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Abstract

We construct a numerical scheme based on the Liouville equation of geometric optics coupled with
the Geometric Theory of Diffraction (GTD) to simulate the high frequency linear waves diffracted by
a corner. While the reflection boundary conditions are used at the boundary, a diffraction condition,
based on the GTD theory, is introduced at the vertex. These conditions are built into the numerical
flux for the discretization of the geometrical optics Liouville equation. Numerical experiments are used
to verify the validity and accuracy of this new Eulerian numerical method which is able to capture the
physical observables of high frequency and diffracted waves without fully resolving the high frequency
numerically.

1 Introduction

In this paper, we construct a numerical scheme based on the Liouville equation to approximate the high
frequency wave equation in two-dimension:

uy — c(x)?Au = 0, t >0, (1.1)
u(0) = A(x,0)e?0/ (1.2)
Do) = Blx,0)ex0rs (13)

here ¢(x) is the local wave speed and ¢ < 1. When the essential frequencies in the wave field are relatively
high, and thus the wavelength is short compared to the size of the computational domain, direct simulation
of the standard wave equation will be very costly, and approximate models for wave propagation based on
geometric optics (GO) are usually used [9, 12].

We are concerned with the case when there are some wedges in the computational domain, which contain
tips (vertices) and boundaries. When waves hit the vertices, there will be diffractions in all directions.

One of the approximate models for high frequency wave equation is the Liouville equation, which arises
in phase space description of geometric optics (GO) [9, 34]:

fi4+Hy -Vyf —Hy-Vof =0, t>0, x,veR%, (1.4)

where the Hamiltonian H possesses the form

H(x,v) = ¢(x)|v] :c(x)\/vf—kv%—k-n—i-vﬁ, (1.5)

f(t,x,v) is the energy density distribution of particles depending on position x, time ¢t and slowness vector
V.
The bicharacteristics of this Liouville equation (1.4) satisfies the Hamiltonian system:

dx v dv

= C(X)M7 a

== = —cylvl. (1.6)
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The derivation of GO does not take into account the effects of geometry of the domain and boundary
conditions, which lead to discontinuous GO solutions in some regions. Diffractions are lost in the infinite
frequency approximation such as the Liouville equation. In this case, correction terms can be derived, as
done in the Geometric Theory of Diffraction (GTD) by Keller in [25]. The GTD provides a systematic
technique for adding diffraction effects to the GO approximations.

The methods for computing the GO solutions can be divided into Lagrangian and Eulerian methods.

Lagrangian methods are based on the ODEs (1.6). The simplest Lagrangian method is the ray tracing
method where the ODEs in (1.6) together with ODEs for the amplitude are solved directly with numerical
methods for ODEs. This approach is very popular in standard free space GO, [6], and the diffractions,
[2, 8]. The ray tracing method gives the phase and amplitude of a wave along a ray tube, and interpolation
must be applied to obtain those quantities everywhere when rays diverge. Such interpolations can be very
complicated for diverging rays. On the other hand, in the ray tracing method, when a ray hits the vertex of
the corner, it will produce diffraction rays in all directions. In computations, one incident ray must be divided
into many diffraction rays to simulate the diffractions, which adds the computational cost dramatically.

In the last decade, Eulerian methods based on PDEs have been proposed to avoid some of the drawbacks
of the ray tracing method [1]. Eulerian methods discretize the PDEs on fixed computational grids to control
errors everywhere and there is no need for interpolation. The simplest Eulerian method solves the eikonal
and transport equations in GO. This technique has been used in standard GO [12]. However, the eikonal
and transport equations pick up the so-called viscosity solution [15], which are not adequate beyond caustics.
Rather, the solutions become multivalued, and more elaborate schemes must be devised. Recently several
phase space based level set methods for high frequency waves, in particular the multivalued solutions in GO
are based on the Liouville equations, see [5, 10, 13, 18, 19, 32].

More recently, a class of Hamiltonian-preserving numerical schemes for the Liouville equation (1.4) were
developed to take into account partial transmissions and reflections [17, 20, 21, 22] for high frequency waves
through interfaces.

There are very few results on Eulerian methods for diffractions. In this direction, we mention recent
numerical methods for creeping waves [30, 31, 40]. For curved interfaces, the authors [23] constructed an
Eulerian method for diffraction at interfaces that takes into consideration of partial transmissions, reflections
and diffractions. The idea was to revise the transmission/reflection interface condition used by Jin and Wen
[20, 21] for the Liouville equation in the case of critical and tangent angles to account for diffractions. The
diffraction coefficients and decay rates derived in GTD are used in the interface condition. These interface
conditions are then built into the numerical fluxes for the Liouville solver. Such an Eulerian computational
method is able to capture the moments of high frequency waves without—at least away from the interfaces—
numerically resolving the high frequencies, yet still captures the correct interface scatterings and diffractions.
In [24], we also derived such a numerical scheme for high frequency wave diffraction by a half plane.

This paper is to further our previous work [24] to a different geometry, namely, waves through a corner.
When a wave hits a corner, it usually reflects. However, at the vertex of the corner, it generates diffracted
waves into all directions. In particular, the diffracted waves can reach the shadow zone-the zone that the
GO theory cannot cover. We provide a diffraction condition, based on the GTD theory, at the vertex to
reflect this diffraction nature. We then build this condition, as well as the reflection boundary condition,
into the numerical flux of the Liouville solver, in order to capture the diffractions.

This paper is organized as follows. The GO approximations by the Wigner transform for wave equation
are sketched in Section 2. In Section 3, we present the behavior of waves at a corner based on the GTD
theory, and provide the conditions for (1.4) that account for reflections at the boundary of the corner and
diffractions at the vertex of the corner. In Section 4, the diffraction conditions derived in the previous section
is built into the numerical flux in the two space dimension. In section 5, we study the positivity and [*°
stability of the numerical scheme. Numerical examples are given in section 6 to validate the model and to
verify the accuracy of the scheme against the full simulation based on the original wave equation (1.1)-(1.3).
Finally, we make some concluding remarks.



2 Geometric optics approximation of the wave equation in phase
space

Consider the two dimensional wave equation
ug — c(x)?Au=0, x¢€R* tcR, (2.1)
u’tzo =ur, ut’tzo =S
We introduce the new dependent variables
s=us, r=Vu,

to obtain the system

0
Bilt' - Vs =0,
(2.3)
L 95 give—0
——— —divr = 0.
c(x)? ot
The energy density is given by
1 1 1
E(x,t) = = —|u|* + = |Vul®. 2.4
(x.) = 5 ogghul® + 5190 (24)
Let w = (g—;‘l, g—;‘z, s), system (2.3) can be put in the form of a symmetric hyperbolic system
ow ow
A(x)— D,— =0, 2.5
)5+ X D, (25)

with initial data
w(0,x) = wo(x).
The matrix A(x) = diag(1,1, @), while each of the matrices D; is constant and symmetric with entries
either 0 or —1.
To study the GO limit of solution of (2.5), we assume that the coefficients of the matrix A(x) vary on

a scale much longer than the scale on which the initial data vary. Let ¢ be the ratio of these two scales.
Rescaling space and time coordinates (x,t) by x — ex,t — €t, one obtains

ow* ow*
AX)— -+ ;Dia—xi =0, (2.6)

»

we(0,%) = wo(>) or uo(g,x). (2.7)

€

Note that the parameter € does not appear explicitly in (2.6). It enters through the initial data (2.7). We
are interested in the initial data of the standard WKB form

w(0,x) = Ag(x)eSo@)/e, (2.8)
Following [33], one can study the GO limit of (2.6) by using the Wigner distribution matrix W¢:

1

Wtk = (52)" [ vweltoey2)wbe e/ dy, (2.9)

where n is the space dimension and W' is the conjugate transpose of w. Although W* is not positive definite,
it becomes so as € — 0.
The energy density for (2.6) is given by

E€(t,x) = %(A(x)we(t,x),we(t,x)) = %/Tr(A(X)WG(t,X,k))dk. (2.10)



Let
hH(l) We(t,x, k) = W(O)(t,x,k).

As € — 0, the high frequency limit of £¢(¢,x) is
EO(t,x) = % / Tr(Ax)WO (¢, x, k))dk = / at (t,x,k)dk, (2.11)

where the amplitude a™® (¢, x,k) is given by

a:t (ta X, k) = ﬁ /dyeik.yf:t (ta X, X — Y/27 k)f:t(tv X, X + y/2, k)a (212)
m
with
1 . V2 ou
folt,x,2,k) = \/;(Vu(t,z) )£ g ) (2.13)
and k = (cos 6, sin#)*. This shows that
at(t,x,k) = a” (t,x, k), (2.14)

and therefore one needs only to keep track of a*(¢,x,k). It satisfies the Liouville equation [33]

4

68% + e(x)k - Vyat — [K|Vye(x) - Via™ = 0. (2.15)

Therefore, a™ can be interpreted as phase space energy density distribution. It solves the Liouville
equations (1.4)-(1.5), with the zeroth moment giving the spatial energy density £(°)(t,x) as in (2.11).

The GO approximation is good when € is very small. For moderately small e, diffraction can not be
ignored in many applications. Clearly, the Liouville equation (2.15), valid at ¢ = 0, does not contain any
information about reflection, which occurs even for € = 0, nor diffraction which occurs for € > 0. It is not
valid near the vertex of the wedge. In the next section, we will discuss the behavior at a corner.

3 Wave behavior at a corner

In GO, a wave moves with its energy distribution governed by the Liouville equation (1.4). When an incident
wave hits the edge of a wedge, it will be completely reflected back [29]. According to the GTD, when the
wave hits the vertex of the wedge, it will produce diffracted waves into all directions (see Fig. 1),

The diffraction coefficients D, is given by Keller [27] as

e sin? z 1 1 2
00—«

Do(aa a) = +
2¢%7r | cos % —cos =% cos % — cos

O0+a+tm ’
q

with v = (2 — ¢)m, « is the incident angle, 0 is the diffracted angle, both of which are defined in (—7/2,7).
The upper sign applies when the boundary condition on the edge of the wedge is u = 0 (soft boundary
condition), while the lower sign applies if it is g—g =0 (hard boundary condition) on the edge of the wedge.

A half plane is the case for ¢ = 2, for which D, is given by

1 1
DE(6,a) = %[8065(0 —a) tese(0+ ).

In this paper, we only consider the case of a corner (v = /2,9 = 3/2). In this case, the diffraction
coefficient is

2e 1 1

97 cos 2 — cos 2(0 — ) :FCOS§7T—COS%(9+04+7T)

DE(6,a) = (3.16)
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Figure 1: Diffraction by corner

In the GTD, the considered wave propagation phenomena are the incident direct illumination, reflection,
and diffraction by vertex of the corner.

If féw < a < 0, the above diffraction coefficient is not valid when § = 7 + a or § = —« i.e. near the
shadow boundary and the reflection boundary, and if %7‘( < a < m, the diffraction coefficient is not correct
when 0 + « = 7 (the reflection boundary) or a« — § = 7 (the shadow boundary). There are boundary layer
near the shadow boundary and the reflection boundary, with thickness of order €'/2. When 0 < a < %77,
there are no shadow boundary and reflection boundary, the diffraction coefficient (3.16) is correct.

The Uniform Geometric Theory of Diffraction (UTD) [28] can overcome this difficulty by introducing
the transition functions. The uniform diffraction coefficient for UTD is given by

D(f,a)* = % t (%_Q))F[e_lra*'w — )] + cot (#)F[e‘%a‘(@ — )]
:F{ cot (W)F[(lmﬁw + a)] + cot (#)F[(lmf(@ + a)}} : ,
(3.17)
where the transition function
F(X) = 2iVX exp(iX) /; exp(—ir?)dr,

in which one takes the principle (positive) branch of the square root, and

3N*r — (ﬂ))

ot (B) = 2 cos? ( 5

in which N* are the integers which most nearly satisfy the equations

3TN () =
3JnN~ —(8) = -,

with
(8)=0=+«a.



a* () is a measure of the angular separation between the field point and a shadow or reflection boundary.

The magnitude of the transition function F(z) and the original diffraction coefficient D, with incident
angle a = —%ﬂ' and diffraction angle —%7‘(‘ <6< 2%71’ are presented in Fig. 2. One can see that D, goes to
infinite when 6 approaches 29—07r, i.e. at the reflection boundary. On the other hand, the magnitude of F'(x) is
very small when x < 1, and |F(x)| ~ 1 when > 1. Then the discontinuity in the geometrical-optics field
at the reflection boundary is compensated by the transition function, while outside of the transition regions
these factors are approximately one, and Keller’s expressions for the diffraction coefficients D, are obtained.

The behavior near the shadow boundary is similar.

The diffraction coefficient D, transition function F(x)
30 T T T T T T 1.2
25+ 1 ir
20| 4 0.8
(]
°
2
a° 151 B = 0.6
©
£
0.4

0.2}

Figure 2: The diffraction coefficient D, and the transition function F'(z)

We will discuss the wave behavior at the corner in more details. Assume the boundary of the conner is
Iy = {(z,y) ‘ x>0,y =y0},l2 = {(z,y) | =20,y < yo}, and the vertex of the corner is (g, o). See
Fig. (3) where (w0, y0) is marked as (2,412, Yjo+1/2)-

Let x = (x,y) and v = (&,7n). Assume the incident wave hits the corner with velocity (£,n). There are
two possibilities:

1. If the wave hits the corner at Iy, it will be completely reflected back with velocity (£, —n). If the wave
hits the corner at I's, it will be completely reflected back with velocity (=&, 7).

2. The wave hits the vertex (zg, yo) of the corner. In this case, according to the GTD, the wave can partly
diffract and partly travel in the original direction. Introduce the polar coordinates by

£ =Rcosa, n=Rsina, R=+/&+n?. (3.18)

With the diffraction coefficient D(0, «), the wave is diffracted with new velocities (£4,74),d = 1,2, -,

with
€4 = Rqcost, ng = Rgsin Rqy = /&2 + 13,

where D(6, ) is given by (3.17) if —37 <a <0or i7 < a <, and by (3.16) if 0 < a < 3.

The solution to the Liouville equation, which is linearly hyperbolic, can be solved by the method of
characteristic. Namely, the density distribution f remains a constant along a bicharacteristics. However, we
need to provide suitable conditions for the Liouville equation to account for boundary reflections and vertex
diffractions. For the wave hitting the corner at I'y, it will be completely reflected with new velocity (£, —n),
and the following condition will be used

f(t?xa y07£a77) = f(t,.I, y07£a _77) (319)



If the wave hit the corner at 'y, it will be completely reflected with new velocity (—¢,n), and the following
reflecting boundary condition will be used,

f(twr(hyugvn) = f(tvx()vyv _577’) (320)
At the vertex of the corner, we use the following diffractio condition:

1. if—%ﬂ<9<0,or%ﬂ'<9<7r,then

™

f+(t’x07y0aR70) = D(G,a)f_(t,xo,yo,R,a)doz

T
2
us

+(1 - D(eaa)da)f—(tﬁo,yo,Rv 9), (3.21)

i
2

with fy(t,x,v) =lim,_o f(t,x L ov,v), R =/ + 1.
2. if 0 < 0 < §m, then

s

f+(t7:c07y0aR79) = D(H,Oé)f_ (tax07y07R7 O{)dO{ (322)

jus
2

We will explain the conditions (3.21) and (3.22). When a wave hits the corner besides the vertex, it will be
completely reflected with a negative momentum in each direction. But when a particle hits the vertex of the
corner with an incident angle «, it will be diffracted at angle 6 with diffraction coefficient D(6, «); and the
energy of the particle ¢(x)|v| = ¢(x)/&? + 1n? = ¢(x)R will not change. In (3.21), the density distribution
function of waves f (¢, x0,y0,&,n) is a superposition of the incident wave that passes through the vertex, and
all diffracted waves, generated by other incident waves, that move in the direction of v = (£,7). In (3.21),
there are only the diffracted waves generated from the vertex of corner in this region, since no incident wave
in this direction is possible (since they would have to emerge from inside the wedge, which is impossible).
Note a condition on D in (3.21) is

/ D(#,a)da <1 for anyf.
—m/2

These conditions will be used in the next section to construct the numerical flux on the corner.

4 The numerical scheme

4.1 The numerical flux

We use the Liouville equation

fe + \;(;’%)fﬂfz—’— \j%fy_cszf_cy\/§2+n2fn:07 (4.1)

with boundary condition (3.19)-(3.22) to simulate high frequency wave equation (1.1).

Without loss of generality, we employ a uniform mesh with grid points at z; +%,i =0,---,M in the =
direction, Yjp 1,0 = 0,---, N in the y direction, §k+%,k‘ =0, -+, K in the £ direction and 771+%’l =0,---,L
in the n direction. The cells are centered at (x;, y;, &k, mi) with z; = %(xF% —|—xi+%), Y = %(yj;% +yj+%), &=
%(fk_% +&pgs)m = %(m_% + Mi11). The mesh sizes are denoted by Az = 2,1 — 2, 1, Ay =y, 1 —
yjfé,Aﬁ = §k+% — f,ﬁ%,An =M1 =M1 Assume the vertex of the corner is (z;,41/2,%;,+1/2), and the
two boundary I'y = {(z,y) | >y = yj0+%},F2 = {(=,y) | T =241,y < yj0+%} (see Fig. 3).



1,—1 Lo i+1

j0+2 ° ° ° ° o
j0+1 ° ° Iol ”ol °
(X /2 ]/]'0 +1/2)
r1

: I

Jo ° ° ° I V

corner
]0—1 ° o °

Figure 3: Meshes near the corner

Let At be the time step, t" = nAt. The cell average of f is defined as

6“2 Ty dndédyd 42

,l 1
2 2

where fi% = fiju(t"). We approximate c(z,y) by a piecewise bilinear function.
The 2D Liouville equation (4.1) can be discretized spatially as

[
”m f',j—%,kl)

i€k
(fiji)e  + ji(fw gkt = fim 1 gwl) fijrtw —
R NG ET e
l+§7] - Ci—gyj 9 2
— TA&V&C +n; (fij,k+%,l - fij,kf%,l)
Cij+y ~ Cij-3 /
— W 'f;% + 7712<fijk,l+% - fijk,l—%) =0.

Here all the numerical fluxes are defined using the upwind discretization, except for f; i1 1,5 < jo +
L fijo1£1 k> @ = Go. We will use the conditions (3.19)- (3.21) to construct these fluxes.

Firstly, we divide the interval [, 7] into 3I subinterval (o, , mi1], Q= MA@ — 37, Ao = 7/21,m =

0,1,---,3I —1. LetRkl—mWIth

fk = Rkl COS le, m = Rkl sin le.

We first define f at (z;, 15 Y, _%). f at this point is affected by three neighboring cells surrounding the
point (z;, . 10 Yjor L ). It is the summation of incoming and diffracted waves from these three cells.



1. If & > 0,m > 0, the incoming wave is from cell I, while the diffracted waves are from cells I, IT & III.

I 21
fior L jorims = [Z D(Ois am) fio, o (Ektms M) + Z D(Ori, am) fio.jo+1(Ektms Mkim)
m=0 m=I+1

31
+ Z D(Or1, am) fio+1, jo+1(£klm7nklm)}Aa
m=21+1
31
1-— Z D(Hkl, am)Aa
=0

Fio.do (Eksm) (4.3)

with &gy = Rgi COS Qupy, M, = R sin oy, The first three terms in the right of the above equality
represent the diffracted waves from I, II and III, respectively, while the last term is the incident wave
hitting the corner with incident angle ({x,7;). Since (&gim, Mkim) may not be grid points, we have to
define them approximately. One can first locate the cell centers that bound these velocities, and then
use a bilinear interpolation to evaluate the value at (£xim, Mkim)-

2. If & < 0,m; < 0, the incoming wave is from cell III, while the diffracted waves are from cells I, I &
III

)

I 21
fiotigor ikl = [ZD(sz,Oém)fm,jo(iklm,nkm)+ Z D(Ok1s am) fio,jo+1 (Ektm s Mhim)
m=0 m=I+1
31
+ Z D(eklaam)fio+17jo+l(£klmvnklm)}AO‘
m=21+1
31
1-— Z D(le, Oém)AOé
I=0

fio+1,j0+1(Eks M) (4.4)

3. If & > 0,7, < 0. This wave direction is moving toward cell IV. Since no diffracted wave will move in
this direction. f; 41 ; 11, only comes from cell II,

fior 2 jort kit = fiogo+1(Ek>m)- (4.5)

4. If & < 0,7, > 0. The wave is moving toward cell II. Since no wave comes from cell IV, in this case,
fio+%7j0+%7k7l is only the sum of diffracted waves from cells I, II and III.

21

I
fioxtjor ikl = [ZD(akbam)fio,jo(fklmanklm)+ Z DOk, am) fio,jo+1(Ertms Mkim)
m=0 m=I+1
31

+ Z D01, m) fio+1,j0+1 (Extm, nklm):| Aa. (4.6)
m=21+1

Note (a:iOJr%,yjoJr%) is not where we define the numerical flux. We now define the fluxes at (x;,, yjoJr%) and
(xi0+%,yj0+1) in an upwind way as follows,

o If & < 0, then
fio. Jo+ 1k, fi0+%,j0+%,k,lv vi. (4.7)
e If i > 0, then

fior tjorrkt = fior L jort kts k- (4.8)



For the numerical fluxes f; o+ 14, wsJ < jo (points at I'y), only the case § < 0 needs to be defined using
complete reflection boundary condition (3.20),

figr 1kt = Jio kot With &y = —&.

The numerical fluxes f; ;/ ot Lk i > ig+ 1 (points at I'y) needs to be defined only in the case ; > 0 by the
complete reflection boundary condition (3.19)

Jijor 2kt = Jijor 1,00, With m, = —mp.

All other fluxes are defined by upwind (or its second order TVD extension [26]).
After the spatial discretization is specified, one can use any time discretization for the time derivative.
The diffraction coefficient D(f,«) in (3.17) is singular for » = 0, which is the vertex of the corner

(4, 1Yot ). Since in our numerical scheme, we define the numerical flux related to the diffraction at

(Tig 41+ Yjo+1) and (wig, Yj,41), we simply let r = A2 in (3.17) to define D(¢, @) in our computation.

5 Positivity and [* contraction

Since the exact solution of the Liouville equation is positive when the initial profile is, it is important that
the numerical solution inherits this property.

We only consider the scheme using the forward Euler method in time. Without loss of generality, we
consider the case ¢; ;1 ; > ¢;_1 5,6 5,1 > ¢; ;1 forall i, (the other cases can be treated similarly with
the same conclusion). We consider the scheme at (2,41, Yj,+1) (cell IIT) with §; < 0,7; > 0 (the diffraction
case. Other cells can be treated similarly).

n+1 n I 21

‘,‘+1,kl*f‘,‘+1,kl Cig,jo+17

e A7 Lt + loﬁx {{mz:OD(elclzam)fio,jo (Ektms Mhim) " + zI:HD(ekuam)fio,joﬂ(szm,nklm)n
= e

I
Cig,jo+10
+ E DOk, am) fio+1.j0+1(Ektms Mhim)" }Aa - fi?z,jo-t,-l,kl} + 770’2);1 {— [ E D(Ort, ) fio o (St Mkim)"
m=0

m=2I+1
21 31
n

+ E D(Oki, am) fig jo+1 (St Meim)" E D01, m) fio+1,50+1 (Ertm Mim)"™ }Aa"_fio,jo-kl,kl}

m=I+1 m=21+1

fr — fn fr — fn

_poce gkttt T Jiggorikl _ po oy io got Lkd+1 ~ Jig oLkt _

kl™ig,50+1 Af kl™i0,50+1 An -

£k oY _ Ciguo+3  Cig.dot s _ Cig+d.go+r1 %ig— Lo+l The

with v = \/W <0 \/éﬁ 10 Jo+1 — Ay ’Cimovjo-l‘l - Az
above equation can be rewritten into (We omit the superscript n of f),

féfjiﬂ,kz = (1= cigjor1 Ny + Ag|B]) = di = d2) fig jo+ 1,00 + d1 fig jo+1,h41,0
I

+da fig jo+1,k04+1 T Cig jo+1(AzlY] + )\y|ﬁ|)A04{ > DOty m) Figjo ke dom

m=0
31

+ Z ekh (0779 flo,]oJrl Konslm + Z ekla am)fzo+1,jo+1 k,,L,l,,L:|7 (59)

m=I+1 m=21+1
le

‘Ci 1 —C, _ 1. ‘ i d 3 i |
where d; = 0+2'J0+1A$ 0= 2:Jot AeBRyp,dy = 0”°+2Ay 0.do+y ] ) Bkl Ae = Af,)\ = At,)\g )\7, = %.

Now we investigate the positivity of scheme. This is to prove that if ikl = 0 for all (zykl), then this
is also true for f**!. Since the sum of all coefficients in (5.9) is less than 1, one just needs to show that
all the coefficients for f™ are non-negative. Because D(0x;, ayy,) > 0, and Zi{:o D (01, am) < 1, a sufficient

condition for this is clearly
L=cij(Aaly[+AylBl) —dr —d2 =20

10



or

lciv1j—cii1 lCijes —Cijoil 15—

PR 1=3,) 2 2 w2 ] 2 2

Atmax | L 4+ S5 Az A Ay K
ikl | Ax Ay Ag An

<1, (5.10)

which means that the scheme is positive when a hyperbolic type CFL condition (5.10) is satisfied.
The [*°-contracting property of this scheme follows easily, because the coefficients in the schemes are
positive and the sum of them is less than 1.

6 Numerical Examples

In this section we present numerical examples to demonstrate the validity of our scheme and to show its
numerical accuracy. In the numerical computations the second order Runge -Kutta time discretization is
used.

Since it is difficult to get the exact solution for this problem, as in [23], we use the numerical solution
with the mesh size small enough to represent the exact solution. The two-dimensional Lax-Wendroff method

with space mesh size Az = Ay = 55 and At = Az/2 are used to solve the system (2.2) in the form
0
Z _vs=
ot
L 95 give=0
——— —divr =
c(x)2 ot ’

with s = dt Y r = Vu to get the energy density distribution

1 1 1
E(x,t) = 3 o)? |s]? + §|r|2. (6.11)

The numerical energy density is defined as

11
€ij =52 Z |sij? + |rij|27 (6.12)

/ i+1/2 /U1+1/2
845 = s(z,y)dzdy,
AZ‘Ay Ti—1/2 Yi—1/2

The discrete wave equation is quite dispersive [7], so one needs many grid points per wavelength to
compute it. The mesh size h = ¢/20 is the biggest mesh size we can get satisfactory numerical results for
the discrete wave equation.

The limit energy density is the zeroth moment of the density distribution of Liouville equation

oty = [ [ favgntianae,

The computational tool we used is the super computer in Tsinghua National Laboratory for Information
Science and Technology, 512 Itanium 2 64 bit processor. The peak computational speed is of 2.662 x 103,
the total EMS memory is 1024G, and the storage space is 267T.

In the computation, we first approximate the delta function initial data of the Liouville equation by the
product of a discrete delta function in 1-D [11]:

where

and r;; can be defined similarly.

La—1z), |1z <1,

w w w

du(z) = (6.13)
0, |Z] > 1,
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with w = A¢ = An. (For more recent numerical studies on the approximations of the delta function, see
[35, 36, 37, 38, 39]). Then the energy density distribution are recovered by

&P =3 finAeAn. (6.14)
kl

We use the Ll-error in the cumulative distribution function (cdf), i.e., the antiderivative of energy density

[14]
—+o0 +oo x Yy
/ / ‘ / / 5(0)(3, z,t) — E(s, z,t)dsdz|dzdy, (6.15)

which can be expected to flatten as € is decreased, to measure the weak convergence in the semiclassical
limit. Lemma 2.1 in [3] ensures that (6.15) going to zero is equivalent to the weak convergence of £ (z,y, )

For a more through discussion about the model error and numerical discretization error of this approach
we refer to our previous work [23].

Example 6.1. Consider the wave equation on the domain with boundary I'y = {(m,y)| r>02y= 0.3}
and Ty = {(z,y)] # = 0.2,y < 0.3}.

82
Wg —c(z,y)*Au =0,
u(0) = deet 51002100y (6.16)
ou
0)=0
20) =0,

where € = 1/2000, c¢(z,y) = 2 and suitable boundary conditions must be given on I'y and I's.

The corresponding Liouville equation is

2€ faa + 277 fu =0, (617)

with initial data

fe+

£(0,x,v) = 4(z? + y2)e_200("”2+y2)5<§ - 0.4x)5(n — 0.4y).

The computation domain is [z,y,&,n] € [-1,1] x [-1,1] x [-1,1] x [~1,1], and time step is At = $Az.

Firstly, we consider the problem with the soft boundary condition on T, i.e. u’r = 0,i = 1,2. The
physically relevant values for the diffraction coefficient D~ (6, ) are given by (3.17).

For convenience, we denote our scheme by GTD, and the scheme for Liouville equation with complete
reflection boundary condition (Geometric optics) by GO. Figure 4 shows the numerical energy densities &,
GTD and GO at t = 0.2,0.3. One can see that there are some diffracted waves behind the corner-the shadow
zone. The numerical results of GTD can capture the average energy of the solution of the wave equation,
including the shadow zone, which is below the line connecting the corner and point (1,1).

Table 1 gives the [!-errors of numerical GTD (defined in (6.15) but numerically evaluated by the Riemann
sum over all cells) at ¢ =0.1,0.2 and 0.3 on different meshes. The convergence rate is about 1.

Table 2 shows the errors of the numerical energy density GTD in the shadow zone (z > 0.2,y <z +0.1).
The GTD solution is a good approximation to the solution of the wave equation in the shadow zone. Notice
that the convergence rate in the shadow region is smaller than first order. This is partly because that there
is a boundary layer near the shadow boundary, which is harder to resolve numerically then elsewhere.

The solutions of GTD and GO depend on wavelength e. Fig. 5 gives, at t = 0.2, the relation between
the error of GTD and GO and the wavelength €. One can see that the error of solution of GO and GTD is
of same order-near O(¢), which is consistent with the theoretic analysis.

Next, we consider the problem with the hard boundary condition on I';,7 = 1,2, i.e. g—:ﬂ = 0,i=1,2.
We use the extrapolation boundary condition for the Lax-Wendroff method in the fully resolved simulation

12



Figure 4: Energy density with soft boundary at ¢ = 0.2 (top) and ¢t = 0.3 (bottom). left: £, middle: GTD,
right GO .

Table 1: errors of GTD with soft boundary

mesh type 502 x 502 1002 x 1002 2002 x 2002 4002 x 4002
t=0.1  3.3604c-2  1.6302e-2  7.9748¢-3  3.9505¢-3
t=0.2  3.720de-2  1.8449e-2  9.1946e-3  4.5508e-3
t=0.3  4.1802e-2  2.0843e-2  9.9872e-3  4.9725¢-3

Table 2: error of energy density GTD with soft boundary in shadow region
mesh type 502 x 502 100% x 100> 2002 x 200% 4002 x 4002

t=0.1 10% 5.1% 4.6% 4.3%
t=0.2 12% 5.9% 5.0% 4.6%
t=0.3 14% 6.9 % 5.5% 5.1%

of the high frequency wave equation. The physically relevant values for the diffraction coefficient D¥ (6, a)
are given by (3.17).

Figure 6 shows the numerical energy densities £, GTD, and GO, at t = 0.2,0.3. One can see that
the energy of the diffracted waves behind the corner-the shadow zone is stronger than the case of the soft
boundary condition. The numerical results of GTD is very close to the solution of the wave equation. Table
3 presents errors of the numerical energy density by GTD computed with different meshes in the phase space
at t = 0.1,0.2 and 0.3. The convergence rate is of first order.

Table 4 shows the errors of the numerical energy density GTD in the shadow zone. The GTD solution is

13
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Figure 5: The relation between errors of GO and GTD and €

Figure 6: Energy density with hard boundary at ¢ = 0.2 (top) and ¢ = 0.3 (bottom). left: £, middle: GTD,
right GO.

a good approximation to the solution of the wave equation in the shadow zone.
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Table 3: Errors of GTD of Example 5.1 with the hard boundary

mesh type 502 x 502 1002 x 1002 2002 x 2002 4002 x 4002
t=0.1  2.8456e-2  1.4209¢-2  7.1033e-3  3.5606¢-3
t=0.2  3.2144e-2  1.5965e-2  7.8306e-3  3.8948¢-3
t=0.3  3.8442¢-2  1.9204e-2  9.1002e-3  4.5453e-3

Table 4: Errors of GTD for Example 5.1 with hard boundary in the shadow zones
mesh type 502 x 502 100% x 1002 2002 x 200% 4002 x 4002

t=0.1 11.2% 6.0% 4.7% 4.1%
t=0.2 13.6% 7.6% 5.2% 4.6%
t=0.3 17.8 % 10.7 % 5.8% 5.2%

Example 6.2. Consider the wave equation in 2D with a rectangle boundary €2

82
a—tg — ¢z, y)2Au =0,
w(0) = Beei L =502 —5047 (6.18)

ou (@2 4y?) 2 2
(O) — Se!™ 5e —50x° —=50y ;

at

with € = 1/4000, c(z,y) = 2(1 — )2, Q = {(z,y) | — 0.3 < z < 0.1,-0.5 < y < —0.2} and some suitable
boundary conditions on 2.

The corresponding Liouville equation is

b G e e RS =0, o

with initial data

1 2 2
f(0,x,v) =32[0.16(z +y) + W] 40027 —400y 5(5 — O.4x>5(n — O.4y>.

The computational domain is chosen to be [z,y,&, 1] € [-1,1] x [-1,1] x [=1,1] x [=1,1]. The time step is
chosen as At = T Axz.

Firstly, we simulate the problem with the soft boundary condition. The physically relevant values for the
diffraction coefficient D~ (6, «) is given by (3.17).

Figure 7 shows the numerical energy densities £, GTD and GO at t = 0.2,0.3. The numerical results of
GTD is very close to the solution of the wave equation, even in the shadow zone.

Table 5 presents the errors of the numerical energy density GTD computed with different meshes in the
phase space at t = 0.1,0.2 and 0.3. The error is very small. The convergence rate is about first order.

Table 6 shows the errors of the numerical energy density GTD in the shadow zone. The GTD solution is
a good approximation to the solution wave equation in the shadow zone (y < —0.5).

Finally, we consider the problem with the hard boundary condition on €2. The physically relevant values
for the diffraction coefficient DT (6, ) are given by (3.17).

15



Figure 7: Energy density with soft boundary at ¢ = 0.2 (top) and ¢t = 0.3 (bottom). left: &, middle: GTD,
right GO.

Table 5: Errors of numerical density GTD of Example 5.2 with the soft boundary

mesh type 502 x 502 1002 x 1002 2002 x 2002 4002 x 4002
t=0.1  2.4043¢-2  1.2021e-2  6.0010e-3  3.0006e-3
t=0.2  2.7024e-2  1.3512e-2  6.7442e-3  3.372le-3
t=0.3  3.1498¢-2  1.5248¢-2  7.6118¢-3  3.8047¢-3

Table 6: Errors of GTD for Example 5.2 with the soft boundary in the shadow zones
mesh type 502 x 502 100% x 100> 2002 x 200% 4002 x 4002

t=0.1 10.2% 6.4% 5.1% 4.4%
t=0.2 13.1% 7.0% 5.5% 5.0%
t=0.3 15.7% 9.4 % 6.1% 5.5%

Table 7 presents the errors of the numerical energy density GTD computed with different meshes in the
phase space at t = 0.1,0.2 and 0.3. The convergence rate is about first order.

Table 8 shows the errors of the numerical energy density GTD in the shadow zone. The GTD solution is
a good approximation to the solution of wave equation in the shadow zones.

Remark 1. The typical wave length of visible lights is 400 — 700 nanometers, or in the order of 10~ meters.
To simulate such a high frequency wave in a domain of one meter requires at least O(10°) mesh points per
spatial dimension. It means O(10%) meshes in one space dimension, O(10'?) meshes in two space dimension
and O(10'®) meshes in three dimension. By including the time direction, one needs O(10'®) operations in two
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Figure 8: Energy density with soft boundary at ¢ = 0.1 (top) and ¢t = 0.2 (bottom). left: £, middle: GTD,
right GO.

Table 7: Errors of numerical density GTD of Example 5.2 with the hard boundary

mesh type 502 x 502 1002 x 1002 2002 x 2002 4002 x 4002
t=0.1  2.4642-2 12176e-2  6.0538¢-3  3.0264e-3
t=0.2  2.6054e-2  1.3027e-2  6.5013e-3  3.2489e-3
t=0.3  2.8985¢-2  1.4464e-2  7.2192e-3  3.6092¢-3

Table 8: relative I' error of GTD for Example 5.2 with the hard boundary in the shadow zones
mesh type 502 x 502 100% x 1002 2002 x 200% 4002 x 4002

t=0.1 10.1% 6.3% 4.7% 4.2%
t=0.2 13.6% 6.5% 5.1% 4.6%
t=0.3 16.4% 9.6 % 5.5% 5.0%

space dimension and O(10%*) in three space dimension. This is simply impossible for today’s computational
equipments.

On the other hand, by using the Liouville equation, although the dimension is doubled, even to resolve
the diffraction the mesh size of O(e!/2) = O(107%), one needs O(10'?) meshes in two space dimension and
O(10'8) meshes in three space dimension (six dimension in the phase space). But in the time direction,
the mesh size is of O(¢'/?). So including the time direction, one needs O(10'°) operations in two space
dimension and O(10?!) in three space dimension. This is about 1000 times less operations compared to the
full simulation based on the original wave equation. Thus double the dimension using the Liouville equation
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provides a much more efficient approach to high frequency waves when the frequency is very high.

It is important also to point out that only near the vertex we need to impose Az, Ay ~ O(e!/?). Away
from it we can use Az, Ay, A&, An = O(1) if we program the method in the adaptive mesh framework. This
will be a tremendous saving compared with the full wave simulation.

7 Conclusion

In this paper, we revise our previous work [24] to a different geometry, namely, high frequency waves through
a corner. When a wave hits a corner, it usually reflects. However, at the vertex of the corner, it generates
diffracted waves into all directions. In particular, the diffracted waves can reach the shadow zone-the zone
that the GO theory cannot cover. We provide a diffraction condition, based on the GTD theory, at the vertex
to reflect this diffraction nature. We then build this condition, as well as the reflection boundary condition,
into the numerical flux of the Liouville solver, in order to capture the diffractions. This gives an Eulerian
computational method for high frequency waves through a corner, which is able to capture wave reflection
and diffractions at a corner without fully resolving the high frequency waves in the entire computational
domain.

Similar ideas, including those in our previous work [24], can also be applied to other geometries, and to
elastic and electromagnetic waves, which will be the subjects of future research.
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