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Abstract

The immersed interface method is modified to compute the Schrédinger
equation with discontinuous potential. By building the jump condition
of the solution into the finite difference approximation near the inter-
face, this method could give at least second order convergence rate for
the numerical solution on the uniform cartesian grid. The accuracy of
this algorithm is tested via several numerical examples.
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1 Introduction

Consider the Schrodinger equation in different forms

1
Stationary : —55—:2A<p + Vo= FEop, (1.1)
1
Eigenvalue : —552A¢ + Vo= EFEg, (1.2)
1
Dynamic : et + 552Aw =V, (1.3)

where ¢ is re-scaled Plank constant, & € © C R? denotes the computa-
tional domain, and V' = V(&) is the potential. We can use different types of
boundary conditions, e.g. transparent boundary conditions, periodic bound-
ary conditions and reflection boundary conditions. In stationary problems,
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the energy F is specified. In eigenvalue problems, the energy F is eigenvalue.
In the dynamic problems, we need to specify the initial condition

(0, ) = Ag(x)e'@)/e, (1.4)

Our goal is to compute the wave function ¢(x), ¢(x) and (¢, x) on a
uniform Cartesian grid to second order accuracy, even if the discontinuities
curves of potential V(x) are not aligned with grid.

The Schrodinger equation with discontinuous potential can be used to
model the motion of electrons in quantum zones, e.g. quantum barrier,
quantum well, quantum dot and p-n junctions [11, 28, 33]. The quantum
zones is an active region of the electronic structure, which connects to two
highly conduct large reservoirs. And the whole structure is a basic and
fundamental semiconductor device in modern industry, e.g. memory chip,
microprocessor and integrated circuit [9, 10, 29].

There have been numerous studies on the direct numerical method of
the Schrodinger equation, including finite difference method [26, 27, 34],
discontinuous Galerkin method [24, 25, 36|, spectral type method [7, 8,
13], the WKB scheme [3, 4, 32] and other related technic [1, 2, 5, 16, 31].
However, none of these methods could satisfies all the following requirements
for solving the Schrédinger equation with discontinuous potential: (i) at least
second order convergence, (ii) robust processing in interface condition, (iii)
easy generalization to high dimension (iv) take the advantages of Cartesian
grid.

The immersed interface method, original developed for the elliptic equa-
tions with discontinuous coefficients and singular sources [12, 17, 19, 20, 21,
22], can maintain at least second order accuracy on the uniform grid even
when the discontinuities curves of potential are not aligned with the grid.
The idea is to modify the standard finite difference approximation at grid
points near interface to keep the jump condition of the derivatives of solu-
tions. Such method has succeed in many applications, e.g. heat equations
[6, 23], acoustic wave equations [30, 37], stokes flow and the Navier-Stokes
equations [14, 15, 18].

In this paper, we develop the immersed interface method to solve the
Schrodinger equation with discontinuous potential. The solution to this
method is shown to have at least second order convergence in both one
and two dimension. A more interesting question is how to extend such
idea for dynamic Schrodinger equation with discontinuous potential in the
semiclassical regime. Base on the results here, we will propose two new
methods that can achieve high accuracy with low computational cost in a
consecutive paper [35].

The paper is organized as follows. In Section 2, we show how the im-
mersed interface method can be used to Schrodinger equation with discon-
tinuous potential. The method in higher space dimensions is given in Section



3. In Section 4, we present the numerical examples to test the accuracy of
the method. We make some conclusive remarks in Section 5.

2 One dimensional Schrodinger equation

We begin by considering the one dimensional stationary Schrodinger equa-
tion ]

on the computational domain [a, b]. The potential V' (z) is split into smooth
part Vs(x) € C*°([a,b]) and discontinuous part Vy(x)

Viz) = Vs(x) + Vy(x). (2.2)
Here the discontinuous potential is given by

AV, ¢ <x < cg,
Va(z) = { 0 1 else. i (2:3)

Remark 2.1 The discontinuous potential Vy(x) can be given in a general
form, including more discontinuities for the function and its derivatives.
To concentrate on the key idea, we use (2.3) in this Section without special
tstruction.

Therefore, we have the following jump conditions(s = 1, 2):

[¢l., =0,

here [-], represents the jump in a quantity at the point ¢

+ - . .
[Ple =#" —¢° = lim o(x) — lim ¢(z).
r—C r—C
We would like to compute the numerical solution of ¢(z) on the uniform
grid
Tp=nh+4+a, n=01,--- N,

where h = (b — a)/N. The point ¢, will typically fall between grid points,
say
Tm <cs < Tme+1-

We introduce ps1, ps2 € [0, 1] satisfy

Ps1 + Ps2 = 1, ¢s— Tms = P51h7 Tms+1 — Cs = Ps?h-



For n # mg,ms + 1 the solution is smooth in the interval [z,_1, Tp4+1], We

can use the standard approximation

1

_277—2 (Son—l _ 2(pn + (pn—i—l) + Vngon — Ego",

here 7 = % This gives a local truncation error

1¢e?
Tn — _§ﬁ ((pn—l _ 2()071 + S011—}-1) + Vngpn _ E(pn — O(h2)
To design the finite difference scheme at n = mg, we firstly have
1 _
P(Tm,—1) = ¢ = (1 + Dhel + 5 (ps1 +1)*h7e5; + O(RY),
Cs Cs 1 2 12 cs 3
Plam,) = % = psahel + 5pah®ea + O,
1 +
P(am,41) = 97+ Pahel + Sph*e, + O(hY)
1 - 2[V]
— o pahg + prh? (i + e ) 4 O0F)
and

V(xms)ga(xms) = VC; SOCS + O(h)7
E@(xms) ESOCS + O(h)7

1 _ _
—E e H Ve = Bt

then we can write the modified approximation as [17]

’YInSSDmsil + ,ygns(pms + ,ygns(pms+1 + Vms(pms — E@ms (25)

This gives the local truncation

T = " p(Tm,1) + 75 0(Tm.) + 75 0(Tm. 1) + V(Zm,)o(Tm,) — Eo(Tm,)
= W o(Tme—1) + 15 0(Tm,) + V5 P(Tmy1) + V9% — Ep® + O(h)

1 . 1 )
= 7" <<PCS — (ps1 + Dl + =(ps1 + 1)2h2@§z> + 5 (@”S — ps1h + 2p§1h2¢§;)

2

| 2 1, -
+y" <90‘”S + Psahpl + 5Pl <90§; + = 9053>) + 55

2

+O(h)

= (W 5+ (L4057 V].)) 9% + (= (st + D™ — ps17s™ + psavs™) hely

1 1 -
+5 ((psl + 1) P PR+ 72> W + O(h).

Then we have the linear system for the coefficients

W+ e (L4 [V],,) =0,

—(ps1 + D™ — ps1v5™ + ps2vys =0, (2.6)

(st + 1)°" + P2 + 05 = — -

4



Similarly as the previous process, we can modify the finite difference
approximation at n = mgy+ 1 as

WM g Tl et lpmet2 oy ettt = Fpmetl, (2.7)

in which the coefficients satisfies

W (L= ph VD) st T =0,

—pswi”ls“ +psﬂ§”:“ + (ps2 + 1)7?‘“'1“ =0, (2.8)
P T 4 R T A (P + 1) =

We can simply compute the local truncation error

T = P p(em,) + 5 (@) + 95 (@, 1)

+V (@me4+1)P(@mo+1) — Eo(Tm+1),
= O(h).

Remark 2.2 As discussed in [17], only four gird points(independent of h)
are involved, their O(h) local truncation error is sufficient to ensure the
numerical solution converge at least second order.

For one dimensional eigenvalue problem of Schrodinger equation
1
—5E 6 + Vo = B, (2.9)

the potential is given by (2.2)-(2.3), we have same jump condition as (2.4).
The numerical solution satisfies

1
_277_2 (¢n—1 _2¢n+¢n+1) +Vn¢n _ E¢n’

for n # mg, mg + 1, and

,.Y"ln.s ¢m5—1 + ,y;ns ¢ms + ,.ygns ¢m5+1 + Vms ¢ms E¢ms’
,.y71ns+1¢ms + 7;715+1¢m5+1 + 7§n5+1¢m5+2 + Vm5+1¢m5+1 — E¢ms+1’

where /" are the solutions of equations (2.6) or (2.8).

At last, we consider the one dimensional dynamic Schrédinger equation
) 1
iy + 5 P =V, (2.10)

with potential given by (2.2)-(2.3), here ¢ = 9 (¢, z). The jump condition is
similar to (2.4),
Vi, = AV, V], = -AV,

[, =0, [a],, =0, [i],, =0,
=562 [Wual,, + V], ™ =0,

5



The time grid is
ty =1k, [=0,1,---,L

Y

where k = T'/L. For n # ms,ms + 1 the solution is smooth in the interval
[©n—1, Tn+1], the standard Crank-Nicolson approximation can be used

wl—&-l,n _ d)l,n B 1 1

w 272 2
n

v
+(¢l’n_l o 2¢l,n _’_wl,n-‘rl)) + 5

((wH—l,n—l o le—l-l,n + wl-l—l,n—&-l)

<w1+1,n 4 wm) ’

with w = % This gives a local truncation error

. 2

T = % (Y11, zn) — Yt z0)) + :ﬁ (W(tip1, 2n—1) — 20(tip1, on) + (g1, Tng1))
2

+4€7h2 (w(tl’ $n71) - 21!}(251’ xﬂ) + w(tla xn+1)) - %V(l‘n) (¢(tl+1, l‘n) + w(tla $n))

= O(h? + k).
For n = mg or n = ms + 1, the modified approximation is

lerl,ms _ Qpl,ms

1
= 5((71713,(#[—{-1,7713_1 + ’yglsqj)l""lvms + ,ygflswl—‘rl,ms—i—l)

Vs m m
(),

1
_ ((’y{nﬁllﬁprl’ms _’_,ygms+1¢l+1,ms+1 +7§)15+1wl+1,m5+2)

w 2
+(7{n5+1'¢l7m5 +,y;ns+1¢l,ms+1 +7§115+1¢l,m5+2))

Vms+1

+T (¢l+1,ms+l + wl,ms—i-l) 7

W

_*_(,y?lswl,ms*l _|_ ,-)/;ns,lpl,ms + ,.yg@s,l/]lyms+1)) +
¢l+1,ms+1 _ Q[)l,ms—',-l

where ~/" are the solutions of equations (2.6) and (2.8). Then the local
truncations are

THms = O(h + k%), Tt = O(h + k?).

2.1 A special case for j-potential

In this subsection, we consider the one dimensional stationary Schrédinger
equation (1.1)-(2.2) with J-potential

Va(x) = AV(z — ¢1).

Then the jump condition is given by

1
[gp] = 0, 552 [(pz]cl = AVSOCIa [@zx] =0.



Using the same idea, we can derive the linear system for the coefficients in
approximation (2.5),

Ay s (14 2pseTAV/e) =0,
—(ps1 + V7" — ps175™ + ps27y's =0, (2.11)
(ps1 + 129" + P23 + PP = — 5,

and in approximation (2.7),

W (L4 2paTAV/e) + g gt =0,
—ps1 T+ P2y T (ps2 + 1) 5T =0, (2.12)

PA T B T 4 (s + D2t =

For eigenvalue problem and dynamic problem, the similar idea has been
discussed with coefficients satisfy (2.11) or (2.12).

3 Two dimensional Schrodinger equation

We now consider the two dimensional stationary Schrédinger equation

1
_552 (Soxx + Soyy) + Vo= FEp, (3'1)

on the computational domain  C R2 The potential V() is split into
smooth part Vs(z,y) € C*>(f2) and the discontinuous part Vy(z,y):

AV, (z,y) € CQ,

Va(z,y) = { 0, else. (3.3)

Assume (g is simply connected closed domain and the interface I'y = 9y
is a smooth curve lying in 2. Therefore, we can define a smooth indicate
function F(z,y) satisfies

f(l‘,y) >O) (xay) EQd\Pd,
.F(l‘,y):(), (xay) GFd,
‘F($7y)<07 (.T,y)GQ\Qd
Remark 3.1 The discontinuous potential Vy(x,y) and the domain Q4 can

be easily extended into a general form. We make this assumption to simplify
the explanation and concentrate on the main idea.

Let the computational domain be a square, say [ai,b1] X [ag,ba]. We
would like to compute the numerical solution of ¢(z,y) on the uniform grid

Tn =nh+ay, n=0,1,---, N,
Ym = mh + ag, m=20,1,--- , M.



where

b —a1 by—as
N M
For regular grid points (z, y,) satisfies

h

f(l'n7ym)f(xn/7ym/) >0, v(l'n’yym’) e s,
S = {(xn’ym)a (xnflaym)a (l'nJrlaym)a (xnaymfl)a (xn,merl)}a

we can use the standard five points approximation

82

=gz (T T S AT QLT G LY = Bt
with a local truncation error
2

3

T _2h2 ((pn—l,m 4 (pn,m—l o 490n7m + (pn—&-l,m + (pn,m—l—l)_i_(vn,m _ E) SOn,m — O(hZ)

For irregular points, the standard five points are on the different side
of the interface, the related approximation is not valid anymore. To design
a new finite difference scheme, we firstly look for (22,42 ) on the curve I'y

who is closest to (2, ym). Taking (29,49 ) as original point, we construct a
local coordinate(see Figure 1) with the following transformation

x \ [ cosf —sind 13 n z0
y )\ sinf cosf n Yo )7
where £ and 7 are in the directions normal and tangential to the interface at

1

S
1 -1 1

1 il 3 )\
-1 2
n-1 41 m+1
da

Figure 1: Interface I'y in 2d domain and the local coordinate (£, 7).

Ja

7

(22,49 ) respectively, and @ is the rotation angle. The stationary Schrédinger
equation (3.1) can be rewritten in the local coordinate as

1
—562 (¢ee + ogy) + Vo = Eep.



Then we can give the jump condition at (z9,49,):

{ [VI=AV, [¢] = [pe] = [#q] =0
[oen] = lomm] =0, [pee]l = 5 V],

here [-] represents the jump in a quantity at the point (z9,v9)
el =" =

We use the superscripts + or — to denote the limiting values of a function
from one side (in ) or the other (in Q\ Q). It is easy to see there are six
constraints, then we need an additional point (z,y,) to close the system.
We choose

(5 ) € S =
{(xn—laym—1)7 (mn_1,ym+1), (xn+laym—1)7 (xn-l—hym—l-l)}

be the closest point to (20,42 ). Then we can define

SE™ =S U (Y}
S = S A, ST = ST AR Q)

We give Taylor expansion for (z,y) € S, ,,

p(&n) =t +ofeé+oin+ ‘P5552+90§77§77+ Sem’ + O(h?),

and for (z,y) € S,

,m
- - - L - L 3
PE&m) = ¢~ + o &+ o+ 50" + g &+ Seny + O(R7),

here ¢, gogi, goff, goé, gpgin, cpﬁn denotes the related limiting values of ¢ at the
point (z0,,). For (@n,ym) € S;f,,, we have
V(Tn, Ym)o(Tns Ym) = Vet + O(h),
Eo(zn,ym) = Ep* +0(h),
Lol v+ + +

We write the modified approximation as

Z ,ynm nm+ Z ,ynm nm+Vnm n,m Ev<p71,7n7 (35)
sesy seS™™

to make the equation clear, we drop the index group (n,m) as

D s+ Y Ystps + Vo = Eop,
S€S+ SES_



then the local truncation is given by

T = > vp@ays) + Y 162(@s,ys) + (V(@n, ym) — E)p(@n, Ym)
SES seES_
1 1
= D% (W +QF e+ s+ 5D + 0f s + 2%%773) + (VY —E) ot
S€S+

o 1 B 1
+ > % <<p + P&+ Tl + 5Pl T Pl + 2%775) +O(h)
seS_

1 1 1
= ) % (sﬁ + Q€+ o e+ SO + 0f Eams + %ni) + o€’ (sogz + so;,“n)

2 2
seSt
+> ottt oimt s (el — 2 Vet ) € 4ol fan+ st ) + O(R)
Ys | ¥ 905 S 9017 Ns 2 ()Ogg 52 2 S 90517 sTs 230771777.9 :
sES_

This gives the linear system for the coefficients

|4
ZSGS* Vs — [872} ZSGS_ 652'75 =0, ZSES* 55273 = _527

ZSGS* €s7s = 0, ZSES* Esnsvs = 0, (3'6)
ZSES* Ysns = 0, ZSGS* 77375 = —¢2

For (z,ym) € S, we have

V(xnaym)<p<xn7ym> = Vﬁ(pi_'_o(h)?
Eo(xn,ym) = E¢~ +O(h),

1 _ _ _ _
_582 (‘pﬁé + (Prm> tViem = Ep.
then the coefficients for the modified approximation (3.5) is given by

vV
ZSES* Vs + % ZS€S+ 5?% =0, ZsES* 552’75 = —€2a
ZSES* 5575 =0, ZsES* fs"?s')/s =0, (3.7)

Zses* nsys =0, Zses* 773’75 = _527

and the related local truncation error is

T = Z 75@(x57 ys) + Z ’7390(1‘37:%9) + (V(xn7ym) - E)‘)O(xna ym)
s€Sy s€S_
— o).

Remark 3.2 As discussed in [17], the irregular points, which are adjacent
to the curve Ty, form a lower-dimensional set. Their O(h) local truncation
error is sufficient to ensure the numerical solution converge at least second
order, just as in one dimension.

10



For two dimensional eigenvalue problem of Schrodinger equation

52 (b by) + VO = B9, (3.8)

the potential is given by (3.2)—(3.3), we have same jump condition as (3.4).
The numerical solution satisfies

2h2 (¢n 1,m _’_(;snm 1 4¢n,m +¢n+1,m +¢n,m+1) +Vn,m¢n,m — ‘E(ﬁn,m7

for regular points, and
DTG 4 N ARG 4 VI = B,
sesy™ ses™m™m

for irregular points, where 5" are the solutions of equation (3.6) or (3.7).

At last, we consider the two dimensional dynamic Schrodinger equation

Zﬁ/’t + 5 (wxx + wyy) quz)v (39)

with potential given by (3.2)—(3.3), here ¢ = ¢(t,z,y). The jump condition
is similar to (3.4),
{ V1= AV, [¢] = e = [pe] = [0y =0
[oen] = Lol =0, lpeel = 2 [V]e,
The time grid is
=1k, 1=01,-- L,

where k = T'/L. For regular points, the standard Crank-Nicolson approxi-
mation can be used

At (¢l+1 n,m wl,n,m)

2
_ _4€h2 <¢l+1,n—1,m =+ ¢l+1,n,m—1 _ 4¢l+1,n,m + wl+1,n+1,m + ¢l+1’n’m+1)
52 I,m—1m l,mm—1 l,n,m l,n+1,m l,mym+1 yrm I+1,n,m l,n,m
_4h2<1/}7 ’ _i_rl/}77 _4¢7’ _i_wv k) +1/}77 )+ 2 </(/} bS] _‘_1/}77 )’

this gives a local truncation error
Tl,n,m — O(h2 + k2)

For irregular points, the modified approximation is

1
_ _5( Z ,Yg,m ( i+1,n,m + ¢l nm) Z ,y;L,m ( iJrl,n,m + le nm) )
sesy™ ses™™

where 5" are the solutions of equation (3.6) or (3.7). Then the local
truncation error is

7™ = O(h + k2).

11



1 1 1 1
h 200 00 800 1600
E=05 144x1073 386x107* 757x107® 1.76 x 107°
E=10 473x102% 1.18x 103 288x10"% 5.73x107°

E=15 872x1073 217x1073 5.12x107% 1.03x 1074

Table 1: Example 1-1, the [*° errors of ¢(z) for different energy £ and mesh
size h.

Figure 2: Example 1-1, The wave amplitude |¢(z)|(blue solid line) for dif-
ferent energy F, the red dash-dot line are the potential.

4 Numerical examples

In this section, we will present a few examples to test the order of accuracy
for the numerical scheme. In all the examples, the ‘exact’ Schrodinger so-
lution is obtained by using standard finite difference approximation with a
very fine mesh size and a very small time step.

Example 1. We consider one dimensional Schrédinger equation with the
following parameters
a:_]-v b:17 61:_§7 02:§7
AV =1, Vi(x) =0.1sin7mz.

(1) For stationary Schrédinger equation (2.1) with transparent boundary
condition

epz(a) +iv/2(E —V(a))p(a) = 2i/2(E — V(a)), (1)
epz(b) —in/2(E = V(b)))p(b) =0, .

here ¢ = 0.1, we output the I* errors of wave function for different energy
E and mesh size h in Table 1. In Figure 2, the wave amplitude |p(z)| are
plotted versus different energy E.

(2) For eigenvalue problem of Schrodinger equation (2.9) with periodic
boundary condition(pbc)

¢(z + (b—a)) = ¢(2),

12



1 1 1 1

h 200 00 500 600
pbc 1.92x 1072 4.82x107% 1.09 x 1074 2.26 x 107°
rbe 1.97x 1073 4.95x107% 1.12x107* 2.32x107°

Table 2: Example 1-2, the [*® errors of ¢(z) for different mesh size h.

E=—0.02 E=0.11 E=0.22 E=0.38 E=0.59

(a) Periodic boundary condition

E=0.01 E=0.18 E=0.30 E=0.45 E=0.75

(b) Reflection boundary condition

Figure 3: Example 1-2, The wave function of first ten eigenvectors ¢(x).

or reflection boundary condition(rbc)

¢(a) = ¢(b) = 0,

here e = 0.1, we output the [*° errors of the first ten eigenvectors for different
mesh size h in Table 2. In Figure 3, the wave function of first ten eigenvectors
¢(x) are plotted.

(3) For dynamic Schrédinger equation (2.10) with periodic boundary
condition(pbc)

Yv(t,z+ (b—a)) =¢(t,z),
or reflection boundary condition(rbc)
¢(t, a) = 1/}(t’ b) =0,
here ¢ = 0.02, Ty = 0.54, and the initial data is given by

Yolz) = 67400(a:+0.6)2ei(x+1)/5

Y

13



~

0o 0 0 0
- S
T

S o5

(a) Periodic boundary condition

0 0 0 0

=) o= ES

(b) Reflection boundary condition

Figure 4: Example 1-3, The initial and final wave amplitude | (¢, x)|.

h 1 1 1 1

1000 2000 4000 8000
pbc 9.23x107* 234x107% 558 x107° 1.11 x 107°
rbe  1.52x 1073 3.90 x 107* 9.15x 10™® 1.79 x 107°

Table 3: Example 1-3, the [*° errors of (¢, x) for different mesh size h.

we out the the [*° errors of the wave function for different mesh size h at
time ¢ = T in Table 3. In Figure 4, the wave amplitude |1 (¢, z)| are plotted.
From all these data, we can observe that the numerical solutions converge
at second order.

Example 2. We consider one dimensional Schrédinger equation on the
computational domain [—1, 1] with d-potential

V3o 1 Yoo

V3
B %) 10

V(z) =2z 50

).

(1) For stationary Schrédinger equation (2.1) with transparent boundary
condition (4.1), here ¢ = 0.1, we output the [ errors of wave function for
different mesh size h in Table 4. In Figure 5, the real and imaginary part of
wave function ¢(z) are plotted.

(2) For eigenvalue problem of Schrodinger equation (2.9) with reflection
boundary condition, here ¢ = 0.1, we output the [°° errors of the first six
eigenvectors for different mesh size h in Table 5. In Figure 6, the wave
function of first six eigenvectors ¢(z) are plotted.

14



h 1 1 1 1

200 400 800 1600
E=15 933x10% 231x1073 547x107% 1.11x107*

Table 4: Example 2-1, the {* errors of ¢(x) for different mesh size h.

1.5

-1 —o.8 0.6 —o0.a —o0.2 o 0.2 0.4 0.6 o.8 1

Figure 5: Example 2-1, The real part(blue solid line) and imaginary
part(green solid line) of wave function p(x) for energy F = 1.5, the red
dash-dot line are the potential.

h T T T T
200 400 800 1600

rbe 2.00x 1073 5.00 x 107* 1.18 x 107* 2.45 x 1075

Table 5: Example 2-2, the [*° errors of ¢(x) for different mesh size h.

Figure 6: Example 2-2, The wave function of first six eigenvectors ¢(x).

15



1 1 1 1
h 1000 2000 000 5000
pbc 4.65x 1072 1.11x1072 2.61x1073 521 x10~*

Table 6: Example 2-3, the [ errors of ¢ (¢, z) for different mesh size h.

t=0.00 t=0.23

Figure 7: Example 2-3, The wave amplitude |¢ (¢, z)| at different time.

(3) For dynamic Schrodinger equation (2.10) with periodic boundary
condition, here ¢ = 0.01, Ty = 0.54, and the initial data is given by
wolz) = 6—400(m+0.4)262i($+1)/5
we out the the [*° errors of the wave function for different mesh size h at time
t = Ty in Table 6. In Figure 7, the wave amplitude [¢(¢,z)| are plotted at
time t = 0, 0.23, 0.27, 0.54. From which, we can draw the same conclusion
as in Example 1.

Example 3. We consider two dimensional Schrédinger equation on the
computational domain 2 = [—0.5, 1] x [-0.5,0.5] with potential

Vo) = { o(.):j,, (z — 0.5)2641;52 < 0.093,
(1) For stationary Schrédinger equation (3.1) with boundary condition
o(z,£0.5) = 0,
eup(—0.5,y) = > iv/2(E - Ep)2ar — o)xx) + Y V2(Er — E)lxi(y),
E>Ey, E<E),
edvp(Ly) = > iV2AE - E)evixiy) — > V2(Bx — E)gixa(y),
E>E), E<E),
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k 1 2 3 4 ) 6
Er 0.049 0.197 0.444 0.790 1.234 1.777

Table 7: Example 3-1, the first six eigenvalues of (4.2).

h 1 1 1

0 80 160
E=02 388¥x1072 9.04x10™% 1.79x 1073
E=04 342x1072 829x 103 1.69x 1073
E=06 523x1072 1.26x10"2 2.53x 1073

Table 8: Example 3-1, the {*° errors of |p(z,y)| for different energy E and
mesh size h.

here (Eg, xx(y)) are solutions of the eigenvalue problem

—3620y,x(y) = Ex(y),
{ X(io-%) =0, (x(¥),x(y)) =1, (4.2)

and

P(=0.5,9) = > wixk(y), with ¢} = (2(=0.5,9), Xk (1)),
k=1

e(Ly) =D ixa(y), with ¢} = (p(1,9), xx(y)).
k=1

The re-scaled Planck constant is ¢ = 0.1. In Table 7, we present first six
eigenvalues of (4.2). From which, we can believe that the truncation of
infinite series for the boundary condition is accurate enough at K = 6 when
E <0.7. The coefficients of incoming wave aj are given by

k=12,
=10, else.

We output the [*° errors of wave amplitude for different energy E and mesh
size h in Table 8. In Figure 8, the wave amplitude |p(z,y)| are plotted
versus different energy F.

(2) For eigenvalue problem of Schrodinger equation (3.8) with boundary
condition,

d(z,£0.5) = 0,
oz +15,y) = o(z,y),

here € = 0.1, we output the [*° errors of the first six eigenvalues and eigen-
vectors for different mesh size h in Table 9. In Figure 9, the wave amplitude
of first six eigenvectors |¢(x,y)| are plotted.
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E=0.2 E=0.4 E=0.6

Figure 8: Example 3-1, The wave amplitude |p(z,y)| for different energy F.

h 1 1 1

10 0 160
[ error of E 545 x 107% 1.28 x 107* 2.57 x 1075
[ error of [¢p(x)| 6.70 x 1072 1.65 x 1072 4.02 x 1073

Table 9: Example 3-2, the [*° errors of E and |¢(z,y)| for different mesh
size h.

Figure 9: Example 3-2, The wave amplitude of first six eigenvectors |¢(z, y)|.
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T T T
h i) %0 60
[ error 1.19x 107! 290x 1072 6.79 x 1073

Table 10: Example 3-3, the [*° errors of | (t, z,y)| for different mesh size h.

t=0.15 t=0.30

t=0.45 t=0.60

Figure 10: Example 3-3, The wave amplitude of |1 (t, z,y)|.

(3) For dynamic Schrédinger equation (3.9) with boundary condition,

W(t,z,£0.5) = 0,
Y(t,x+1.5,y) = P(z,y),

here € = 0.05, Ty = 0.6, and the initial data is given by

Yoz, y) = 6740((:Jc+0.05)2+y2)61.21'(30-&-1)/5’
we out the the [*° errors of the wave amplitude for different mesh size h at
time ¢t = Ty in Table 10. In Figure 10, the wave amplitude | (¢, z,y)| are
plotted at time t = 0.15, 0.3, 0.45, 0.6. From which, we can draw the same
conclusion as in Example 1.

5 Conclusion

Since the discontinuous potential would effect the continuity of wave func-
tion’s derivatives, the standard numerical methods for Schrédinger equation
with discontinuous potential give low accuracy. On the other hand, the
Schrodinger equation with discontinuous potential is a basic model in many
practical applications, a high order numerical method is required. For this
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reason, we modify the famous immersed interface method to give a second
order convergence scheme for the Schrodinger equation with discontinuous
potential. By serval numerical examples, we verify this method.

The issue of computing dynamic Schrédinger equation with discontinu-
ous potential in the semiclassical regime is itself an interesting topic which
will be studied in a forthcoming paper [35]. Another interesting problem
is how to modify the immersed interface method so that the mass and en-
ergy conservation can be preserved in computing the dynamic Schrodinger
equation with discontinuous potential. This topic is still under investigation.
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