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HIGH-ORDER ENTROPY-BASED CLOSURES FOR LINEAR
TRANSPORT IN SLAB GEOMETRY

CORY D. HAUCK †

Abstract. We compute high-order entropy-based (MN ) models for a linear transport equation
on a one-dimensional, slab geometry. We simulate two test problems from the literature: the two-
beam instability and the plane-source problem. In the former case, we compute solutions for systems
up to order N = 5; in the latter, up to N = 15. The most notable outcome of these results is the
existence of shocks in the steady-state profiles of the two-beam instability for all odd values of N .

1. Introduction In transport and kinetic theory, moment models are used as a
means to reduce the size of the state space required for a kinetic description while still
maintaining basic features of a kinetic model. They do so by replacing the velocity
component of phase space by a finite number of velocity moments. Moment models
are commonly derived using an approximate reconstruction of the kinetic descrip-
tion from these moments. The reconstruction prescribes a closure, i.e., a recipe for
expressing the moment model as a closed system of the retained moments. Entropy-
based methods specify this reconstruction as the solution to a constrained, convex
optimization problem. In many situations, the cost functional for the optimization
problem is directly related to the kinetic entropy of the system. In other cases, it
simply enforces physically relevant features. The benefit of the entropy approach is a
reduced model which retains fundamental properties from the kinetic formalism not
found in traditional moment models such as hyperbolicity, entropy dissipation, and
positivity. The main disadvantage of the entropy approach is that, unlike traditional
moment models, the entropy-based kinetic reconstruction can rarely be expressed as
an analytic function of the given moments. Thus the optimization problem must be
solved numerically, via the associated dual problem. This can increase computational
costs significantly.

Recent advances in both analysis and implementation of entropy-based methods
have been made in several application areas. For gas dynamics, the formal properties
of entropy-based models were elucidated in [27]. However, it is also known [18, 21,
22, 39] that the defining optimization problem in this case is ill-posed. As a result,
alternative approaches are currently being pursued which regularize the problem in
some suitable fashion. (See [16] and references therein.) For charge transport in
semiconductors, the issue of ill-posedness also exists for the so-called parabolic band
approximation [30, p.69]. However, for experimental dispersion relations or for more
realistic approximations, like the Kane dispersion relation [2, p.3], the optimization
problem is well-posed [23]. Indeed recent simulations [38] have shown reasonable
agreement with Monte-Carlo results.

In the field of radiative transport, moments are typically taken with respect to
functions of the angular component of the microscopic particle velocity only. A general
theoretic framework was laid out in [10], although most of the computational results
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2 High-Order Entropy-Based Closures

have been limited to the so-called Minerbo, or M1, model or variations thereof [5,11,
13, 32] which track moments of the kinetic distribution with respect to polynomials
up to degree one. The reason for this limitation is that, beyond the M1 model,
the defining optimization problem is especially hard to solve for highly anisotropic
distributions, which commonly occur in transport applications. A recent and notable
advance in this direction is the recent work in [33, 42], where the authors simulate
the M2 model (the next model in the hierarchy, which tracks moment with respect to
polynomials up to degree two) for one-dimensional, slab geometries. This simulation
is done using a clever procedure to bypass the optimization problem completely. The
most powerful aspect of this approach is the ability to handle beam-like distributions
with relative ease. The procedure is based on a look-up table and hence, becomes less
practical when more moments are added (either by increasing the polynomial degree
further or by adding more dimensions). Interpolation can also be used to reduce the
number of entries in the look-up table, but exactly how such an interpolation effects
hyperbolicity of the moment system is unclear. Thus, one must consider attacking
the optimization problem head-on. In the future, it is likely that a combination of
the two methods will be most effective.

In spite of the heavy computational overhead of solving difficult optimization
problems, the entropy-based approach still has practical merit for large-scale, mas-
sively parallel computations that one might see in a complex multi-physics application.
This is due to the emerging paradigm in parallel computing in which data transfer—
not floating point operations—is the bottleneck to efficient computation [31, 43]. In
particular, though the optimization uses many function evaluations to find a solu-
tion, the solver for updating the moment equations requires the same amount of data
transfer between computational cells as it would for a conventional, algebraic closure.

In this paper, we consider entropy-based models, including and beyond M1 and
M2, for the simple case of linear transport in slab geometries, utilizing the Maxwell-
Boltzmann entropy as the cost functional in our optimization problem. The moment
equations in this setting are formulated in Section 2. In Section 3, we present the
kinetic scheme used to implement them. In Section 4, we present numerical results for
two test cases found elsewhere in the literature. Neither of these test cases severely
tests the limits of our optimization algorithm (a blackbox MATLAB solver). Rather,
the goal is to gain some insight about what can be gained by going to higher-order
closures. Section 5 is devoted to conclusions and discussion.

2. Entropy-Based Moment Equations We assume a distribution of parti-
cles of a single unit speed which are absorbed by or isotropically scattered off of a
background material medium with slab geometry. We let x ∈ (x1, x2) be the scalar
coordinate along the axis perpendicular to the slab; µ ∈ [−1, 1] is the cosine of the
angle between the x-axis and the direction of particle travel; t ≥ 0 is time; and for
any measurable function g = g(µ),

〈g〉 ≡
∫ 1

−1

g(µ)dµ . (2.1)

The state of the particles is characterized by a non-negative function F (x, µ, t).
The material is characterized by non-negative variables σs(x), σa(x), and σt(x) =

σs(x) + σs(x) which are the scattering, absorption, and total cross-sections, respec-
tively, of the material. Each cross-section is the reciprocal of the mean-free-path
between particle interactions of a given type. The function S is an external source,
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which in general may depend on properties of the material. However, for the test
cases in Section 4, we will take S = 0.

In this setting, the relevant transport equation for F takes the form [6,28,37]

∂tF + µ∂xF + σtF =
σs

2
〈F 〉+ S (2.2)

and is supplemented by boundary conditions and initial conditions

F (x1, µ, t) = F1(µ, t) , µ > 0 , (2.3a)
F (x2, µ, t) = F2(µ, t) , µ < 0 , (2.3b)
F (x, µ, 0) = F0(x, µ) . (2.3c)

Here F0, F1, and F2 are given.
Moment equations for (2.2) are typically based on angular averages with respect to

Legendre polynomials. To derive an order N system, we collect the first N+1 Legendre
polynomials into a vector-valued function m : [−1, 1] → RN+1. Exact equations for
the moments u(x, t) = [u0, . . . , uN ]T := 〈mF (x, ·, t)〉 are found by multiplying the
transport equation (2.2) by m and integrating over all angles. This gives the system

∂tu + ∂x〈µmF 〉+ σtu =
σs

2
Qu + s , (2.4)

where

Qlk := δlkδl,0 and s := 〈mS〉 . (2.5)

Boundary conditions for the moment system are not so easily expressed since
kinetic data is only given for values of µ which correspond to incoming data. Indeed,
the issue of proper boundary conditions remains an open question, although some
progress has been made for linear systems [24–26,36].1

The moment system (2.4) is closed by substituting the approximation

F (x, µ, t) ' F(u(x, t),m(µ)) (2.6)

into (2.4), where the reconstruction F satisfies the consistency relation

〈mF(u,m)〉 = u . (2.7)

The resulting system takes the form

∂tu + ∂x〈µmF(u,m)〉+ σtu =
σ

2
Qu + s . (2.8)

The question of whether (2.8) can accurately capture the dynamics of the original
transport equation depends heavily on the details of F .

Entropy-based methods generate a closure by prescribing F as the solution of
a constrained, convex optimization problem. To be more specific, given a strictly
convex mapping η : R 3 z 7→ η(z) ∈ R, F solves

minimize 〈η(f)〉 (2.9)
subject to 〈mf〉 = u .

1For computations presented later in the paper, we prescribe boundary conditions that are rea-
sonable, but not entirely consistent with the kinetic boundary conditions.
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If a solution exists, it takes the form [27]

F(u,m) = Gα̂(u) := η∗y
(
α̂(u)T m

)
, (2.10)

where η∗ : R 3 y 7→ η∗(y) ∈ R is the Legendre dual of η and the vector α̂ : u ∈
RN+1 7→ α̂(u) ∈ RN+1 solves the dual problem

minimizeα∈RN+1

{〈
η∗(αT m)

〉
−αT u

}
. (2.11)

In particular, first-order optimality conditions for (2.11) recover the consistency rela-
tion (2.7):

〈mη∗y(α̂T m)〉 = u . (2.12)

Furthermore, it is straight-forward to show (following arguments in [10,27], for exam-
ple) that the moment system dissipates the strictly convex entropy h(u) := 〈η(Gα̂(u))〉
and that, when written in terms of α̂, the entropy-based moment system is symmetric
hyperbolic.

Different choices of η lead to different closures. In gas dynamics applications, one
typically uses the Maxwell-Boltzmann entropy; for fermions, the Fermi-Dirac entropy;
for bosons (as in photon transport), the Bose-Einstein entropy. In some cases, the
choice of entropy is not directly related to the physics of the problem. For example,
the choice η(z) = z2/2 leads to the well-known PN equations [7, 28, 37]. For the
purposes of this paper, we assume classical particles with a slight variation of the
Maxwell-Boltzmann entropy

η(z) = z log(z)− z (2.13)

and Legendre dual η∗(y) = ey. In this case, the exponential form ensures that the
reconstruction is always a positive function.

3. Implementation with a Kinetic Scheme We implement the moment
equations from the previous section using a kinetic scheme [8, 9, 17, 34, 35]. In a
conventional approach, one first takes moments of the kinetic equations and then
finds a valid spatial discretization of the resulting moment system. With a kinetic
scheme, these steps are reversed: one first determines a valid discretization of the
kinetic equation and then takes moments of this discretization. The benefit of this
approach is that it avoids the direct computation of eigenvalues and (approximate)
Riemann solvers for the entropy-based moment systems, which generally cannot by
computed by hand.

3.1. Description of the Scheme Let {xj}J
j=1 be an evenly spaced set of

mesh points which serve as the centers of cells Ij = (xj−1/2, xj+1/2) of width ∆x. For
simplicity of notation, we assume here that all material cross-sections are constant.2

A semi-discrete, finite-volume formulation of the transport equation is derived by
integration in x over each Ij , giving

∂tFj + µ
Fj+1/2 − Fj−1/2

∆x
+ σtFj =

1
2
σsφj + Sj . (3.1)

Here j subscripts adorn cell averages (in space) and j±1/2 subscripts denote pointwise
values at cell edges, which are approximated by upwinding: for µ > 0, information

2Our test problems in the next section will all satisfy this assumption, but there is certainly no
limitation that requires it.
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comes from the left; for µ < 0, it comes from the right. When applied to (3.1),
upwinding gives

∂tFj + max(µ, 0)
Fj+1/2,` − Fj−1/2,`

∆x

+ min(µ, 0)
Fj+1/2,r − Fj−1/2,r

∆x
+ σtFj =

1
2
σsφj + Sj (3.2)

where Fj+1/2,` and Fj+1/2,r are values on the right and left sides of the cell edge at
xj+1/2. A linear approximation of these values is

Fj+1/2,` = Fj +
∆x

2
F ′

j and Fj+1/2,r = Fj+1 −
∆x

2
F ′

j+1 , (3.3)

where F ′
j is an approximation of the spatial gradient in cell j. We use the well-known

minmod limiter function:

F ′
j = minmod

{
Fj − Fj−1

∆x
,
Fj+1 − Fj−1

2∆x
,
Fj+1 − Fj

∆x

}
. (3.4)

The idea of the limiter is to suppress spurious oscillations in the solution and, in the
context of the entropy closure, to ensure that the edge values for F are non-negative.

To obtain an algorithm for uj := 〈mFj〉 with the entropy-based closure, we
simply integrate the discretization (3.1) of the kinetic equation against the vector m
and replace Fj by Gj := Gα̂(uj). This gives

∂tuj +

〈
µm[Gj+1/2,` −Gj−1/2,`]

〉
+

∆x

+

〈
µm[Gj+1/2,r −Gj−1/2,r]

〉
−

∆x
+ σtuj =

σs

2
Quj + sj (3.5)

where plus/minus subscripts denote integration over positive/negative ranges of µ
(so-called half fluxes), Q is given in (2.5), and sj = 〈mSj〉.

Time integration of (3.5) depends on the type of problem. For marching to steady
state, first-order explicit Euler is satisfactory. However, for transient solutions, we
use the second-order, strong stability preserving, Runge-Kutta (SSP-RK2) method
[15,40]. As a reminder to the reader, if we write the semi-discrete system (3.5) in the
abstract form

∂t~u = L(~u) , (3.6)

then the SSP-RK2 method takes the form

~u(1) = ~un + ∆tL(~un) , (3.7a)

~un+1 =
1
2
~un +

1
2
~u(1) +

1
2
∆tL(~u(1)) . (3.7b)

3.2. Details and Subtleties
In this subsection, we briefly discuss important details of the algorithm and some

subtle difficulties. Most of these difficulties arise when solving the dual problem (2.11).
1. Numerical Integration. The algorithm requires a quadrature rule to eval-

uate the half fluxes. We use a Gauss-Legendre quadrature with 20 quadrature
points.
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Paremeter Meaning Value
MaxFunEvals Maximum number of function evaluations allowed 10000
MaxIter Maximum number of iterations allowed 10000

LargeScale Use large-scale algorithm if possible off
Display Level of display notify
TolFun Termination tolerance on the objective function and gradient ε ' 2.22× 10−16

TolX Termination tolerance on x ε ' 2.22× 10−16

GradObj Gradient for the objective function defined by the user on
Hessian Hessian for the objective function defined by the user off

Table 3.1. Optimization parameters for fminunc. Parameter that are not given are set to
default values.

2. Optimization Parameters. The entire algorithm is implemented in MAT-
LAB. The bulk of the computation lies in the repeated solution the dual
problem (2.11), which we find using the built-in function fminunc. Pareme-
ters of interest for fminunc are set with the command optimset and are
given in Table 3.1. All other parameters are set to default values. With the
Hessian parameter set to off, fminunc approximates Hessians using finite
differences of the gradient.

3. Difficulties with the optmization. The built-in function fminunc breaks
down in regimes near the boundary of so-called realizability. A vector u is
said to be realizable whenever it is the moment of a non-negative function of
µ. The set of realizable vectors forms an open set [22] and, roughly speaking,
functions of µ which generate vectors near the boundary of this set are highly
anisotropic and beam-like. For example, one can show that certain vectors on
the boundary can only be generated by delta functions [33]. When the recon-
struction Gα̂ is highly anisotropic, solving the dual problem for α̂ becomes
quite difficult, because the Hessian becomes singular. Such cases often occur
around discontinuities, singularities, and voids in space. Thus increasing the
spatial resolution of the computation typically makes the optimization more
difficult. In an effort to avoid the boundary of realizability, the test prob-
lems in the following sections are slight modifications of problems found in
the literature. In particular, voids are replaced by an isotropic distribution
Ffloor, which is set to a small value. Even with this modification, fminunc
often terminates prematurely—not because some tolerance criteria is satis-
fied, but because the approximate Hessian no longer predicts a decrease in
the function value. Although the error in approximating the nearly-singular
Hessian can be fixed by supplying an exact Hessian, fminunc will often still
terminate because the ceiling set by MaxFunEvals and MaxIter is broken. In
order to be sure of reasonable accuracy in the solution of the dual problem,
we compute the difference between the value uj and the moment of the recon-
struction 〈mGj〉. For all cases, we have found the maximum difference over
the entirety of the calculation to be O(10−8).3 In the meantime, devising a
more flexible optimization tool is the focus of ongoing research.

4. Behavior in diffusive regimes. The kinetic scheme is very inefficient in

3Although we have not done so, one could presumably increase the tolerance parameter TolFun

to a value of this size to ensure proper termination of fminunc.
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diffusive regimes, where σt is large. Indeed, the formal accuracy of the scheme
in space is O(σt∆x3). (See, for example, the second-order upwind analysis
in [20, 29]). Furthermore, because the scheme is explicit, O(∆x/σt, 1/σ2

t )
time steps are required for stability. Thus in diffusive regimes, accuracy re-
quirements dictate that the spatial and temporal mesh be small, even if the
solution profile varies on an O(1) scale. Fortunately for us, the test cases
which we will consider in the next section are not in the diffusive regime;
instead σt is an O(1) quantity. Even so, practical applications will eventu-
ally require more robust algorithms be developed for diffusive or multi-scale
problems. Such algorithms are the focus of future efforts.

5. Implementation of boundary conditions. As mentioned in Section 2,
proper boundary conditions for moment equations are not known. For the
kinetic scheme, we set (refer to (2.3))

G1/2,`(µk, t) = F1(µk, t) and GJ+1/2,r(µk, t) = F2(µk, tn) (3.8)

for any µk in the quadrature set used to evaluate the integrals in (3.5). While
reasonable, this is clearly not the only option. Moreover, it the context of gas
dynamics, it has been shown [41] that this condition gives inaccurate results
unless the mesh resolves the mean free path. Fortunately, this condition
holds for the test problems we consider in the next section. One can also
argue that, to be consistent with the moment approach, the kinetic data at
the boundaries should be replaced by an reconstruction of the form Gα̂—that
is

G1/2,`(µk, t) = Gα1/2,`
and GJ+1/2,r(µk, t) = GαJ+1/2,r

(3.9)

where the coefficients α1/2,` and αJ+1/2,r are determined by N + 1 moment
constraints of the form〈

φlGαJ+1/2,r

〉
=

〈
φlGJ+1/2,`

〉
+

+ 〈φlF2〉− , φl = φl(µ) , l = 0, . . . , N

(3.10)
on the right boundary, with similar conditions on the left. One could let
φl = ml, as is done in [41], but this is not the only possibility.

4. Numerical Results In this section, we present results for two types of
problems found in the literature: the two-beam instability and the plane source. For
the former, we are interested primarily in steady-state solutions for a purely absorbing
material, while for the latter we focus on transient solutions for a purely scattering
material. All results are given in terms of the particle concentration ρ := u0 ≡ 〈F 〉.

4.1. Two-Beam Instability The two-beam instability is a test of a closure’s
ability to handle multi-modal distributions. In this one-dimensional setting, the ma-
terial slab is initially in an (almost) vacuum state. Particles enter the domain from
the right and left boundary and a steady-state is reached. Under some conditions,
the M1 closure is unable to handle particles moving in opposing directions, and as a
result, produces a shock in the steady-state profile [5, 11].

It has been shown recently [33, 42] that, in some cases, the M2 model and also
versions of the M1 model that use partial moments [13] can produce reasonably ac-
curate results without this unphysical shock. In general, the possibility of shocks in
the steady-state profile can be characterized by the following result.
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Theorem 4.1 (Frank [12]). Assume σt and s are bounded. Let u be any bounded,
weak solution of the steady-state MN system and let uN+1(u) be the moment of the
entropy reconstruction Gα̂(u) with respect to the (N+1)-th Legendre polynomial mN+1,
i.e,

uN+1(u) :=
〈
mN+1Gα̂(u)

〉
. (4.1)

Then the moments {u1, ..., uN+1} are all continuous on the interior of the spatial
domain. Furthermore, a necessary condition for interior discontinuities in the steady-
state profile of u0 is that the mapping(

u1

u0
, . . . ,

uN

u0

)
7→

(
uN+1

u1
, . . . ,

uN+1

uN

)
(4.2)

is not injective.
It should be noted, first, that this result generalizes the criteria for the M1 case

that was given in [5] and, second, that other criteria are possible. The proof of this
generalization is similar to the argument in [5], but for completeness, we include it
in an appendix. Unfortunately, the condition (4.2) is not easily checked for N > 1
because, in that case, uN+1 can only be computed numerically.

We implement the two-beam instability on a one-dimensional slab covering the
interval [−1, 1] in space. The parameter values are

σt = σa = 2.0 , S = 0 . (4.3)

Thus there is no scattering (σs = 0) and no external source. The initial condition for
the kinetic equations is (refer to (2.3))

F0(x, µ) = Ffloor = 0.5× 10−4 , (4.4)

and the boundary conditions are isotropic:

F1(µ, t) = F2(µ,t) = 0.5 . (4.5)

Boundary and initial conditions for the kinetic scheme are derived from these. The
small, non-zero value for the initial condition is needed to maintain stability with
respect to the dual problem (2.11), as discussed in the previous section. We march
to steady-state using the kinetic scheme with forward Euler time discretization and
time step ∆t = 0.3∆x.

Results for the two-beam instability are given in Figures 4.1-4.4. For comparison,
we include the exact steady-state concentration, ρss ≡ 〈Fss〉, where

Fss(x, µ) =

{
0.5e

−σa(x+1)
µ , µ > 0 ,

0.5e
−σa(x−1)

µ , µ < 0 ,
(4.6)

and the angular integral is computed with a 20-point Gauss-Legendre quadrature.
In Figure 4.1, we show solutions at time t = 5.0, when the solution is essentially at

steady-state. Roughly speaking, the solutions improve as N increases, but the even
and odd profiles are qualitatively different. The even solutions appear to converge
from above near the boundary and from below near the center. They also appear
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Fig. 4.1. Steady-state solutions for the two-beam instability. Red pluses are M1; blue circles
are M2; green diamonds are M3; purple squares are M4; gold triangles are M5. Plain black line is
the exact steady-state solution. The reader is referred to the online version for color interpretation.
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Fig. 4.2. Transient solutions at t = 1.0. Blue circles are M2; purple squares are M4. The
reader is referred to the online version for color interpretation.
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Fig. 4.3. MN (solid line) vs PN (dashed line) for odd N . Red pluses are for M1 and P1;
green diamonds are M3 and P3; Gold triangles are for M5 and P5. Plain black line is the exact
steady-state solution. Reader is referred to the online version for color interpretation.

to show a dip in the very center.4 The odd solutions, on the other hand, appear to
converge from below near the boundary and from above near the center. They also
show a noticeable shock, in which the concentration jumps up when moving from the
boundary toward the interior: at x = ±0.28 for M1, x = ±0.32 for M3 and x = ±0.26
for M5. The size of this shock decreases as N increases. Previously it has been
speculated that the reason for the M1 shock was that the entropy reconstruction did
not possess enough degrees of freedom to reproduce two opposing beams. However,
these results point to something deeper, since the M3 and M5 solutions also display
shocks.

We note that the even-N models also give rise to transient shocks. To show this,
we display the M2 and M4 profiles at time t = 1.0 in Figure 4.2. Like the odd cases,
these two shocks appear after the beams reach the center of the domain. However,
they then disappear as they approach the boundary. The M2 shock appears in the
figure at x = ±2.7. The smaller M4 shock appears at x = ±3.0. One can also see
the formation of the center dip, particularly in the M2 case. In addition both profiles
include other transient oscillations which decay as the solution approaches steady
state.5

In Figures 4.3 and 4.4, we compare the MN solutions with standard PN solutions,
which are computed in exactly the same way, except that we replace Gj in (3.5) by

4We are not entirely sure whether or not this dip is a numerical artifact caused by small errors
that arise when solving the dual optimization problem (2.11).

5We are also not completely sure whether these oscillations are numerical artifacts or not.
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Fig. 4.4. MN (solid line) vs PN (dashed line) for even N . Blue circles are for M2 and P2;
purple squares are for M4 and P4. Plain black line is the exact steady-state solution. Reader is
referred to the online version for color interpretation.

cT
j m, where

cj =
〈
mmT

〉−1
uj . (4.7)

The PN equations are linear and thus do not produce shocks. However, it is well-
known in the transport community (see, for example, [7]) that the PN equations for
even N are not accurate at boundaries. This fact is readily observed in Figure 4.4,
where the MN solutions are clearly better. For the odd case, the PN solutions are more
accurate; however, this is not always the case. For the test case in [5], for example,
it is noted that the M1 solution is qualitatively wrong (because of the shock), but
quantitatively better than the corresponding P1 solution.

4.2. Plane Source In the plane-source problem, particles are emitted from
an initial plane source into an infinitely long medium. The symmetry of this prob-
lem allows it to be represented in the one-dimensional setting, where x measures the
signed, normal distance to the plane. The plane-source problem is a torture test of
a methods ability to handle very strong discontinuities. In the absence of any scat-
tering, the PN method represents the transport solution as a series of delta functions
emanating from the initial source. Any scattering in the problem serves to smooth
out these delta functions [4].

The plane source has been simulated with the M1 closure in [5]. There it was found
that the non-physical wave effects (from the delta functions) in PN closures were less
pronounced in the M1 system. Moreover the M1 system could move particles away
from the source at peak speed (here equal to one), while particle speeds in linear
PN systems are limited by the maximum eigenvalue of the flux matrix. For low-
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order closures, this value is significantly smaller than the maximum particle velocity:
1/
√

3 ' 0.577 for P1 and approximately 0.861 for P3. As N increases, the maximum
eigenvalue eventually approaches one. Generally speaking, the PN approximation is
better for (i) longer times, (ii) larger scattering rates, and (iii) larger values of N .

We implement the plane-source problem assuming a purely scattering material
with σt = σa = 1.0, with no source (S = 0) and initial condition

F0(x, µ) = 0.5δ(x) + Ffloor , (4.8)

where Ffloor = 5.0× 10−5. Again a small, positive baseline value is used to maintain
stability of the scheme, which is otherwise compromised by small errors in the solution
of the optimization problem (2.11). Numerically, the delta function is represented with
cell average values 0.25/∆x in the two center cells with a common edge at x = 0.

Although the problem is defined on an infinite domain, boundary conditions must
be implemented in practice. To do so, we define a computational domain [−L/2, L/2],
where L = 2tfinal+0.2. This choice of L is large enough to ensure that the domain con-
tains non-negligible features of the solution. At the endpoints, we apply the boundary
condition

F1(x, t) = F2(x, t) = Ffloor . (4.9)

We choose the spatial mesh size ∆x based on the criteria that ∆x2/L be roughly con-
stant. For tfinal = 1.0, 2.0, 4.0, and 6.0, this leads to ∆x = 0.005, 0.007, 0.01, and 0.0135,
respectively.

Results for the plane source are given in Figures 4.5-4.8 at several different times
and for several choices of N . A semi-analytic solution [14] is also provided as a
benchmark. We make a conclusion similar to the one in [5]—namely, that the wave
effects in the MN profiles are less pronounced that in the PN profiles. For the most
part, the MN profiles are qualitatively and quantitatively better than the PN profiles.

5. Conclusions and Discussion
In this paper, we have presented computations of entropy-based (MN ) models for

a linear transport equation with slab geometry. These computations were performed
using a kinetic scheme that is formally second-order in space and can be first or second
order in time.

The key difficulty in our computations is in solving the dual optimization prob-
lem for the coefficients α. Our algorithm, which uses the built in MATLAB function
fminunc, does fairly well in most cases, but has trouble in regimes where the under-
lying kinetic distribution is beam-like. Even so, we are able to generate interesting
results for two important test problems.

We conclude from our results that MN models of all order may produce unphysical
shocks, although the magnitude of such shocks becomes smaller as the size of the
system increases. We observe also that, for even values of N , the MN models behave
better near the boundaries of the domain in the two-beam problem. However, it is
still questionable in this case, whether MN models produce better results than PN

models, which are cheaper to simulate on serial or moderately parallel architectures.
For the plane-source problem, it appears that the MN models yield better results
than PN .

Future work in this area is focused mainly on the solving the dual problem. It
should be noted that some numerical work already exists; see, for example, [1,19] and
references therein. While MATLAB provides an excellent interface for learning, the
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Fig. 4.5. Planesource solution at t = 1.0. Red crosses are MN . Blue circles are PN . Solid
black is the semi-analytic solution. The reader is referred to online version for color interpretation.

computational effort required for the dual problem limits experimentation. Thus it
will be necessary in the future to implement the scheme with a compiled language.
Future efforts also include parallel implementation, which, as discussed in the Intro-
duction, is one of the motivating factors for studying entropy-based methods.
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Fig. 4.6. Planesource solution at t = 2.0. Red crosses are MN . Blue circles are PN . Solid
black is the semi-analytic solution. The reader is referred to online version for color interpretation.
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Fig. 4.7. Planesource solution at t = 4.0. Red crosses are MN . Blue circles are PN . Solid
black is the semi-analytic solution. The reader is referred to online version for color interpretation.
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Fig. 4.8. Planesource solution at t = 10.0. Red crosses are MN . Blue circles are PN . Solid
black is the semi-analytic solution. The reader is referred to online version for color interpretation.
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6. Appendix: Proof of Theorem 4.1
The sole purpose of this appendix is to prove 4.1. We first show that the moments

{u1, . . . , uN , uN+1(u)} are continuous at steady-state. Let f(u) = [f0(u), . . . , fN (u)]T

be the flux for the MN system. Using the recursion relation for the Legendre polyno-
mials [3], we can write

fl(u) ≡
〈
µmlGα̂(u)

〉
=

u1 , l = 0
l + 1
2l + 1

ul+1 +
l

2l + 1
ul−1 , l > 0 .

(6.1)

For any x ∈ [x1, x2] and any ε > 0 such that x1 < x− ε < x + ε < x2, weak solutions
of the steady state MN model satisfy

f(u(x + ε))− f(u(x− ε)) = −
∫ x+ε

x−ε

σtu dξ +
∫ x+ε

x−ε

σs

2
Qu + s dξ . (6.2)

If the quantities on the right are bounded, then letting ε → 0 shows that the fluxes will
be continuous. Using (6.1), one may then conclude that u1, ..., uN+1 are continuous
at steady-state. However, nothing can be said about u0.

We now show that if u0 is discontinuous, then the mapping (4.2) cannot be
injective. Define the quantities

ū :=
[
u1

u0
, . . . ,

uN

u0

]T

, ᾱ := [α̂1, . . . , α̂N ]T , (6.3)

m̄ := [m1, . . . ,mN ]T , Gᾱ := exp(ᾱT m̄) . (6.4)

Then it is straight-forward to see that

ū =
〈m̄Gᾱ)〉
〈Gᾱ〉

=: Φ(ᾱ) . (6.5)

The Jacobian of Φ is positive definite, since for any nonzero vector v ∈ RN−1,

vT ∂Φ
∂ū

v =
〈Gᾱ〉〈(vT m̄)2Gᾱ〉 − 〈vT m̄Gᾱ〉2

〈Gᾱ〉2
> 0. (6.6)

This inequality follows by applying the Cauchy-Schwarz inequality to the second term
of the numerator with g1 := G

1/2
ᾱ (vT m̄) and g2 := G

1/2
ᾱ . The fact that g1 and g2 can-

not be co-linear implies that the numerator is positive. Meanwhile, the denominator
is obviously positive.

The fact that Jacobian is positive definite means that Φ can be inverted globally
to determine ᾱ as a smooth function of ū. Hence the normalized moment

χ(ū) :=
uN+1

u0
≡ 〈mN+1Gᾱ〉

〈Gᾱ〉
, (6.7)

which depends only on ᾱ, can be expressed as a function of ū only, rather than u. We
denote this function by χ; it is a generalized Eddington factor. Now for 1 ≤ k ≤ N ,
the ratios

uN+1

uk
≡ χ(ū)

ūk
(6.8)
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are all continuous because, as already proven, the moments {u1, . . . , uN+1} are all
continuous. In addition, these ratios depend only on ū. Hence if the mapping (4.2)
is injective, ū must also be continuous and, hence, u0 as well. This proves the result
by contraposition.
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