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Optimizing manufacturing systems consists in generating large-quantity outputs to fulfill cus-
tomers demands. But naturally machines may fail and the production process is either slowed
down or completely interrupted. In order to keep production running, we are interested in
assigning repair crews to currently broken-down machines. But due to the limited repair ca-
pacity and the dynamics involved in the production process, we propose a scheduling problem
based on ordinary differential equations for the description of buffer levels and the actu-
ally available processing capacity. We discuss properties of the model and present a solution
approach leading to a mixed-integer programming model.

Keywords: scheduling, production networks, combinatorial optimization, network flows

AMS Subject Classification: 90B10, 49M25

1. Introduction

A production system usually comprises a large number of suppliers, storage units
and machines arranged in a network structure. During the last years several dy-
namic production models have been developed either describing the trajectory of
each good through the network, which is called discrete event simulation [2], or by
using so-called fluid models models, where averaged quantities are used to track
goods, see [1–4, 7, 9, 13] for an overview. Based on these continuous production
models, optimization problems have been introduced [8, 10, 11, 14]. These models
typically deal with economic issues such as minimization of costs or maximization
of output and allow for the interpretation of optimal routing of goods through a
manufacturing system, best possible production mix or optimal order policies.
A further application of dynamic optimization problems are allocation problems

where the underlying dynamics are given by a set of ordinary differential equations
(ODEs). Think of an interconnected network of machines whose current load is
simply given by an equation measuring the ratio between influx and outflux. In
best case, all machines are running and work with maximal capacity. Otherwise it
may happen that machines fail due to wear or a break. Then a capacity loss will
occur. The aim is now to assign repair workers to the broken machines to maintain
production and in particular, to increase the processing capacities again. However,
this will lead to a great dilemma since repair capacity is limited.
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To solve this ODE-restricted optimal control problem, we set up an optimization
problem that provides an optimal schedule for repair workers that might vary in
time, see [19]. Major application areas for scheduling problems are airline crew
scheduling, course timetable scheduling, flow shop and job shop scheduling, as
for instance [6, 15] and references therein. The purpose of scheduling problems
is to assign existing resources and to ensure fairness amongst the users utilizing
the resources. Normally, the scheduling is a static process providing a fixed shift
assignment. This is different to our model since repair workers are allowed to change
location within a predefined time period. Therefore, we propose a mixed integer
problem, as originally introduced in [8], that enables us to take advantage of MIP
solvers using branch and cut-algorithms. In doing so we emphasize in particular the
benefits of a dynamic modeling approach and show how the repair worker switching
influences the maximal throughput in the system.
The outline of the paper is as follows: In Section 2, we introduce a mass-

conserving network model including equations for the processor load and the ca-
pacity drop as well. We explain the role of temporary worker assignments and apply
a suitable numerical discretization to solve the underlying optimization problem.
Section 3 is devoted to a steady state analysis and the connection to the well known
maximum flow problems from graph theory. Computational experiments are pro-
vided in Section 4. They are used to discuss the aforementioned phenomena.

2. Repair scheduling

Our modeling approach is motivated by failures or limited productivity of operating
processors. To keep the model simple, reliability/breakdown rates are integrated
into the model using experience values to avoid the impact of stochasticity. Anyway,
the real problem lies in maintaining the current production process. Thus, we focus
on a strategy aimed at maximum output while cleverly allocate a limited number
of repair workers.

2.1. Model description

We start this paragraph with the common definition of a production network.
The latter is described by a directed graph G = (V,E), where V denotes the
set of vertices and E the set of edges. The subset Eout contains the edges, after
which goods leave the system. They are called outflow edges. Furthermore, Ein

comprehends all edges, where external inflow (e.g. raw material) is introduced into
the system. In the same way all starting vertices of inflow edges are denoted by
Vin and terminal nodes of outflow edges by Vout.
Each edge is associated with an assembly line where the flow of goods is trans-

ported from one machine to another and can be piled up in front of machines,
cf. Figure 1. The assembly line and the storage are treated as one entity and will
be simply referred to as buffer in the course of this article. The variable ui(t) denotes
the number of parts in the buffer i at time t and τi denotes the constant throughput
time. The flow of goods passing a machine is given by fi(t) that is bounded from
above by the processing capacity ci(t) (measured in parts per unit time). Different
from former production network models such as [9, 14], the capacity is not a fixed
parameter, but can fluctuate within the production process. There is a fixed upper
bound for ci(t), the maximal capacity µi > 0. The evolution of capacities depends
on the constant breakdown rates αi, the constant repair rates di and the percentage
of repair workers allocated to each machine, denoted by βi(t) ∈ [0, 1]. The total
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number of repair workers is given by W . Network information and the distribution
of flow are coded in the matrix B.

Figure 1. Sketch of processor layout.

The constant matrix entries Bij denote the percentage of flow going from edge
j to edge i. We have the total ingoing flow into buffer i at time t given by
∑

j∈E Bi,jfj(t) (shortly Bf(t)) where Bii = 0. Kirchhoff’s law and conservation

of mass through nodes imply that the column sums are
∑

i∈E Bi,j = 1 except for
all outgoing edges j ∈ Eout. In case of more than one outgoing processor, there is
freedom in partitioning the flow of goods, cf. Figure 2. Otherwise, in case of just
one outgoing processor, the entries of the matrix B will be 1. Hence, the transpose
BT with its entries Bij > 0 is the connectivity matrix of the network. An example
is shown in Figure 2.

−→ B =











0 0 0 0 0 0
0.5 0 0 0 0 0
0.5 0 0 0 0 0
0 0.3 0 0 0 0
0 0.7 0 0 0 0
0 0 1 1 0 0











.

Figure 2. Example network with corresponding matrix B.

Now, we are able to consider equations describing the dynamics of the buffer
level ui at time t. This linear rate equation measures the difference between the
in- and outgoing flow of goods. External inflow into processor i will be prescribed
by fext,i(t) for i ∈ Ein. For all other processors fext,i(t) = 0 will hold. Since in a
directed graph, the flow direction is fixed, i.e. the flow entering a processor is Bf(t),
we have to think about a rule to determine the outgoing flux fi(t). As proposed
in [9, 10], we assume

fi(t) =

{

min{Bf(t), ci(t)}, ui(t) = 0

ci(t), ui(t) > 0
(1)
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distinguishing the two states empty or non-empty buffers. Introducing a small
relaxation parameter τi (in our case this is the throughput time), equation (1) can
be rewritten as

fi(t) = min
{

ci(t),
ui(t)

τi

}

, (2)

where ui(t)
τi

≈ Bf(t), see details in [1, 14]. In summary, we consider the following
ordinary differential equation for the buffer levels:

∂tui(t) = Bf(t) + fext,i(t)− fi(t) (3a)

fi(t) = min
{

ci(t),
ui(t)

τi

}

. (3b)

The interpretation of (3) is as follows: Goods are fed into the network, flow from
one machine to another and can be stored in buffers in case of capacity shortage.
As soon as goods have traversed the outflow edges, they will leave the system. It is
intuitively clear, that the conservation of mass through the whole network should
hold, since no goods are lost or generated inside the network. This gives rise for
the following lemma.

Lemma 2.1: Let t ∈ [0, T ] ⊂ R and fi : [0, T ] → R
+
0 and fext,i : [0, T ] → R

+
0 be

L1 functions for all i. Then the total conservation of mass for an initially empty
network, i.e. ui(0) = 0, is given by

∫ t

0

∑

i∈E

fext,i(t̃) dt̃ =
∑

i∈E

ui(t) +

∫ t

0

∑

i∈Eout

fi(t̃) dt̃ ∀t ∈ [0, T ], (4)

That means the total number of incoming goods until a certain time t has to be
equal to the number of goods, that remain inside the network, i.e. stored in buffers,
at time t plus the goods, that have already left the network.

Proof : We argue, that the total conservation of mass holds true due to constraint
(3) which ensures the conservation of mass through nodes only. From the construc-
tion of the matrix B, we know that each column, that represents an edge which is
not an outflow edge, contains positive entries between zero and one, describing how
much percent of the flow is sent to consecutive processors. Since flow is distributed
between consecutive edges, we know

∑

i∈E Bi,j = 1 except for all outgoing edges
j ∈ Eout. Starting from the total flow in the network and considering the structure
of B, we deduce for all t:

∑

i∈E

(B ·f(t))i =
∑

i∈E

∑

j∈E

Bijfj(t) =
∑

j∈E

( ∑

i∈E

Bij

︸ ︷︷ ︸

=







1 ∀j /∈ Eout

0 else

)
fj(t) =

∑

i∈E\Eout

fi(t). (5)

Next, we take equation (3), integrate both sides with respect to time and take the
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sum over all processors:

∑

i∈E

ui(t)−
∑

i∈E

ui(0) =

∫ t

0

(∑

i∈E

(B · f(t̃))i

︸ ︷︷ ︸

see (5)

−
∑

i∈E

fi(t̃) +
∑

i∈E

fext,i(t̃)
)

dt̃

∑

i∈E

ui(t)−
∑

i∈E

ui(0) =

∫ t

0

( ∑

i∈E\Eout

fi(t̃)−
∑

i∈E

fi(t̃)

︸ ︷︷ ︸

=−
∑

i∈Eout
fi(t̃)

)

dt̃+

∫ t

0

∑

i∈E

fext,i(t̃) dt̃

Sorting all terms and inserting the initial conditions ui(0) = 0∀i yields the desired
result. �

The next modeling step is more involved. We need a dynamic equation for the
capacity ci(t) which covers the failure of machines with the available repair capacity.
The main ingredients are the following scenarios:

• The machine is running and works with maximal capacity µi. We have no ca-
pacity loss and no workers have to be assigned.

• Breakdown of machines: The maximum capacity will be reduced and workers
need to be assigned.

According to the ideas before, we derive a rate equation depending on a determin-
istic breakdown rate αi > 0 and the term Wdiβi(t) characterising the percentage
of assigned workers. Here, the factor di is solely used to get the right scaling (since
ci(t) is measured in parts per unit time).

∂tci(t) = min
{µi − ci(t)

ǫ
,Wdiβi(t)

}

−min
{ci(t)

ǫ
, αi

}

, ǫ ≪ 1. (6)

The interpretation is as follows (performing a one-to-one comparison with (1)
and (2)):

1. Assume we have a total loss of capacity, i.e. ci(t) = 0. This implies either ∂tci(t) =
µi

ǫ
or ∂tci(t) = Wdiβi(t). In both cases the broken machine will be repaired and

the capacity starts increasing again.
2. The machine works with maximal capacity µi = ci(t) > 0. Equation (6) reduces

to ∂tci(t) = −αi. Then, the capacity rate can be only decreased.
3. The capacity is 0 < ci(t) < µi. This yields ∂tci(t) = Wdiβi(t) − αi. In-and

decreasing capacity might be possible.

To get a well-defined allocation of the available workers, we state the following
condition on the decision variable βi(t):

∑

i∈E

βi(t) = 1, 0 ≤ βi(t) ≤ 1, ∀i, t. (7)

There are some remarks in order:

Remark 1 :

• Since time-dependent parameters βi(t) which allow for a worker change in each
time are not convenient in practice, we choose βi either to be constant or piece-
wise constant, see Section 4.
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• Workers are assigned simultaneously and immediately, i.e. time delays between
different machines are neglected.

The complete optimization problem we are interested in consists of maximizing
the total outflow of the network (8a) subject to the buffer level equation (3), the
capacity drop (6) and the restriction for the assignment parameters (7). Obviously,
we end up with an ODE-restricted optimization problem where control variables
are βi(t), i.e. the assignment of the repair workers to the machines. Hence, the
entire optimization problem reads ∀i, t:

max

∫ T

0

∑

i∈Eout

fi(t)dt (8a)

s. t.

(3), (6), (7) (8b)

ui(0) = u0i, ci(0) = c0i (8c)

0 ≤ βi(t) ≤ 1 (8d)

0 ≤ ci(t) ≤ µi, ui(t) ≥ 0. (8e)

Constraint (8c) defines the initial conditions for the corresponding ODEs. If not
said otherwise, we choose as initial condition empty buffers (i.e. ui(t) = 0) and
full capacities (i.e. ci(t) = µi). Finally, constraint (8e) represents additional non-
negativity and box conditions.

2.2. Mixed integer approach

One way to solve the ODE-restricted optimization problem (8) is to use a linear
mixed-integer programming model (MIP). The latter can be obtained employing
common numerical discretizations combined with rewriting techniques borrowed
from discrete optimization. It is in fact possible to convert particular nonlinear
structures (e.g. the min-function) into a dynamic mixed-integer framework. This
alternative has been originally introduced in [8] and has been successfully applied
to a wide variety of production problems in the meanwhile, see [11, 14].
First of all, we choose a uniform discrete time grid T = {t : t = 0, . . . , nt} of the

underlying interval [0, T ] where nt denotes the number of grid points. The step-size
is defined via ∆t = T

nt

.
Then, in a first step, in a straightforward manner, both ordinary differential

equations (3) and (6) are discretized using the explicit Euler scheme.

Remark 2 : For the step-size ∆t, the condition

∆t := min{2τi, 2ǫ}, ∀i ∈ E

must be satisfied since we deal with stiff problems. An implicit discretization is
avoided, since this will lead to an intractable problem during the solution procedure.
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As a preliminary result, we get the following optimization problem ∀i, t ∈ T :

max
∑

i∈Eout

∑

t∈T

f t
i ·∆t

s. t.

ut+1
i = uti +∆t · [[B · f ]i + f t

ext,i − f t
i ] (9a)

ct+1
i = cti +∆t · [Dt

i −At
i] (9b)

∑

i∈E

βt
i = 1 (9c)

u0i = u0i, c0i = c0i (9d)

0 ≤ βt
i ≤ 1 (9e)

0 ≤ cti ≤ µi, uti ≥ 0, , (9f)

with At
i := min{ ct

i

ǫ
, αi}, Dt

i := min{µi−ct
i

ǫ
,Wdiβ

t
i} and f t

i := min{cti,
ut

i

τi
}. This

looks quite similar to (8) where (9c) describes the worker distribution rates, (9d)
the initial conditions and (9e)-(9f) represent box constraints.
Now, the crucial point in order to get a linear MIP is to linearize the min-

terms in At
i,D

t
i and f t

i with respect to cti, u
t
i and βt

i . We make use of the following
proposition:

Proposition 2.2: In general terms, an expression of the form c = min{a, b} can
be linearized by introducing a binary variable γ ∈ {0, 1} and using the additional
unequality constraints

γ · a ≤ c ≤ a

b−K · γ ≤ c ≤ b

where K is sufficiently large, such that K > b holds.

One can easily check, that γ = 1 is equivalent to the case c = a, and γ = 0 is
valid, if and only if c = b, cf. references [8, 17]. In this way, due to Proposition 2.2,
we get for At

i the following constraints

αi · κ
t
i ≤ At

i ≤ αi (10a)

cti
ǫ
−M · κti ≤ At

i ≤
cti
ǫ
, (10b)

where M := µi

ǫ
and κti is binary, i.e. κ

t
i ∈ {0, 1}. By applying the same method to

f t
i , we end up with

gti ≤ f t
i ≤ cti (11a)

uti
τi

−Mξti ≤ f t
i ≤

uti
τi
, (11b)

where M is a sufficiently large constant, ξti are additional binary variables and

gti := cti · ξ
t
i . (12)
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However, we are not done at this point, since cti · ξ
t
i is a product of two unknowns,

and thus linearity is not provided. To get rid of this drawback, we use another
technique. We treat gti as real variables and describe (12) by

0 ≤ gti ≤ µiξ
t
i (13a)

cti − µi(1− ξti) ≤ gti ≤ cti. (13b)

Following Proposition 2.2 and taking computational runtime into account, we
need an estimate for the constant M in (11). More precisely, it is important to
choose M as tight as possible. Hence, let M depend on i and t and make sure, that

M t
i ≥

uti
τi
, (14)

holds ∀i, t ∈ T . Therefore, we consider (9a) in order to derive an upper bound for
uti:

uti ≤ ut−1
i +∆t · [B · µ]i +∆t · f t−1

ext,i,

where µ denotes a vector-valued function with entries µi for each machine. From
our initial conditions we know, that u0i = 0. Hence, we iteratively get

uti ≤ t ·∆t · [B · µ]i +∆t ·

t−1∑

t̄=0

f t̄
ext,i

and

M t
i :=

1

τi
t ·∆t · [B · µ]i +

1

τi
∆t ·

t−1∑

t̄=0

f t̄
ext,i (15)

respectively.

Remark 3 : As beneficial side-effect, we have gained an upper bound for uti,
namely

0 ≤ uti ≤ τi ·M
t
i , ∀i, t ∈ T . (16)

Note that it is advantageous to keep box constraints as tight as possible, since this
might lead to smaller branch and bound trees and resulting runtime reductions.

The missing linearization of Dt
i is now done analogeously. This leads to the

following additional constraints:

Wdi · h
t
i ≤ Dt

i ≤ Wdiβ
t
i (17a)

µi − ci
ǫ

−
µi

ǫ
· γti ≤ Dt

i ≤
µi − cti

ǫ
(17b)

0 ≤ hti ≤ γti (17c)

βt
i − (1− γti) ≤ hti ≤ βt

i (17d)

where γti ∈ {0, 1} and hti is a new set of real variables describing the nonlinearity
βt
i · γ

t
i .
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Finally, we specify box and binary constraints for all new variables:

0 ≤ hti ≤ 1, 0 ≤ gti ≤ µi, (18a)

0 ≤ f t
i ≤ µi, 0 ≤ At

i ≤ αi, 0 ≤ Dt
i ≤ W · di, (18b)

κti, γ
t
i , ξ

t
i ∈ {0, 1} ∀i, t ∈ T . (18c)

In summary, the complete mixed-integer formulation reads

max
∑

i∈Eout

∑

t∈T

f t
i ·∆t (19)

s. t.

(9), (10), (11), (13), (16), (17), (18)

To conclude this section, some remarks are in order.

Remark 4 :

• Due to the nature of real-world problems, it is reasonable to optionally include
an additional restriction on the worker distribution:

pti = W · βt
i , pti ∈ Z

+
0 , ∀i, t ∈ T . (20)

• The optimization problem consists of eight sets of different continuous variables
(c, u, β, f, g, h,A,D) and three sets of binaries (κ, γ, ξ). All variables depend on
the number of edges and time steps. Hence, the problem size is O(nt · |E|), which
restricts to work with relatively coarse time grids, compare Section 4.

3. Steady state analysis

A typical question arising in the context of ODEs is to study the long term be-
haviour of the system. In this section, we are interested in steady state solutions of
the repair model. Considering time independent capacities, buffer levels and flows,
we can simplify and reformulate the original model. Additionally, we can also opti-
mize the flow distribution at branching nodes in order to increase the throughput
inside the network and thus the outflow, cf. routing problems in [8, 10, 11, 14].
This leads to a so-called maximum flow problem, a well known problem in graph
theory, see [5, 12, 20] for an overview.
Let us start with a definition.

Definition 3.1: A solution of (8) is called steady state solution if ∂tui(t) = 0
and ∂tci(t) = 0 as well as βi(t) is unchanging in t ∀i ∈ E.

First of all, we compute the capacities ci for the steady state solution. The
capacities in equilibrium are computed by

min{
µi − ci

ǫ
,Wdiβi} −min{

ci
ǫ
, αi} = 0 ∀i. (21)

For simplicity, we drop the time index t whenever the context is clear.
At this stage we assume, that all parameters including βi are given. Then, the
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steady state ci can be determined in the following way:

ci =







µi − ǫαi, if µi ≥ 2ǫαi ∧ βi ≥
αi

Wdi

(Case 1.1)

ǫWdiβi if –— ” —– ∧ βi <
αi

Wdi

(Case 1.2)
1
2µi, if µi < 2ǫαi ∧ βi ≥

µi

2ǫWdi

(Case 2.1)

ǫWdiβi if –— ” —– ∧ βi <
µi

2ǫWdi

(Case 2.2)

(22)

It can be checked, that this choice of ci really fulfills (21) by considering every case
separately. Considering the limit process ǫ → 0, we get: Either ci = µi, if there are
enough workers to balance the breakdown rate (Case 1.1), or ci = 0 (Case 1.2).
Case 2.1 and Case 2.2 will never occur, since µi is always positive.
Next, we investigate the buffer levels ui in the ODE-constraint (3). In steady

state, we have

[B · f ]i + fext,i − fi = 0, ∀i. (23)

Since ci as well as ui should be constant in steady state, fi := min{ci,
ui

τi
} is also

constant. This means, if we find variables fi, such that

[B · f ]i + fext,i − fi = 0 and (24)

0 ≤ fi ≤ ci (25)

are met, we can set ui := fi · τi. In that way fi =
ui

τi
≤ ci holds, and thus (3b) is

automatically fulfilled. Apparently, equation (24) is only true, if the external inflow
fext is constant as well.

3.1. Steady state optimization problem

In the original optimization problem (8), the goal is to find a worker distribution
such that the outflow of the network is maximal. The same can be done in the
stationary case. However, the optimization procedure is only interesting, if we do
not previously fix the external inflow, but leave it variable, since

∑

i∈E

fext,i =
∑

i∈Eout

fi, (26)

holds in steady state. We slighty reformulate (24) and end up with the following
constraints:

[B · f ]i − fi + fext,i = 0 ∀i ∈ Ein (27a)

[B · f ]i − fi = 0 ∀i /∈ Ein. (27b)

Consequently, the steady state optimization problem reads:

max
∑

i∈Eout

fi (28)

s. t.

(7), (8e), (22), (25), (27)
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In order to solve (28) with respect to the worker distribution β and the external
inflow fext, we linearize (22) and obtain again a linear mixed integer optimization
problem ∀i ∈ E (if not declared otherwise):

max
∑

i∈Eout

fi (29a)

s. t.

[B · f ]i − fi + fext,i = 0 ∀i ∈ Ein (29b)

[B · f ]i − fi = 0 ∀i /∈ Ein (29c)

− diW (1− δi) ≤ αi −Wdiβi ≤ αiδi (29d)

− µiδi ≤ ci − µi + ǫαi ≤ (µi + ǫαi) · δi (29e)

− ǫWdi(1− δi) ≤ ci − ǫWdiβi ≤ µi(1− δi) (29f)
∑

i∈E

βi = 1 (29g)

0 ≤ βi ≤ 1, 0 ≤ fi ≤ ci, 0 ≤ ci ≤ µi (29h)

δi ∈ {0, 1}. (29i)

Constraints (29d) to (29f) ensure, that c is set according to (22). (29d) has the effect,
that δi is set to 0, when βi ≥

αi

Wdi

, otherwise it is set to one. (29e) guarantees, that
ci is set to µi − ǫαi, when δi = 0. In the same way (29f) ensures, that ci is set to
ǫWdiβi in the case δi = 1.

3.2. Connection to max flow problems

At this point, it is rather simple to include an additional optimization task, namely
the optimization of the flow distribution at branching nodes (nodes with more than
one outgoing edge). As we have seen, the matrix B strictly prescribes the behaviour
of the flow at vertices. However, we could instead use an incidence matrix, that
only describes the incoming and outgoing edges of a vertex, without fixing the
distribution rates. This makes the model more flexible and leads to larger flows as
numerically shown later in Section 4.
The incidence matrix K is constructed as follows. Given a network with n edges

and m vertices, we have K ∈ Z
m×n, whose elements are set in the following way:

kv,i =







1, if i is incoming edge of v
−1, if i is outgoing edge of v
0, else.

A network with corresponding incidence matrix K is shown in Figure 3.
Consequently, we can include the issue of optimizing the flow distribution by

exchanging constraint (27) with

[K · f ]v = 0 ∀v ∈ V \(Vin ∪ Vout) (30a)

[K · f ]v + fext,v = 0 ∀i ∈ Vin. (30b)
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−→ K =











−1 0 0 0 0 0
1 −1 −1 0 0 0
0 1 0 −1 −1 0
0 0 1 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 1











Vin = {v1} and Vout = {v5, v6}.

Figure 3. Example of a network with corresponding matrix K

Hence, an improved steady state optimization problem is

max
∑

i∈Eout

fi (31)

s. t.

(7), (8e), (22), (25), (30)

Another difference to the previous model (30) is, that the external inflow is
specified at vertices, and not at edges. Since we usually want the inflow to enter
the network at edges without predecessors, we can easily assign the external inflow
to the startvertices without changing the setting.

Remark 1 : It is also possible to use the incidence matrix K for the dynamic
model (19). But this might lead to highly fluctuating flow distributions in the
optimal solution. Since the rates do not explicitly appear as variables in the MIP,
they can not be restricted to be constant in time, cf. [8].

Choosing a worker distribution β and computing the capacities c according to
(22), we end up with a well known problem of graph theory, the Maximum Flow
Problem (MFP). In the sequel, we will use theoretical results from MFPs to proof
the existence of a solution to (31).

Lemma 3.2: Given a network G = (V,E) with properties αi, di > 0 and µi, ǫ ≥
0, ∀i ∈ E, there exists a feasible solution of (31) with

∑

i∈Eout
fi =

∑

v∈Vin
fext,v ≥

0.

Proof : Let β be an arbitrary worker distribution, satisfying (7). The upper bound
of the flow is given by (22) and satisfies ci ≥ 0, ∀i ∈ E. The network can be
transformed in the following way: We can imagine the external inflow as edges
from a source vertex s to the point where the external inflow is supposed to enter
the network. The upper bound c of these edges is set to infinity. In the same way,
we can add an extra sink vertex t where all outflow edges are led to. Furthermore,
we add an artificial edge e0 from the sink to the source node, which represents the
total flow-through, cf. Figure 4.
From (25) we know, that the lower bound of the flow in each edge is 0. This
setting fulfills the conditions for the existence of a feasible flow circulation stated
in Hoffman’s circulation theorem, see [5], Theorem 3.8.2. Taking the properties
of a flow for vertex s and t into account as defined in graph theory, it directly
follows that fe0 =

∑

i∈Eout
fi =

∑

v∈Vin
fext,v holds, due to the construction of the

transformed network. �
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(a) (b)

Figure 4. Transformed network

4. Computational experiments

For computational experiments we use two different approaches. For the first small
test case discussed in subsection 4.1, we implemented the optimization problem
(8) in Matlab 7.5 using the function fmincon, which is a solver for nonlinear op-
timization problems, see [18]. This approach works quite well as long as the test
cases are small. The disadvantage of this solver is, that it often gets stuck in local
optima and it does not allow to restrict the worker distribution to integer workers.
For these reasons we derived the mixed integer formulation (19) which can be used
by cplex 12.1.0, a commercial solver for linear mixed integer problems developed
by IBM, formerly Ilog, see [16]. It uses a branch and cut algorithm providing the
user with currently found primal as well as dual bounds during the optimization
process. In the case, that the duality gap tends to zero, the user can be sure, that
the provided solution is indeed globally optimal. Furthermore, this method has
the advantage, that we can easily restrict the workers to integer numbers, which
is indeed meaningful for real world applications. In subsection 4.2 this method is
applied to a branched network where also steady state studies are carried out. All
computations are performed on a PC equipped with 16GB Ram, Intel(R) Xeon(R)
CPU 5160 @ 3.00GHz.

4.1. Serial processors

Initially, we sketch the impact of the numerical parameters on the result as well as
introduce the modelling aspect of worker changes during the time horizon. There-
fore, we take a small test example. We consider two machines in a row with a fixed
parameter setting, see Figure 5 and 6.

Figure 5. Two serial processors

time horizon: T = 4
throughput time: τ = 0.25
workers: W = 40
Total inflow:
∫ T

0 fext(t̃)dt̃ =
∑

t∈T f t
ext∆t =75 parts

.

Figure 6. Parameter setting

The time horizon is T = 4, the throughput times at buffers are τi = 0.25 for every
machine and 40 workers are available. The external inflow enters the network at
the first machine. In the first 1.5 time units, we have an inflow of 50 and thus
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14 S. Göttlich, M. Herty, C. Ringhofer and U. Ziegler

∫ T

0 fext(t̃)dt̃ = 75 parts are introduced into the system. Furthermore, here and in
all following examples, the repair times di are set to 1 for all edges.
As initial condition, we set c0 to full capacities and assume empty queues in

the beginning (i.e. u0i = 0). Furthermore, we provide a start solution, where the
workers are equally distributed among the edges, i.e. we have 20 workers at each
machine.

4.1.1. Numerical investigations

We perform a simulation assuming the worker distribution rate β to be constant
for the whole time horizon. We compute the objective function value (8a) for differ-
ent values of β, using the Matlab routine fmincon with explicit Euler discritization
for the ODE-constraints. We let β1 go from 0 to 1 in steps of length 0.001. In
Figure 7, we compare the simulation results operforf different time grids. We can
observe that the optimal objective function value tends to the same value, even for
coarse time grids.

0 10 13.92 20 30 40

5

10

15

20

25

30

35

40

44.47

50

number of workers at the first machine

ou
tfl

ow

 

 

dt=0.1
dt=0.05
dt=0.02
dt=0.01

Figure 7. Comparison of simulation using different time grid sizes.

In this setting, the maximal outflow of 44.47 units is achieved, if 13.92 workers
are sent to the first machine and 26.08 to the second one. As we can see in Table 1
and in accordance with Figure 7, the conservation of mass is kept with an accuracy
that depends on the time grid size.

Table 1. verifying conservation of mass,

∆t opt. worker distr. max outflow final queues
∑

0.1 [13.716, 26.284] 43.756 31.457 75.213
0.05 [13.803, 26.197] 44.163 30.888 75.050
0.02 [13.871, 26.129] 44.453 30.558 75.011
0.01 [13.921, 26.079] 44.471 30.532 75.003

The total inflow is
∑

t∈T
f t

ext
∆t = 75.
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4.1.2. Worker changes

In a next step, we illustrate the modeling aspect of worker changes. We have
the option, to vary the worker schedule at certain points within the time horizon.
We allow the workers to change their position once in the middle of the time
horizon. We fix the time grid size to ∆t = 0.01 and simulate the objective function
value varying βt

1 from 0 to 1 with step width 0.001 (β2 of the second machine
automatically varies since βt

2 = 1 − βt
1). Since βt

1 has two values (one for each
time period), we end up with a 3d-plot showing the objective function value for all
combinations of βt

1, t ∈ [0; 2] and βt
1, t ∈ (2, 4]. The result is depicted in Figure 8.

Figure 8. Outflow depending on the number of workers at the first machine, including one worker change
in the middle of the time horizon.

Obviously, at a first result, allowing one worker change within the time horizon
leads to an improvement of the optimal solution (49.14 units compared to 44.47
units). To understand this behavior, we shall have a closer look at the evolution of
flow, capacities and buffer levels as well, which are plotted in Figure 9(a).
In all these plots, we observe that the number of workers at a machine influence

the slope of the capacity evolution. Unless the capacity is neither 0 nor has reached
its maximal level µ, it can be described by a (piecewise) straight line with slope
Wβidi − αi (cf. equation (6)). Since the breakdown rate of the second machine is
40, we need all 40 workers to keep the capacity at the same level. This happens in
the time period after the workers have changed, see Figure 9(b). In this way, the
flow is sustained leading to a larger total outflow value compared to a fixed worker
schedule.

Remark 1 : It is not always the case, that a unique maximum is reached. On
the contrary, in more complicated settings many local maxima may occur. In such
cases the fmincon solver is not reliable anymore, since it often gets stuck in local
optima. Another drawback of fmincon is, that we cannot stick to schedules with
integer workers.
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(a) Constant worker schedule

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time                                    
16.26 workers                  0 workers

machine 1

 

 

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time                                     
23.74 workers                  40 workers

machine 2

 

 

capacity

flow

buffer level in front of machine

worker change

(b) One worker change in the middle of the time horizon

Figure 9. Optimal solution for serial processors

4.2. Branched networks

So far, the serial processor test case is a nice example to get insight and feeling for
the dynamics involved in the repair worker assignment model. After this numerical
experiments in Matlab, we now have a different focus. First of all, we analyse the
steady state problem (29) and point out, in which way the obtained information
can be exploited for the dynamic model (19). The models, formulated as linear
mixed integer programming problems, are solved by CPLEX [16]. We extend our
studies to a more general network with 12 edges, as shown in Figure 10 and restrict
the worker distributions to integer values only due to the easier applicability to real
world problems. We allow external inflow for the first two edges and are interested
in maximising the outflow at edges 11 and 12.

Figure 10. Branched network with 12 edges where di = 1 for all machines.
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4.2.1. Steady state studies

Before we prescribe the external inflow and compute the optimal solution of the
dynamic model (19), we first have a deeper look at the steady state solutions,
described in Section 3. Different from the dynamic model, the external inflow of
the steady state model (29) is not given a priori, but is maximized simulatenously
with the outflow.

Analysis on the amount of available repair workers

From case 1.1 of equation (22) with ǫ = 0 we can deduce, that we need at least
αi

di

workers in order to keep the capacity of machine i to its maximal level. In
our setting di is set to one for all i and the breakdown rates α sum up to 109.
This means, that at least 109 workers are necessary avoid capacity drops. Since
employing workers is expensive, it is rewarding to check, how we can cope with less
manpower.
The question arises, how many workers we would at least need to get a steady

state flow-through greater than zero. In the case that we do not previously fix
the flow distribution at the nodes as explained in subsection 3.2, we can find the
answer in the following way: Assume, that the maximal capacity µi is greater than
zero for all machines. As explained before, the capacity of a machine can only be
sustained, if at least αi

di

workes are allocated to it. We can find the least manpower
consuming path through the network by using a standard shortest path algorithm
such as Djikstra algorithm, for more details see [12] and [20] amongst others. The
flow-through of this path is bounded by its bottleneck, which is the machine with
the smallest capacity. For our testcase, we need at least 17 workers contributed
along the shortest path to get a steady state solution greater than zero. In this
case, the flow-through is 5 parts per time unit, see Figure 11.

Figure 11. The least manpower consuming steady state solution greater than zero. The resulting flow-
through is 5 parts per unit time requiring a minimum of 17 workers.

When we previously fix the distribution behaviour of the flow as in Subsection
3.1, for example to equal distribution between the suceeding edges, we need a lot
more workers to get a positive flow-through greater. This is due to the fact, that
once an edge transmits a flow, all its succeeding edges must also have a capacity
greater than zero, such that the flow can be distributed in the prescribed way. For
our testcase, we need at least 73 workers to get a positive steady state flow. The
resulting flow-through is 10 parts per unit time. For details, see Figure 12.
Moreover, it is interesting to compute the maximal steady state solution, when we

have no capacity drop. If the flow distribution at branching nodes is not previously
fixed, we can find the solution via the Ford-Fulkerson-Algorithm [5] using the
maximal capacities ci = µi as upper bounds. The result is shown in Figure 13.
This gives us an upper bound for the maximal flow-through. In our case, it is 35

parts per time unit.
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Figure 12. The least manpower consuming steady state solution greater than zero, for equally distributed
flow at branching nodes. The resulting flow-through is 10 parts per unit time and the necessary number
of workers is W = 73.

Figure 13. The maximal static flow-through when all capacities are at their maximal level.

Under-staffed settings

From the above analysis we know that finding the optimal worker distribution is
only interesting in the case, that we have less than 109 workers available. Otherwise,
we can always distribute the workers in a way, that no capacity loss occurs.
In the following, we consider two scenarios, where the total number of work-

ers is set to 30 (→ highly under-staffed) and to 100 (→ slightly under-staffed)
respectively.
Moreover, we compare both versions of the steady state optimization problem

(29): First we use matrix B and therewith a fixed flow distribution at branching
nodes, and for the second run we exchange B with the incidence matrix K, see
(30), leading to variable flow distributions that are subject to the optimization
process.
The resulting maximal flow-through of the different settings is depicted in Figure

14 for 30 workers and in Figure 15 for 100 workers.
In the highly under-staffed scenario with fixed flow distribution (see Subfigure

14(a)), it is not possible to allocate the workers in a way to obtain positive solution.
All machines are out of order and no flow is able to go through. However, if we
leave the distribution of flow up to optimization, we can find a solution, where a
flow-through of 10 parts per time unit can be provided, on the only functioning
path through the network (see Subfigure 14(b)).
As expected, we get a much better solution, when we increase the number of

workers to 100 (see Figure 15). Now, the setting with fixed flow distribution allows
a maximal flow-through of 20 (see Subfigure 15(a)), whereas the additional opti-
mization of the flow distribution increases the flow-through to 35 (see Subfigure
15(b)). As shown above, this is already the upper bound of steady flow-through
with respect to the number of repair workers.
The steady state solutions can be useful for the dynamic model. As explained in

the next subsection, the steady state analysis provides us with a qualitatively good
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(a) Fixed flow distribution

(b) Optimized flow distribution

Figure 14. Maximal flow-through, scenario with 30 workers

(a) Fixed flow distribution

(b) Optimized flow distribution

Figure 15. Maximal flow-through, scenario with 100 workers
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start solution for the dynamic MIP (19), leading to significant runtime reductions
of the optimization procedure. Furthermore, we can observe, that optimization of
the flow distribution at branching nodes leads to a considerable gain of outflow.
This does not only hold for the steady state case but also for the dynamic setting,
as described in the sequel.

4.2.2. Dynamic repair model

Now, we move on to the dynamic repair model (19). As before, we use the flow
distribution matrix B that divides the flow in equal shares among the suceeding
edges at branching nodes.
Different to the steady state model, we have to fix the external inflow function

in the dynamic setting. We choose fext ≡ 20 for edge 1 as well as for edge 2. The
timehorizon T is set to 5 and the timegridsize to ∆t = 0.1. As initial conditions,
the network is empty, i.e. buffers and flows are equal to zero for t = 0 and the
capacities are set to its maximal values c0i = µi. As in the previous subsection,
we again consider the highly under-staffed setting with 30 workers as well as the
slightly under-staffed one where 100 repair workers are available.
Due to the high complexity of the dynamic problem (19) it is advisable to provide

a start solution in order to speed up computation time. A feasible start solution can
easily be computed by fixing the worker assignment for all machines and computing
the forward solutions for the capacity and buffer conditions according to (9b) and
(9a). The optimal worker distribution of the corresponding steady state problem,
see Figures 14(a) and 15(a), turns out to be an adequate start solution. In Table
2, this procedure is compared to the use of another start solution, where workers
are equally distributed amongst the machines. The initial objective function value
provided by the steady state solution as well as the optimization time is significantly
better.

Table 2. Optimization results for the dynamic repair problem using different start solutions.

#workers start solution optimization time outflow of start sol. optimal outflow

equally distr. workers 504.55 s 10.27 41.88
30 steady state solution 316.08 s 16.52 —”—

changes allowed steady state solution > 3 days 16.52 42.73

100 equally distr. workers 1794.47 s 28.14 120.49
steady state solution 569.53 s 90.91 —”—

changes allowed steady state solution 154.74 s 90.91 121.12

Additionally we can allow the workers to change position after each time unit. For
this option we use again the steady state solution as a starting point for optimiza-
tion. The results are listed in the 3rd and last row of Table 2. The obtained outflow
is slightly higher in that setting. However, the complexity of the problem increases
this way. As far as computation time is concerned, it takes the optimization algo-
rithm several days to find the optimal solution of the highly under-staffed setting.
Though, if 100 workers are available, optimization time, namely 154.74 seconds,
is unexpectedly short when worker changes are allowed. This can be explained by
comparing the optimal worker distribution with the start solution, which is shown
in the following figures that are explained in the sequel.
In Figure 16 and 17, the worker distributions are plotted for the highly and

slightly under-staffed setting respectively. The left plot shows the optimal worker
distribution of the steady state case and the next one represents the optimal so-
lution of the dynamic model. The rightmost plot depicts the optimal distribution
when workers are allowed to change position after each time unit. Here, each bar
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is devided into 5 supbars that represent the number of workers being assigned to
the respective machine at each of the 5 time units. In Figure 17 we can see, how
close the start solution (Figure 17(a)) already is to the optimum (Figure 17(c)).
This fact explains the short optimization time.
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(a) Optimal worker distribution
of the steady state case
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(b) Optimal solution for the dy-
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(c) Optimal solution for the dy-
namic model allowing the workers
to change position after each time
unit

Figure 16. Optimal worker distribution for the highly under-staffed setting, i.e. W = 30.
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(c) Optimal solution for the dy-
namic model allowing the workers
to change position after each time
unit

Figure 17. Optimal worker distribution for the slightly under-staffed setting, i.e. W = 100.

Changing the flow distribution at branching nodes

In the sequel, we will use an important observation concerning the previously
described steady state analysis. Remember, that the steady flow-through can be
significantly improved, when the flow distribution at branching nodes is not a priori
fixed. A straightforward idea would be to include this flexibility as well into the
dynamic model (19) by exchanging the flow distribution matrix B by the incidence
matrix K analogously as done for the steady case in Subsection 3.2. However, this
ansatz incloses a significant drawback. Since the distribution rates of the flow do
not appear explicitely as parameters in the formulation of the problem when the
incidence matrix is used, it is not possible to restrict to constant distribution rates.
Consequently, we can not avoid the undesired effect, that solutions contain highly
fluctuating flow distributions. For that reason, we prefer to track another idea. We
use the optimized flow distribution of the steady state case for the dynamic model
(19) by adapting matrix B accordingly.
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step 1: Compute the steady state solution with variable flow distribution (30).
step 2: Construct the flow distribution matrix B according to the distribution of

the steady state obtained in step 1.
step 3: Solve the dynamic repair model (19) using B and taking the optimal worker

distribution of step 1 as start solution.

In table 3 the corresponding optimization results are listed.

Table 3. Optimization results for the dynamic repair problem using optimal flow distribution rates of the

steady state analysis.

# changes optimization opti. outflow of. optimal improvement to
workers allowed? time gap start sol. outflow previous flow distr.

30 no 3207.46 s 0 % 42.56 45.05 7.56 %
yes > 3 days 2.33 % 42.56 ∈ [49.56, 50.71] > 15.98 %

100 no 0.84 s 0 % 126.28 126.28 4.80 %
yes 0.84 s 0 % 126.28 126.28 4.26 %

The last column shows the considerable gain of outflow by using the optimized
matrix B instead of equal flow distribution, see Table 2. Furthermore, it is inter-
esting to have a look at the computation time. For the highly under-staffed setting
optimization takes notedly longer. When allowing worker changes, the optimality
gap of the algorithm could not even be completely closed after three days. On the
other hand, the gain of outflow is noteworthy, especially when workers are allowed
to change their position after each time unit. When 100 workers are available,
the optimal steady state solution turns out to be already optimal for the dynamic
model, even for the case in which we allow worker changes. Hence, the optimization
time is with 0.84 seconds extremely short.
The solutions of the different settings are illustrated in Figure 18.
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Figure 18. Comparison of outflow of different settings

It is remarkable, that the optimal steady state worker distribution is already
really close to the optimal solution of the dynamic model in the case, that we use
the flow distribution that is optimal for the steady state case (in the figure denoted
by ”ss-optimal”).
Summarising the numerical observations, we can underline the benefit of the

steady state analysis. Note, that the steady state problem (29) is much faster
solvable than the far more complex dynamic MIP (19), where we need the whole set
of variables for each single time step. First of all, the steady state analysis provides
us with a qualitatively good starting solution that leads to significant runtime
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reductions for the optimization of the dynamic model. Secondly, the additional
optimization of the flow distribution in the steady state case, endows us with
valuable information how to increase the outflow of the dynamic model, given that
the flow distribution of the corresponding application is adaptable accordingly.

Conclusions

We have presented a novel production model for the time-changing repair worker
assignment. The main idea is to keep the system performance optimal whenever
machines have failed and must be repaired. In general, available workers are lim-
ited and therefore a decision has to be made which machines are repaired first.
The resulting optimization problem has been intensively analysed and numerical
case studies comparing fixed and time-changing schedules have been performed.
However, we could answer many questions there are still numerous open topics for
future considerations. Besides the fact that there is great need for faster solution
procedures, it is interesting to think about the influence of stochastic breakdown
rates α instead of using experience values. Intuitively, this will lead to a completely
different setting. But also the question of an optimal schedule in the sense that we
seek flexible points in time at which the workers must move to broken machines
is an attractive issue. This is not clear so far and will be of our interest in future
research projects.
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