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We develop continuum models of re-entrant factory production systems that treat the flow
of products in analogy to traffic flow. Specifically, we model the dynamics of material flow
through a re-entrant factory via a parabolic conservation law describing the product density
and flux in the factory. We first extract the transport coefficients, in particular, velocity and
diffusion coefficients of the particles in the production system using discrete event simulation
(DES). Since PDE - conservation laws are successfully used for modeling the dynamical be-
havior of product flow in manufacturing systems, we model the manufacturing system using
a diffusive partial differential equation (PDE). The specifics of the production process enter
into the velocity and diffusion coefficient of the conservation law. The resulting nonlinear
parabolic conservation law model allows fast and accurate simulations.
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1. Introduction

In recent years, factories and production systems have become larger and more
complicated. For this reason, a research endeavor has been initiated to find time
and cost efficient ways of production for such supply chains. Moreover, a wide range
of traffic flow theories and models have been developed to find the most effective
means of production. Our goal in this paper is to present a computationally efficient
way to simulate the production systems.

Understanding the behavior of large supply chains under different polices and
scenarios is a major issue for many businesses today. In large factories, no experi-
ments can be done involving whole supply chains. Therefore, simulation models are
developed, which substitute for the real environment. Especially in recent years,
fast scalable simulations of production flows in a supply chain have become a very
important research topic. The long term goal of a supply chain simulation is to
optimize and control the production across the whole supply chain. Since most
production deals with individual parts and the processes that these parts undergo,
discrete event simulators would be the regular method of choice for accurate sim-
ulations.

While discrete event simulators have been highly successful to simulate single
factories, they are computationally too expensive to simulate even a moderately
complicated supply chain. Also, they are not scalable to a full supply chain (2).
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Alternative models that endow supply chain nodes with fixed production capacities
and fixed lead times are not accurate enough since they do not take into account
the fact that capacitated system respond nonlinearly to increases in demand close
to the limit of the production capacity.

The approach followed in this paper is to extract TPTs (Throughput Times)
and WIP (Work in Progress) levels from a discrete event simulation, replacing
actual observations of physical system for the purposes of this work, and then to
transform them into transport coefficients of a macroscopic conservation law. Using
discrete event simulations we estimate the transport coefficients (V-velocity and
D-diffusion). Then, we are able to solve the diffusive Partial Differential Equation
(PDE). The PDE model that we use in this project is the conservation law given
as follows:

∂tρ(x, t) + ∂xF (x, t) = 0, F (x, t) = V ρ(x, t)−D∂xρ(x, t) (1)

where x and t are space and time variables respectively. Here, ρ(x, t) denotes the
density of the particles and F (x, t) denotes the flux, both of which are used to
model the dynamics of material flow through the re-entrant factory. The velocity
and diffusion coefficients are extracted from observations of the system (replaced
by a discrete event simulation model for the purposes of this paper). Since PDE
models are amenable to optimization and control (10), we basically merge the
randomness and optimization by using both DES and PDE models.

We base our theory on the assumption that we have the following type of data
available. The production process consists of M stages. amn denotes the time at
which the lot number n arrives at stage m. Thus, the basic input of our macroscopic
model consists of a table of arrival times amn , n = 1 : N , m = 1 : M . From this
table, the throughput times τmn for each stage as well as WIP in any part of the
supply chain can be easily computed. For instance, given the arrival times amn the
WIP in the m-th supplier Wm(t) is computed as

Wm(t) =
∑
n

H(t− amn )−H(t− am+1
n )

where H denotes the usual Heaviside function. As lots/particles go through the
stages, we compute their velocities and variances depending on observed param-
eters. Since each particle has a different processing time at each stage, it has a
varying velocity through out the system, so this causes a variance in velocity for
each particle. According to fluid dynamics theory, variance results in diffusion.
This results in computing TPTs (Throughput Times), means, and variances de-
pending on a chosen set of state parameters. Assumed data form the times that
lots have passed point in the production process. At the same time we record some
macroscopic quantity (such as the WIP) of the system at each of the arrival times
amn , giving a statistical distribution of throughput times, parameterized by this
macroscopic quantity. The velocity V and the diffusion coefficient D in (1) are
then related to the mean and variance of this distribution. Here, the goal is to
form a compact model which reorders itself to optimization. PDE model has this
important advantage, it is fast and optimization can be applied to obtain more
accurate results.

The contents of the rest of the paper are as follows: In Section 2, we present
theoretical background of simulations and how to relate TPTs and WIPs to ve-
locity and diffusion coefficients. In Section 3, we explain the parameter extraction
and how we compute the TPT (Throughput Time) distributions and their means
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and variances from the given data. In Section 4, we describe a re-entrant system
structure and apply the theories that we cover in this paper on a model problem;
also we explain how to interpret the dependence of the observed data. Finally, in
Section, 5 we present numerical results comparing the discrete event simulation
model (2) to the PDE model.

2. Background of Simulation Models

2.1 Discrete Event Simulation (DES) Models

In the discrete event simulation, each item to be produced is modeled individually,
i.e. the arrival time of an item is recorded at a certain stage and then the item is
passed to the next stage after the processing time has elapsed. The processing time
that it takes at a stage is known as the throughput time (TPT) and denoted as τmn .
TPT is chosen randomly from a given distribution replacing actual observations of
the system for the purpose of this project. Here, a chain of M stages (s1, .., sM )
is considered; amn denotes the time at which the lot number n arrives at stage sm
and emn denotes the time at which the lot number n exits stage sm (and arrives
at stage sm+1). So, the difference between the exit time and the arrival time of a
lot at a particular stage is known as throughput time of that lot at that stage and
given by

τmn = emn − amn .

The arrival and exit times are computed via the law given in (2) as follows:

(a) emn = amn + τmn , (b) dP{τmn = r} = Tm(r, amn ) dr, (c) am+1
n = emn (2)

Here Tm(r, a) denotes the time dependent distribution of throughput times of stage
sm and P denotes the probability distribution of the processing time. So, τmn is cho-
sen randomly according to (2)(b). The throughput time distribution Tm is usually
dependent on the total number Wm(t) of lots handled by stage sm at time t, the
so called Work in Progress (WIP) (3).

While discrete event simulators have been highly successful to simulate single
factories, they are computationally too expensive to simulate even a moderately
complicated supply chain. As the complexity of the factory increases with more
buffers, machines, and parts, time to program and simulate the discrete event
simulation (DES) grows nonlinearly (8). Also, DES models are not scalable to a
full supply chain. Detailed information on all features of DES can be found in (4),
(5).

2.2 Rate Equations (Fluid Models)

Fluid models come from traffic theory and were introduced by Newell (9) to ap-
proximately solve queueing problems. Fluid models do not model parts individually
in a queue, they consider the length of a queue q(t) as a continuous variable whose
rate of change is given by:

d

dt
q(t) = λ(t)− µ(t) (3)

where λ is the arrival rate and µ is the processing rate of the queue.
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If the number of lots considered in a given time interval is very large, it is
computationally preferable to replace the model (2) by a model where the WIP
“Wm(t)” is a continuous function. This leads to a class of models often referred to
as fluid models in the supply chain literature (1), (6). In these continuous product
models, the primary variables are the WIP “Wm(t)” and the fluxes “λm(t)” from
stage sm−1 to stage sm. A random throughput time function τ(t) is computed from
the WIP same as before. The rate of change of WIP in front of machine m is given
through the influx to that machine λm minus its outflux µm. A differential Wm(t)
equation is then given by the conservation law in (4).

d

dt
Wm(t) = λm(t)− µm(t), λm+1(t) = µm(t) (4)

Here, λ and µ represent influx and outflux respectively. Moreover, in (5), the fluxes
are given according to (2) by

µm(t) =
∫
δ(s+ τ(s)− t)λm(s) ds . (5)

One of the most important disadvantages of fluid models is that they do not
handle stochasticity well; i.e., in Equation (3), if λ(t) and µ(t) are mean rates, then
this is a fully deterministic system, stochasticity is not modeled at all. Otherwise;
if λ(t) and µ(t) are stochastic processes, then it allows us to do some theoretical
analysis, but reduces the advantages of a continuum model as a simulation tool
(8).

2.3 Partial Differential Equation (PDE) Models

PDE models are actually continuum limit of fluid models. PDE models do have
several advantages; i.e., they are scalable, more detailed results can be found out
as compared to fluid models, and most important of all, they are amenable to
optimization and control (10).

There are two different types of PDE modeling: Heuristic modeling and direct
modeling from observation. In the heuristic modeling; on average there exists a
functional relation between TPT and WIP, this represents a generalization of the
clearing functions introduced by Graves et al. to clearing distributions (11). In the
direct modeling; clearing function is replaced by a probability distribution function,
which is obtained from the observed data. In this paper, we use direct modeling in
our PDE model. After we obtain the data (randomly generated times) from DES,
we extract the transport coefficients. We can then solve the PDE given in (1). Our
ultimate goal is to predict and optimize the behavior of a system from observation
without knowing details about model; i.e. we always want to know how the system
behaves even though the features of the system is changed. The PDE model that
we use in this project is the conservation law given in Equation (1).

A conservation law is a relation asserting that a specific quantity is conserved, for
example; conservation of energy, conservation of momentum, conservation of elec-
tron number...etc. Basically, for a quantity, to be conserved means that whatever
enters to the system has to come out of that system after some time.

Furthermore, a conservation law can be defined as a partial differential equation
that expresses the fact that some physical quantity is locally conserved in a fluid
or other continuous physical system, such as energy, momentum, or the quantity
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of fluid itself. Conservation law in the integral form is given by

∂t

∫ b

a
ρ(x, t)dx = In Flux - Out Flux (6)

where [a, b] ∈ <. Here, ρ(x, t) is the conserved variable, it is the density of the
products with units [parts/space] in the system. The integral in Equation (6) gives
the number of products per time between x = a and x = b.

Flux is given by constitutive relation such that F (ρ(x, t)) = F (x, t) is the flux
function of ρ(x, t). Here, x is defined to be the completion variable, x = 0 denotes
the start of a product into the factory and x = 1 denotes the end of a product.
So, in the closed interval: x ∈ [0, 1]. The total number of products in the system
can be found by taking the integral of density of products ρ(x, t) over the stage
variable x from 0 to 1. We get the total WIP W (t) as a function of time as follows

W (t) =
∫ 1

0
ρ(x, t)dx. (7)

We use an upwinding scheme to discretize the PDE which is given by Equation
(8).

ρj(t+ k) = ρj(t)−
k

h
[Fj(t)− Fj−1(t)] (8)

where k is the time step, h is the space step, and (j ≥ 1); besides, ρ is the density
of the products, F is the flux, and j = 1, ..., J are space grid points. Discretized
flux function is given by:

Fj(t) = Vjρj(t)−Dj
ρj+1(t)− ρj(t)

h

where Vj and Dj are the varying velocity and diffusion coefficients with respect to
space.

The PDE that we aim to solve here is an initial boundary value problem.

∂tρ+ ∂xF = 0, F = V ρ−D∂xρ

Since initially there is nothing in the system, the initial condition ρI(x) for the
density of the products at t = 0 is given by

ρI(x) = ρ(x, 0) = 0.

Besides, we have two (left and right) boundary conditions; namely, FB1(t) and
FB2(t) for the flux function F (x, t) given as follows:

i) At x = 0; FB1(t) = F (0, t) = λ(t) (averaged influx that we get out of 100 DES
runs).

ii) At x = L; FB2(t) = F (L, t) = V (L, t)(ρ(L, t)), where L is chosen large enough
on position (x)-axis such that L > 1. So, after x = 1, we decay the diffusion
coefficient Dj linearly up to 0 and at x = L, we get D(L, t) = 0. Hence, in the flux
function F (L, t), the second term with the diffusion coefficient is set equal to 0.

CFL (Courant, Friedrichs, Levy) Condition
Due to the finite traveling speed of waves hyperbolic partial differential equa-

tions have a finite physical domain of dependence. The full numerical domain of
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dependence must contain the physical domain of dependence.
The domain of dependence of a hyperbolic partial differential equation (PDE)

for a given point in the problem domain is that portion of the problem domain
that influences the value of the solution at the given point. Similarly, the domain
of dependence of an explicit finite difference scheme for a given mesh point is the
set of mesh points that affect the value of the approximate solution at the given
mesh point. The CFL condition, named for its originators Courant, Friedrichs,
and Levy, requires that the domain of dependence of the PDE must lie within the
domain of dependence of the finite difference scheme for each mesh point of an
explicit finite difference scheme for a hyperbolic PDE. Any explicit finite difference
scheme that violates the CFL condition is necessarily unstable, but satisfying the
CFL condition does not necessarily guarantee stability. In other words, the CFL
condition is necessary for stability, but not sufficient (7). The CFL condition is
formulated as follows: ∣∣∣∣khVmax(t)

∣∣∣∣ ≤ 1 (9)

where k = ∆t and h = ∆x are the step sizes in time and space respectively, Vmax(t)
is the maximum of all occurring velocities in the system at time t.

3. Parameter Extraction

In this section, we describe how to compute the throughput time probability dis-
tribution in the kinetic model T as well as its mean and variance depending on a
macroscopic state variable from the given observation, discrete event experiments.
Also, we explain how to compute the transport coefficients (V and D).

As we run a simulation where N parts pass through M stages s1, ..., sM , we
record the times amn when part number n arrives at stage m and finally at the exit,
which corresponds to stage M + 1. At the same time, we record some macroscopic
variables Zmn at the times amn .
Z = (Z1, ..., ZK) is in general a vector of K components. They can be variables

like total WIP, or the WIP in front and the WIP behind the part, or just station
index m itself. We eventually form two tables:


a(1, 1) a(1, 2) ...
a(2, 1) a(2, 2) ...
. . ...
. . a(N,M + 1)



Z(1, 1) Z(1, 2) ...
Z(2, 1) Z(2, 2) ...

. . ...

. . Z(N,M)

 (10)

where there are different possibilities that the macroscopic variable Z might depend
on. Zmn = m if we want to make the velocity dependent on space only, or Zmn =
W (amn ) for dependence on the total WIP only, or Zmn = (W<m(amn ),W>m(amn )) for
dependence on the WIP in front and behind the part. From one of these possibili-
ties, we compute a distribution for the velocities, dependent on the global variables
Z. We map the work stations s1, ..., sM on a stage interval [0, X] where sm corre-
sponds to the interval (xm−1, xm) of length λ with xm = mλ, m = 0, ...,M , λ = X

M .
Then, the throughput time of lot n entering sm is given by τmn = am+1

n −amn , where
m = 1, ...M and n = 1, ..., N . We divide the K dimensional space of the macro-
scopic variables Zmn into cells C(k) where k = (k1, ..., kK) and then we define the
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indicator function χk(Z) by

χk(Z) =
{

1 for Z ∈ C(k)
0 else

The collected data give a discrete probability distribution, for the throughput times
τmn , dependent on the macroscopic state variable Z, of the form

T (t, x, Z) =
∑

n δ(t− τnm)χk(Znm)∑
n χk(Znm)

for Z ∈ C(k) and x ∈ [xm−1, xm), with a mean 〈τ〉(x, Z) and a variance σ2(x, Z)
given by 〈τ〉(x, Z) =

∑
n τnmχk(Znm)∑

n χk(Znm) and σ2(x, Z) =
∑

n τ
2
nmχk(Znm)∑

n χk(Znm) − 〈τ〉(x, Z)2 for
Z ∈ Ck, x ∈ [xm−1, xm).

According to the fluid dynamics theory, the mean and the variance of the distri-
bution T are related to the average velocity coefficient V (x, Z) and the diffusion
coefficient D(x, Z) in a fluid dynamics approximation of the form

∂tρ+ ∂xF = 0, F = V ρ−D∂xρ (11)

where ρ = ρ(x, t) represents density of the products dependent on space and time
and F (ρ(x, t)) represents the product flow (flux).

Using the theory developed in part ??, we relate the velocity (V ) and the diffusion
(D) coefficients to the mean and variance of the distribution T respectively via the
formulas given in (12):

V =
λ

〈τ〉m
, D =

λ2Ω
〈τ〉m

(12)

where λ denotes the length of space interval from one stage to the other and
Ω = σ2

m

〈τ〉2m
denotes the variation coefficient, which is a measure of stochasticity. As

Ω gets large, the stochasticity increases; and as Ω gets smaller, the system becomes
more deterministic. The diffusion coefficient is derived from particle model by long
time averaging, which is known as “Chapman - Enskog expansion”. The proof and
the details of the derivations of the formulas can be found in (3).

Note that the PDE given in (11) represents in general a nonlinear problem since
the transport coefficients V and D depend on the state variable Z which, in turn,
will depend on the density ρ.

4. A Model Problem

In this part, we briefly describe a re-entrant system structure and apply the theories
that we covered so far on a model problem. Moreover, we explain how to compute
work in progress (WIP), downstream WIP, upstream WIP, where different types
of service rules i.e., FIFO, PULL, PUSH can be used in the experiments.

The block diagram of the system structure consist of a generator, buffers, ma-
chines, and an exit processor. The structure of the re-entrant manufacturing system
can be seen in Figure 1. Here; G, B, M, and E stand for Generator, Buffer, Ma-
chine, and Exit respectively. In the first loop, particles change their attribute from
1 to 2 at the last machine MN and then the particles start being processed in the
second loop. When the particles have attribute 2, they exit the system after they
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Figure 1. The structure of a re-entrant manufacturing system

reach the last machine MN . The system designed in this project is FIFO, namely:
First In First Out. However, it can also be transformed into a Pull or Push policy
by altering the features of the buffers B1.1 and B1.2.

The goal is to solve the PDE model (11) after extracting the transport coefficients
V and D from the observed data (a discrete event simulation for the purpose of
this project). A major issue is how to parameterize the observed throughput times,
i.e. how to choose the macroscopic state variable Zmn . This choice will in general
depend on the structure under consideration and will significantly influence the
approximation quality of the fluid dynamic model (11). There is of course an infinite
number of possible choices. We will consider three possibilities for the purposes of
this paper.

If the service rule in the system, depicted in Figure 1 is of ‘PULL’ type, i.e. if
parts on their second pass through the system always have priority (parts that
have passed the re-entrant loop), it is obvious that only the lots downstream in the
production process will influence the velocity of an individual lot. In this case, we
would choose the macroscopic state as the downstream (right) WIP given by

Zmn =
N∑
j=1

H(amn − amj )−H(amn − aM+1
j ) , (13)

Here, formula (13) counts the lots which have entered stage m at time amn and have
not yet arrived at the last stage M . In the fluid dynamic model given in (11), the
downstream WIP is computed accordingly as

Z(x, ρ) =
∫ 1

x
ρ(y, t) dy .

Conversely, if the service rule is of a ‘PUSH’ type, i.e. if parts on their first pass
through the system always have priority (parts that have not yet arrived at the
re-entrant loop), the upstream (left) WIP should be used and given by

Zmn =
N∑
j=1

H(amn − a1
j )−H(amn − amj ), Z(x, ρ) =

∫ x

0
ρ(y, t) dy . (14)

Here, formula (14) counts the lots which have entered the first stage at time a1
j

and have not yet arrived at stage m.
If, on the other hand, the service rule is FIFO (first in first out), then it is

probably wise to use the total WIP as parameter, since velocities depend on the
upstream as well as on the downstream WIP. This would give

Zmn =
N∑
j=1

H(amn − a1
j )−H(amn − aMj ), Z(ρ) =

∫ 1

0
ρ(y, t) dy . (15)
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Therefore, as discussed earlier, transport coefficients V (x, Zρ) and D(x, Zρ) depend
on the macroscopic variable Z, which might be downstream (right) WIP, upstream
(left) WIP, or total WIP given by

Z(x, ρ) =
∫ 1

x
ρ(y, t) dy, Z(x, ρ) =

∫ x

0
ρ(y, t) dy, Z(ρ) =

∫ 1

0
ρ(y, t) dy .

respectively.

5. Numerical Results

We carry out a numerical experiment to demonstrate the agreement of PDE and
discrete event simulation (DES) models. The purpose of this comparison is to
substantiate the prediction of the transient (non-steady state) behavior of DES with
the PDE model according to the influx that we get out of the averaged DES models.
In the simulations, we compute the transport coefficients (V and D) depending on
the total WIP and since the total WIP is chosen as a macroscopic state variable
(Z), we use FIFO (first in first out) as the service rule in the system.

Firstly, in the DES (χ-Chi Simulation), we consider a system with 300 lots.
We start with an empty system and then generate data for the estimation of
the transport coefficients (V and D) by running the system in quasi steady state
under six different loads. Using 20 identical machines with a mean throughput time
∆Tservice = 2 and two loops through the system (see Figure 1), we compute that
the system has an effective capacity of κ = 1

2∆Tservice
= 1

4 . So, a constant influx
l > κ will on average produce a temporary buildup of queues since we have a finite
number of lots.

Figure 2. Velocity coefficients vs Machine Stage vs WIP in PDE model

Velocity (V ) coefficients can be seen in Figure 2 both in contour and log scale
plots as functions of WIP for any stage. Moreover, diffusion (D) coefficients can
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be seen in Figure 3 as functions of WIP for any stage.

Figure 3. Diffusion coefficients vs Machine Stage vs WIP in PDE model

In the observed data that we get out of discrete event experiments, we use the
following utilizations: 200%, 110%, 100%, 90%, 50%, 20%. Lots arrive randomly in
mean intervals of length ∆Tarrival = 2∆Tservice

p , and we use the efficiency capacity
values of p = 2, 1.1, 1, 0.9, 0.5, 0.2 to calculate the mean interarrival time
lengths that we use in DES runs. Each case is repeated ten times using different
seeds for the random number generator in the discrete event simulator - χ(Chi).
This produces a total of 10× 6× 300 = 18000 data points.

We then execute the DES model by generating a total of 1000 lots with a varying
influx such that the first one third of the lots produce an average influx of 0.3κ, i.e.
lots arrive in intervals with mean 10

3κ , the second one third of the lots have an influx
of 0.8κ, and the last one third of the lots have an influx of 0.3κ. So, using these
data we observe both ramp up and ramp down situations in our comparison for
PDE model versus DES model. We run the DES model 100 times and average over
these 100 simulation results. The averaged influx, computed out of 100 simulations,

Figure 4. Varying Influx (Ramp Up and Ramp Down)
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can be seen in Figure 4.

Figure 5. 3D Comparison of Fluxes for DES and PDE models

Finally, it is time to solve the PDE given in (1) using upwinding scheme where
the flux is given as F = V ρ −D∂xρ, with the velocity (V ) and the diffusion (D)
coefficients extracted from the ‘observed data’ as outlined in Section 3. With the
PDE model, we predict the transient behavior of the DES model according to the
influx given in Figure 4, which we get from the average of 100 DES model runs.
The comparisons of all DES and PDE fluxes as functions of time at each machine
stage can be seen in 3D surface plots in Figure 5. Similarly, the WIP levels of DES
and PDE models are compared as functions of time at each machine stage in 3D
surface plots in Figure 6.

Figure 6. 3D Comparison of WIP Levels for DES and PDE models

As we see in Figures 5 and 6, although the WIP levels and flux values of PDE
and DES models at each stage are not exactly equal, they are close enough to each
other to substantiate the agreement of PDE and DES models.

In Figure 7, the WIP levels of PDE and DES models are compared at time
steps 25 and 35 which can be seen in 2D plots. In the simulations, each time step
corresponds to 120 mesh units depending on what time unit is chosen; i.e. minutes,
hours, or days...etc.
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Figure 7. 2D WIP Level Comparison of PDE and DES models at Time Steps: 25 & 35

Moreover, in Figure 8, the comparisons of PDE and DES fluxes at machine stages
10 and 30 can be seen in 2D plots where the agreement of PDE and DES models is
demonstrated more easily. Machine stages 10 and 30 also correspond to the same
machine (10-th machine) in the system since the re-entrant loop starts at machine
20. One can tell from Figure 8 that the agreement between DES and PDE fluxes
is better at the machine stage 10 as compared to the machine stage 20, because
stage 10 is closer to the first stage where we start the simulations with the same
influx for both DES and PDE models.

Figure 8. 2D Flux Comparison of PDE and DES models at Machine Stages: 10 & 30

6. Conclusion

In this paper, we have presented a computationally efficient way to simulate the
production systems. Our goal was to solve the PDE model (1) after extracting the
transport coefficients (V and D) from the observed data which we got out of a
discrete event (Chi-0.8) simulation for the purpose of this paper. With the PDE
model, using MATLAB program, we predicted the transient behavior of the DES
model according to the averaged influx which we get out of 100 discrete event
experiments. Finally, we compared the PDE and DES models in terms of WIP
levels and fluxes at each machine stage. We conclude that two models agree with
each other.
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