weC(0,T];HY),

(2.16) sup{lin() — fllu=sf <M. sup {IW(®llu:} < M.
te[0,T] te[0,T]
(2.17) do=infln(t,x) : (£X) €[0.TIxRY >0,  V-w=0,

B, € L%[0, T]; HY), B, € L3([0, T]; HSY).
Then (2.15) has a unique soluti¢ v, V,p) such that
0-0€C(0,T;H*Y),  veC(0,TLHY),  VupeC(o,TLH™Y).
Moreover, the following energy inequality holds:
_ T ) _ T
sup [10(t) - OllF s + Co f IVt < €M7 (ue'” = Ol + G(M) f BT, dt) ,
te[O, 0 0

(2.18) . | .
sup [IVII3s + Co f IVev()I[Zs ot < e*MT (||v“uas+e<m> f ||Bz(t)||ﬁHdt),
0 0

te[0,T]

.
sup [IVxpll2e: < G(M) M7 (nvxvnnaH +G(M) f IB2(t) 11762 dt)
(2.19) te[0,T] 0

+G(M) sup [IBo()I7;s -
te[0,T]

where @ depends only or, that is, the lower bound of, and () is an increasing function of its
argument that is determined ky and the functional forms afand.

Proof. Following the classical theory of parabolic equations, wst forove the energy inequalities
(2.18) and (2.19). Toward this end, define

for any integem and recall the commutator estimate [5] whan- d/2:

(2.20) IAm(fQ) — fAmGllLz < Crn (IIVx fllLelIGllm-2 + 1l 1 Fllm)
forany f e HM, ge H™1n L™,



LOCAL WELL-POSEDNESS OF A GHOST EFFECT SYSTEM 7

The L2-estimate of) — 6 is obtained by multiplying thé-equation in (1.3) by — 6 and integrate
overRY. Integration by parts then shows

d _ _
aIIQ — 6II%, + 2c01lV:OII7, < Go(M) [16 = 6IIF, + [IBalF ,

where Z,; > 0 is the lower bound of«(r7), which depends only oRy. By the Gronwall inequality
we have

@21)  supflo—dl, + con f IVOR)I2, dt < 20T (||9'”—9||Ez+ f ||Bl(t)||ﬁzdt).
te[0,T 0 0

To obtain the estimate fa@, apply As to theg-equation in (2.15), which gives
(2.22) 0t (As) + W+ Vi (Ash) = Vy - (mk(m) Vx (AsH)) — 2(7) Vi - Vi (AsH) + AsBr + Ry + Ro + Rs,
where
Ri=—[As W %0,  Ro=Ve (Ink(m), AdVd).  Rs=—-2[As k(m)Van] - Vs

Here we useA, B] to denote the commutator operathB — BA. To avoid confusion, we will only
use brackets to denote commutators in the remainder of theg.pJpon multiplying (2.22) byAyA 0
and integrating by parts, we obtain

%uvxenas + 2C01lVulZes < Wl 1V5Bllks 1Al s
(2.23) + (2l Vil + 1))l ) VBl sl | Al
+ 11Bullus 1A Blns + (IRull2 + IRz + [IRgll2) 1AB s -
By the definitions of Ry, Ry, Rs) and the commutator estimate (2.20), we have
IRyl = I[As W] - Vibllz < Coa(IIVWILs [Vollpes + [Wils (V56 ) < Cso M [[95flls
IRz = 1V - (), A Vsl < I[Vc(), Al - Voblliz + llmx(m), AslAbll2
< Ca(I1% (k) L 1Vl + 1195 () s [Vl )
+ Ca(llnm)lics I1ADNns-+ + k() = k(@) llns 1AsBllL) < Cs5 Ga(M) [Vsbllus
IRslIL2 = 112[As, x(m)Vx1] - Vsbll.2
< Cag(IIV(m) V)l 1950lls-+ + k() Venllus [IVebll) < Cs7 Go(M) Vbl

whereCg for 1 < k < 7 depend only ors while G1(-) andG,(+) are positive increasing functions of
their arguments that are determined.tyyand the functional form ot. By plugging these estimates
for (Ry, Ry, Rs) into (2.23) and using the Cauchy-Schwartz inequality, caee h

d
anvxenas + CoallAxBlIGs < G3(M) [IVxlIZs + ClIBulls ,

whereC depends only oy, which is determined by, the lower bound ofy. The Gronwall inequal-
ity together with the_?-estimate (2.21) then yield
(2.24)

. T ] _ T
SEUIO] 16() = 6lIFiss + Co,1f IVA)IIF e dt < €507 (Ilé’In — OlIF e + Cf ”Bl(t)Hszdt) ;
te[0,T 0 0

whereGgz(M) is determined bys;(M) andG,(M) andcy;, C depend only on.
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The estimate offv||ys follows a similar line of argument. First, upon multiplyinige v-equation in
(2.15) byv and integrating oveRY, one obtains th&2-estimate of as

d
VIR + 2602V < Ga(M) (IMIZ, + I%pIE:) + I1BA:

wherecy, depends only oy andGy(-) is an increasing function of its argument and is givembpy
and the functional form gf.

To obtain the higher-derivative estimates, we apply; to thev-equation in (2.15), multiply the
resulting equation fols v by AyAs 1V, and integrate oveR?. The energy inequality then shows

d
(2.25) GV + 202l AMIEe s < Gs(M) (I%MlFs2 + IWPIs) + ClBelffes

wherec,,, C depend only oy andGs(-) is an increasing function of its argument which is given by
Ao and the functional form of.
To close estimate (2.25), one needs to estirWgpe The equation foF,pis

(2.26) Vi - Vxp) = Vx - F3,
where
Fs=nVy-Z,(V) —w- Vv + Ba(t, X).
Multiply (2.26) by p and integrate oveR®. An integration by parts then yields
IVxpllz < % lIFslie < Ge(M)[IVaVlls1 + 1Bl

whereGg(+) is an increasing function in its argument that is determibg, and the functional forms
of k andu. To bound the high-order norms Bfp, we consider the casss> g+2 andg+1 <S< g+2
separately.

For the case when > % + 2, we applydiAs ., to (2.26) fori = 1,2,--- ,d, multiply the resulting
equation by, As »p, and integrate oveR®. By integration by parts, we have
(2.27)

/IOHaniAs—ZF)”ﬁz < +

fd Vx(aiAs—Zp) : 8iAs—2F3 dx
R

f VOiAeap) - [ aiAsrz]vxpdx’

Rd

<

fd Vx((’)iAs—Zp) ' aiAs—Z (UVX : ZU(V)) dX‘ + 'fd Vx(ai/\s—Z p) ’ aiAs—ZBZ dX'
R R

+ +

f Vi(0iAs-2P) - i Aso(W - Vi) dX f V(0iAs2P) - [, 0iAs 2] Vip dx' :

Rd Rd
The bound for the first term on the right-hand side of (2.27) is

| fR Vd0Ae2P) Oz (19 5,() 0¥ = | fR (s 2P) Ao 2V (1% ,() ¥

n¥an) - (Vv + (0T + 18xPlllI Ve - A=

< |AxPllns-2

d d
(228) < |Aplhs- (&(M) Vs lue-s + D 10k (V) - )z + D I@Vimua(m)) - akv)nHH)
k=1 k=1

< lAxPllnsz (GAM) [IViMlus-1 + [IVi(mpe()) - ViVilys1)
+ [1AxPlls-2lViVx (7e(m) [l [ ViVllins-2 + (A Plns-2l ViVl V(e () -2
< Gg(M) [[VxPllns-2l[VxVlls-2 ,

whereG-(-) andGg(:) are increasing functions that are determined by the fonetiform ofyu.
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The second and third terms on the right-hand side of (2.2@eceing B, andw - Vv are bounded
directly as

(2.29) f V{8 s2P) - i Bo A < [Pl [Boll
R
050 f V@i 2P) - s o ) dx\ < {1sPlbis 2 W+ Voo
. R

< Go(M) [IVxPlls-2 IVxVilns-1 -
The last term on the right-hand side of (2.27) has the bound

f V(0 As2D) - 7. aiAs_Z]vxpdx] < 1VPllss 117 B1As 21Vl

Rd

(2.31)
< [VxPllns2 [[7lls-2 [[VxPllns-2

where we applied the commutator estimate (2.20) and thel®okmbeddingHS2(RY) — L*(RY)
for s > % + 2. By the interpolation|Vypllps2 < €|Vkpllus1 + Cel|VkpllL2 for anye > 0, we can choose
appropriates = €(M) such that

fd Vi(0iAs-2P) - [17, OiAs 2] VxpdX
R

< 2UVupllZies + Gao(M) [IVxPIIE

< Q{VPllss + Gra(M) IV V%1 + G1a(M) [1BollZ -

Therefore, summing all = 1,2,--- ,d and applying Cauchy-Schwartz inequality, there esag(-)
andGy4(-), which depend only ol and the functional form gf, such that

(2.32) IVxPlls2 < G13(M) [[ViMlns-2 + Gra(M)IIBalls-= -
For the case whef + 1 < s < ¢ + 2, applyD¢ to equation (2.26), multiplyD¢p to the resulting

equation, and integrate both sides oR&r Herea is a multi-index such that| = s—1. By integration
by parts, we have

(2.33) AolIDEVxPIIE, <

| oivp-DiFac+ | [ Di%ip- (5. DIV
Rd Rd
Estimates for the first term containirkg is similar as in (2.28), (2.29), and (2.30), which gives

(2.34)

fd D5 Vxp - DyF3 dx‘ < [IVxPlis-2 (Ge(M) [[ViVllns-1 + [IBallss + Go(M) [[VVllss) -

R
The second term on the right-hand side of (2.33) is bounded as

(2.35) fd DIVp - [, Df(‘]VXpdx’ < IVxplls2 |7, DEIVp|, -
R

To bound the commutator terfffy, D¢]Vyp|| .. we have

[7. D{Vp= >, (Dym) (DEVp),
Ia1|+|<|rz\Tlall=S—1,
1>

where for those terms satisfyirg,| = 1, the bounds are
(2.36) (D7) (D52 Vp)| . < IVl IDE2Viplle < ClIViaplls-+ [VxPllns-2
with C being a generic constant that only dependslon
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For those terms whelr,| > 2 (if there exists any, i.ed > 3), one has
|O%n) (DVep)| 2 < D5 ey [D°Vb]| sy < C D5l yone [[D5 8|

(2.37) < C||D5 0[5 9Pl gogimy-s < C [P35l ot VPl
< Clnllys Vxpllgs2

d
L s—lal\ H 3 tagl-s

by the assumption th§t+ l<s<$ +2 Here We have applied the Sobolev inequality associatdd wi
the embeddingd™(RY) — LY(RY) whereq = 35- andm < d/2. Once agail€ is a generic constant
that only depends od. By combining (2.36) and (2.37) we have

7. DEIVp|| > < Climllus 11VxPllis2 -

whereC depends only od. Therefore, the bound in (2.35) now becomes

. Divxp : [77, D(i]prdX
R

< ClIVxpllus lIn7llys IVxPllys-2

which is exactly of the form as in (2.31). Thus following thense argument using interpolation
together with (2.34), we have the same estimate for the gasd <s< % + 2 as for the case
S> g + 2, which shows there exi§i5(-) andGi4(+) depending only oy andu(-) such that

(2.38) IVxPllnes < Gas(M) [[ViMIps + G1e(M) [IB2llns-2 ,

fors> 9+ 1.
Upon plugging (2.38) into (2.25) we obtain

d
aIIVxVII o1 + 2CollANVG 1 < Gar(M) IIVxMIE<: + Grs(M)IIBallfes

which by the Gronwall inequality implies
(2.39)

S[cl)J$]||VXV||HS_1+Cof IAVE)IIE, dt < € G (M) T (||V v'”|| 1+G18(M)f 1B (t)I[%+ d )
te[O,

where the specific forms @;,(-) andG;g(-) depend only omy and the functional forms qi andx.
By (2.38), we also have the bound fpias

sup [IVxpll3ss < Gis(M) €57 MT (||V V2o + GlS(M)f IB2(t)][Z1 )

(2.40) te[0,T]
+G16(M) sup [|Bz(t)l[fe1 -

te[0,T]
By settingc, = min{cy 1, Co2, Ao}, G(M) = Mmax {Gk(M)}, and collecting estimates (2.24), (2.39),
and (2.40), we have

sup [16(t) — 612 + Co f V51101t < <M>T(||e'“ 012 + G(M) f ||Bl(t)||L2dt)

te[0,T]

sup M[Zs + co f IVV(D)IZs ot < (M>T(||\/“||as+G(M) fo IB2(t)l[31 dt),

te[0,T]

sup IVxpllZe: < G(M) € (M)T(nv V21 + G(M) f 1B (t)1164 dt)+G(M) supnBz(t)nHH.

te[0,T] te[0,T]
We have thereby proved the bounds (2.18) and (2.19) forisokt@, v, V,p) of the linear system
(2.15). One then obtains the uniqueness of the solutionibyathrior bound.
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To show the existence of the solution to the linear systedbj2we first notice that the two equa-
tions in the system are decoupled. Téequation is linear and strictly parabolic. Therefore, the
classical theory for parabolic equations [9] guaranteesettistence . The existence i is ob-
tained using a standard technique for non-homogeneoumprassible systems (see [3] for exam-
ple), namely solving th&-equation with respect to;V4p} and applying the divergence operator in
the resulting equation we arrive at an elliptic equatioin

(2.41) Vi - (nVxp) = Vx - (UVX - Z,(V) + Bo(t, x) —w- VXV) ,

which yields, in turn a linear ordinary fierential equation with respect tan a Banach space. The
regularity assumptions (2.16), (2.17) guarantee the ex¢& and uniqueness of a solution of this
ordinary dtferential equation. Using this solution we can solve¥gp. This completes the proof of
existence, and therefore the proof of Lemma 2.1. |

2.3. Existence and Uniqueness. We now use the energy estimates (2.18) and (2.19) to consinuc
approximating sequendé,, Vi, Vxpn)} ., and show it converges to the solutiah, V,p) of system
(2.10).

We initialize our approximating sequence as follows. We fesd, andvg be given by

(2.42) 0o = 6", Vo = V" = U" — k(6M)V, 6",

Becaused", u") satisfies (1.9), we see that

(2.43) o—60e HRY,  voeHRY  forsomes> ¢ +1andd> 0.
Becaused", u") satisfies (1.6), we see moreover that

(2.44) o > Ao = inf {#"(X) : xeRY} >0, Vi-Vo=0.

We then letv,p be the unique solution RS (RY) to
(245) VX . [Hovx po] = VX . [Qovx . ZQO(V()) + Fl(QO, ngo, VXVO) + Fz(Vo, 30, Vxeo, ero) —Vo- VXVO] .

The initial approximatedy, Vo, VxPo) is thereby time independent.
Given @n, Vi, Vxpn) for somen € N, we will define @,1, Vni1, VxPns1) to be the solution of the
system

at9n+1 + Vn - Vx9n+l = Vx : [QnK(Qn)Vxeml] - 2K(9n)vx9n : Vxe’n+1 ’
6tVn+l + Vi - VxVny1 + 60,V Pn+1 = OnVy - Zgn(VnJrl) + F:T + Fg ,

(2.46) Vi Vo1 = 0,
(Bn+15 Vo )lizo = (67, V7),
where
(2.47) F = F1(6n, Vxbhn, ViVi) FD = F2(Vn, On, Vibn, V26,) .

Here X, (v), F1, andF; are defined in (2.2) and (2.11). The existencefi( Vn:1, VxPns+1) Will
follow from Lemma 2.1 once we establish that, (., Vyxp,) satisfies the necessary hypotheses.

Lemma2.2. Let s> g +1and6 > 0 as in the Main Theorem. Let
(2.48) M = 2 max{||6" — Bl IV"lns)

Then there exists F 0 such that the sequen¢@,, vi, Vxpn)}.., defined above exists with each iterate
satisfying

(2.49) 6, — 6 € C([0, T]; HSY), Vi € C([0, T]; H9), ViPn € C([0, T]; HS Y,
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the norm bounds

(2.50)  sup(lloa(t) = bllws1} <M. sUp {IVa(®llus) <M, sup {I[Fxpa(®)llus1| < G(M),
te[0,T] te[0,T] te[0,T]

and the constraints
(2.51) inf{on(t. %) © (tX) €[0.TIxRY > >0, V=0,
whereG(-) is an increasing function of its argument that is indepericém.

Proof. Because it is time independent, it is clear that the init@draximate o, Vo, VxPo) given by
(2.42) and (2.45) satisfies (2.49), (2.50), and (2.51) fergVv > 0.

Now suppose that for sontee N the approximatet,, v,, Vyxp,) satisfies (2.49), (2.50), and (2.51)
for someT > 0. Then by Lemma 2.1 the approximatg.{, Vn:1, VxPns1) governed by (2.46) exists
with

One1 — 0 € C([0, T]; HSY, Vni1 € C([0, TT; HY), VyPni1 € C([0, T]; HS ).

Moreover, it satisfies the energy inequalities

.
_ R
(2.52)  SUP [lnsa(t) = OlFes +Co | IVxbria(DlfFe ot < €M7 (||e'n ~ Ol + T G(M)) ,

te[0,T] 0
T -
(2.53) S[(L),I_IE)] Vs (DI[Zs + cof ViV (B)][3s dt < 5T (||v'n L+ T G(M)) ,
te[O, 0
(2.54) VPl < GM) + GOM) €T (V2. + T GOM))

wherecy andC depend only omy, andG(+) is an increasing function of its argument that is indepen-
dent ofn. It is clear that by pickingl' small enough we can insure tha&.(, Vn.1, VxPns1) Satisfies
(2.50). The choice of is solely determined by, andM. In particular, it is independent of. Fi-
nally, a direct application of the classical maximum prpieifor strictly parabolic equations (cf. [4]
for example) shows thak,,; satisfies the lower bound in (2.51). O

Based on the uniform bound (2.50) @ (v, Vxpn), we employ the standard high-low argument
(cf. [13]) to show the convergence {{f,, Vi, Vxpn)} 2, t0 the solution g, v, Vp) of system (2.10).

Lemma2.3. Let{(6n, Vn, VxPn)} 1, b€ the sequence constructed in Lemma 2.2 (@ithvo, Vxpo) being
defined by (2.42) and (2.45). Then for &y s < 5,1 < §” < s, there exists

0 -6 L°([0,T]; H®Y) n L%([0, T]; H%?) n C([0, T]; H®*Y),
(2.55) ve L=([0, T]; H®) n L%([0, T]; H*Y) n C([0, T]; HY),
Vip € L=([0, T]; HS ) n C([0, T]; H¥' ),
such that
0n — 0 in C([0, T]; HS*),
(2.56) Vh > V in  C([0,T]; H®),
Vipn — V5p  in C([0,T]; HS Y.

and (0, v, V,p) is the unique classical solution to system (1.3).
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Proof. We show the convergence of the sequemiggvg, Vyp,) in L?(RY) using the equations satisfied
by (@n, Vi, Vxpn) and the boundedness of their high-order norms. To this @ntsider the system for

(B ¥, Vi) = (One1 = Ons Vet — Vo, YxPnez — VPn).
which has the form
O + Vo - Vi = Vi - | 0nk(6n) Vb | = 2(60) Vb - Vicbn + Ra(6n 61, Vi, V1)
(2.57) 0 + Vo - Vi + O Vs = Vi Zg, (W) + (F = F11) + (F5 = F57) + Ro(6n, On-1. Vi V1)

ViV =0,
where
Ry = —(Vn — V1) - Vo + Vi - [(0nk(6n) — On-16(Br-1)) V]
(2.58) — 2(k(6n) Vxbn — k(6n-1) Vxb-1) - Vi

RZ = _(Vn - Vn_l) . van - (Gn - en_l)VX pn
+ (‘gnvx : Z@n(Vn) - Qn—lvx : z:(Jn_l(Vn—l)) .
By using the uniform bounds (2.50), one has

T
f ||R1(t)|||2_|1 dt < Gl9(M)T sup (”Vn - Vn—1|||2_|1 + 1160 — 6)n—l|||2_|2) >
0

te[0,T]

T
f ”RZ(t)”Ez dt < GZO(M) T S[(l)-lp] (”Vn - Vn—1|||2_|1 + ||9n - 9n—1|||2_|1) s
0 te[0,T

:
f IF7 = P ot < GaaM) T sUp (v = vo-als + 160 = 0y
0 te[0, T

)
f IF5 = F5 1%, dt < Goo(M) T Sup (1Iva = Vi-1li%, + 116 = 6h-all) -
0

te[0,T]
By the energy estimate (2.18) for the linear system, we have

sup (I8(OII7: + [Ta(®)I%)
te[0,T]

:
< Gag(M) M7 f (IRLOIZ + IR(IIZ, + IIFT = FFHIZ, + IF5 — F5I%,) o
0

< Goa(M) T M sup (1Bn-lZz + 19n-allZs) -
te[0,T

Now we choosd small enough such th&@s(M) T €MT < 1, which makeson}> o, {Vn}ro Cauchy
sequences i€([0, T]; H?) andC([0, T]; H') respectively. Therefore, there exist 9 € C([0, T], H?)
andv € C([0, T]; HY) such that
6, — 6 in C([0,T]; H?),
Vo — v in C([0,T]; HY).
By the uniform bounds (2.50) and interpolation, we have fr@< s < s,
6, — 6 in C([0,T]; HS*Y),

(2.59) VooV in C([0,T]; H).
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The equation foW,p, is of the form
(2_60) V (an pn) —_ V (an Z@n(VrH_l) Vn XVrH_l + Fn(t X) + F (t X)) —_ V Qn )

It follows from (2.59) thaQ, is a Cauchy sequence@{[0, T]; HS~ %) forany 1< s’ < s. By repeating
the energy estimate fdv,p,, one can see thalp, is also a Cauchy sequence@{[0, T]; HS™1).
Therefore, there exist&p € C([0, T]; HS1) such that

(2-61) Vipn = Vip in C([O’T]; HS’_l) >

forany 1< s < s. This completes the proof the convergence (2.56). Notedsinaes > g + 1, the
approximating system (2.46) converges to the system (249, v, V,p) is a classical solution.

The uniqueness ob(u, Vxp) is guaranteed by the energy estimate. Suppose we have wmse
(6,v, Vip) and @, 7, V,p). Consider the system satisfied by theiffelience § — 6, v — ¥, Vip — Vyp)
which is

00— 8) +v- Vi (0 8) = Vi (6x(6)Vi (0 — 8)) — 2x(0) Vi - Vi (6 — B) + Ru(6, 6., 9) ,
O (V=0 + V-V (V=0) + OV (p = P) = OV - Zy (v = 0) + (F(6, Va8, Vuv) — F1 (8, Vsb, V)
+ (Fa(0. v, Vs8, V26) — Fo(8. 9, Vi, V20)) + Re(6, 6.V, 7).
Vy-(v=0)=0
Then the uniqueness is obtained by applying the linear agtif2.18) as we have done to prove that

{Onloros (Vn} @re Cauchy sequences. We thereby finish the proof of the exestand uniqueness of
the solution to system (2.10). O

2.4. Regularity. To complete the proof of the Main Theorem, we show in the wihg lemma that
the regularity of ¢, u, V;p) can be improved compared to that given by Lemma 2.3. Thefjpises a
method that is classically applied to hyperbolic and palialsystems (cf. [13, 26] for examples).

We first show in the following lemma that the lifespan of théuson does not shrink when one
considers higher regularity solution.

Lemma24. Let s> % + 1. Suppos€9, u, V,p) is the classical solution to system (2.10) obtained in
Lemma 2.3 such that

6 —6 € C([0, T]; HY) n L2([0, T]; H**?),
(2.62) u e C([0, T]; H3(RY) N L([0, T]; HY,
Vup € C([0, T]; H® D).
If in addition the initial data(¥™, u", Vv, p") satisfy
6" — 9 e HY*L, u" e HS,
forany § > s. Then on the same time intery@ T] we have
6 —6 € C([0, T]; H*Y) n L2([0, T]; H**?),
(2.63) ue C([0,T]; H®) N L([0, T]; H**Y,
Vip € C([0, T]; H* ).
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Proof. We just need to show that (2.63) holds fr= s+ 1. We work on the reformulated system
(2.10) with variablesq, v, Vxp). Apply 0; = dy to system (2.10) for any X i < d and rearrange
terms in the resulting system. This yields

0(0i0) + v - Vy(0;0) = Vy - [0k(0)Vy(0:0)] — 2c(0) Vi - Vi(0i60) + J1(t, X),
(2.64) 0t(OIV) + V- Vi (OiV) + OV (0i p) = OVx - Z(0iV) + Ia(t, X) ,
with the initial data
30" e HSL, V" e HS.

Here the inhomogeneous terdsandJ, have the form

Ji = =0V Vi@ + Vy - [0i(0k(0)) Vi8] — 20i(k(0)Vx0) - V0,

Jo = —-0\v- Vv — (8,9)pr + (0|9)VX . ZQ(V) + 0iF1 + 0iF>

+ OV, - [(aw(e)) (Vv + (%) = 3 (V- v)|)] :

whereF4, F, are defined in (2.11). By the regularity assumption (2.68)re exists 6< M < oo such
that

0-0ecC(0, T;H*Y,  veC(0,T;HY,  V.-v=0,

sup {116 = Blls2(1) . IWllns(t)} < M., inf 6> 10>0.
t€[0,T] [0.T]xRd

Jy € LA([0, T]; HS), J, € LA([0, T]; H% Y.
Therefore, Lemma 2.1 applies to system (2.64) and this grtheassertion (2.63). O

Now we prove the additional regularity of the solutiah (, Vyp) due to dissipation.

Lemma2.5. Let (0, v, Vxp) be the unique classical solution to system (1.3) as obtaimedmma 2.3.
Then we have in addition

6 -6 e C([0,T]; H*Y) N C((0, T) x RY),
ue C([0,T]; H) nC=((0, T) x RY),
Vip € C([0, T]; HSY) N C=((0, T) x RY).
Proof. The proof has three steps. First we show that
(2.65) Oh—0—>0-6 in C([0, T]; HE™Y),
Un — U in C([0,T]; Hy),

whereX,, indicates that the Banach spaxXes equipped with its weak topology. By (2.56), for every
¢ € HStandg, e HS with0 < s < s, we have
(¢1.00 = O)(1) > (1.0 -6)O)  in C(0,T];R),
(P2, Un)(t) — (2, U) (1) in C([0, T];R).,
where(-,-) denotes the usuadl® inner product. Because® is dense inH* for any s, < s, and

becausef, un), (6, u) are uniformly bounded ikist! x HS, the convergence (2.65) is then established
by a density argument.
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Next, we show thatd— 0_)(t) andu(t) are right continuous dat= 0 in H%*! andHS respectively. By
(2.65) and the energy bound (2.52) fé,u,), we have

I{[g 16 — O)(Ollns < Igg lim {16 — O)(O)ll < I;[g (Sgpll(en - 9)(t)||Hs+1)

< (16" = Bl -

lim s < lim i s < lim s| < in s,
Igg u®)llns < I{[g rIL_mw lUn(®)llns < I{[Q (SIanllun(t)llH ) < [Ju™ln
Meanwhile, the weak continuity (2.65) of £ ) andu(t) att = 0 shows that
16" = Bllgss < lim (10 = O)(Ollnss» U lws < lim [JUC)lls -
tl0 tl0

Thus we obtain the strong right-continuity @f< 6)(t) in the topology ofH5** andu(t) in HS att = 0.
To show the continuity in time for atle [0, T], we use the parabolic regularization in (2.55) where
0 -0 e L0, T]; H%"?), u € L([0, T]; HSY). This shows for almost evety € [0, T], one has
(6 - 6)(to) € H*2, u(ty) € H*?.
We can choose sudj > 0 as a new initial time. By Lemma 2.3, there exists a uniquesital
solution @, G, V,p) to system (1.3) such that forany<0s < s,1<s’ <5,
6 -6 € C(lto, TI; H?) N L¥([to, T]; H¥*9),
ue C([to, T]; HS*Y) N L3([to, T]; HED),
Vi € C([to, TT; H¥),
whereT is the same as in Lemma 2.3. By the uniqueness guaranteedrbsmnae?.3, we have
@, 0, Vxp) = (8, u, Vep) on [to, T] x RY. Therefore, the pointwise continuity in time of the solu-
tion is improved to
(O -0)(t) e HS(RY), u(t) e H¥, Vp(t) e HY, Vte (0,T),
forany 0< s < s, 1< 8’ < s. Together with the continuity dt= 0, this particularly implies that
6—-6cC(0,T]; H*Y), u eC(0,T];H%, V,peC(0,T];H"D.
By iterating the process of increasing the space regulafify, u, V,p) at each time, we have that
(6-6, U, Vip)() € C(RY), Vte (0T).

By system (1.3), the pointwise time regularity of the salntis determined by its space regularity.
Therefore, B

(0 -6, u, Vyp) € C((0, T) x RY),
which completes the proof of this lemma, thereby the proghefMain Theorem. m|
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