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Abstract

The kinetic flux vector splitting (KFVS) scheme, when used for quantum Euler equa-

tions, as was done by Yang et al [22], requires the integration of the quantum Maxwellians

(Bose-Einstein and Fermi-Dirac distributions), giving a numerical flux much more compli-

cated than the classical counterpart. As a result, a nonlinear 2 by 2 system that connects

the macroscopic quantities temperature and fugacity with density and internal energy needs

to be inverted by iterative methods at every spatial point and every time step. In this paper,

we propose to use a simple classical KFVS scheme for the quantum hydrodynamics based

on the key observation that the quantum and classical Euler equations share the same form

if the (quantum) internal energy rather than temperature is used in the flux. This moti-

vates us to use a classical Maxwellian – that depends on the internal energy rather than

temperature – instead of the quantum one in the construction of KFVS, yielding a KFVS

which is purely classical. This greatly simplifies the numerical algorithm and reduces the

computational cost. The proposed schemes are tested on the 1-D shock tube problem for

the Bose and Fermi gases in both classical and nearly degenerate regimes.

1 Introduction

The quantum Euler equations describe the hydrodynamics of a quantum gas. It can be de-
rived via the Chapman-Enskog expansion [2] as the leading order approximation of the quantum
Boltzmann equation. Here we mainly consider two kinds of gases: the Bose gas and the Fermi
gas. The Bose gas is composed of Bosons, which have an integer value of spin, and obey the
Bose-Einstein statistics. The Fermi gas is composed of Fermions, which have half-integer spins
and obey the Fermi-Dirac statistics. Many physicists have studied the transport processes in
quantum gases, e.g. [11, 18, 21, 20]. In [21] Uehling and Uhlenbeck formulated the quantum
Boltzmann equation by heuristic arguments from the classical Boltzmann equation and, using
the Chapman-Enskog expansion, gave the corresponding quantum hydrodynamical equations in
first (quantum Euler) and second (quantum Navier-Stokes) order approximations, and formal
expressions for the viscosity and heat conductivity coefficients.
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Kinetic schemes (or Boltzmann schemes) is a general numerical procedure for solving hyper-
bolic systems (see for example [7]). For the classical compressible Euler equations, Deshpande
and Raul [5] proposed the kinetic theory based fluid-in-cell method and subsequently Deshpande
[4] improved it by adding antidiffusive terms. Finally, this work led to the development of kinetic
flux vector splitting (KFVS) scheme by Deshpande [4]. Variants of this scheme have also been
studied by many other people in the 1980’s, such as Pullin’s flux equilibrium method (FEM)
[16], Reitz’s kinetic numerical method (KNM) [17], Aristov and Tcheremissine’s method using
the discrete velocities of particles [1], Elizarova and Chetverushkin’s kinetic-consistent finite dif-
ference scheme [6]. Later in early 90’s, Perthame considered yet another line of development by
replacing the real Maxwellian with the characteristic function [13] [14], where he also proved the
entropy and positivity properties of the scheme.

A direct generalization of the KFVS scheme to the quantum Euler equations was done by
Yang et al in [22, 23]. They adopted the KFVS of Deshpande with the classical Maxwellian
replaced by the quantum ones (the Bose-Einstein or the Fermi-Dirac distribution). There are
a few difficulties in this formulation. First, due to the complexity of the quantum functions,
the numerical fluxes are not as easy to evaluate as the classical ones. Second, to obtain the
macroscopic quantities, in particular, temperature and fugacity, one has to invert a nonlinear 2
by 2 system at every spatial point and every time step, which is very computationally intensive.
Furthermore, finding a good initial guess for the iterative method is not an easy task.

In this work we propose a much simpler KFVS scheme for the quantum Euler equations. Our
formulation is based on the observation that the quantum and classical Euler equations share the
same form if the macroscopic variables are properly chosen. Specifically, we still use the classical
Maxwellian, except that the temperature which usually appears in the classical Maxwellian is
replaced by the (quantum) internal energy. This Maxwellian has the same first five moments
and, when the Knudsen number approaches zero, yields the same quantum Euler equations as
the quantum Maxwellian. As a result, the quantum Euler system can be evolved by a classical
KFVS (with the quantum internal energy instead of temperature computed), except at the final
output time, if so desired, one needs to compute the temperature or fugacity.

The paper is organized as follows. In the next section, we give a brief introduction to the
quantum Boltzmann equation, its basic properties, the corresponding quantum Maxwellians and
the quantum Euler equations. In section 3, after a description of the classical KFVS, we discuss
some numerical difficulties in previous quantum KFVS schemes, and then give our new KFVS
method. A higher order extension is also included. In section 4, the proposed schemes are tested
on the 1-D shock tube problem for the Bose and the Fermi gases in both classical and nearly
degenerate regimes. Finally some concluding remarks are given in section 5.

2 Quantum Euler Equations

In this section we review some basic facts about the quantum Boltzmann and quantum Euler
equations. These will be helpful to introduce the KFVS scheme.
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2.1 Quantum Boltzmann Equation

The Quantum Boltzmann equation (QBE), also known as the Uehling-Uhlenbeck equation
[21], describes the time evolution of a dilute Bose or Fermi gas,

ft + v · ∇xf = Q(f) x ∈ Ω ⊂ Rdx , v ∈ Rdv (2.1)

Here f(t, x, v) is the number density depending on time t, position x and particle velocity v.
The collision operator Q is

Q(f)(v) =
∫

Rdv

∫
Sdv−1

B(v1 − v, ω) [f ′f ′1(1± ε0f)(1± ε0f1)− ff1(1± ε0f
′)(1± ε0f

′
1)] dωdv1

(2.2)
where ε0 = hdv

mdv g
, h is the Planck constant, m is the particle mass, and g is the spin degeneracy

(g = 2s+1, s is the principal spin quantum number of the particle, e.g. s = 1
2 for electron, s = 1

for photon). In this paper, the upper sign will always correspond to the Bose gas while the lower
sign to the Fermi gas. Since f is the number density, it has to be nonnegative. For the Fermi
gas, f ≤ 1

ε0
by the Pauli exclusion principle. f , f1, f ′ and f ′1 are the shorthand notations for

f(t, x, v), f(t, x, v1), f(t, x, v′) and f(t, x, v′1) respectively. (v, v1) and (v′, v′1) are the velocities
before and after collision. They are related by the following parametrization:

v′ = v + [(v1 − v) · ω]ω (2.3)

v′1 = v1 − [(v1 − v) · ω]ω (2.4)

where ω is the unit vector along v − v′. The collision kernel B is a nonnegative function which
only depends on |v1 − v| and | cos θ|,

B(v1 − v, ω) = 2|v1 − v|| cos θ|σ(|v1 − v|, 1− 2| cos θ|) (2.5)

where θ is the angle between v1 − v and ω, while σ is the scattering cross-section. In the hard
sphere model, B(v1 − v, ω) = 2r2|(v1 − v) · ω| = 2r2|v1 − v|| cos θ|, where r is the radius of the
particle.

One can derive a few properties of the QBE similar to the classical Boltzmann equation.

• Weak form of the collision operator,∫
Rdv

Q(f)φdv =
1
4

∫
Rdv

∫
Rdv

∫
Sdv−1

(φ + φ1 − φ′ − φ′1)B(v1 − v, ω)

·[f ′f ′1(1± ε0f)(1± ε0f1)− ff1(1± ε0f
′)(1± ε0f

′
1)]dωdv1dv (2.6)

for any test function φ.

• A collision invariant is a continuous function φ(v) such that φ + φ1 = φ′ + φ′1 for all v, v1

and ω. Any collision invariant is a function of the form φ(v) = α + β · v + γ|v|2, where
α, β, γ are arbitrary real numbers.

• In particular, ∫
Rdv

Q(f)dv =
∫

Rdv

Q(f)vdv =
∫

Rdv

Q(f)|v|2dv = 0 (2.7)
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and if f is a solution of the QBE, the following local conservation laws hold

∂t

∫
Rdv

fdv +∇x ·
∫

Rdv

vfdv = 0

∂t

∫
Rdv

vfdv +∇x ·
∫

Rdv

v ⊗ vfdv = 0 (2.8)

∂t

∫
Rdv

1
2
|v|2fdv +∇x ·

∫
Rdv

v
1
2
|v|2fdv = 0

Define

density ρ =
∫

Rdv

fdv, (2.9)

macroscopic velocity u =

∫
Rdv

vfdv

ρ
, (2.10)

stress tensor P =
∫

Rdv

(v − u)⊗ (v − u)fdv, (2.11)

specific internal energy e =

∫
Rdv

1
2 |v − u|2fdv

ρ
, (2.12)

heat flux q =
∫

Rdv

1
2
(v − u)|v − u|2fdv (2.13)

the above system can then be recast as

∂tρ +∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u + P) = 0 (2.14)

∂t

(
ρe +

1
2
ρu2

)
+∇x ·

((
ρe +

1
2
ρu2

)
u + Pu + q

)
= 0

2.1.1 Boltzmann’s H-Theorem and Quantum Maxwellians

The Boltzmann’s H-Theorem in the quantum context takes the following form:∫
Rdv

ln
f

1± ε0f
Q(f)dv ≤ 0 (2.15)

Let η = − 1
ε0

[(ε0f) ln(ε0f)∓ (1± ε0f) ln(1± ε0f)], then

d

dt

∫
Rdv

η(f)dv = −
∫

Rdv

ln
ε0f

1± ε0f
Q(f)dv ≥ 0 (2.16)

where
∫

Rdv
η(f)dv is the entropy.

It is well-known that the entropy attains its maximum if and only if f reaches the local
equilibrium. This holds when ln f

1±ε0f is a collision invariant. So one can assume

f

1± ε0f
= Ae−a(v−c)2 (2.17)

where A, a, c are the unknowns to be determined.
Clearly as ε0 → 0, (2.17) becomes f = Ae−a(v−c)2 , which implies that f is just the classical

Maxwellian. For an ideal monatomic gas c = u, a = m
2kBT and A = ρ

(
m

2πkBT

) dv
2

, where T is
the temperature, kB is the Boltzmann constant.
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(2.17) can be rewritten as

f = Mq =
1

A−1ea(v−c)2 ∓ ε0
(2.18)

Using the definitions of ρ and u, one can easily obtain c = u. Moreover, a = m
2kBT is also valid

in the quantum case by statistical independence (see [3] pp. 333-335). To simplify the notation,
we use a new variable z = ε0A rather than A from now on. Therefore, the quantum Maxwellian
is given by

Mq =
1
ε0

1

z−1e
m(v−u)2

2kBT ∓ 1
=

1

A−1e
m

2kBT (v−u)2 ∓ ε0
. (2.19)

This is the well-known Bose-Einstein (‘-’) and Fermi-Dirac (‘+’) distributions.

2.2 The Quantum Euler Equations

Substituting Mq into (2.9)−(2.13), one can express all the moments in terms of T , u and z:

ρ =
g

λdv
Q dv

2
(z) (2.20)

ρu =
g

λdv
Q dv

2
(z)u (2.21)

ρe =
dv

2m
kBT

g

λdv
Q dv+2

2
(z) (2.22)

P =
kBT

m

g

λdv
Q dv+2

2
(z)I (2.23)

q = 0 (2.24)

where I is the identity matrix, λ = h√
2πmkBT

is the thermal de Broglie wavelength, Qν(z) denotes
the Bose-Einstein function Gν(z) and the Fermi-Dirac function Fν(z) respectively,

Gν(z) =
1

Γ(ν)

∫ ∞

0

xν−1

z−1ex − 1
dx 0 < z < 1, ν > 0; z = 1, ν > 1 (2.25)

Fν(z) =
1

Γ(ν)

∫ ∞

0

xν−1

z−1ex + 1
dx 0 < z < ∞, ν > 0 (2.26)

where Γ(ν) =
∫∞
0

xν−1e−xdx is the Gamma function.
In physics z is called the fugacity. The physical range of interest for a Bose gas is 0 < z ≤ 1,

where z = 1 corresponds to the degenerate case (the onset of Bose-Einstein condensation). For
the Fermi gas we don’t have such a restriction and the degenerate case is obtained when z is very
large. For small z (0 < z < 1), the integrand in (2.25) and (2.26) can be expanded in powers of
z,

Gν(z) =
∞∑

n=1

zn

nν
= z +

z2

2ν
+

z3

3ν
+ . . . (2.27)

Fν(z) =
∞∑

n=1

(−1)n+1 zn

nν
= z − z2

2ν
+

z3

3ν
− . . . (2.28)

Thus, for z � 1, both functions behave like z itself and one recovers the classical limit. See [12]
for more details about these functions.
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On the other hand, equation (2.20) can also be written as

Q dv
2

(z) = ρ
λdv

g
= ρ

(
m

2πkBT

) dv
2

ε0 (2.29)

where ρ
(

m
2πkBT

) dv
2

is the coefficient of the classical Maxwellian, which should be an O(1) quan-
tity. Now if ε0 → 0, then Q dv

2
(z) → 0, which means z � 1 by the monotonicity of the function

Qν . This is consistent with the fact that one gets the classical Boltzmann equation in QBE (2.1)
by letting ε0 → 0.

Now with the above computed moments (2.20)−(2.24), system (2.14) can be closed and gives
the quantum compressible Euler equations. Note here the macroscopic quantities ρ, e and T , z

are related by a nonlinear 2 by 2 system:

ρ =
g

λdv
Q dv

2
(z) (2.30)

e =
dv

2m
kBT

Q dv+2
2

(z)

Q dv
2

(z)
(2.31)

3 KFVS Schemes

In this section, we give a KFVS scheme for the quantum Euler equations. We will first review
some previous kinetic schemes for both classical and quantum fluid equations.

3.1 Classical KFVS Schemes

To illustrate the basic idea, consider the 1-D classical compressible Euler equations, ρ

ρu
1
2ρkBT

m + 1
2ρu2


t

+

 ρu

ρu2 + ρkBT
m(

3
2ρkBT

m + 1
2ρu2

)
u


x

= 0 (3.1)

This system can be obtained by taking the moments of

∂tMc + v∂xMc = 0 (3.2)

where Mc is the classical Maxwellian (assume dv = 1),

Mc = ρ

√
m

2πkBT
e
−m(v−u)2

2kBT (3.3)

To derive a kinetic scheme, we divide the spatial domain into a number of cells [xi− 1
2
, xi+ 1

2
],

i ∈ Z. Each cell is centered at xi with a uniform length ∆x. Then a first order upwind scheme
for equation (3.2) can be written as

∂tMi +
v+|v|

2 Mi + v−|v|
2 Mi+1 − v+|v|

2 Mi−1 − v−|v|
2 Mi

∆x
= 0 (3.4)

Multiply (3.4) by
(
1, v, 1

2v2
)T and integrate with respect to v, one can get

∂tUi +
Fi+ 1

2
− Fi− 1

2

∆x
= 0 (3.5)
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with

Ui =
(

ρi, ρiui,
1
2
ρi

kBTi

m
+

1
2
ρiu

2
i

)T

(3.6)

Fi+ 1
2

=
∫ ∞

−∞

(
1, v,

1
2
v2

)T
v + |v|

2
Midv +

∫ ∞

−∞

(
1, v,

1
2
v2

)T
v − |v|

2
Mi+1dv (3.7)

Define

F±
i =

∫ ∞

−∞

(
1, v,

1
2
v2

)T
v ± |v|

2
Midv (3.8)

then Fi+ 1
2

= F+
i + F−

i+1. Plugging (3.3) into (3.8), F±
i can be evaluated in closed form in terms

of error functions as [4]

F±
i =

 ρiuiA
±
i ± ρiBi(

ρi
kBTi

m + ρiu
2
i

)
A±

i ± ρiuiBi(
3
2ρi

kBTi

m ui + 1
2ρiu

3
i

)
A±

i ±
(

1
2ρiu

2
i + ρi

kBTi

m

)
Bi

 (3.9)

where

A±
i =

1
2

(1± erf(si)) , Bi = e−s2
i

√
kBT

2πm
and si = ui

√
m

2kBTi
(3.10)

3.2 Quantum KFVS Schemes

3.2.1 An Old Quantum KFVS Scheme

A direct generalization of the above scheme to the quantum system was done by Yang et al
in [22]. They obtained the numerical fluxes by integrating the quantum Maxwellian Mq. For
instance, when dv = 1 the first component of F± at cell i is

F
±(1)
i =

√
πkBTi

2m uiA
±
i + kBTi

m B±
i (3.11)

A±
i = 1

ε0
(Q 1

2
(zi)± sgn(ui)Q 1

2
(hi, zi)), B±

i = ± 1
ε0

Q̃1(hi, zi) (3.12)

where hi = mu2
i

2kBTi
, Qν(h, z) and Q̃ν(h, z) are the incomplete Bose-Einstein or Fermi-Dirac func-

tions,

Qν(h, z) =
1

Γ(ν)

∫ h

0

xν−1

z−1ex ∓ 1
dx, Q̃ν(h, z) = Qν(z)−Qν(h, z) (3.13)

These functions are not as easy to evaluate as the error function. Furthermore, one needs the
values of ui, Ti and zi to evaluate F±

i . While ui can be computed directly from the conserved
quantities (density, momentum and energy), to get zi and Ti one has to solve the nonlinear 2
by 2 system (2.30) (2.31) at every spatial point and every time step. This is very expensive and
selecting a good initial guess for the iterative method is sometimes tricky due to the complexity
of the function Qν .
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3.2.2 A New Quantum KFVS Scheme

By the definition of the moments in (2.20)−(2.24), one finds that the stress tensor P = 2
dv

ρeI,
so the quantum Euler equations can be written in terms of ρ, u and e as

∂tρ +∇x · (ρu) = 0

∂t(ρu) +∇x ·
(

ρu⊗ u +
2
dv

ρeI

)
= 0 (3.14)

∂t

(
ρe +

1
2
ρu2

)
+∇x ·

((
dv + 2

dv
ρe +

1
2
ρu2

)
u

)
= 0

sound speed c =
√

γ
p

ρ
, γ =

dv + 2
dv

, p =
2
dv

ρe

which are the same as the classical Euler equations! This suggests our new idea: we can just
use the classical Maxwellian instead of the quantum Maxwellian. To be specific, replace the
temperature T with the internal energy e in the classical Maxwellian using relation e = dv

2mkBT

(true for classical monatomic gases) and get

Mc = ρ

(
dv

4πe

) dv
2

e−
dv
4e (v−u)2 (3.15)

then thisMc has the same (first five) moments asMq and can be used to construct the quantum
KFVS scheme. Correspondingly, we only need to replace T with e in the fluxes of the classical
KFVS (3.9). Here we give a general formula for velocity space of dimension dv,

F±
i =


ρiuiA

±
i ± ρiBi(

2
dv

ρiei + ρiu
2
i

)
A±

i ± ρiuiBi(
dv+2

dv
ρiuiei + 1

2ρiu
3
i

)
A±

i ±
(

1
2ρiu

2
i + dv+1

dv
ρiei

)
Bi

 (3.16)

where

A±
i =

1
2

(
1± erf

(
ui

√
dv

4ei

))
, B = e

− dv
4ei

u2
i

√
ei

dvπ
(3.17)

It is important to notice that z and T are not present at all in this new scheme, thus one
does not need to invert the 2 by 2 system (2.20) (2.31) during the time evolution. If they are
desired variables for output, one only needs to convert between ρ, e and z, T at the final output
time.

Remark 3.1: If one uses a BGK approximation to the quantum Boltzmann equation (2.1),
then the observation in this subsection suggests that the quantum BGK equation

ft + v · ∇xf =
1
τ

(Mq − f) (3.18)

and the classical BGK equation

ft + v · ∇xf =
1
τ

(Mc − f) (3.19)

where Mc is defined by (3.15), have the same fluid limit as the relaxation parameter τ → 0,
as long as one relates the internal energy e and temperature T by (2.31). Thus our approach
somewhat resembles the Jin-Xin relaxation scheme for hyperbolic systems of conservation laws
[8].

Remark 3.2: One does not have to use a kinetic scheme for the quantum Euler equations
(3.14). Clearly any shock capturing method can be used.
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3.2.3 High Resolution Schemes

The above first order method can be easily extended to higher orders. To do so, we rewrite
the fluxes in (3.5) as Fi+ 1

2
= F+

i+ 1
2
+F−

i+ 1
2
. In the first order scheme, the positive flux F+

i+ 1
2

= F+
i

and the negative flux F−
i+ 1

2
= F−

i+1; F±
i is given by (3.16). One can use the slope limiter method

[10] to get a formally second order TVD scheme:

F
+(j)

i+ 1
2

= F
+(j)
i +

∆x

2
σ

+(j)
i (3.20)

F
−(j)

i+ 1
2

= F
−(j)
i+1 − ∆x

2
σ
−(j)
i+1 (3.21)

j = 1, 2, 3. The slope limiter σ±i is defined as

σ
+(j)
i =

F
+(j)
i+1 − F

+(j)
i

∆x
φ

(
F

+(j)
i − F

+(j)
i−1

F
+(j)
i+1 − F

+(j)
i

)
(3.22)

σ
−(j)
i =

F
−(j)
i − F

−(j)
i−1

∆x
φ

(
F
−(j)
i+1 − F

−(j)
i

F
−(j)
i − F

−(j)
i−1

)
(3.23)

where φ(θ) is the flux limiter function, e.g. the van Leer limiter [9] is given by

φ(θ) =
|θ|+ θ

1 + |θ|
(3.24)

4 Numerical Examples

In this section we present some numerical results using the new quantum KFVS schemes.
The test example is the 1-D shock tube problem with the initial condition{

(ρl, ul, Tl) = (1, 0, 1) if 0 ≤ x ≤ 0.5
(ρr, ur, Tr) = (0.4, 0, 0.6) if 0.5 < x ≤ 1

(4.1)

In all of the simulations, we assume the dimension of the velocity space dv = 3; the particle
mass m, spin degeneracy g and Boltzmann constant kB are all taken to be 1. We adjust the
Planck constant h to get z that corresponds to different physical regimes.

Besides the directly computed macroscopic quantities, we will show the fugacity z and tem-
perature T as well. The next subsection is devoted to a discussion of inverting the system (2.30)
(2.31).

4.1 Computing z and T

First, (2.30) (2.31) lead to

Q
dv+2

dv
dv
2

(z)

Q dv+2
2

(z)
=

ρ
2

dv

e

dvh2

g
2

dv 4πm2
(4.2)

In our computation, we treat the left hand side of (4.2) as one function of z, and invert it by the
secant method. Once z is obtained, T can be computed easily using for example (2.30).

The next question is how to evaluate the quantum function Qν(z)? Expansions (2.27) and
(2.28) are valid for the Bose and Fermi gases in the classical regime (z � 1) and the Bose gas
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in the nearly degenerate regime (z close to but less than 1). Since (2.27) (2.28) are convergent
series, one can just terminate the approximation whenever the difference of two successive terms
is less than a tolerance. For the Fermi gas in the degenerate regime, the well-known Sommerfeld
expansion [19] is widely used by physicists to approximate the Fermi-Dirac integral. However,
this expansion works well when z is extremely large (ln z � 1). In the nearly degenerate regime
z is not very large, we compute the functions by numerical integration. The approach adopted
here is taken from [15] (chapter 6.10).

4.2 Bose Gas in Classical Regime

Let h = 1, then the initial condition (4.1) corresponds to zl = 0.0621, zr = 0.0536. Here
z � 1 characterizes the classical regime. Figure 1 shows the computed density ρ, velocity u,
internal energy e, pressure P , fugacity z and temperature T at time t = 0.18. The behaviors are
similar to a classical gas.

4.3 Bose Gas in Nearly Degenerate Regime

Increase h to 3.3, then the initial condition (4.1) corresponds to zl = 0.9906, zr = 0.9611. z

close to 1 implies that the gas is in the nearly degenerate regime. Figure 2 shows the computed
density ρ, velocity u, internal energy e, pressure P , fugacity z and temperature T at time
t = 0.18. The solutions are quantitatively quite different from those in the classical regime.

4.4 Fermi Gas in Classical Regime

Let h = 1, the initial condition (4.1) corresponds to zl = 0.0649, zr = 0.0557, which is in the
classical regime. Figure 3 shows the computed density ρ, velocity u, internal energy e, pressure
P , fugacity z and temperature T at time t = 0.18. We can see that the behaviors of the Fermi
gas and the Bose gas are more or less the same in this regime.

4.5 Fermi Gas in Nearly Degenerate Regime

Increase h to 6, the initial condition (4.1) corresponds to zl = 901.2840, zr = 459.5218. z is
large, thus the Fermi gas is in the nearly degenerate regime. Figure 4 shows the computed density
ρ, velocity u, internal energy e, pressure P , fugacity z and temperature T at time t = 0.18. Again
the solutions are very different from those in the classical regime.

4.6 Another Example for Fermi Gas in Nearly Degenerate Regime

For comparison, we solve the Example 4 in [22] with our new scheme. The initial condition
is given by {

(ρl, ul, Tl) = (3.086455, 0, 8.053324) if 0 ≤ x ≤ 0.5
(ρr, ur, Tr) = (3.084272, 0, 8.067390) if 0.5 < x ≤ 1

(4.3)

This corresponds to zl = 2000, zr = 1500. Figure 5 shows the computed density ρ, velocity
u, fugacity z and temperature T at time t = 0.1. The results are comparable to those of [22]
computed with a fifth-order WENO scheme.
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Figure 1: Bose gas in the classical regime: zl = 0.0621, zr = 0.0536. Density ρ, velocity u,
internal energy e, pressure P , fugacity z and temperature T . t = 0.18, ∆t = 0.0002, ∆x = 0.005.
Solid line: exact solution; ◦: the high resolution scheme with the van Leer limiter.
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Figure 2: Bose gas in the nearly degenerate regime: zl = 0.9906, zr = 0.9611. Density ρ,
velocity u, internal energy e, pressure P , fugacity z and temperature T . t = 0.18, ∆t = 0.0002,
∆x = 0.005. Solid line: exact solution; ◦: the high resolution scheme with the van Leer limiter.
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Figure 3: Fermi gas in the classical regime: zl = 0.0649, zr = 0.0557. Density ρ, velocity u,
internal energy e, pressure P , fugacity z and temperature T . t = 0.18, ∆t = 0.0002, ∆x = 0.005.
Solid line: exact solution; ◦: the high resolution scheme with the van Leer limiter.
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Figure 4: Fermi gas in the nearly degenerate regime: zl = 901.2840, zr = 459.5218. Density ρ,
velocity u, internal energy e, pressure P , fugacity z and temperature T . t = 0.18, ∆t = 0.0002,
∆x = 0.005. Solid line: exact solution; ◦: the high resolution scheme with the van Leer limiter.
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Figure 5: Example 4 in [22]. The Fermi gas in the nearly degenerate regime: zl = 2000,
zr = 1500. Density ρ, velocity u, fugacity z and temperature T . t = 0.1, ∆t = 0.0002,
∆x = 0.005. Solid line: exact solution; ◦: the high resolution scheme with the van Leer limiter.
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5 Conclusion

In this paper, a Kinetic Flux Vector Splitting scheme was proposed for the quantum Euler
equations. The key observation here is that the quantum and classical Euler equations can
be written in the same form as long as one uses density, velocity and internal energy as the
variables. This motivates us to use the classical Maxwellian – based on the internal energy rather
than temperature – to construct the numerical flux. This avoids the complexity of evaluating
the quantum functions and the overall scheme is basically classical except at the final output
time one needs to invert the nonlinear system ρ = ρ(z, T ), e = e(z, T ) to get the fugacity
and temperature if they are desired. Numerical examples for the 1-D shock tube problem are
presented to demonstrate that the behaviors of both the Bose and Fermi gases in different
physical regimes can be captured well with our scheme.
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