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Abstract
The formation and propagation of singularities for Boltzmann equation in bounded domains has been an important

question in numerical studies as well as in theoretical studies. Consider the nonlinear Boltzmann solution near
Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We demonstrate that discontinuity is created
at the non-convex part of the grazing boundary, then propagates only along the forward characteristics inside the
domain before it hits on the boundary again.

1 Introduction

A density of a dilute gas is governed by the Boltzmann equation

∂tF + v · ∇xF = Q(F, F ), (1)

where F (t, x, v) is a distribution function for the gas particles at a time t ≥ 0, a position x ∈ Ω ⊂ R3 and a velocity
v ∈ R3. Throughout this paper, the collision operator takes the form

Q(F1, F2) =

∫
R3

∫
S2
B(v − u, ω)F1(u

′)F2(v
′)dωdu−

∫
R3

∫
S2
B(v − u, ω)F1(u)F2(v)dωdu

≡ Q+(F1, F2)−Q−(F1, F2), (2)

where u′ = u+ [(v − u) · ω]ω, v′ = v − [(v − u) · ω]ω and

B(v − u, ω) = |v − u|γq0(
v − u

|v − u|
· ω),

with 0 < γ ≤ 1 (hard potential) and ∫
S2
q0(û · ω)dω < +∞, (angular cutoff) (3)

for all û ∈ S2.
If the gas is contained in a bounded region or flows past a solid bodies, the Boltzmann equation must be accompanied

by boundary conditions, which describe the interaction of the gas molecules with the solid walls. Let the domain Ω be a
smooth bounded domain. We consider three basic types of boundary conditions([13],[24]) for F (t, x, v) at (x, v) ∈ ∂Ω×R3

with v · n(x) < 0, where n(x) is an outward unit normal vector at x :

1. In-flow injection boundary condition : incoming particles are prescribed ;

F (t, x, v) = G(t, x, v). (4)

2. Diffuse reflection boundary condition : incoming particles are a probability average of the outgoing particles ;

F (t, x, v) = cµµ(v)

∫
v′·n(x)>0

F (t, x, v′){n(x) · v′}dv′, (5)

with a normalized Maxwellian µ = e−
|v|2
2 , a normalized constant cµ > 0 such that

cµ

∫
v′·n(x)>0

µ(v′)|n(x) · v′|dv′ = 1. (6)

3. Bounce-back reflection boundary condition : incoming particles bounce back at the reverse the velocity ;

F (t, x, v) = F (t, x,−v). (7)

The purpose of this paper is to investigate possible formation and propagation of discontinuity for the nonlinear
Boltzmann equation under those boundary conditions. In order to state our results, we need following definitions.
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1.1 Domain

Throughout this paper, we assume the domain Ω ⊂ R3 is open and bounded and connected. For simplicity, We assume
that the boundary ∂Ω is smooth, i.e. for each point x0 ∈ ∂Ω, there exists r > 0 and a smooth function Φx0 : R2 → R
such that - upon relabeling and reorienting the coordinates axes if necessary - we have

Ω ∩B(x0, r) = {x ∈ B(x0, r) : x3 > Φx0(x1, x2)}. (8)

The outward normal vector at ∂Ω is given by

n(x1, x2) =
1√

1 + |∇xΦ(x1, x2)|2
( ∂x1Φx0(x1, x2), ∂x2Φx0(x1, x2), −1 ).

Given (t, x, v), let [X(s), V (s)] = [X(s; t, x, v), V (s; t, x, v)] = [x − (t − s)v, v] be a trajectory (or a characteristics) for
the Boltzmann equation (1) :

dX(s)

ds
= V (s),

dV (s)

ds
= 0,

with the initial condition : [X(t; t, x, v), V (t; t, x, v)] = [x, v].

Definition 1 For (x, v) ∈ Ω̄×R3, we define the backward exit time, tb(x, v) ≥ 0 to be the last moment at which the
back-time straight line [X(s; 0, x, v), V (s; 0, x, v)] remains in the interior of Ω :

tb(x, v) = sup({0} ∪ {τ > 0 : x− sv ∈ Ω for all 0 < s < τ}).

We also define the backward exit position in ∂Ω

xb(x, v) = x− tb(x, v)v ∈ ∂Ω,

and we always have v · n(xb(x, v)) ≤ 0.

1.2 Discontinuity Set and Discontinuity Jump

We denote the phase boundary in the phase space Ω×R3 as γ = ∂Ω×R3, and split it into outgoing boundary γ+, the
incoming boundary γ−, and the grazing boundary γ0 :

γ+ = {(x, v) ∈ ∂Ω× R3 : n(x) · v > 0},
γ− = {(x, v) ∈ ∂Ω× R3 : n(x) · v < 0},
γ0 = {(x, v) ∈ ∂Ω× R3 : n(x) · v = 0}.

We need to study the grazing boundary γ0 more carefully.

Figure 1: Grazing Boundary γ0

Definition 2 We define the concave(singular) grazing boundary which is a subset of the grazing boundary γ0 :

γS0 = {(x, v) ∈ γ0 : tb(x, v) ̸= 0 and tb(x,−v) ̸= 0},

and the outward inflection grazing boundary in the grazing boundary γ0 :

γI+0 = {(x, v) ∈ γ0 : tb(x, v) ̸= 0 and tb(x,−v) = 0 and there is δ > 0 such that x+ τv ∈ Ω̄c for τ ∈ (0, δ)},

and the inward inflection grazing boundary in the grazing boundary γ0 :

γI−0 = {(x, v) ∈ γ0 : tb(x, v) = 0 and tb(x,−v) ̸= 0 and there is δ > 0 such that x− τv ∈ Ω̄c for τ ∈ (0, δ)},

and the convex grazing boundary in the grazing boundary γ0 :

γV0 = {(x, v) ∈ γ0 : tb(x, v) = 0 and tb(x,−v) = 0}.
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It turns out that the concave (singular) grazing boundary γS0 is the only part at which discontinuity can be created and
propagates into the interior of the phase space Ω× R3.

Definition 3 Define the discontinuity set in [0,∞)× Ω̄× R3 as

D =
{
(0,∞)× [ γS0 ∪ γV0 ∪ γI+0 ]

}
∪
{

(t, x, v) ∈ (0,∞)× {Ω× R3 ∪ γ+} : t ≥ tb(x, v) and (xb(x, v), v) ∈ γS0

}
, (9)

and the continuity set in [0,∞)× Ω̄× R3 as

C =
{
{0} × Ω̄× R3

}
∪
{
(0,∞)× [ γ− ∪ γI−0 ]

}
∪
{

(t, x, v) ∈ (0,∞)× {Ω× R3 ∪ γ+} : t < tb(x, v) or (xb(x, v), v) ∈ γ− ∪ γI−0
}
. (10)

For bounce-back reflection boundary condition case (7) we need slightly different definitions : the bounce-back dis-
continuity set and the bounce-back continuity set are

Dbb = D ∪
{
(t, x, v) ∈ (0,∞)× Ω× R3 : t ≥ 2tb(x, v) + tb(x,−v) and (xb(x,−v),−v) ∈ γS0

}
,

Cbb =
{
{0} × Ω̄× R3

}
∪
{
(0,∞)× [ γ− ∪ γI−0 ]

}
∪
{
(t, x, v) ∈ [0,∞)× {Ω× R3 ∪ γ+} : t < tb(x, v) or

[
(xb(x, v), v) ∈ γ− ∪ γI−0 and t < 2tb(x, v) + tb(x,−v)

]
or

[
(xb(x,−v),−v) ∈ γ− ∪ γI−0 and (xb(x, v), v) ∈ γ− ∪ γI−0

] }
,

respectively.

The discontinuity set D consists of two sets : The first set of (9) is the grazing boundary part γ0 of D. This set
mainly consists of the phase boundary where the backward exit time tb(x, v) is not continuous (Lemma 2). The second
set of (9) is mainly the interior phase space part of D, i.e. D ∩ {[0,∞) × Ω × R3}, which is a subset of a union of all
forward trajectories in the phase space emanating from γS0 . Notice that D does not include the forward trajectories
emanating from γV0 ∪γI+0 because those forward trajectories are not in the interior phase space [0,∞)×Ω×R3. We also
exclude the case t < tb(x, v) from D. In fact, considering the pure transport equation, t < tb(x, v) implies the transport
solution at (t, x, v) equals the initial data at (x − tv, v) and if the initial data is continuous, we expect the transport
solution is continuous around (t, x, v). Notice that we exclude the initial plane {0}× Ω̄×R3 from D because we assume
that the Boltzmann solution is continuous at t = 0 .

The continuity set C consists of points either emanating from the initial plane or from γ− ∪ γI−0 , but not γS0 .

Furthermore we define a set including the grazing boundary γ0 and all forward trajectories emanating from the whole
grazing boundary γ0.

Definition 4 The grazing set is defined as

G = {(x, v) ∈ Ω̄× R3 : n(xb(x, v)) · v = n(x− tb(x, v)v) · v = 0}, (11)

and the grazing section is

Gx = {v ∈ R3 : (x, v) ∈ G} = {v ∈ R3 : n(xb(x, v)) · v = 0}.

Obviously the grazing set G includes the discontinuity set D. In order to study the continuity property of the Boltzmann
solution we define :

Definition 5 For a function ϕ(t, x, v) defined on [0,∞) × {Ω̄ × R3\G} we define the discontinuity jump in space
and velocity

[ϕ(t)]x,v = lim
δ↓0

sup
(x′,v′),(x′′,v′′)∈{Ω̄×R3\G}∩{B((x,v);δ)\(x,v)}

|ϕ(t, x′, v′)− ϕ(t, x′′, v′′)|,

and the discontinuity jump in time and space and velocity

[ϕ]t,x,v = lim
δ↓0

sup
t′, t′′ ∈ B(t; δ)

(x′, v′), (x′′, v′′) ∈ {Ω̄ × R3\G} ∩ {B((x, v); δ)\(x, v)}

|ϕ(t′, x′, v′)− ϕ(t′′, x′′, v′′)|,

where G is defined in Definition 4. We say a function ϕ is discontinuous in space and velocity (in time and space and
velocity) at (t, x, v) if and only if [ϕ(t)]x,v ̸= 0 ([ϕ]t,x,v ̸= 0) and continuous in space and velocity (in time and space and
velocity) at (t, x, v) if and only if [ϕ(t)]x,v = 0 ([ϕ]t,x,v = 0).

Notice that the function ϕ is only defined away from the grazing set G. Once the discontinuity jump of given function
ϕ is zero at (t, x, v) then the function ϕ can be extended to [0,∞)× Ω̄ × R3 near (t, x, v). Because of those definitions
we can consider a function which has a removable discontinuity as a continuous function. And a non-zero discontinuity
jump [ϕ]t,x,v ̸= 0 means ϕ has a ”real” discontinuity which is not removable.
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1.3 Main Result

Now we are ready to state the main theorems of this paper. In order to state theorems in the unified way we use a
weight function

w(v) = {1 + ρ2|v|2}β , (12)

such that w−2(v){1 + |v|}3 ∈ L1.

Theorem 1 (Formation of Discontinuity) Let Ω be an open subset of R3 with a smooth boundary ∂Ω. Assume Ω
is non-convex, γS0 ̸= ∅. Choose any (x0, v0) ∈ γS0 with v0 ̸= 0. For any small δ > 0,
1. There exist t0 ∈ (0,min{δ, tb(x0,−v0)}) and an initial datum F0(x, v) which is continuous on Ω × R3 ∪ {γ− ∪ γS0 },
and an in-flow boundary datum G(t, x, v) which is continuous on [0,∞)× {γ− ∪ γS0 }, satisfying

F0(x, v) = G(0, x, v) for (x, v) ∈ γ− ∪ γS0 , (13)

and ∣∣∣∣∣∣ w F0 − µ
√
µ

∣∣∣∣∣∣
L∞(Ω̄×R3)

+ sup
t∈[0,∞)

∣∣∣∣∣∣ w G(t)− µ
√
µ

∣∣∣∣∣∣
L∞(γ−)

< δ, (14)

such that if F on [0,∞) × Ω̄ × R3 is Boltzmann solution of (1) with the in-flow boundary condition (4) then F is
discontinuous in space and velocity at (t0, x0, v0), i.e. [F (t0)]x0,v0 ̸= 0.
2. There exist t0 ∈ (0,min{δ, tb(x0,−v0)}) and an initial datum F0(x, v) which is continuous on Ω × R3 ∪ {γ− ∪ γS0 },
satisfying

F0(x, v) = cµµ(v)

∫
v′·n(x)>0

F0(x, v
′){n(x) · v′}dv′ for (x, v) ∈ γ− ∪ γS0 , (15)

and ∣∣∣∣∣∣ w F0 − µ
√
µ

∣∣∣∣∣∣
L∞(Ω̄×R3)

< δ, (16)

such that if F on [0,∞)×Ω̄×R3 is Boltzmann solution of (1) with the diffuse boundary condition (5) with the compatibility
condition (15) then F is discontinuous in space and velocity at (t0, x0, v0), i.e. [F (t0)]x0,v0 ̸= 0.
3. There exist t0 ∈ (0,min{δ, tb(x0,−v0), tb(x0, v0)}) and an initial datum F0(x, v) which is continuous on Ω × R3 ∪
{γ− ∪ γS0 }, satisfying (16) and

F0(x, v) = F0(x,−v) for (x, v) ∈ γ− ∪ γS0 , (17)

such that if F on [0,∞) × Ω̄ × R3 is Boltzmann solution of (1) with the bounce-back boundary condition (7) then F is
discontinuous in space and velocity at (t0, x0, v0), i.e. [F (t0)]x0,v0 ̸= 0.

The smallness of given data (14), (16) ensures the global existence of Boltmzann solution for all boundary conditions
[13]. Notice that we can observe the formation of discontinuity for any point of the concave(singular) grazing boundary
γS0 of any generic non-convex domain Ω. If we assume that F0(x, v) is continuous on Ω×R3 ∪ {γ− ∪ γS0 } and G(t, x, v)
is continuous on [0,∞)× {γ− ∪ γS0 }, and that the compatibility conditions (13), (15) and (17) are valid up to γ− ∪ γS0 ,
then Theorem 1 implies the continuity breaks down at the concave(singular) grazing boundary γS0 after a short time
t0 ∈ (0,min{δ, tb(x0,−v0)}) for in-flow (4), diffuse (5) boundary condition and t0 ∈ (0,min{δ, tb(x0,−v0), tb(x0, v0)})
for bounce-back (7) boundary condition. For this generic cases, we said the Boltzmann solution F has a local-in-time
formation of discontinuity at (t0, x0, v0).

Once we have the formation of discontinuity at (t0, x0, v0) ∈ γS0 , we further establish that the discontinuity propa-
gates along the forward characteristics.

Theorem 2 (Propagation of Discontinuity) Let Ω be an open bounded subset of R3 with a smooth boundary ∂Ω.
Let F (t, x, v) be the Boltzmann solution of (1) with the initial datum F0 which is continuous on Ω × R3 ∪ {γ− ∪ γS0 },
and with one of the following boundary conditions :
1. For in-flow boundary condition (4), let (13) and (14) be valid and G(t, x, v) be continuous on [0,∞)× {γ− ∪ γS0 }.
2. For diffuse boundary condition (5), assume (16) and (15).
3. For bounce-back boundary condition (7), assume (16) and (17).
Then for all t ∈ [t0, t0 + tb(x0,−v0)) we have

[F ]t,x0+(t−t0)v0,v0
≤ e−C1(1+|v0|)γ(t−t0)[F (t0)]x0,v0 , (18)

where C1 > 0 only depends on
∣∣∣∣wF−µ√

µ

∣∣∣∣
L∞([0,∞)×Ω̄×R3)

.

On the other hand, assume [F (t0)]x0,v0 ̸= 0, and t0 ∈ (0, tb(x0,−v0)) for in-flow and diffuse boundary conditions
and t0 ∈ (0,min{tb(x0,−v0), tb(x0, v0)}) for bounce-back boundary condition, and a strict concavity of ∂Ω at x0 along
v0, i.e. ∑

i,j

(v0)i∂xi∂xjΦ(x0)(v0)j < −Cx0,v0 . (19)
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Then for all t ∈ [t0, t0 + tb(x0,−v0)), the Boltzmann solution F is discontinuous in time and space and velocity at
(t, x0 + (t− t0)v0, v0), i.e. [F ]t,x0+(t−t0)v0,v0

̸= 0 and

Ce−C2(1+|v0|)γ(t−t0)[F (t0)]x0,v0 ≤ [F ]t,x0+(t−t0)v0,v0
, (20)

where 0 < C < 1, and C2 = C2(
∣∣∣∣wF−µ√

µ

∣∣∣∣
L∞) ∈ R which is positive for sufficiently small

∣∣∣∣wF−µ√
µ

∣∣∣∣
L∞([0,∞)×Ω̄×R3)

.

The strict concavity condition (19) rules out some technical issue of the backward exit time tb. Our theorem characterize
the propagation of discontinuity before the forward trajectory reaches the boundary. In the case that the forward
trajectory reaches the boundary, i.e. t ≥ t0 + tb(x0,−v0), the situation is much more complicated. Denote x1 =
x0 + tb(x0,−v0)v0, t1 = t0 + tb(x0,−v0). If the trajectory hits on the boundary non-tangentially, i.e. (x1, v0) ∈ γ+,
for in-flow and diffuse boundary cases, the discontinuity disappears because of the continuity of the in-flow datum and
the average property of diffuse boundary operator. For bounce-back case the discontinuity is reflected and continues
to propagate along the trajectory. If the trajectory hits on the boundary tangentially, i.e. (x1, v0) ∈ γ0, there are
three possibilities. Firstly if (x1, v0) ∈ γI+0 then the situation is same as the case (x1, v0) ∈ γ+ above. Secondly, if the
trajectory is contained in the boundary for awhile, i.e. there exists δ > 0 so that x1 + sv0 ∈ ∂Ω for s ∈ (0, δ) then it is
hard to predict the propagation of discontinuity in general. Assuming certain condition on Ω for example Definition 6,
we can rule such a unlikely case.

The last case is that (x1, v0) ∈ γS0 . Assume we have a sequence of {tn = tn−1 + tb(xn−1,−v0)} and {xn =
xn−1+ tb(xn−1,−v0)v0} ∈ ∂Ω so that (xn, v0) ∈ γS0 , and a directional strict concavity (19) is valid for each (xn, v0). We
can show the propagation of discontinuity also between the first and the second intersections, i.e. [F ]t,x0(t−t0)v0,v0

̸= 0
for t ∈ [t1, t2) in general. For t ≥ t2, if we have very simple geometry, for example the first picture of Figure 2, we can
show the propagation of discontinuity, i.e. [F ]t,x0(t−t0)v0,v0

̸= 0 for t ∈ [tn, tn+1) even for n = 2, 3. But in general, for
example the second picture of Figure 2, we cannot show [F ]t,x0(t−t0)v0,v0

̸= 0 for t ∈ [tn, tn+1) for n ≥ 2.

Figure 2: Grazing Again

The next result states that Theorem 1 and Theorem 2 capture all possible singularities (discontinuities), despite non-
linearity in the Boltzmann equation. In other words, the singularity of the Boltzmann solution is propagating as the
linear Boltzmann equation and no new singularities created from the nonlinearity of Boltzmann equation.

Theorem 3 (Continuity away from D) Let Ω be an open bounded subset of R3 with a smooth boundary ∂Ω. Let
F (t, x, v) be a Boltzmann solution of (1) with the initial datum F0 which is continuous on Ω × R3 ∪ {γ− ∪ γ+ ∪ γI−0 }
and with one of
1. In-flow boundary condition (4). Assume (14) is valid and the compatibility condition

F0(x, v) = G(0, x, v) for (x, v) ∈ γ− ∪ γI−0 , (21)

and G(t, x, v) is continuous on [0,∞)× {γ− ∪ γI−0 }.
2. Diffuse boundary condition (5). Assume (16) is valid and the compatibility condition

F0(x, v) = cµµ(v)

∫
v′·n(x)>0

F0(x, v
′){n(x) · v′}dv′ for (x, v) ∈ γ− ∪ γI−0 . (22)

3. Bounce-back boundary condition (7). Assume (16) is valid and the compatibility condition

F0(x, v) = F0(x,−v) for (x, v) ∈ γ− ∪ γI−0 . (23)

Then F (t, x, v) is a continuous function on C for 1,2 and a continuous function on Cbb for 3. If the domain Ω does not
include a line segment (Definition 6) then the continuity set C and Cbb are the complementary of D and Dbb respectively.
Therefore F (t, x, v) is continuous on (D)c for 1,2 and continuous on (Dbb)

c for 3.

Definition 6 Assume Ω ∈ R3 be open and the boundary ∂Ω be smooth. We say the boundary ∂Ω does not include a
line segment if and only if for each x0 ∈ ∂Ω and for all (u1, u2) ∈ S1 there is no δ > 0 such that

Φx0(τu1, τu2)

is a linear function for τ ∈ (−δ, δ) where Φx0 from (8).
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1.4 Previous Works and Significance of This Work

There are many references for the mathematical study of different aspects of the boundary value problem of the Boltz-
mann equation, for example [10][13][19] and the references therein. In [13], an unified L2 − L∞ theory in the near
Maxwellian regime is developed to establish the existence, uniqueness and exponential decay toward a Maxwellian, for
all four basic types of the boundary conditions and rather general domains.

The qualitative study of the particle-boundary interaction in a bounded domain and its effects on the global dynamics
is a fundamental problem in the Boltzmann theory. One of challenging questions is the regularity theory of kinetic
equations in bounded domain. This problem is hard because even for simplest kinetic equations with the differential
operator v · ∇x, the phase boundary ∂Ω × R3 is always characteristic but not uniformly characteristic at the grazing
set γ0 = {(x, v) : x ∈ ∂Ω, and v · n(x) = 0}. In a convex domain a continuity of the Boltzmann solution away from
γ0 is established in [13] for all four basic boundary conditions. In a convex domains, backward trajectories starting at
interior points of the phase space cannot reach points of the grazing boundary γ0, due to Velocity Lemma([11][15]),
where possible singularities may exist.

In general, on the other hand, in a non-convex domain, backward trajectories starting at interior points of the phase
space can reach the grazing boundary. Therefore we expect singularities will be created at some part of grazing boundary
γ0 and propagate inside of the phase space. This question has been attracting a lot of attentions from early ’90s, see
references in pp.91–92 in Sone’s book [20]. For Boltzmann equation, most of works are numerical studies [20][21][22]
and few mathematical studies.

Once we enlarge our survey to propagation of singularities which already exist on initial data or boundary data,
there are some mathematical works [3][5][6][7][8] as well as numerical works [4][20]. In [3], for linear BGK model, a
propagation of discontinuity ,which exists already in the boundary data, is studied mathematically and also numerically.
In [5], for the full Boltzmann equation in the near vacuum regime, a propagation of Sobolev H1/25 singularity, which
exists already in the initial data, is studied and same effect has been recently shown in the near Maxwellian regime
[6][8].

In Vlasov theory, we refer to [2][9][25] for the boundary value problem. Singular solutions were studied in [11] exten-
sively. In [11], the non-convexity condition of boundary is replaced by the inward electric field which has a similar effect
with non-convexity of the boundary. In convex domains, Hölder estimates of Vlasov solution with specular reflection
boundary is solved recently [15][16], but Sovolev-type estimate is still widely open.

Our results give a rather complete characterization of formation and propagation of singularity for the nonlinear Boltz-
mann equation near Maxwellian in general domain under in-flow, diffuse, bounce-back boundary conditions. There is
no restriction of the time interval. More precisely we show that for any non-convex point x of the boundary and velocity
tangent to ∂Ω at x, there exists an initial datum (and in-flow datum, for in-flow boundary condition case) such that
the Boltzmann solution has a jump discontinuity at (x, v). Once the discontinuity occurs at the grazing boundary, this
discontinuity propagates inside along the forward trajectory until it hits the boundary again. And except those points,
the grazing boundary and forward trajectories emanating from the grazing boundary, we can show that the Boltzmann
solution is continuous.(Continuity away from D)

1.5 Main Ingredients of the Proofs

1. The Equality induced by Non-Convex Domain
We consider near Maxwellian regime and linearized Boltzmann equation (32). The formation of discontinuity is a
consequence of following estimate. Assume (x, v) ∈ γS0 as below picture so that for sufficiently small t > 0 the backward
trajectory x − tv is in an interior of the phase space. For simplicity we impose the trivial in-flow boundary condition
G(t, x, v) ≡ µ(v) which corresponds g(t, x, v) ≡ 0 (92). Consider points (x′n, v

′
n) in γ− and (x′′n, v

′′
n) missing the non-

convex part near (x, v) and both sequences converge (x, v) as n→ ∞.

Figure 3:

Now suppose the solution f of the linearized Boltzmann equation be continuous around (x, v). Then the Boltzmann
solution f at (x′n, v

′
n)

f(t, x′n, v
′
n) = g(t, x′n, v

′
n) = 0,
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and at (x′′n, v
′′
n),

f(t, x′′n, v
′′
n) = e−ν(v′′

n)tf0(x
′′
n − tv′′n, v

′′
n) +

∫ t

0

e−ν(v′′
n)(t−s){Kf + Γ(f, f)}(s, x′′n − (t− s)v′′n, v

′′
n)ds

converges each other as n→ ∞. Then we have the following equality

f0(x− tv, v) = −
∫ t

0

eν(v)s{Kf + Γ(f, f)}(s, x− (t− s)v, v)ds. (24)

Thanks to [13], the pointwise estimate of f , with some standard estimates of K,Γ, the right hand side of above equality
has magnitude O(t)||f0||∞(1+ ||f0||∞). If you choose f0(x− tv, v) = ||f0||∞ then the above equality (24) cannot be true
for sufficiently small t unless the trivial case f0 ≡ 0(F ≡ µ). Therefore the Boltzmann solution f cannot be continuous at
(x, v). For diffuse (5), bounce-back (7) boundary conditions we also obtain the equality induced by non-convex domain
similar as (24).

This argument bases on the idea that free transport effect is dominant to collision effect if time t > 0 and the per-
turbation F−µ√

µ is small.

2. Continuity of the Gain Term Q+

The smoothing effect of the gain term Q+ is one of the fundamental features of the Boltzmann theory. There are lots
of results about the smoothing effect in Sobolev regularity, for example

||Q+(ϕ, ψ)||
H

N−1
2

≤ C||ϕ||L1 ||ψ||L2 ,

with some assumption on various collision kernels [18][26][27]. To study the propagation of singularity and regularity, in
the case of angular cutoff kernel (3), it is standard to use Duhamel formulas and combine the Velocity average lemma
and the regularity of Q+ [5]. For detail, see Villani’s note [24] especially pp. 77–79.

In order to study the propagation of discontinuity and continuity we need a totally different smooth effect of Q+.
For the discontinuity induced by the non-convex domain, we need following : Recall the grazing set G in Definition 4.
A test function ϕ(t, x, v) is continuous on [0, T ]× (Ω× R3)\G and bounded on [0, T ]× Ω× R3. Then

Q+(ϕ, ϕ)(t, x, v) ∈ C0([0, T ]× Ω× R3). (25)

Recall that the grazing set G = {(x, v) ∈ Ω̄× R : v ∈ Gx}. The grazing section Gx = {τu ∈ R3 : t ≥ 0, u ∈ Gx ∩ S2} is
a union of straight lines in velocity space R3 and two dimensional Lebesque measure of Gx ∩ S2 is zero (Hongjie Dong’s
Lemma, Lemma 17 of [13]). Moreover, using continuous behavior of Gx in x, one can invent a very effective covering
of Gx (Guo’s covering, Lemma 18 of [13]). Because of those geometric and size restriction on G, even the gain term
Q+ is an integration operator in v alone, we can prove the smoothing effect of Q+ in C0([0, T ] × Ω × R3) for t, x and
v, see Theorem 4. Notice that those smoothing effect on C0

t,x,v has been believed to be true for long time without a
mathematical proof in numerical communities [1], p1587 of [3], p502 of [21].

The main idea to prove the smoothing effect in C0
t,x,v is to use the Carleman’s representation for Q+(ϕ, ϕ)(t, x, v)

which has been a very effective tool [12][26][27].∫
R3

ϕ(t, x, v′)
1

|v − v′|2

∫
Evv′

ϕ(t, x, v′1)B(2v − v′ − v′1,
v′ − v′1
|v′ − v′1|

)dv′1dv
′, (26)

with the hyperplane Evv′ = {v′1 ∈ R3 : (v′1 − v) · (v′ − v) = 0}. We will show the smallness of

|Q+(ϕ, ϕ)(t̄, x̄, v̄)−Q+(ϕ, ϕ)(t, x, v)|,

for |(t, x, v) − (t̄, x̄, v̄)| < δ. Assume we have sufficient decay of ϕ for large v. Replace the integrable kernel 1
|v−v′|2

by smooth compactly supported function and cut off the singular part of B(2v − v′ − v′1,
v′−v′

1

|v′−v′
1|
) to control the above

difference as

O(δ)||ϕ||2∞ + C

∫
|v′|<N

|ϕ(t, x, v′)− ϕ(t̄, x̄, v′′)|
∫
Ev̄v′′∩{|v′′

1 |<N}
|ϕ(t̄, x̄, v′′1 )|dv′′1dv′

+ C

∫
|v′|<N

|ϕ(t, x, v′)|

{∫
Evv′∩{|v′

1|<N}
ϕ(t, x, v′1)dv

′
1 −

∫
Ev̄v′′∩{|v′′

1 |<N}
ϕ(t̄, x̄, v′′1 )dv

′′
1

}
dv′,

where v′′(v′) is chosen to be v′ − (v − v̄) for convenience.
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One can easily control the integration at the first line. Because for the first term, integrating over v′, we can cut off
a small neighborhood of Gx from |v′| < N . Away from that neighborhood, using the continuity of ϕ away from Gx we
can control the integrand pointwisely.

In order to control the second line integration we have to control the difference in big braces. To do that we choose
a special change of variables for v′′1 ,(40). Under this change of variables the second line is bounded by

C

∫
|v′|<N

|ϕ(t, x, v′)|
∫
Evv′∩{|v′

1|<N}
| ϕ(t, x, v′1)− ϕ(t̄, x̄, v′′1 )| dv′1dv′.

The second integration term above is a function of t, x, t̄, x̄ and v. Unfortunately one cannot expect a pointwise control
(smallness) of the second integration for all v : even the grazing section Gx, where ϕ(t, x, v

′
1) might have discontinuity,

is small, i.e. 2-dimensional Lebesque measure of Gx ∩ Sx is zero, the measure on the plane Evv′ could be large(even
infinite). However, in Section 3.3, we can show that that bad situation happens for very rare v′ in {v′ ∈ R3 : |v′| < N}
and use the integration over v′ to control the above integration.

3. New Proof of Continuity of Boltzmann solution with Diffuse Boundary Condition
In Section 5.2 we prove a continuity away from D of Boltzmann solution with diffuse boundary condition using simple
iteration scheme (103) with iteration diffuse boundary condition (131). This iteration scheme has several advantages.
First it preserves a continuity away from D as m increasing, that is, if hm is continuous away from D then hm+1 is also
continuous away from D. Second, the sequence {hm} has uniform L∞ bound and moreover it is Cauchy in L∞ for in-flow
boundary condition hm|γ− = wg. Therefore h = limhm, a solution of the linear Boltzmann equation is continuous local
in time. Combining with uniform-in-time boundedness of Boltzmann solution ([13]), we achieve the continuity for all
time. In order to apply this idea to diffuse boundary condition, we use Guo’s idea [13] : A norm of the diffuse boundary
operator is less than 1 effectively, if we trace back several bounces. This approach gives simpler proof for the continuity
of Boltzmann equation with diffuse boundary condition with convex domain (see Lemma 23 25 of [13]).

1.6 Structure of Paper

In Section 2, we state some preliminary facts which are useful tools for this paper. In Section 3, we state and prove
the continuity of Q+ (Theorem 4). In Section 4 6, we deal with in-flow boundary, diffuse boundary and bounce-back
boundary, respectively. For each section, first we prove the formation of discontinuity (Theorem 1). Then we show the
continuity away from D (Theorem 3). Using this continuity, combining with continuity of Q+, we show the propagation
of discontinuity (Theorem 2).

2 Preliminary

In this section we study continuity properties of the backward exit time tb(x, v) and, a measure theoretic property and
geometric covering of the grazing set G, and estimates of Boltzmann operators and the Carleman’s representation.

We use Lemma 1 of [13], basic properties of the backward exist time tb(x, v) :

Lemma 1 [13] Let Ω be an open bounded subset of R3 with a smooth boundary ∂Ω. Let (t, x, v) be connected with
(t− tb(x, v), xb(x, v), v) backward in time through a trajectory of (1.1).
1. The backward exit time tb(x, v) is lower semicontinuous.
2 If

v · n(xb(x, v)) < 0, (27)

then (tb(x, v), xb(x, v)) are smooth functions of (x, v) so that

∇xtb =
n(xb)

v · n(xb)
, ∇vtb =

tbn(xb)

v · n(xb)
,

∇xxb = I +∇xtb ⊗ v, ∇vxb = tbI +∇vtb ⊗ v.

For a convex domain, if a point (x, v) is in the interior of the phase space, i.e. (x, v) ∈ Ω×R3 then the condition (27) is
always satisfied and hence tb(x, v) is smooth due to Lemma 1. However for a non-convex domain, there is a point (x, v)
in Ω×R3 but (xb(x, v, ), v) ∈ γ0, i.e. v ·n(xb(x, v)) = 0. We further investigate a continuity property of tb for that case.
Indeed, discontinuity behavior of tb(x, v) for (xb(x, v), v) ∈ γS0 is a main ingredient of the formation of discontinuity.

Lemma 2 Let Ω ∈ R3 be an open set with a smooth boundary ∂Ω. Assume (x0, v0) ∈ Ω × R3 with v0 ̸= 0 and
tb(x0, v0) <∞. Consider (x0, v0) ∈ G, i.e. (xb(x0, v0), v0) ∈ γ0.

If (xb(x0, v0), v0) ∈ γI−0 then tb(x, v) is continuous around (x0, v0).

If (xb(x0, v0), v0) ∈ γS0 then tb(x, v) is not continuous around (x0, v0).

Recall γI−0 and γS0 in Definition 2.
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Proof. Throughout this proof, without loss of generality we assume that ∂Ω is a graph of Φ locally and Φ(0, 0) = 0 and

(∂x1Φ, ∂x2Φ)(0, 0) = (0, 0). Moreover assume x0 = (|x0|, 0, 0), v0 = (|v0|, 0, 0) and tb(x0, v0) = |x0|
|v0| so that xb(x0, v0) =

(0, 0, 0) = (0, 0,Φ(0, 0)).
First, let (xb(x0, v0), v0) ∈ γI−0 . By the definition of γI−0 , we have Φ(−τ, 0) > 0 and Φ(τ, 0) < 0 for 0 < τ << 1.

Using the continuity of Φ, choose sufficiently small ε > 0, δ > 0 such that Φ(−δ, y) > ε
2 and Φ(δ, y) < − ε

2 for 0 < |y| < δ.
Fix x = (x1, x2, x3) ∼ x0 and v = (v1, v2, v3) ∼ v0. We define

Ψ(x, v, t) = x3 − tv3 − Φ(x1 − tv1, x2 − tv2).

For t′ ≡ x1−δ
v1

, Ψ(x, v, t′0) = −Φ(δ, x2 − x1−δ
v1

v2) + x3 − x1−δ
v1

v3 >
ε
4 for (x1, x2, x3) ∼ (|x0|, 0, 0), (v1, v2, v3) ∼ (|v0|, 0, 0).

For t′′ = x1+δ
v1

, Ψ(x, v, t′′) = −Φ(−δ, x2 − x1+δ
v1

v2) + x3 − x1+δ
v1

v3 < − ε
4 for (x1, x2, x3) ∼ (|x0|, 0, 0), (v1, v2, v3) ∼

(|v0|, 0, 0). Using the continuity of Φ and Ψ, there exists t∗ ∈ (x1

v1
− δ

v1
, x1

v1
+ δ

v1
) so that Ψ(x, v, t∗) = 0, i.e. tb(x, v) = t∗.

If x ∼ x0 and v ∼ v0 then x1

v1
− δ

v1
∼ |x0|

|v0| −
δ

|v0| = tb(x0, v0)− δ
|v0| and

x1

v1
+ δ

v1
∼ |x0|

|v0| +
δ

|v0| ∼ tb(x0, v0) +
δ

|v0| so that

t∗ ∈ (tb(x0, v0)− δ
|v0| , tb(x0, v0) +

δ
|v0| ).

Next, let (xb(x, v), v) ∈ γS0 . By the definition of the concave grazing boundary γS0 , we have Φ(−τ, 0) > 0 and
Φ(τ, 0) < 0 for 0 < τ << 1. Choose a sequence xn = (|x0|, 0, 1

n ). There exists ε > 0 such that tb(xn, v0) > tb(x0, v0)+ ε
for sufficiently large n. This implies that (xn, v0) → (x0, v0) but tb(xn, v0) 9 tb(x0, v0) as n→ ∞.

In the next two lemmas, we consider the grazing set G (Definition 4) including the discontinuity set D. The next
lemma, Lemma 17 of [13] due to Hongjie Dong, is important to control a size of G. We denote m2 as a standard
2-dimensional Lebesque measure and m3 as a standard 3-dimensional Lebesque measure. Recall that the grazing section
Gx in Definition 4.

Lemma 3 [13] If ∂Ω is C1 then the grazing section Gx restricted to S2 has zero 2-dimensional Lebesque measure, i.e.

m2(Gx ∩ S2) = 0,

for all x ∈ Ω̄.

With condition m2(Gx ∩ S2) = 0, we can construct the Guo’s covering which is little bit stronger than the original one
in Lemma 18 in [13].

Lemma 4 (Guo’s covering) [13] Assume m2(Gx ∩ S2) = 0 is valid for all x ∈ Ω̄. Let BN = {v ∈ R3 : |v| ≤ N}.
Then for any ε > 0 and N∗ > 0 there exist δε,N,N∗ > 0, and lε,N,N∗,Ω balls B(x1; r1), B(x2; r2)..., B(xl; rl) ⊂ Ω̄, as well
as open sets Ox1 , Ox2,...Oxl

of BN which are radial symmetric, i.e.

Oxi = {tv̂ ∈ R3 : t ≥ 0, v̂ ∈ Oxi ∩ S2},

with m3(Oxi) <
ε
N∗

and m2(Oxi ∩ S2) ≤ ε
N2N∗

for all 1 ≤ i ≤ lε,N,N∗,Ω, such that for any x ∈ Ω̄, there exists xi so that
x ∈ B(xi; ri) and for v /∈ Oxi ,

|v · n(xb(x, v))| > δε,N,N∗ > 0,

or equivalently

Oxi ⊃
∪

x∈B(xi;ri)

{v ∈ BN : |v · n(xb(x, v))| ≤ δε,N,N∗} ⊃
∪

x∈B(xi;ri)

Gx ∩BN .

Combining Lemma 3 and Lemma 4, we have following lemma, which is useful to prove Theorem 4. Namely, a function
which is continuous away from the grazing set G is uniformly continuous except arbitrary small open set containing G.

Lemma 5 Assume ϕ is continuous on [0, T ] × (Ω × {v ∈ R3 : 1
M ≤ |v| ≤ N})\G. For fixed x ∈ Ω and ε > 0 and

N∗ > 0, there exist

δ = δ(ϕ,Ω, ε,N∗, x,
1

M
,N) > 0, (28)

and an open set Ux ⊂ {v ∈ R3 : 1
M ≤ |v| ≤ N} which is radial symmetric, i.e. Ux = {tv̂ ∈ R3 : t ≥ 0 , v̂ ∈ Ux ∩ S2}

with m3(Ux) <
ε
N∗

and m2(Ux ∩ S2) < ε
N∗N2 such that

|ϕ(t, x, v)− ϕ(t̄, x̄, v̄)| < ε

N∗
,

for v ∈ {v ∈ R3 : 1
M ≤ |v| ≤ N}\Ux and |(t, x, v)− (t̄, x̄, v̄)| < δ.
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Proof. Let x ∼ x̄. Due to Guo’s covering [13], Lemma 4, we can choose B(xi; ri) including x and x̄, as well as Oxi ⊂ R3

so that
Oxi ⊃

∪
y∈B(xi;ri)

Gy ∩BN ⊃
∪

y∈B(x;δ)

Gy ∩BN ,

with m3(Oxi) <
ε
N∗

. Notice that m3(Ōxi) = m3(Oxi). We can choose an open set Uxi so that m3(Uxi) ≤ 2m3(Oxi) and

Ōxi ⊂ Uxi . Since both of Ōxi and BN\Uxi are compact subsets of BN , we have a positive distance between two sets,
i.e.

0 < d = inf{|ζ − ξ| : ζ ∈ Ōxi and ξ ∈ BN\Uxi}.

Assume δ < d/2. Fix x ∈ Ω̄ and v ∈ {v ∈ R3 : 1
M ≤ |v| ≤ N}\Ux. Then |(x̄, v̄) − (x, v)| < δ implies that

v̄ ∈ {v ∈ R3 : 1
M ≤ |v| ≤ N}\Oxi . For such x, v, x̄ and v̄ consider the function ϕ as it’s restriction on a compact set

[0, T ]× B̄(x; δ)×BN\Oxi . Therefore ϕ[0,T ]×B̄(x;δ)×BN\Oxi
is uniformly continuous. Hence |ϕ(t, x, v)− ϕ(t̄, x̄, v̄)| can be

controlled small uniformly if δ > 0 is sufficiently small.

We will use the Carleman’s representation [12][26] in the proof of Theorem 4 crucially. Let Q+(ϕ, ψ) be defined by
(2) and let ψ = ψ(v) and ϕ = ϕ(v), v ∈ R3 make Q+(ψ, ϕ) <∞ almost everywhere. Then the Carleman’s represen-
tation is

Q+(ψ, ϕ)(v) = 2

∫
R3

ψ(v′)
1

|v − v′|2

∫
Evv′

ϕ(v′1)B(2v − v′ − v′1,
v′ − v′1
|v′ − v′1|

)dv′1dv
′, (29)

where Evv′ is a hyperplane containing v ∈ R3 and perpendicular to v′−v
|v′−v| ∈ S2, i.e.

Evv′ = {v′1 ∈ R3 : (v′1 − v) · (v′ − v) = 0}. (30)

In the proof of Theorem 4 we need to control the integration over Evv′ in (29) frequently :

Lemma 6 For a rapidly decreasing function ϕ : R+ → R+, we have∫
Evv′

ϕ(|v1′|)B
(
2v − v′ − v1

′,
v′ − v1

′

|v′ − v1′|
)
dv1

′ ≤ Cϕ(1 + |v − v′|γ), (31)

where Cϕ only depends on ϕ.

Proof. For fixed v′ and v, let us denote {ẽ1, ẽ2, ẽ3}, with ẽ3 = v′−v
|v′−v| , be the orthonormal basis of R3 such that any

v′1 ∈ Evv′ can be written as v′1 = v+η1ẽ1+η2ẽ2. Since v
′−v ⊥ Evv′ from (30), there is η3 such that v′−v = η3ẽ3 where

|η3| = |v−v′|. Then we can write 2v−v′−v′1 = v−v′+v−v′1 = −η1ẽ1−η2ẽ2−η3ẽ3 and |2v−v′−v′1|2 = η21+η
2
2+|v′−v|2.

Moreover v′ − v′1 = −η1ẽ1 − η2ẽ2 + η3ẽ3. We can write the left hand side of (31) as

∫ ∞

−∞

∫ ∞

−∞
ϕ(η21 + η22 + |v|2)

∣∣∣∣∣
 −η1

−η2
−η3

∣∣∣∣∣
γ

× 1

η21 + η22 + |v − v′|2

 −η1
−η2
−η3

 ·

 −η1
−η2
η3

 dη1dη2

≤
∫ ∞

−∞

∫ ∞

−∞
ϕ(η21 + η22)(η

2
1 + η22 + |v′ − v|2)

γ
2 −1(η21 + η22 − |v′ − v|2)dη1dη2

≤
∫ ∞

−∞

∫ ∞

−∞
ϕ(η21 + η22)

(
η21 + η22 + |v′ − v|2

) γ
2 dη1dη2

≤ Cϕ(1 + |v′ − v|γ).

In terms of the standard perturbation f such that F = µ+
√
µf, the Boltzmann equation can be rewritten as

{∂t + v · ∇+ L} f = Γ(f, f), f(0, x, v) = f0(x, v), (32)

where the standard linear Boltzmann operator, see [12], is given by

Lf ≡ νf −Kf,

with the collision frequency ν(v) ≡
∫
|v − u|γµ(u)q0( v−u

|v−u| · ω)dωdu for 0 < γ ≤ 1 and

1

Cν
(1 + |v|)γ ≤ ν(v) ≤ Cν(1 + |v|)γ ,

Kf ≡
∫
R3

k(v, v′)f(v′)dv′ ≡ 1
√
µ
Q+(µ,

√
µf) +

1
√
µ
Q+(

√
µf, µ)− 1

√
µ
Q−(

√
µf, µ),

Γ(f, f) ≡ 1
√
µ
Q+(

√
µf,

√
µf)− 1

√
µ
Q−(

√
µf,

√
µf) ≡ Γ+(f, f)− Γ−(f, f).
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We recall two estimates of operators K and Γ from [13]. The Grad estimate for hard potentials :

|k(v, v′)| ≤ Ck{|v − v′|+ |v − v′|−1}e−
1
8 |v−v′|2− 1

8
||v|2−|v′|2|2

|v−v′|2 .

Recall w in (12). Let 0 ≤ θ < 1
4 . Then there exists 0 ≤ ε(θ) < 1 and Cθ > 0 such that for 0 ≤ ε < ε(θ),∫

{|v − v′|+ |v − v′|−1}e−
1−ε
8 |v−v′|2− 1−ε

8
||v|2−|v′|2|2

|v−v′|2
w(v)eθ|v|

2

w(v′)eθ|v′|2 dv
′ ≤ Ck

1 + |v|
. (33)

For the nonlinear collision operator

|wΓ(g1, g2)(v)| ≤ CΓ(1 + |v|)γ ||wg1||∞||wg2||∞. (34)

Also we recall a standard estimate ∫
R3

ϕ(v′)|v − v′|γdv′ ∼ (1 + |v|)γ , (35)

for ϕ ∈ L1(R3).

3 Continuity of the Collision Operators

In this section we mainly prove the following Theorem :

Theorem 4 (Continuity of Q+) Assume F (t, x, v) is continuous on [0, T ]× (Ω× R3)\G and

||w̄−1F ||L∞([0,T ]×Ω̄×R3) < +∞,

where w̄ = e−
|v|2
4

(1+ρ2|v|2)β with ρ ∈ R and β > 0. Then Q+(F, F )(t, x, v) is continuous in [0, T ]× Ω× R3 and

sup
[0,T ]×Ω̄×R3

|ν−1w̄−1Q+(F, F )(t, x, v)| <∞. (36)

Theorem 4, a smooth effect in C0
t,x,v, is the crucial ingredient to prove Theorem 2 and Theorem 3. This smooth effect

of the gain term ensures that there is no singularity created by the nonlinearity of Botlzmann equation.

Proof of (36). It is easy to show the boundedness (36) from

ν−1w̄−1Q+(F, F )(t, x, v) ≤ 1

ν(v)w̄(v)

∫
R3

∫
S2
B(v − u, ω)w̄(u′)w̄(v′)dωdu× ||w̄−1F ||2∞

≤ ν(v)−1

∫
R3

∫
S2
B(v − u, ω)

e−
|u|2
4

(1 + ρ2|u|2)β
dωdu× ||w̄−1F ||2∞

≤ C ν(v)−1ν(v)||w̄−1F ||2∞ ≤ C||w̄−1F ||2L∞([0,T ]×(Ω̄×R3))

where we used (35) and |u′|2 + |v′|2 = |u|2 + |v|2.

Next we will show the continuity part of Theorem 4. The goal of following three subsections is to show

For fixed ε > 0 and (t, x, v) ∈ [0, T ]× Ω× R3, there is δ > 0 such that

|Q+(w̄h, w̄h)(t̄, x̄, v̄)−Q+(w̄h, w̄h)(t, x, v)| < ε for |(t̄, x̄, v̄)− (t, x, v)| < δ. (37)

3.1 Decomposition and Change of Variables

In this section, we use the Carleman’s representation to split Q+(w̄h, w̄h)(t̄, x̄, v̄)−Q+(w̄h, w̄h)(t, x, v) in a natural way
(38), and introduce two change of variables (39) and (40).

It is convenient to define
h ≡ w̄−1F,

where ||h||∞ ≡ ||h||L∞([0,T ]×(Ω̄×R3)) = ||w̄−1F ||L∞([0,T ]×(Ω̄×R3)). Choose (t̄, x̄, v̄) ∼ (t, x, v). Using the Carleman’s
Representation (29) we have

Q+(w̄h, w̄h)(t̄, x̄, v̄)−Q+(w̄h, w̄h)(t, x, v)
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= 2

∫
R3

w̄(v′′)h(t̄, x̄, v′′)
1

|v̄ − v′′|2︸ ︷︷ ︸
A

∫
Ev̄v′′

w̄(v′′1 )h(t̄, x̄, v
′′
1 )B

(
2v̄ − v′′ − v′′1 ,

v′′ − v′′1
|v′′ − v′′1 |

)
︸ ︷︷ ︸

B

dv′′1dv
′′

−2

∫
R3

w̄(v′)h(t, x, v′)
1

|v − v′|2︸ ︷︷ ︸
A′

∫
Evv′

w̄(v′1)h(t, x, v
′
1)B

(
2v − v′ − v′1,

v′ − v′1
|v′ − v′1|

)
︸ ︷︷ ︸

B′

dv′1dv
′

= 2

∫
R3

{A −A′}
∫
Ev̄v′′

B dv′′1dv
′′ + 2

∫
R3

A′
∫
Ev̄v′′

{B − B′} dv′′1dv′. (38)

In order to control the first term of (38), we need to compare arguments of A and A′. For that purpose, we introduce
the following change of variables :

Lemma 7 For fixed v and v̄ in R3 we define

v′′ ≡ v′′(v′; v, v̄) = v′ − (v − v̄). (39)

Then two planes Ev̄v′′ and Evv′ have same normal direction. The distance between to planes is |(v̄ − v) · v′−v
|v′−v| |.

Proof. Assume (39). Clearly ∂v′′(v′)
∂v′ = I where I is 3×3 identity matrix. The normal direction of Ev̄v′′ is v′′−v̄

|v′′−v̄| =
v′−v
|v′−v|

which is also the normal direction of Evv′ . To measure a distance between two planes Evv′ and Ev̄v′′ , we consider
the line passing v and directing v′−v

|v′−v| , which is v(s) = v′−v
|v′−v|s + v. The solution of v(s∗) ∈ Ev̄v′′ is a solution of

0 = (v′′ − v̄) · (v(s)− v̄) = (v′ − v) · (v(s)− v̄) = |v′ − v|s+ (v′ − v) · (v− v̄). Easily we have s∗ = (v′−v)·(v̄−v)
|v′−v| . Since v(s)

is unit-speed line we know that |v(s∗)− v(0)| is the distance between Ev̄v′′ and Evv′ .

An important property of (39) is that two planes Ev̄v′′ and Evv′ have the same normal direction. In order to con-
trol the second term of (38), we need to compare arguments of B and B′ especially v′1 ∈ Evv′ and v′′1 ∈ Ev̄v′′ . For that
purpose, we introduce the following change of variables :

Lemma 8 For fixed v, v′ and v̄ in R3, we define a unit Jacobian change of variables

v′′1 ≡ v′′1 (v
′
1; v, v

′, v̄) = v′1 +
v′ − v

|v′ − v|
{(v̄ − v) · v

′ − v

|v′ − v|
}. (40)

In this change of variables v′′1 ∈ Ev̄v′′ if and only if v′1 ∈ Evv′ .

Proof. Assume (39) and (40). Clearly
∂v′′

1 (v′
1)

∂v′
1

= I. We can check following equality :

(v′′1 − v̄) · (v′′ − v̄) = (v1
′ − v̄ +

v′ − v

|v′ − v|
{(v̄ − v) · v

′ − v

|v′ − v|
}) · (v′ − v)

= (v1
′ − v̄) · (v′ − v) + |v′ − v|{(v̄ − v) · v

′ − v

|v′ − v|
} = (v′1 − v) · (v′ − v) + (v − v̄) · (v′ − v) + (v̄ − v) · (v′ − v)

= (v′1 − v) · (v′ − v).

By definition, v′1 ∈ Evv′ is equivalent to (v′1−v)· v′−v
|v′−v| = 0. Then, from the above equality, we conclude (v′′1−v̄)· v′′−v̄

|v′′−v̄| = 0

which is equivalent to v′′1 ∈ Ev̄v′′ .
Under the first change of variables (39), we can rewrite the first term of (38) as

2

∫
R3

1

|v − v′|2
{
w̄(v′′)h(t̄, x̄, v′′)− w̄(v′)h(t, x, v′)

}
︸ ︷︷ ︸

(C)

∫
Ev̄v′′

w̄(v′′1 )h(t̄, x̄, v
′′
1 )B

(
2v̄ − v′′ − v′′1 ,

v′′ − v′′1
|v′′ − v′′1 |

)
︸ ︷︷ ︸

(D)

dv′′1dv
′. (41)

Under the second change of variables (40), we can rewrite the second term of (38) as

2

∫
R3

w̄(v′)h(t, x, v′)
1

|v − v′|2︸ ︷︷ ︸
(E)

×
∫
Evv′

{
w̄(v′′1 )h(t̄, x̄, v

′′
1 )B

(
2v̄ − v′′ − v′′1 ,

v′′ − v′′1
|v′′ − v′′1 |

)
− w̄(v′1)h(t, x, v

′
1)B

(
2v − v′ − v′1,

v′ − v′1
|v′ − v′1|

)}
︸ ︷︷ ︸

(F)

dv′1dv
′. (42)

We will estimate (41) and (42) separately in following two sections.
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3.2 Estimate of (41)

We divide into several cases :
Case 1 : |v| ≥ N . From Lemma 6, for N > 0 we can estimate

Q+(w̄h, w̄h)(t, x, v)1|v|>N ≤ C||h||2∞1|v|>N

∫
R3

w̄(v′)

(
1

|v − v′|2
+

1

|v − v′|2−γ

)
dv′

≤ C||h||2∞
(

1

(1 + |v|)2
+

1

(1 + |v|)2−γ

)
1|v|>N ≤ C

N
||h||2∞.

Hence we have

(41)1|v|≥N ≤ C

N
||h||2∞. (43)

Case 2 : |v| ≤ N and |v′| ≥ 2N , or |v| ≤ N and |v′| ≤ 1
M . Also assume 0 < δ << 1.

2× 1|v|≤N

∫
{|v′|≥2N or |v′|≤ 1

M }
(C)

∫
Ev̄v′′

(D) dv′′1dv
′

≤ C1|v|≤N

∫
|v′|≥2N

{
1

|v − v′|2
+

1

|v − v′|2−γ

}
e−

|v′|2
8 dv′e

δ2

4 ||h||2∞ + C

∫
|v′|≤ 1

M

{
1

|v′|2
+

1

|v′|2−γ

}
e−

|v′|2
8 dv′︸ ︷︷ ︸

o( 1
M )

e
δ2

4 ||h||2∞

≤ C

(
1

N2
+

1

N2−γ

)
||h||2∞ + o(

1

M
)||h||2∞, (44)

where we have used w̄(v′) ≤ e−
|v′|2

4 and w̄(v′′) ≤ e−
|v′|2

8 e
δ2

4 and Lemma 6.
Case 3 : |v| ≤ N and 1

M ≤ |v′| ≤ 2N .

2× 1|v|≤N

∫
1
M ≤|v′|≤2N

(C)
∫
Ev̄v′′

(D) dv′′1dv
′

≤ C||h||∞
∫

1
M ≤|v′|≤2N

1|v|≤N

(
1

|v − v′|2
+

1

|v − v′|2−γ

)
|w̄(v′′)h(t̄, x̄, v′′)− w̄(v′)h(t, x, v′)|dv′. (45)

Since
(

1
|v−v′|2 + 1

|v−v′|2−γ

)
is integrable we can choose a smooth function z(v, v′) with compact support such that

sup
|v|≤N

∫
|v′|≤2N

∣∣∣∣( 1

|v − v′|2
+

1

|v − v′|2−γ

)
− z(v, v′)

∣∣∣∣ dv′ ≤ 1

N
. (46)

Therefore we can bound (45) by two parts

C||h||2L∞

∫
|v′|≤2N

1|v|≤N

∣∣∣∣( 1

|v − v′|2
+

1

|v − v′|2−γ

)
− z(v, v′)

∣∣∣∣ e− |v′|2
8 e

δ2

4 dv′ (47)

+ C sup
|v|≤N,|v′|≤2N

|z(v, v′)| × ||h||L∞

∫
1
M ≤|v′|≤2N

1|v|≤N |w̄(v′′(v′))h(t̄, x̄, v′′(v′))− w̄(v′)h(t, x, v′)|dv′. (48)

From (46), it is easy to control the first term

|(47)| ≤ C

N
||h||2∞. (49)

Now we are going to estimate the second term (48). Applying Lemma 5 to w̄(v′)h(t, x, v′), we can choose δ =
δ(w̄h,Ω, ε,N∗, x,

1
M , 2N) > 0 and an open set Ux ⊂ { 1

M ≤ |v| ≤ 2N} with |Ux| < ε
N∗

such that

|w̄(v′′(v′))h(t̄, x̄, v′′(v′))− w̄(v′)h(t, x, v′)| < ε

N∗
,

for v′ ∈ {v ∈ R3 : 1
M ≤ |v| ≤ N}\Ux and |(t̄, x̄, v̄) − (t, x, v)| < δ. Therefore we can split the second part (48) as

integration over Ux and U c
x and control as

C sup
|v|≤N,|v′|≤2N

|z(v, v′)| × ||h||2∞ ×m3(Ux) + C||h||∞
∫
{ 1

M ≤|v′|≤2N}∩Uc
x

|w̄(v′′(v′))h(t̄, x̄, v′′(v′))− w̄(v′)h(t, x, v′)|dv′

≤ C sup
|v|≤N,|v′|≤2N

|z(v, v′)| × ||h||2∞
ε

N∗
+ C||h||∞N3 ε

N∗
. (50)
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In summary, combinig (43), (44), (49) and (50), we have established

(41) ≤ C||h||2∞

{
1

N
+ o(

1

M
) + sup

|v|≤N,|v′|≤2N

|z(v, v′)| ε
N∗

}
+ C||h||∞N3 ε

N∗
.

Choosing sufficiently large N,M > 0 and N∗ > 0 then

(41) ≤ ε

2
. (51)

3.3 Estimate of (42)

The estimate of (42) is much more delicate. The reason is that we cannot expect
∫
Evv′

(F) dv′1 in (42) is small for all

v′ ∈ R3. We know that h(t, x, v′1) may not be continuous on v′1 ∈ Gx. Even Gx is radial symmetric and has a small
measure by Lemma 3, a bad situation, the intersection of Gx and Evv′ could have large (even infinite) 2-dimensional
Lebesque measure, can happen. However we can show that such bad situations only happen for very rare v′’s in R3.
Using the integration over v′ ∈ R3, we are able to control (42) small.

Recall (E) and (F) in (42). We divide into several cases :
Case 1 : |v| ≥ N . Follow exactly same proof of Case 1 of the previous subsection, we conclude

(42)1|v|≥N ≤ C

N
||h||2∞. (52)

Case 2 : |v| ≤ N and |v′| ≥ 2N . We go back to original formula, the second term of (38), and use Lemma 6 to estimate

2

∫
|v′|≥2N

(E)
∫
Evv′

(F)dv′1dv
′1|v|≤N ≤ 4||h||2∞

∫
|v′|≥2N

w̄(v′)
1

|v − v′|2
(1 + |v − v′|)γdv′1|v|≤N ≤ 4||h||2∞

(
1

N2
+

1

N2−γ

)
. (53)

Case 3 : |v| ≤ N , |v′| ≤ 2N , and |v′1| ≤ 1
N or |v′1| ≥ N . In the case of |v′1| ≤ 1

N , we have

2× 1|v|≤N

∫
|v′|≥2N

(E)
∫
{|v′

1|≤
1
N }∩Evv′

(F) dv′1dv
′

≤ 2||h||2∞
∫
R3

w̄(v′)

|v − v′|2
dv′
∫
{|v′

1|≤
1
N }∩Evv′

{
e−

|v′
1|2

8 e
δ2

4 (4N +
1

N
+ δ)γ + e−

|v′
1|2

4 (4N +
1

N
)γ
}
dv′1 ≤ C

||h||2∞
N2−γ

.(54)

In the case of |v′1| ≥ N we have

2× 1|v|≤N

∫
|v′|≥2N

(E)
∫
{|v′

1|≤
1
N }∩Evv′

(F) dv′1dv
′

≤ 2||h||2∞
∫
R3

w̄(v′)

|v − v′|2
dv′
∫
{|v′

1|≥N}∩Evv′

{
e−

|v′
1|2

8 e
δ2

4 (4N +
1

N
+ δ)γ + e−

|v′
1|2

4 (4N +
1

N
)γ
}
dv′1

≤ C||h||2∞e−
N2

16

∫
R3

e−
|v′

1|2

16 dv′ ×Nγe−
N2

16 ≤ C||h||2∞e−
N2

16 . (55)

Case 4 : |v| ≤ N, |v′| ≤ 2N, and 1
N ≤ |v′1| ≤ N . In order to remove the unboundedness of 1

|v−v′|2 in (42), we choose a

positive smooth function Z(v, v′) with compact support such that

sup
|v|≤N

∫
|v′|≤2N

∣∣∣∣ 1

|v − v′|2
− Z(v, v′)

∣∣∣∣ dv′ < 1

N10
. (56)

Splitting 2× 1|v|≤N

∫
|v′|≤2N

(E)
∫

1
N ≤|v′

1|≤N
(F) dv′1dv

′ into two parts

2× 1|v|≤N

∫
|v′|≤2N

w̄(v′)|h(t, x, v′)|
∣∣∣∣ 1

|v − v′|2
− Z(v, v′)

∣∣∣∣ ∫
Evv′∩{ 1

N ≤|v′
1|≤N}

(F) dv1dv
′ ≤ C||h||2∞

1

N10
Nγ+2, (57)

C

∫
|v′|≤2N

||h||∞ sup
|v|≤N,|v′|≤2N

|Z(v, v′)|
∫
Evv′∩{ 1

N ≤|v′
1|≤N}

(F) dv′1dv
′, (58)

where we used (56) for the first line. From now we will focus to estimate (58).
Case 5 : |v| ≤ N, |v′| ≤ 2N, 1

N ≤ |v′1| ≤ N and |2v − v′ − v′1| < 1
M or |v′ − v′1| < 1

M . This region included the part
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where the collision kernel B(·, ·) has a singular behavior.

C

∫
|v′|≤2N

||h||∞ sup
|v|≤N,|v′|≤2N

|Z(v, v′)|
∫
Evv′∩{ 1

N ≤|v′
1|≤N}

(F) 1{|(2v−v′)−v′
1|<

1
M or |v′−v′

1|<
1
M }(v

′, v′1) dv
′
1dv

′

≤ C sup
|v|≤N,|v′|≤2N

|Z(v, v′)| × ||h||2∞ ×
∫
|v′|≤2N

dv′e−
|v′|2

4

∫
Evv′

dv′1

{
1{|(2v−v′)−v′

1|<
1
M }(v

′
1) + 1{|v′−v′

1|<
1
M }(v

′
1)
}
×Nγ

≤ C sup
|v|≤N,|v′|≤2N

|Z(v, v′)| × ||h||2∞
Nγ

M2
. (59)

Case 6 : |v| ≤ N, |v′| ≤ 2N, 1
N ≤ |v′1| ≤ N and |2v − v′ − v′1| > 1

M and |v′ − v′1| > 1
M and 0 < δ < 1

10M . We estimate

2× 1|v|≤N

∫
|v′|≤2N

dv′w̄(v′)h(t, x, v′)Z(v, v′)

∫
Evv′∩{ 1

N ≤|v′
1|≤N}

{w̄(v′′1 )h(t̄, x̄, v′′1 )B(2v̄ − v′′ − v′′1 ,
v′′ − v′′1
|v′′ − v′′1 |

)

−w̄(v′1)h(t, x, v′1)B(2v − v′ − v′1,
v′ − v′1
|v′ − v′1|

)}1{|2v−v′−v′
1|>

1
M }1{|v′−v′

1|>
1
M }dv

′
1. (60)

We need this step because of the singular behavior of

B(u1, u2) = |u1|γq0(
u1
|u1|

· u2
|u2|

) = |u1|γ(q0 ◦ F)(u1, u2),

where F : R3 × R3 → R with F(u1, u2) =
u1

|u1| ·
u2

|u2| . The function F(u1, u2) is not continuous at (u1, u2) = (0, 0) and

continuous away from (0, 0), i.e. the restriction of F on a compact set,

FM,N : { 1

2M
≤ |u1| ≤ 6N} × { 1

2M
≤ |u2| ≤ 4N} → R

is uniformly continuous. From |2v − v′ − v′1| > 1
M and |v − v̄| < δ < 1

10M we have lower bound of

|2v̄ − v′′ − v′′1 | ≥
∣∣∣∣|2v − v′ − v′1| − |v̄ − v − v′ − v

|v′ − v|
{(v̄ − v) · v

′ − v

|v′ − v|
}|
∣∣∣∣ ≥ 1

2M
.

Similarly from |v′ − v′1| > 1
M and |v − v̄| < δ < 1

10M we have a lower bound of

|v′′ − v′′1 | ≥
∣∣∣∣|v′ − v′1| − |v̄ − v − v′ − v

|v′ − v|
{(v̄ − v) · v

′ − v

|v′ − v|
}|
∣∣∣∣ ≥ 1

2M
.

Therefore for any ε > 0, we can choose δ > 0 so that∣∣∣∣B(2v̄ − v′′ − v′′1 ,
v′′ − v′′1
|v′′ − v′′1 |

)−B(2v − v′ − v′1,
v′ − v′1
|v′ − v′1|

)

∣∣∣∣
=

∣∣∣|2v̄ − v′′ − v′′1 |γ(q0 ◦ F)(2v̄ − v′′ − v′′1 , v
′′ − v′′1 )− |2v − v′ − v′1|γ(q0 ◦ F)(2v − v′ − v′1, v

′ − v′1)
∣∣∣ < ε

N∗
, (61)

for |2v − v′ − v′1| > 1
M and |v′ − v′1| > 1

M and 0 < δ < 1
10M .

Now we split (60) by two parts

2× 1|v|≤N

∫
|v′|≤2N

dv′..

∫
Evv′∩{ 1

N ≤|v′
1|≤N}

w̄(v′′1 )h(t̄, x̄, v
′′
1 )

{
B(2v̄ − v′′ − v′′1 ,

v′′ − v′′1
|v′′ − v′′1 |

)−B(2v − v′ − v′1,
v′ − v′1
|v′ − v′1|

)

}
×1{|2v−v′−v′

1|>
1
M }1{|v′−v′

1|>
1
M }dv

′
1

+ 2× 1|v|≤N

∫
|v′|≤2N

dv′..

∫
Evv′∩{ 1

N ≤|v′
1|≤N}

{
w̄(v′′1 )h(t̄, x̄, v

′′
1 )− w̄(v′1)h(t, x, v

′
1)
}
B(2v − v′ − v′1,

v′ − v′1
|v′ − v′1|

). (62)

Using (61), the continuity of B(·, ·) away from (0, 0), the first line above is bounded by

C sup
v,v′

|Z(v, v′)| × ||h||2∞
ε

N∗
. (63)

In the remainder of this section we will focus on (62) :
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Estimate of (62)

(62) ≤ CN2||h||∞ sup
v,v′

|Z(v, v′)|
∫
|v′|≤2N

w̄(v′)

∫
Evv′∩{ 1

N ≤|v′
1|≤N}

|w̄(v′′1 )h(t̄, x̄, v′′1 )− w̄(v′1)h(t, x, v
′
1)|dv′1︸ ︷︷ ︸

�

dv′, (64)

where we used sup|v|≤N,|v′|≤2N,|v′
1|≤N B(2v− v′ − v′1,

v′−v′
1

|v′−v′
1|
) <∞. Recall our choice of v′′ and v′′1 from (39) and (40) to

have

|v′′1 − v′1| ≤
∣∣∣ v′ − v

|v′ − v|
{(v̄ − v) · v

′ − v

|v′ − v|
}
∣∣∣ ≤ |v̄ − v| < δ.

We will use the followin strategy : separate
∫
Evv′∩{ 1

N ≤|v′
1|≤N} ...dv

′
1 into two parts∫

Ux∩Evv′∩{ 1
N ≤|v′

1|≤N}
...dv′1 +

∫
Uc

x∩Evv′∩{ 1
N ≤|v′

1|≤N}
...dv′1.

The first part is the integration over Ux, a neighborhood of Gx that contains possible discontinuity of h. Moreover we
expect the measure of the neighborhood Ux is small so we can control the first term. For the second term, we will use
the continuity of the integrand w̄h. However if v = 0 then Gx could be a large measure set in Evv′ ∩ { 1

N ≤ |v′1| ≤ N}.
For example if Gx ∩ S2 = {u ∈ S2 : u3 = 0} then Gx is xy−plane and E0e3 is also xy−plane. Therefore we have to
divide two cases v ̸= 0 and v = 0 and study separately.

Case of v ̸= 0
In the case of v ̸= 0, assume ϱ < |v|2/2 for sufficiently small ϱ > 0. We will divide the velocity space R3 into

B =

{
v′ ∈ R3 : |v| − ϱ

|v|
≤ v′ · v

|v|
≤ |v|+ ϱ

|v|

}
and Bc =

{
v′ ∈ R3 :

∣∣∣∣v′ · v|v| − |v|
∣∣∣∣ > ϱ

|v|

}
.

The important property of B is that if v ∈ Bc then Evv′ does not contain zero. We can split the integration part of
(64), � into ∫

v′∈B2N∩B

w̄(v′)

∫
Evv′∩{ 1

N ≤|v′
1|≤N}

|w̄(v′′1 )h(t̄, x̄, v′′1 )− w̄(v′1)h(t, x, v
′
1)|dv′1dv′ (65)

+

∫
v′∈B2N\B

w̄(v′)

∫
Evv′∩{ 1

N ≤|v′
1|≤N}

|w̄(v′′1 )h(t̄, x̄, v′′1 )− w̄(v′1)h(t, x, v
′
1)|dv′1dv′. (66)

Notice that B ∩B2N has a small measure :

m3(B ∩B2N ) ≤ 2π(2N)2 × 2
ϱ

|v|
≤ 2π(2N)2 × 2

ϱ√
2ϱ

≤ 2
√
2π(2N)2

√
ϱ.

Therefore we have
|(65)| ≤ CN4||h||L∞

√
ϱ. (67)

Now we are going to estimate (66). Here we use a property of Bc : for v′ ∈ Bc we have

dist(0, Evv′) =

∣∣∣∣v · v′ − v

|v′ − v|

∣∣∣∣ = |v′ · v − |v|2|
|v′ − v|

>
ϱ

|v′ − v|
>

ϱ

2N + |v|
≥ ϱ

3N
,

where we also have used |v′| ≤ 2N and |v| ≤ N . From Lemma 5 we use Ux, an open radial symmetric subset of
{ 1
N ≤ |v′1| ≤ N} with a small measure and w̄h is uniformly continuous on U c

x, to split (66) into∫
v′∈B2N\B

w̄(v′)

∫
Evv′∩{ 1

N ≤|v′
1|≤N}∩Ux

|w̄(v′′1 )h(t̄, x̄, v′′1 )− w̄(v′1)h(t, x, v
′
1)|dv′1dv′ (68)

+

∫
v′∈B2N\B

w̄(v′)

∫
Evv′∩{ 1

N ≤|v′
1|≤N}∩Uc

x

|w̄(v′′1 )h(t̄, x̄, v′′1 )− w̄(v′1)h(t, x, v
′
1)|dv′1dv′. (69)

For the last line, we use Lemma 5 to know estimate |w̄(v′′1 )h(t̄, x̄, v′′1 ) − w̄(v′1)h(t, x, v
′
1)| < ε

N∗
, for v′1 ∈ Evv′ ∩ { 1

N ≤
|v′1| ≤ N}\Ux and |v′′1 − v′1| ≤ |v − v̄| < δ. Therefore

|(69)| ≤ CN2 ε

N∗
||h||∞. (70)

In order to show that (68) is small, we introduce following projection :
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Lemma 9 Assume 0 < ϱ < |v|2
2 . Let Evv′ = {v′1 ∈ R3 : (v1 − v) · (v′ − v) = 0} . We define a projection

P : S2 → Evv′

u ∈ S2 7→
{
v · (v′ − v)

u · (v′ − v)

}
u ∈ Evv′ .

For v′ ∈ {v′ ∈ R3 : |v′| ≤ 2N}\B, define the restricted projection

P′ ≡ P|P−1(Evv′∩{1/N≤|v′
1|≤N}) : P−1(Evv′ ∩ {1/N ≤ |v′1| ≤ N}) → Evv′ ∩ {1/N ≤ |v′1| ≤ N}.

Then for v′ ∈ B2N\B the Jacobian of P′ is bounded :

Jac(P′) =

∣∣∣∣∂P′

∂u

∣∣∣∣ = (v · v′ − v

|v′ − v|

)2

| sec2 θ tan θ| ≤ 3N4

ϱ
,

where θ is defined by cos θ = u · v′−v
|v′−v| .

Figure 4: Projection Map

Proof. Without loss of generality, we may assume v′−v
|v′−v| = (0, 0, 1)T . Using spherical coordinate,

P′(u) =
v · (v′ − v)

u · (v′ − v)
u =

v · v′−v
|v′−v|

u · v′−v
|v′−v|

u =
v · v′−v

|v′−v|

cos θ

 sin θ cosϕ
sin θ sinϕ

cos θ

 = v · v
′ − v

|v′ − v|

 tan θ cosϕ
tan θ sinϕ

1

 ,

and a Jacobian matrix of P′,

∂P′

∂(θ, ϕ)
= v · v

′ − v

|v′ − v|

(
sec2 θ cosϕ − tan θ sinϕ
sec2 θ sinϕ tan θ cosϕ

)
.

Therefore a Jacobian of P′ is

Jac(P′) =

∣∣∣∣ ∂P′

∂(θ, ϕ)

∣∣∣∣ = (v · v′ − v

|v′ − v|

)2

sec2 θ| tan θ| ≤ dist(0, Evv′)2| sec θ|3.

Notice that

| sec θ| = 1

| cos θ|
=

1∣∣∣u · v′−v
|v′−v|

∣∣∣ =
∣∣∣∣{ v · (v′ − v)

u · (v′ − v)

}
u

∣∣∣∣ 1∣∣∣v · v′−v
|v′−v|

∣∣∣ = |P′(u)|
dist(0, Evv′)

.

Because P′(u) ∈ { 1
N ≤ |v′1| ≤ N} and dist(0, Evv′) ≥ ϱ

3N we have

Jac(P′) ≤ |P′(u)|3

|dist(0, Evv′)|
≤ 3N4

ϱ
.

Assume we choose m2(Ux ∩ S2) ≤ ϱε
N∗N2 . By definition we know that P′(Ux ∩ S2) = Evv′ ∩ { 1

N ≤ |v′1| ≤ N} ∩Ux and

the 2-dimension Lebesque measure of Evv′ ∩ { 1
N ≤ |v′1| ≤ N} ∩ Ux is bounded by

m2(Evv′ ∩ { 1

N
≤ |v′1| ≤ N} ∩ Ux) = m2(P′(Ux ∩ S2)) ≤ Jac(P′)× |Ux ∩ S2| ≤ 3N4

ϱ
× ε

N∗N2
=

3N2

ϱN∗
ε.

Therefore we have an upper bound of (68) :
|(68)| ≤ CN2ε||h||∞, (71)
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where C =
∫
R3 w̄(v

′)dv′. In case of v ̸= 0, from (67), (70) and (71), we have

(62) ≤ CN2||h||∞ sup
v,v′

|Z(v, v′)| × � ≤ CN4||h||2∞ sup
|v|≤N,|v′|≤2N

|Z(v, v′)|{N2√ϱ+ (1 +
3N2

ϱ
)
ε

N∗
}. (72)

Case of v = 0
In this case, we do not have a upper bound of the Jacobian of P′. Instead we will use the structure of Gx of Lemma 4
crucially. In case of v = 0, we split (64)∫

|v′|≤2N

w̄(v′)

∫
E0v′∩{ 1

N ≤|v′
1|≤N}

|w̄(v′′1 )h(t̄, x̄, v′1)− w̄(v′1)h(t, x, v
′
1)|dv′1dv′

=

∫
|v′|≤2N

w̄(v′)

∫
E0v′∩{ 1

N ≤|v′
1|≤N}

|w̄(v′′1 )h(t̄, x̄, v′1)− w̄(v′1)h(t, x, v
′
1)| × 1Ux(v

′
1)dv

′
1dv

′ (73)

+

∫
|v′|≤2N

w̄(v′)

∫
E0v′∩{ 1

N ≤|v′
1|≤N}

|w̄(v′′1 )h(t̄, x̄, v′1)− w̄(v′1)h(t, x, v
′
1)| × 1E0v′∩{ 1

N ≤|v′
1|≤N}\Ux

(v′1)dv
′
1dv

′ (74)

For v′, we use a spherical polar coordinates (r′, θ′, ϕ′) so that

v′ = (r′ sin θ′ cosϕ′, r′ sin θ′ sinϕ′, r′ cos θ′). (75)

By definition, E0v′ is a plane containing the origin and normal to v′. We know that E0v′ is generated by two unit vectors

E0v′ =

⟨ cos θ′ cosϕ′

cos θ′ sinϕ′

− sin θ′

 ,

 − sinϕ′

cosϕ′

0

⟩.
We will use a polar coordinate (r′1, θ

′
1) for v

′
1 ∈ E0v′ , i.e.

v′1 =

 (v′1)1
(v′1)2
(v′1)3

 (r′1, θ
′
1; θ

′, ϕ′) ≡ r′1

 cos θ′ cosϕ′ − sinϕ′ sin θ′ cosϕ′

cos θ′ sinϕ′ cosϕ′ sin θ′ sinϕ′

− sin θ′ 0 cos θ′

 cos θ′1
sin θ′1
0

 . (76)

Direct computation gives det
(

∂(v′
1)

∂(r′1,θ
′
1,θ

′)

)
=

(r′1)
2 cos θ′1 det

 cos θ′ cosϕ′ cos θ′1 − sinϕ′ sin θθ′1 − cos θ′ cosϕ′ sin θ′1 − sinϕ′ cos θ′1 sin θ′ cosϕ′

cos θ′ sinϕ′ cos θ′1 + cosϕ′ sin θ′1 − cos θ′ sinϕ′ sin θ′1 + cosϕ′ cos θ′1 sin θ′ sinϕ′

sin θ′ cos θ′1 sin θ′ sin θ′1 cos θ′

 = (r′1)
2 cos θ′1.

Therefore we have following identity∫
R3

· · · dv′1 =

∫ ∞

0

∫ 2π

0

∫ π

0

· · · (r′1)2 cos θ′1dθ′dθ′1dr′1. (77)

Recall the standard 3-dimensional polar coordinates and 2-dimensional polar coordinates :∫
|v′|≤2N

· · · dv′ =
∫ 2N

0

∫ 2π

0

∫ π

0

· · · (r′)2 sin θ′dθ′dϕ′dr′,∫
E0v′∩{ 1

N ≤|v′
1|≤N}

· · · dv′1 =

∫ N

1
N

∫ 2π

0

· · · r′1dθ′1dr′1,

and use above identities to control (73) by∫ 2N

0

dr′(r′)2w̄(r′)

∫ 2π

0

dϕ′
∫ π

0

dθ′ sin θ′
∫ N

1
N

dr′1r
′
1e

− (r′1)2

8

∫ 2π

0

dθ′11Ux(v
′
1(r

′
1, θ

′
1; θ

′, ϕ′))︸ ︷︷ ︸⊗
||h||∞. (78)

We focus on the inner integration
⊗

and divide it into∫ π

0

dθ′ sin θ′
∫ N

1
N

dr′1r
′
1e

− (r′1)2

8

∫ 2π

0

dθ′11Ux
(v′1)1θ′

1∈(π
2 −ϱ,π2 +ρ)∪( 3π

2 −ϱ, 3π2 +ϱ) (79)

+

∫ π

0

dθ′ sin θ′
∫ N

1
N

dr′1r
′
1e

− (r′1)2

8

∫ 2π

0

dθ′11Ux(v
′
1)1θ′

1∈[0,π2 −ϱ]∪[π2 +ϱ, 3π2 −ϱ]∪[ 3π2 +ϱ,2π]. (80)
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Easily (79) ≤ 2ϱ(e−
1

8N2 −e−N2

8 ) ≤ 4ϱ. For (80), we use 1 ≤ cos θ′
1

ϱ and 1 ≤ Nr′1 on θ
′
1 ∈ [0, π2−ϱ]∪[

π
2+ϱ,

3π
2 −ϱ]∪[3π2 +ϱ, 2π]

and r′1 ∈ [ 1N , N ] to have

(80) ≤ ϱ−1N

∫ π

0

dθ′
∫ N

1
N

dr′1(r
′
1)

2

∫ 2π

0

dθ′1 cos θ
′
11Ux(v

′
1(r

′
1, θ

′
1; θ

′, ϕ′)) = ϱ−1N ×m3(Ux ∩ { 1

N
≤ |v′1| ≤ N}), (81)

where we used (77). To sum we have

(73) ≤ (78) ≤ C||h||∞
{
4ϱ+ ϱ−1N × ε

N∗

}
. (82)

On the other hand for (74) we can use Lemma 5 to have

(74) ≤ C
ε

N∗
. (83)

From (82) and (83) we have

(62) ≤ CN2||h||∞ sup
v,v′

|Z(v, v′)| × � = CN2||h||∞ sup
v,v′

|Z(v, v′)| × {(73) + (74)}

≤ CN2||h||∞ sup
v,v′

|Z(v, v′)|
{
ε

N∗
+ ||h||∞

{
4ϱ+ ϱ−1N × ε

N∗

}}
. (84)

To summarize, from (52), (53), (54), (55), (57), (59), (63), (72) and (84), we have established

(42) ≤ C||h||2∞{ 1

N
+ e−

N2

16 }+ C||h||2∞ sup
|v|≤N,|v′|≤2N

|Z(v, v′)|N
γ

M2
+ C||h||2∞ sup

|v|≤N,|v′|≤2N

|Z(v, v′)|(N6√ϱ+ 4N2ϱ)

+
ε

N∗
C||h||∞ sup

|v|≤N,|v′|≤2N

|Z(v, v′)|
{
N2 + ||h||∞

(
1 +

3N6

ϱ
+N4 +N3ϱ

)}
. (85)

We choose N,M,N∗ > 0 sufficiently large and ϱ > 0 sufficiently small so that we can control (42) < ε
2 . Combining with

the result of previous subsection (51), we conclude (37) and and prove Theorem 4.

3.4 Continuity of Collision Operators Kf and Γ(f, f)

The following is a consequence of Theorem 4.

Corollary 5 Assume f(t, x, v) is continuous on [0, T ]× (Ω̄× R3)\G and

w(v)f(t, x, v) = (1 + ρ2|v|2)βf(t, x, v) ∈ L∞([0, T ]× (Ω̄× R3)).

Then Kf(t, x, v) and Γ+(f, f)(t, x, v) are continuous in [0, T ]× Ω× R3 and

sup
[0,T ]×Ω̄×R3

|ν−1(v)w(v)K(f)| <∞, sup
[0,T ]×Ω̄×R3

|ν−1(v)w(v)Γ+(f, f)| <∞.

Proof. The above boundedness is a direct consequence of (33) and (34). Thanks to Theorem 4, we already established
the continuity of Γ+. Therefore we only need to show the continuity of

1
√
µ
Q−(

√
µf, µ) = e−

|v|2
4

∫
R3

∫
S2
B(v − u, ω)f(t, x, u)e−

|u|2
4 dωdu.

Choose (t̄, x̄, v̄) ∼ (t, x, v) so that |(t̄, x̄, v̄)− (t, x, v)| < δ. We will estimate

1
√
µ
Q−(

√
µf, µ)(t̄, x̄, v̄)− 1

√
µ
Q−(

√
µf, µ)(t, x, v)

=
1
√
µ

∫
R3

∫
S2
e−

|u|2
4 {B(v − u, ω)f(t, x, v)−B(v̄ − u, ω)f(t̄, x̄, u)}dωdu

=
1
√
µ

∫
R3

∫
S2
B(v − u, ω)e−

|u|2
4 f(t, x, v)dωdu− 1

√
µ

∫
R3

∫
S2
B(v − u′, ω)e−

|u′−(v−v̄)|2
4 f(t̄, x̄, u′ − (v − v̄))dωdu′

≤ 1
√
µ

∫
u∈R3

∫
S2
|B(v − u, ω)||e−

|u|2
4 − e−

|u−(v−v̄)|2
4 |w−1(u− (v − v̄))||wf ||∞dωdu (86)

+
1
√
µ

∫
R3

∫
S2
|B(v − u, ω)|e−

|u|2
4 |f(t, x, u)− f(t̄, x̄, u− (v − v̄))|︸ ︷︷ ︸

♣

dωdu, (87)
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where we used a change of variables u′ = u+ (v − v̄) for the underlined term. Using the Taylor’s expansion we control

e−
|u−(v−v̄)|2

4 = e−
|u|2
4 +

1

2
|u∗|e−

|u∗|2
4 |v − v̄| ≤ 1

2
(|u|+ δ)e

δ2

4 e−
|u|2
4 × |v − v̄|,

where u∗ = s∗{u− (v − v̄)}+ (1− s∗)u for some s∗ ∈ (0, 1) and |v − v̄| < δ. Therefore we control

|(86)| ≤ e
|v|2
4

∫
R3

|v − u|γ 1
2
(|u|+ δ)e

δ2

4 e−
|u|2
4 du× sup

v,u

∫
S2
q0
( v − u

|v − u|
· ω
)
dω|v − v̄| × ||wf ||∞

≤ C(1 + |v|)γe
|v|2
4 ||wf ||∞, (88)

where we have used the the angular cutoff assumption (3). Now we estimate (87) with following steps :

Case 1 : |u| ≥ N . Since e−
|u|2
4 ≤ e−

N2

8 e−
|u|2
8 , we estimate∫

|u|≥N

∫
S2

♣ dωdu ≤ Ce−
N2

8

∫
R3

e−
|u|2
8 |u− v|γdu× ||wf ||∞ ≤ Ce−

N2

8 ν(v)||wf ||∞. (89)

Case 2 : |u| ≤ N . A function f is continuous on [0, T ] × (Ω̄ × B(0;N))\G. By the Lemma 5, we can choose
Ux ⊂ B(0;N) with |Ux| < ε

N with |f(t, x, u) − f(t̄, x̄, u − (v − v̄))| < ε
N for |(t, x, u) − (t̄, x̄, u − (v − v̄))| ≤ δ with

u ∈ B(0;N)\Ux. Therefore
∫
|u|≤N

∫
S2 ♣ dωdu is bounded by∫

u∈B(0;N)∩Ux

∫
S2

♣ dωdu+

∫
u∈B(0;N)\Ux

∫
S2

♣ dωdu ≤ C
ε

N
ν(v)||wf ||∞. (90)

From (88), (89) and (90), we summarize

1
√
µ
|Q−(

√
µf, µ)(t̄, x̄, v̄)−Q−(

√
µf, µ)(t, x, v)| ≤ (o(δ) + e−

N2

8 +
ε

N
)
ν(v)
√
µ
||wf ||∞,

which is less than ε for sufficiently large N and sufficiently small δ.

In following sections, we will prove Theorem 1, Theorem 2 and Theorem 3, for each boundary conditions. In order to
write theorems in the unified way [13] for all boundary condition cases, we use the weight function w(v) = {1+ ρ2|v|2}β
in (12) and define

h ≡ w(v)× F − µ
√
µ

.

In terms of h, the Boltzmann equation (1) is equivalent to

{∂t + v · ∇x + ν −Kw}h = wΓ(
h

w
,
h

w
), (91)

where Kwh ≡ wK( h
w ) with boundary conditions :

1. In-flow boundary condition : h(t, x, v) = w(v)g(t, x, v) for (x, v) ∈ γ−. (92)

2. Diffuse boundary condition :

h(t, x, v) = w(v)
√
µ(v)

∫
v′·n(x)>0

h(t, x, v′)
1

w(v′)
√
µ(v′)

cµµ(v
′){nx · v′}dv′ for (x, v) ∈ γ−, (93)

with a normalized constant cµ in (6).

3. Bounce-back boundary condition : h(t, x, v) = h(t, x,−v) for (x, v) ∈ γ−. (94)

4 In-Flow Boundary Condition

In this section, we consider the linearized Boltzmann equation (91) with the in-flow boundary condition (92). First we
will show the formation of discontinuity using a pointwise estimate of the Boltzmann solution [13]. Then we use the
continuity of collision operators, Theorem 4, to show a continuity of solution on the continuity set C and the propagation
of discontinuity on the discontinuity set D.
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4.1 Formation of Discontinuity

We prove Part 1 of Theorem 1. Without loss of generality we may assume x0 = (0, 0, 0) and v0 = (1, 0, 0) and
(x0, v0) ∈ γS0 . Locally the boundary is a graph, i.e. Ω ∩ B(0; δ) = {(x1, x2, x3) ∈ B(0; δ) : x3 > Φ(x1, x2)}. The
condition (x0, v0) ∈ γS0 implies tb(x0, v0) ̸= 0 and tb(x0,−v0) ̸= 0 which means Φ(ξ, 0) < 0 for ξ ∈ (−δ, δ)\{0}. (See
Figure 3)
For simplicity we assume a zero boundary datum, i.e. g ≡ 0. From Theorem 1 of [13], we have a global solution of the
linearized Boltzmann equation (91) with zero in-flow boundary condition, satisfying

sup
t∈[0,∞)

||h(t)||∞ ≤ C ′e−λt||h0||∞,

for some λ > 0. In the proof we do not use the decay estimate but just boundedness

sup
t∈[0,∞)

||h(t)||∞ ≤ C ′||h0||∞. (95)

Recall the constants Ck and CΓ from (33) and (34). Choose t0 ∈ (0,min{ δ
2 ,

tb(x0,−v0)
2 }) sufficiently small so that

1

2
≤
(
e−ν(1)t0 − t0CkC

′ − (1− e−ν(1)t0)CΓ(C
′)2
)
, (96)

where ν(1) ≡ ν(v0) for any v0 ∈ R3 with |v0| = 1. This choice is possible because the right hand side of (96) is a
continuous function of t0 ∈ R and it has a value 1 when t0 = 0. Furthermore assume a condition for our initial datum
h0 : there is sufficiently small δ′ = δ′(Ω, t0) > 0 such that B((−t0, 0, 0); δ′) ⊂ Ω and

h0(x0, v0) ≡ ||h0||∞ > 0 for (x, v) ∈ B((−t0, 0, 0); δ′)×B((1, 0, 0); δ′). (97)

We claim the Boltzmann solution h with such an initial datum h0 and zero in-flow boundary condition is not continuous
at (t0, x0, v0) = (t0, (0, 0, 0), (1, 0, 0)). We will use a contradiction argument : Suppose

[h(t0)]x0,v0 = 0. (98)

Choose sequences of points (x′n, v
′
n) = ((0, 0, 1

n ), (1, 0, 0)) and (xn, vn) = (( 1n , 0,Φ(
1
n , 0)), (1, 0,

1
n )). Because of our choice,

for sufficiently large n ∈ N, the characteristics [X(0; t0, x0, v0), V (0; t0, x0, v0)] is near to ((−t0, 0, 0), (1, 0, 0)), i.e.

(x′n − t0v
′
n, v

′
n) = ((−t0, 0,

1

n
), (1, 0, 0)) ∈ B((−t0, 0, 0); δ′)×B((1, 0, 0); δ′).

Hence the Boltzmann solution at (t0, x
′
n, v

′
n) is

h(t0, x
′
n, v

′
n) = h0(x

′
n − t0v

′
n, v

′
n)e

−ν(v′
n)t0 +

∫ t0

0

e−ν(v′
n)(t0−τ)

{
Kwh+ wΓ(

h

w
,
h

w
)

}
(τ, x′n − v(t0 − τ), v′n)dτ

= ||h0||∞e−ν(v′
n)t0 +

∫ t0

0

e−ν(v′
n)(t0−τ)

{
Kwh+ wΓ(

h

w
,
h

w
)

}
(τ, x− v′n(t0 − τ), v′n)dτ.

Combining h(t0, xn, vn) = w(vn)g(t0, xn, vn) = 0 with (98), we conclude

h(t′0, x
′
n, v

′
n) → 0 as n→ 0. (99)

On the other hand, using (95) we can estimate

lim inf
n→∞

|h(t0, x′n, v′n)| = lim inf
n→∞

|h(t0, x′n, v′n)− h(t0, xn, vn)|

≥ lim inf
n→∞

∣∣||h0||∞e−ν(v′
n)t0 −

∫ t0

0

CkC
′||h0||∞dτ +

∫ t0

0

ν(v′n)e
−ν(v′

n)(t−τ)CΓ(C
′)2||h0||2∞dτ

∣∣
≥ ||h0||∞e−ν(1)t0 − t0CkC

′||h0||∞ − (1− e−ν(1)t0)CΓ(C
′)2||h0||2∞

= ||h0||∞
(
e−ν(1)t0 − t0CkC

′ − (1− e−ν(1)t0)CΓ(C
′)2
)
≥ ||h0||∞

2
̸= 0,

which is contradiction to (99).

4.2 Continuity away from D

We aim to prove Part 1 of Theorem 3 in this section. First we recall Lemma 12 of [13], the representation for solution
operator G(t, 0) for the homogeneous transport equation with in-flow boundary condition :
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Lemma 10 [13] Let h0 ∈ L∞ and wg ∈ L∞. Let {G(t, 0)h0} be the solution to the transport equation

{∂t + v · ∇x}G(t, 0)h0 = 0, G(0, 0)h0 = h0, {G(t, 0)h0}γ− = wg.

For (x, v) /∈ γ0 ∩ γ−,

{G(t, 0)h0}(t, x, v) = 1t−tb≤0h0(x− tv, v) + 1t−tb>0{wg}(t− tb, x− tbv, v).

Next we prove a generalized version of Lemma 13 in [13].

Lemma 11 (Continuity away from D : Transport Equation) Let Ω be an open subset of R3 with a smooth bound-
ary ∂Ω and an initial datum h0(x, v) be continuous in Ω×R3 ∪{γ− ∪ γ+ ∪ γI−0 } and a boundary datum g be continuous
in [0, T ]× {γ− ∪ γI−0 }. Also assume q(t, x, v) and ϕ(t, x, v) are continuous in the interior of [0, T ]×Ω×R3 and satisfy
sup[0,T ]×Ω×R3

∣∣q(t, x, v)∣∣ <∞ and sup[0,T ]×Ω

∣∣ϕ(·, ·, v)∣∣ <∞ for all v ∈ R3. Let h(t, x, v) be the solution of

{∂t + v · ∇x + ϕ}h = q , h(0, x, v) = h0 , h|γ− = wg.

Assume the compatibility condition on γ− ∪ γI−0 ,

h0(x, v) = w(v)g(0, x, v). (100)

Then the Boltzmann solution h(t, x, v) is continuous on the continuity set C. Furthermore, if the boundary ∂Ω does not
include a line segment (Definition 6) then h(t, x, v) is continuous on a complementary set of the discontinuity set, i.e.
{[0, T ]× Ω̄× R3}\D.

Proof. Continuity on {{0} × Ω̄×R3} ∪ {(0,∞)× [γ− ∪ γI−0 ]} is obvious from the assumption. Fix (t, x, v) ∈ C. Notice
that{

d

ds
{h(s,X(s), V (s))e−

∫ t
s
ϕ(τ,X(τ),V (τ))dτ} − q(s,X(s), V (s))e−

∫ t
s
ϕ(τ,X(τ),V (τ))dτ

}
1[max{0,t−tb(x,v)},t](s) = 0, (101)

along the characteristics X(s; t, x, v) = x − v(t − s), V (s; t, x, v) = v until the characteristics hits on the boundary.
Choose (t̄, x̄, v̄) ∼ (t, x, v) and use a change of variables s̄ = s− (t̄− t) with s̄ ∈ [t− t̄, t] to have{ d

ds̄
{h(s̄+ (t̄− t), X̄(s̄), V̄ (s̄))e−

∫ t
s̄
ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ}

−q(s̄+ (t̄− t), X̄(s̄), V̄ (s̄))e−
∫ t
s̄
ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ

}
1[−(t̄−t)+max{0,t̄−tb(x̄,v̄)},t](s) = 0, (102)

where X̄(s̄) = X(s̄+ (t̄− t); t̄, x̄, v̄) and V̄ (s̄) = V (s̄+ (t̄− t); t̄, x̄, v̄).
By the definition C, we can separate two cases : t < tb(x, v) , (xb(x, v), v) ∈ γ− ∪ γI−0 .

Case of t− tb(x, v) < 0 From the assumption t − tb(x, v) < 0, we know that (101) holds for 0 ≤ s ≤ t. Now we

choose (t̄, x̄, v̄) near (t, x, v) so that t̄ − tb(x̄, v̄) < 0, and X̄(s̄) = X(s̄ + (t̄ − t); t̄, x̄, v̄) is in the interior of Ω for all
s̄ ∈ [t− t̄, t]. Taking the integration over [min{0, t− t̄}, t] of (101)− (102) to have

h(t, x, v)− h(t̄, x̄, v̄) = h0(X(0), V (0))e−
∫ t
0
ϕ(τ,X(τ),V (τ))dτ − h0(X̄(t− t̄), V̄ (t− t̄))e−

∫ t
t−t̄

ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ

+

∫ t

min{0,t−t̄}

{
1[max{0,t−tb(x,v)},t](s)q(s,X(s), V (s))e−

∫ t
s
ϕ(τ,X(τ),V (τ))dτ

−1[t−t̄+max{0,t̄−tb(x̄,v̄)},t](s)q(s+ (t̄− t), X̄(s), V̄ (s))e−
∫ t
s
ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ

}
ds.

Since h0 and ϕ is continuous, it is easy to see that the first line above goes to zero when (t̄, x̄, v̄) → (t, x, v). For the
remainder we separate cases : t− t̄ > 0 and t− t̄ ≤ 0. If t− t̄ > 0 the remainder is bounded by∫ t

t−t̄

|q(s)e
∫ t
s
ϕ(τ)τ − q(s+ (τt− t))e−

∫ t
s
ϕ(τ+(t̄−t)|+ |t− t̄| sup

0≤s≤t
||q(s)||∞et sup0≤s≤t ||ϕ(s)||∞ ,

where the first term is small using continuity of q and ϕ, and the second term is small as (t̄, x̄, v̄) → (t, x, v). The case
t− t̄ ≤ 0 is similar.

Case of (xb(x, v), v) ∈ γ− ∪ γI−0 We only have to consider cases of t > tb(x, v) and t = tb(x, v). By definition

(xb(x, v), v) ∈ γ− ∪ γI−0 . From Lemma 2, we know that tb(x, v) is a continuous function when (xb(x, v), v) /∈ γ− ∪ γI−0 .
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In the case of t > tb(x, v), for (t̄, x̄, v̄) ∼ (t, x, v), we have t̄ > tb(x̄, v̄). Taking the integration over [min{0, t − t̄}, t] of
(101)− (102) to have

h(t, x, v)− h(t̄, x̄, v̄) = wg(t− tb(x, v), X(tb(x, v)), V (tb(x, v)))e
−
∫ t
t−tb(x,v)

ϕ(τ,X(τ),V (τ))dτ

−wg(t̄− tb(x̄, v̄), X(tb(x̄, v̄)), V (tb(x̄, v̄)))e
−
∫ t
t̄−tb(x̄,v̄)

ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ

+

∫ t

t−tb(x,v)

q(s,X(s), V (s))e−
∫ t
s
ϕ(τ,X(τ),V (τ))dτds

−
∫ t

t−tb(x̄,v̄)

q(s+ (t̄− t), X̄(s), V̄ (s))e−
∫ t
s
ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτds.

Using the continuity of tb and q and ϕ, it is easy to show that |h(t, x, v) − h(t̄, x̄, v̄)| → 0 as (t̄, x̄, v̄) → (t, x, v). In
the case of t = tb(x, v) we can choose (t̄, x̄, v̄) ∼ (t, x, v) so that tb(x̄, v̄) ∈ (t − ϵ, t + ϵ). Taking the integration over
[min{0, t− t̄}, t] of (101)− (102) to have

|h(t, x, v)− h(t̄, x̄, v̄)| ≤ wg(t− tb(x, v), X(tb(x, v)), V (tb(x, v)))e
−
∫ t
t−tb(x,v)

ϕ(τ,X(τ),V (τ))dτ

−1t̄>tb(x̄,v̄)wg(t̄− tb(x̄, v̄), X(tb(x̄, v̄), V (tb(x̄, v̄))))e
−
∫ t
t̄−tb(x̄,v̄)

ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ

−1t̄≤tb(x̄,v̄)h0(X̄(t− t̄), V̄ (t− t̄))e−
∫ t
t−t̄

ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ

+

∫ t

t−tb(x,v)+ε

∣∣∣q(s,X(s), V (s))e−
∫ t
s
ϕ(τ,X(τ),V (τ))dτ − q(s+ (t̄− t), X̄(s), V̄ (s))e−

∫ t
s
ϕ(τ+(t̄−t),X̄(τ),V̄ (τ))dτ

∣∣∣ds
+2ε sup

0≤s≤t
||q(s)||∞et sup0≤s≤t ||ϕ(s)||∞ ,

where the first three lines can be small using the compatibility condition and continuity of h0 in Ω×R3∪{γ−∪γ+∪γI−0 }
and a continuity of g on [0, T ] × {γ− ∪ γI−0 } and continuity of ϕ. For the fourth line above, we use the continuity of q
and ϕ.
If the boundary ∂Ω does not include a line segment (Definition 6) we have C = {[0, T ]× Ω̄× R3}\D.

Proof of Part 1 of Theorem 3
We will use the following iteration scheme

{∂t + v · ∇x + ν}hm+1 = Kwh
m + wΓ+

(
hm

w
,
hm

w

)
− wΓ−

(
hm

w
,
hm+1

w

)
, (103)

with hm+1|t=0 = h0 and hm+1(t, x, v) = wg(t, x, v) with (t, x, v) ∈ γ− ∪ γI−0 . For simplicity we define

qm = Kwh
m + wΓ+

(
hm

w
,
hm

w

)
− wΓ−

(
hm

w
,
hm+1

w

)
. (104)

Step 1 : We claim
hi is a continuous function in CT (105)

for all i ∈ N and for any T > 0 where
CT ≡ C ∩ {[0, T ]× Ω̄× R3}, (106)

where the continuity set C is defined in (10). We will use mathematical induction to show (105). We choose h0 = 0 then

(105) is satisfied for i = 0. Assume (105) for all i = 0, 1, 2, ...,m. Rewrite wΓ−

(
hm

w , h
m+1

w

)
= ν

(√
µhm

w

)
hm+1 then the

equation of hm+1 is

{∂t + v · ∇x + ν(v) + ν

(
√
µ
hm

w

)
}hm+1 = Kwh

m + wΓ+

(
hm

w
,
hm

w

)
. (107)

From Theorem 4 and Corollary 5 we know that ν
(√
µhm

w

)
and wΓ+

(
hm

w , h
m

w

)
is continuous in [0, T ] × Ω × R3. Apply

Lemma 11 where ϕ(t, x, v) corresponds to ν(v) + ν(
√
ν hm

w ) and q(t, x, v) corresponds to the right hand side of (107).
Then we check (105) for i = m+ 1.
Step 2 : We claim that there exist C > 0 and δ > 0 such that if C{||h0||∞+sup0≤s<∞ ||wg(s)||∞} < δ and C||h0||∞ < δ
then there exists T = T (C, δ) > 0 so that

sup
0≤s≤T

||hm(s)||∞ ≤ C||h0||∞, (108)
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for all m ∈ N. Moreover {hm}∞m=0 is Cauchy in L∞([0, T ]× Ω̄× R3).
First we will show a boundedness (108) for allm ∈ N. We use mathematical induction onm. Assume sup0≤s≤T ||hm(s)||∞ ≤
C||h0||∞ where T > 0 will be determined later. Integrating (103) along the trajectory, we have

hm+1(t, x, v) = 1t<tb(x,v)e
−ν(v)th0(x− tv, v) + 1t≥tb(x,v)e

−ν(v)tb(x,v)w(v)g(t− tb(x, v), xb(x, v), v)

+

∫ t

max{t−tb(x,v),0}
e−ν(v)(t−s)

{
Kwh

m + wΓ+

(
hm

w
,
hm

w

)
− wΓ−

(
hm

w
,
hm+1

w

)}
(s, x− (t− s)v, v)ds

≤ ||h0||∞ + sup
0≤s≤t

||wg(s)||∞ + tCk sup
0≤s≤t

||hm(s)||∞ + CΓ sup
0≤s≤t

||hm(s)||∞ sup
0≤s≤t

(
||hm(s)||∞ + ||hm+1(s)||∞

)
,

and

sup
0≤s≤t

||hm+1(s)||∞ ≤ 1 + tCkC + CΓC{||h0||∞ + sups ||wg(s)||∞}
1− CΓC{||h0||∞ + sups ||wg(s)||∞}

{
||h0||∞ + sup

0≤s≤t
||wg(s)||∞

}
≤ C

{
||h0||∞ + sup

0≤s≤t
||wg(s)||∞

}
,

where we choose C > 4 and then {||h0||∞ + sup0≤s≤t ||wg(s)||∞} ≤ 1
2CΓC

and then T = C−3
2CkC

.

Newt we will show the sequence {hm} is Cauchy in L∞([0, T ]× Ω̄× R3). The equation of hm+1 − hm is

{∂t + v · ∇x + ν}(hm+1 − hm) = q̃m, (109)

(hm+1 − hm)|t=0 = 0, (hm+1 − hm)|γ− = 0

where

q̃
m

= Kw(h
m −h

m−1
)+wΓ+

(
hm

w
,
hm − hm−1

w

)
−wΓ+

(
hm−1 − hm

w
,
hm−1

w

)
−wΓ−

(
hm

w
,
hm+1 − hm

w

)
+wΓ−

(
hm−1 − hm

w
,
hm

w

)
. (110)

From (33) and (34), we have a bound of q̃m,

sup
0≤s≤t

||q̃m(s)||∞ ≤ Ck sup
0≤s≤t

||{hm − hm−1}(s)||∞ (111)

+CΓν(v){ sup
0≤s≤t

||{hm − hm−1}(s)||∞ + sup
0≤s≤t

||{hm+1 − hm}(s)||∞} × ( sup
0≤s≤t

||hm(s)||∞ + sup
0≤s≤t

||hm+1(s)||∞).

Integrating (109) along the trajectory, we have

||{hm+1 − hm}(t)||∞ ≤
∫ t

0

e−ν(v)(t−s)||q̃m(s, x− (t− s)v, v)||∞ds

≤ Ckt sup
0≤s≤t

||{hm − hm−1}(s)||∞

+CCΓ

(
||h0||∞ + sup

0≤s≤t
||wg(s)||∞

){
sup

0≤s≤t
||{hm − hm−1}(s)||∞ + sup

0≤s≤t
||{hm+1 − hm}(s)||∞

}
.

If we choose CCΓ||h0||∞ ≤ 1
4 and CkT ≤ 1

8 then

sup
0≤s≤T

||{hm+1 − hm}(s)||∞ ≤ 1

2
sup

0≤s≤T
||{hm − hm−1}(s)||∞.

Then we have

sup
0≤s≤T

||{hm − hm−1}(s)||∞ ≤ sup
0≤s≤T

||{hm − hm−1}(s)||∞ + · · ·+ sup
0≤s≤T

||{hn+1 − hn}(s)||∞

≤ { 1

2m−n−1
+ · · ·+ 1

20
} sup
0≤s≤T

||{hn+1 − hn}(s)||∞ ≤ 2

2n
sup

0≤s≤T
||{h1 − h0}(s)||∞

≤ 4

2n
C{||h0||∞ + sup

0≤s≤T
||wg(s)||∞},

which means that the sequence {hm} is Cauchy in L∞([0, T ]× Ω̄× R3).
Step 3 : From previous steps we obtain that h with limn→∞ hn is continuous function on CT . Now we claim that h is con-
tinuous in C. Notice that T only depends on ||h0||∞ and sup0≤s≤T ||wg(s)||∞. Using unform bound of sup0≤s<∞ ||h(s)||∞
(Theorem 1 of [13]) we can obtain the continuity for h for all time by repeating [0, T ], [T, 2T ], .... If the boundary ∂Ω
does not include a line segment (Definition 6) then every step is valid with [0,∞) × {Ω̄ × R3}\D instead of C and
[0, T ]× {Ω̄× R3}\D instead of CT .
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4.3 Propagation of Discontinuity

Proof of 1 of Theorem 2
Proof of (18)
In order to show the upper bound of discontinuity jump (18), we will show

[h(t)]x0+(t−t0)v0,v0
≤ [h]t0,x0,v0e

−( 1
Cν

+ C′
Cw

||h0||∞)(1+|v0|)γ(t−t0), (112)

when (x0, v0) ∈ γS0 and t ∈ (t0, t0 + tb(x0,−v0)). Choose two points (x′, v′), (x′′, v′′) ∈ {Ω̄× R3\G} ∩B((x, v); δ)\(x, v)
and compare the representation

|h(t, x′
, v

′
) − h(t, x

′′
, v

′′
)| ≤

∣∣∣1t−t0≥tb(x′,v′)h(t − tb(x
′
, v

′
), xb(x

′
, v

′
), v

′
)e

−ν(v′)tb(x′,v′)−
∫ t
t−tb(x′,v′) ν(

√
µ h

w
)(τ,x′−(t−τ)v′,v′)dτ

+1t−t0<tb(x′,v′)h(t0, x
′ − (t − t0)v

′
, v

′
)e

−ν(v′)(t−t0)−
∫ t
t0

ν(
√

µ h
w

)(τ,x′−(t−τ)v′,v′)dτ

−1t−t0≥tb(x′′,v′′)h(t − tb(x
′′
, v

′′
), xb(x

′′
, v

′′
), v

′′
)e

−ν(v′′)tb(x′′,v′′)−
∫ t
t−tb(x′′,v′′) ν(

√
µ h

w
)(τ,x′−(t−τ)v′,v′)dτ

−1t−t0<tb(x′′,v′′)h(t0, x
′′ − (t − t0)v

′′
, v

′′
)e

−ν(v′′)(t−t0)−
∫ t
t0

ν(
√

µ h
w

)(τ,x′′−(t−τ)v′′,v′′)dτ
∣∣∣

+
∣∣∣ ∫ t

max{0,t−t0−tb(x′,v′)}
{Kwh + wΓ+(

h

w
,
h

w
)}(s, x′ − (t − s)v

′
, v

′
)e

−ν(v′)(t−s)−
∫ t
s ν(

√
µ h

w
)(τ,x′−(t−τ)v′,v′)dτ

ds

−
∫ t

max{0,t−t0−tb(x′′,v′′)}
{Kwh + wΓ+(

h

w
,
h

w
)}(s, x′′ − (t − s)v

′′
, v

′′
)e

−ν(v′′)(t−s)−
∫ t
s ν(

√
µ h

w
)(τ,x′′−(t−τ)v′′,v′′)dτ

ds
∣∣∣.

It is easy to see that if t− t0 ≥ tb(x
′, v′) then as δ → 0 we have

t− tb(x
′, v′) → t0 , xb(x

′, v′) → x0 ,

and if t− t0 < tb(x
′, v′) then as δ → 0 we have

x′ − (t− t0)v
′ → x0.

Therefore the first four lines converge to [h]t0,x0,v0 × e
−ν(v0)(t−t0)−

∫ t
t0

ν(
√
µ h

w )(τ,x0−(t0−τ)v0,v0)dτ . For the last two lines,
using the continuity of Kwh,Γ(

h
w ,

h
w ), ν(

√
µ h

w ) we conclude that it converges to zero. Therefore we have

[h(t)]x0+(t−t0)v0,v0
≤ [h]t0,x0,v0e

−ν(v0)(t−t0)−
∫ t
t0

ν(
√
µ h

w )(τ,x0−(t0−τ)v0,v0)dτ

≤ [h]t0,x0,v0 × e−( 1
Cν

−CwC′||h0||∞)(1+|v0|)γ(t−t0),

where we used

νw(v) ≡
∫
R3

∫
S2
B(v − u, ω)e−

|u|2
4 w−1(u)dωdu (113)

with
1

Cw
(1 + |v|)γ ≤ νw(v) ≤ Cw(1 + |v|)γ . (114)

Remark that Proof of (18) is valid for in-flow, diffuse and bounce-back cases.

Proof of (20)
Assume [h(t0)]x0,v0 ̸= 0 and t0 ∈ (0, tb(x0,−v0)) with (x0, v0) ∈ γS0 . Further assume that the boundary ∂Ω is strictly
concave at x0 along v0 direction (19).
Step 1 Claim : We can choose sequences (t′n, x

′
n, v

′
n), (t

′′
n, x

′′
n, v

′′
n) ∈ [0,∞)× Ω̄×R3 ∩B((t0, x0, v0);

1
n )\(t0, x0, v0) such

that limn→∞ |h(t′n, x′n, v′n)− h(t′′n, x
′′
n, v

′′
n)| ≥ 1

2 [h(t0)]x0,v0 ̸= 0.
From [h(t0)]x0,v0 ̸= 0 we may assume

sup
(x′

0,v
′
0),(x

′′
0 ,v

′′
0 )∈B((x0,v0);

1
n )\(x0,v0)

|h(t0, x′0, v′0)− h(t0, x
′′
0 , v

′′
0 )| ≥

3

4
[h(t0)]x0,v0 ̸= 0, (115)

for all n ∈ N. And for each n ∈ N we can choose desired sequences.

Step 2 Claim : For given ε > 0, up to subsequence we may assume that

(xb(x
′
n, v

′
n), v

′
n) ∈ B((x0, v0); ε)\G , (xb(x

′′
n, v

′′
n), v

′′
n) /∈ B((x0, v0); ε) ∪G for all n ∈ N. (116)

We remark that a continuity G(t, x, v) = w(v)g(t, x, v) on [0,∞)× {γ− ∪ γS0 }, i.e.

[ G|[0,∞)×γ− ]t0,x0,v0 = w(v0)[ g|[0,∞)×γ− ]t0,x0,v0 = 0 for all (t0, x0, v0) ∈ [0,∞)× {γ− ∪ γS0 } (117)
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is crucially used in this step. In order to show the final goal (116) of this step, we need to prove following statement.

Assume (x0, v0) ∈ γS0 and tb(x0, v0) > t0. Then for sufficiently small ε > 0 there exists N > 0 such that

if (x, v) ∈ B((x0, v0);
1

n
) for n > N and xb(x, v) /∈ B((x0, v0); ε) then we have tb(x, v) > t0. (118)

We will prove (118) later and show (116) using (118). It suffices to show that there are only finite n ∈ N such that

(xb(x
′
n, v

′
n), v

′
n) ∈ B((x0, v0);

1

n
)\G , (xb(x

′′
n, v

′′
n), v

′′
n) ∈ B((x0, v0);

1

n
)\G (119)

or (xb(x
′
n, v

′
n), v

′
n) /∈ B((x0, v0);

1

n
) ∪G , (xb(x

′′
n, v

′′
n), v

′′
n) /∈ B((x0, v0);

1

n
) ∪G. (120)

Suppose there are infinitely many n′ ∈ N satisfying (119). If ε > 0 is sufficiently small then (119) implies that
t0 > tb(x

′
n′ , v′n′) and t0 > tb(x

′′
n′ , v′′n′). The Boltzmann solution h at (t0, x

′
n′ , v′n′) is

h(t0, x
′
n′ , v′n′) = h(t0 − tb(x

′
n′ , v′n′), xb(x

′
n′ , v′n′), v′n′)e

−ν(v′
n′ )(t0−tb(x

′
n′ ,v

′
n′ ))−

∫ t0
t0−tb(x′

n′ ,v
′
n′ )

ν(
√
µ h

w )(τ,x′
n′−(t0−τ)v′

n′ ,v
′
n′ )dτ

+

∫ t0

t0−tb(x′
n′ ,v

′
n′ )

{Kwh+ Γ+(
h

w
,
h

w
)}(s, x′n′ − (t0 − s)v′n′ , v′n′)e−ν(v′

n′ )(t0−s)−
∫ t0
s

ν(F )(τ,x′
n′−(t0−τ)v′

n′ ,v
′
n′ )dτds,

and a similar representation for h(t0, x
′′
n′ , v′′n′). Compare representations of h(t0, x

′
n′ , v′n′) and h(t0, x

′′
n′ , v′′n′) to conclude

lim
n′→∞

|h(t0, x′n′ , v′n′)− h(t0, x
′′
n′ , v′′n′)| = lim

n′→∞
|h(t0 − tb(x

′
n′ , v′n′), xb(x

′
n′ , v′n′), v′n′)− h(t0 − tb(x

′′
n′ , v′′n′), xb(x

′′
n′ , v′′n′), v′′n′)|

×e−ν(v0)(t0−tb(x0,v0))−
∫ t0
t0−tb(x0,v0)

ν(
√
µ h

w )(τ,x0−(t0−τ)v0,v0)dτ

≤ [h|[0,∞)×γ− ]t0−tb(x0,v0),xb(x0,v0),v0
× e

−ν(v0)(t0−tb(x0,v0))−
∫ t0
t0−tb(x0,v0)

ν(
√
µ h

w )(τ,x0−(t0−τ)v0,v0)dτ ,

where we used the continuity of ν(
√
µ h

w ) and Γ+(
h
w ,

h
w ). Further using the in-flow boundary condition h|γ− = wg, we

have

lim
n′→∞

|h(t0, x′n′ , v′n′)− h(t0, x
′′
n′ , v′′n′)| ≤ [ g|[0,∞)×γ− ]t0,x0,v0w(v0)e

−ν(v0)(t0−tb(x0,v0))−
∫ t0
t0−tb(x0,v0)

ν(
√
µ h

w )(τ,x0−(t0−τ)v0,v0)dτ = 0,

where we used the continuity of g on [0,∞)×{γ− ∪ γ0}, (117) at the last line. This is contradict because we choose the
sequences (x′n′ , v′n′), (x′′n′ , v′′n′) satisfying limn→∞ |h(t0, x′n′ , v′n′)− h(t0, x

′′
n′ , v′′n′)| ≥ 1

2 [h(t0)]x0,v0 ̸= 0 in Step 1.
Now suppose there are infinitely many n′′ ∈ N satisfying (120). Because of (118) we have t0 < tb(x

′
n′′ , v′n′′) and

t0 < tb(x
′′
n′′ , v′′n′′). The Boltzmann solution h at (t0, x

′
n′′ , v′n′′) is

h(t0, x
′
n′′ , v′n′′) = h0(x

′
n′′ − t0v

′
n′′ , v′n′′), v′n′′)e−ν(v′

n′′ )t0−
∫ t0
0 ν(

√
µ h

w )(τ,x′
n′′−(t0−τ)v′

n′′ ,v
′
n′′ )dτ

+

∫ t0

0

{Kwh+ Γ+(
h

w
,
h

w
)}(s, x′n′′ − (t0 − s)v′n′′ , v′n′′)e−ν(v′

n′′ )(t0−s)−
∫ t0
s

ν(
√
µ h

w )(τ,x′
n′′−(t0−τ)v′

n′′ ,v
′
n′′ )dτds,

and same representation for h(t0, x
′′
n′′ , v′′n′′). Using the continuity of h0 we see that

lim
n→∞

|h(t0, x′n′′ , v′n′′)− h(t0, x
′′
n′′ , v′′n′′)|

= lim
n→∞

|h0(x′n′′ − t0v
′
n′′ , v′n′′)− h0(x

′′
n′′ − t0v

′′
n′′ , v′′n′′)|w(v0)e

−ν(v0)(t0−tb(x0,v0))−
∫ t0
t0−tb(x0,v0)

ν(
√
µ h

w )(τ,x0−(t0−τ)v0,v0)dτ

= 0,

which is also contradiction.
Now we prove (118). We can choose ε > 0 sufficiently small so that ∂Ω ∩ B(x0; ε) = {(x1, x2,Φ(x1, x2)) ∈ B(x0; ε)}.
From tb(x0, v0) > t0 we know that a line segment between x0 and x0 − t0x0 has only one intersection point x0 with ∂Ω,
i.e.x0, x0 − t0v0 ∩ ∂Ω = {x0}. Furthermore we can choose ϱ > 0 so large that

∪
s∈[0,t0]

B(x0 − sv0; ϱ) ∩ ∂Ω ⊂ B(x0; ε).

Choose N ∈ N sufficiently large so that x, x− t0v ⊂
∪

s∈[0,t0]
B(x0 − sv0; ϱ) for all (x, v) ∈ B((x0, v0);

1
n ). If xb(x, v) /∈

B((x0, v0); ε) then x, x− t0v ∩ ∂Ω = ∅ and this implies tb(x, v) > t0.

Step 3 Claim : Choose t > 0 so that t − t0 ∈ [0, tb(x0,−v0)) and denote x = x0 + (t − t0)v0, v = v0. Then
there exists N ∈ N so that t− t0 < tb(x

′
n,−v′n) for all n > N .

Using (118) we only have to prove xb(x
′
n,−v′n) /∈ B((x0,−v0); ε). From (116) we know that xb(x

′
n, v

′
n) ∈ B(x0; ε). We

assume that Ω ∩B(x0; ε) = {x ∈ B(x0; ε) : x3 > Φ(x1, x2)} and n(x0) = (0, 0,−1) and v0 = |v0|(1, 0, 0). Let’s define

Ψ(s) = Φ((x′n)1 + s(v′n)1, (x
′
n)2 + s(v′n)2)− ((x′n)3 + s(v′n)2).
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Since x′n ∈ Ω we have Ψ(0) < 0 and Ψ(tb(x
′
n,−v′n)) = 0 = Ψ(−tb(x′n, v′n)). Because of the strict concavity along v0

direction at x0 (19), for sufficiently large n so that (x′n, v
′
n) ∼ (x0, v0) we have

Ψ′′(s) = ((v′n)1, (v
′
n)2)

(
∂2x1

Φ ∂x1∂x2Φ
∂x2∂x1Φ ∂2x2

Φ

)(
(v′n)1
(v′n)2

)
< −1

2
Cx0,v0 ,

where the Hessian of Φ is evaluated at ((x′n)1+s(v
′
n)1, (x

′
n)2+s(v

′
n)2). Since {x′n+sv′n : s ∈ (−tb(x′n, v′n), tb(x′n,−v′n))} ⊂

Ω we have Ψ(s) < 0 for s ∈ (−tb(x′n, v′n), tb(x′n,−v′n)). Therefore Φ′(−tb(x′n, v′n)) ≤ 0 and Φ′(tb(x
′
n,−v′n)) ≥ 0. This is

contradiction because

0 ≤ Φ′(tb(x
′
n,−v′n)) = Φ′(−tb(x′n, v′n)) +

∫ tb(x
′
n,−v′

n)

−tb(x′
n,v

′
n)

Φ′′(s)ds ≤ 0− 1

2
Cx0,v0{tb(x′n,−v′n) + tb(x

′
n, v

′
n)} < 0.

The consequence of this step is that for n > N we have a representation of h at (t, x, v)

h(t, x′n + (t− t0)v
′
n, v

′
n) = h(t0, x

′
n, v

′
n)e

−ν(v′
n)(t−t0)−

∫ t
t0

ν(
√
µ h

w )(τ,x′
n+(τ−t0)v

′
n,v

′
n)dτ (121)

+

∫ t

t0

{Kw + wΓ+(
h

w
,
h

w
)}(s, xn + (s− t0)v

′
n, v

′
n)e

−ν(v′
n)(t−s)−

∫ t
s
ν(

√
µ h

w )(τ,x′
n+(τ−t0)v

′
n,v

′
n)dτds

Step 4 Claim : For given ε > 0 there exists δ > 0 so that if |(y, u) − (x0, v0)| < δ and |(x, v) − (x0, v0)| < δ and
t0 < tb(y, u) and t0 < tb(x, v) then

|h(t0, y, u)− h(t0, x, v)| < ε. (122)

We have h(t0, y, u) = h0(y − t0u, u)e
−ν(u)t0−

∫ t0
0 ν(

√
µ h

w )(τ,y−(t0−τ)u,u)dτ

+

∫ t0

0

{Kwh+ Γ+(
h

w
,
h

w
)}(s, y − (t0 − s)u, u)e−ν(u)(t0−s)−

∫ t0
s

ν(
√
µ h

w )(τ,y−(t0−τ)u,u)dτds,

and similarly h(t0, x, v) = h0(x− t0v, v)e
−ν(v)t0−

∫ t0
0 ν(

√
µ h

w )(τ,x−(t0−τ)v,v)dτ

+

∫ t0

0

{Kwh+ Γ+(
h

w
,
h

w
)}(s, x− (t0 − s)v, v)e−ν(v)(t0−s)−

∫ t0
s

ν(
√
µ h

w )(τ,x−(t0−τ)v,v)dτds.

Let’s compare the arguments of two representations :

|(y − t0u, u)− (x− t0v, v)| < 2(1 + t0)δ for h0,

|(τ, y − (t0 − τ)u, u)− (τ, x− (t0 − τ)v, v)| < 2(1 + t0)δ for ν(
√
µ
h

w
),

|(s, y − (t0 − s)u, u)− (s, x− (t0 − s)v, v)| < 2(1 + t0)δ for Kwh+ Γ+(
h

w
,
h

w
).

Using the continuity of h0, ν(
√
µ h

w ), Kwh and Γ+(
h
w ,

h
w ) we can choose desired ε > 0 to conclude (122).

Step 5 Claim : Choose t > 0 so that t ∈ [t0, t0 + tb(x0,−v0)) and denote x = x0 + (t − t0)v0, v = v0. Let
ε ≤ 1

10 [h(t0)]x0,v0
and δ > 0 be chosen in Step 4. Then we can choose u′′n ∈ Ω so that |u′′n − v′′n| < δ and t0 < tb(x

′′
n, u

′′
n)

and t− t0 < tb(x
′′
n,−u′′n).

If there are infinitely many u′′n so that t0 < tb(x
′′
n, u

′′
n) and t − t0 < tb(x

′′
n,−u′′n) then up to subsequence we can define

u′′n = v′′n. Therefore we may assume t− t0 ≥ tb(x
′′
n,−v′′n) for all n ∈ N. We assume that Ω ∩ B(x0; ε) = {x ∈ B(x0; ε) :

x3 > Φ(x1, x2)} and n(x0) = (0, 0,−1) and v0 = |v0|(1, 0, 0). Now we illustrate how to choose such a u′′n. Denote
x′′n = x = (x1, x2, x3) and v

′′
n = (v1, v2, v3). First we will choose (u1, u2, u3) and s > 0 so that

n(xb(x,−u)) · u = 0, (123)

and xb(x,−u) = (x1 + s u1√
u2
1+u2

2

, x2 + s u2√
u2
1+u2

2

,Φ(x1 + s u1√
u2
1+u2

2

, x2 + s u2√
u2
1+u2

2

)). The condition (123) implies that

u3√
u21 + u22

=
d

ds
Φ(x1 + s

u1√
u21 + u22

, x2 + s
u2√
u21 + u22

) =
Φ(x1 + s u1√

u2
1+u2

2

)− x3

s
. (124)

In order to use the implicit function theorem we define

Ψ(x1, x2, x3;u1, u2; s) = Φ(x1 + s
u1√
u21 + u22

, x2 + s
u2√
u21 + u22

)− x3

−s

{
u1√
u21 + u22

∂x1
Φ(x1 + s

u1√
u21 + u22

, x2 + s
u2√
u21 + u22

) +
u2√
u21 + u22

∂x2
Φ(x1 + s

u1√
u21 + u22

, x2 + s
u2√
u21 + u22

)

}
,
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and compute ,using (19)

∂sΨ = −s( u1√
u21 + u22

,
u2√
u21 + u22

)

(
∂2x1

Φ ∂x1∂x2Φ
∂x1∂x2Φ ∂2x2

Φ

) u1√
u2
1+u2

2
u2√
u2
1+u2

2

 < −1

2
Cx0,v0 , (125)

for x ∼ x0, v ∼ v0 and the Hessian is evaluated at (x1 + s u1√
u2
1+u2

2

, x2 + s u2√
u2
1+u2

2

). Hence s = s(x1, x2, x3;w1, w2) is a

smooth function near x ∼ x0 and (u1, u2) ∼ (v1, v2). In order to study the behavior of s we use the Taylor’s expansion
: from Ψ(x1, x2, x3;u1, u2; s) = 0 we have

Φ(x1, x2)− x3 =
1

u21 + u22

{
(u1, u2)

(
∂2x1

Φ ∂x1∂x2Φ
∂x1∂x2Φ ∂2x2

Φ

)
︸ ︷︷ ︸

(∗)

(
u1
u2

)
− 1

2
(u1, u2)

(
∂2x1

Φ ∂x1∂x2Φ
∂x1∂x2Φ ∂2x2

Φ

)
︸ ︷︷ ︸

(∗∗)

(
u1
u2

)}
s2,

where the Hessian (∗) is evaluated at (x1 + s∗
u1√
u2
1+u2

2

, x2 + s∗
u2√
u2
1+u2

2

) and the Hessian (∗∗) is evaluated at (x1 +

s∗∗
u1√
u2
1+u2

2

, x2 + s∗∗
u2√
u2
1+u2

2

) with s∗, s∗∗ ∈ (0, s). For x ∼ x0 and (u1, u2) ∼ (v1, v2) we know that the right hand side

of the above equation converges to

− 1

2(v21 + v22)
(v1, v2)

(
∂2x1

Φ((x0)1, (x0)2) ∂x1∂x2Φ((x0)1, (x0)2)
∂x1∂x2Φ((x0)1, (x0)2) ∂2x2

Φ((x0)1, (x0)2)

)(
v1
v2

)
̸= 0.

Hence we have a control of s, i.e

1

C
|Φ(x1, x2)− x3|

1
2 ≤ s ≤ C|Φ(x1, x2)− x3|

1
2 . (126)

From (124), u3 =
√
u21 + u22

d
dsΦ(x1 + s u1√

u2
1+u2

2

, x2 + s u2√
u2
1+u2

2

) equals

√
u21 + u22

 u1√
u2
1+u2

2
u2√
u2
1+u2

2

 ·

 ∂x1Φ(x1, x2) +
u1√
u2
1+u2

2

∂2x1
Φ(x′1, x

′
2)s+

u2√
u2
1+u2

2

∂x1∂x2Φ(x
′
1, x

′
2)s

∂x2Φ(x1, x2) +
u1√
u2
1+u2

2

∂x1∂x2Φ(x
′
1, x

′
2)s+

u2√
u2
1+u2

2

∂2x2
Φ(x′1, x

′
2)s

 , (127)

where x′1 = x1 + s′ u1√
u2
1+u2

2

, x′2 = x2 + s′ u2√
u2
1+u2

2

for some 0 < s′ < s ≤ C|Φ(x1, x2)− x3|
1
2 . Using the smoothness of Φ

we can bound (127) as

1

C
|(u1, u2)|

(
|(x1, x2)|+ |Φ(x1, x2)− x3|

1
2

)
≤ (127) ≤ C|(u1, u2)|

(
|(x1, x2)|+ |Φ(x1, x2)− x3|

1
2

)
. (128)

To sum for fixed x and direction 1√
u2
1+u2

2

(u1, u2) we can choose u3 such that n(xb(x,−(u1, u2, u3))) · (u1, u2, u3) = 0

and u3 is controlled by (128). Finally we choose (u1, u2) =
√

u2
1+u2

2

v2
1+v2

2
(v1, v2) and find the corresponding u3 so that

|v| = |(u1, u2, u3)|. Define u′′n = −v + 2(v · (u1,u2,u3)
|(u1,u2,u3)| )(u1, u2, u3). Then we have desired u′′n for sufficiently large n ∈ N.

Step 6 To sum for (t, x′′n + (t − t0)u
′′
n, u

′′
n) we have t − t0 < tb(x

′′
n,−u′′n) and t0 < tb(x

′′
n, u

′′
n) and |h(t0, x′′n, u′′n) −

h(t0, x
′′
n, v

′′
n)| < 1

10 [h(t0)]x0,v0 . Hence the representation of the Boltzmann solution h at (t, x′′n + (t− t0)u
′′
n, u

′′
n) is given

by

h(t, x′′n + (t− t0)v
′′
n, u

′′
n) = h(t0, x

′′
n, u

′′
n)e

−ν(u′′
n)(t−t0)−

∫ t
t0

ν(
√
µ h

w )(τ,x′′
n+(τ−t0)u

′′
n,u

′′
n)dτ

+

∫ t

t0

{Kwh+ wΓ(
h

w
,
h

w
)}(s, x′′n + (s− t0)u

′′
n, u

′′
n)e

−ν(u′′
n)(t−s)−

∫ t
s
ν(

√
µ h

w )(τ,x′′
n+(τ−t0)u

′′
n,u

′′
n)dτds.

Using (121) we have

lim
n→∞

|h(t, x′n + (t− t0)v
′
n, v

′
n)− h(t, x′′n + (t− t0)u

′′
n, u

′′
n)|

= lim
n→∞

|h(t0, x′n, v′n)− h(t0, x
′′
n, u

′′
n)|e

−ν(v0)(t−t0)−
∫ t
t0

ν(
√
µ h

w )(τ,x0+(τ−t0)v0,v0)dτ

≥
{

lim
n→∞

|h(t0, x′n, v′n)− h(t0, x
′′
n, v

′′
n)| − lim

n→∞
|h(t0, x′′n, v′′n)− h(t0, x

′′
n, u

′′
n)|
}
e
−ν(v0)(t−t0)−

∫ t
t0

ν(
√
µ h

w )(τ,x0+(τ−t0)v0,v0)dτ

≥ 1

4
[h(t0)]x0,v0e

−ν(v0)(t−t0)−
∫ t
t0

ν(
√
µ h

w )(τ,x0+(τ−t0)v0,v0)dτ ,

which implies that

[h(t)]x,v ≥ 1

4
[h(t0)]x0,v0 × e−(Cµ+C′Cw||h0||∞)(1+|v|)γ(t−t0) ̸= 0.
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Remark Through Step 1 to Step 6, we only used the in-flow boundary datum g explicitely in Step 2. All the other steps
are valid for diffuse and bounce-back boundary condition cases. In Step 2, we only used (117) the continuity of G = wg
on [0,∞) × {γ− ∪ γS0 }. Therefore, if we can show the continuity of F on [0,∞) × {γ− ∪ γS0 } then we can prove (20).
For diffuse and bounce-back boundary we will prove such a continuity to conclude (20).

5 Diffuse Reflection Boundary Condition

In this section, we consider the linearized Boltzmann equation (91) with the diffuse boundary condition (93). In spite
of the averaging effect of diffuse reflection operator, we can observe the formation and propagation of discontinuity.
Continuity away from D is also established.

5.1 Formation of Discontinuity

We prove Part 2 of Theorem 1. The idea of proof is similar to in-flow case but we also use |v0| not only t0 as a parameter.
Without loss of generality we may assume x0 = (0, 0, 0) and v0 = (|v0|, 0, 0) and (x0, v0) ∈ γS0 . Locally the boundary is
a graph, i.e. Ω ∩B(0; δ) = {(x1, x2, x3) ∈ B(0; δ) : x3 > Φ(x1, x2)} and Φ(ξ, 0) < 0 for ξ ∈ (−δ, δ)\{0}. (See Figure 3)

Assume that ||h0||∞ < δ is sufficiently small so that the global solution h of (91) with diffuse boundary (93) has
a uniform bound (95), from Theorem 4 of [13]. Choose t0 ∈ (0,min{δ, tb(x0,−v0)}) sufficiently small and |v0| > 0
sufficiently large so that

1

2
≤

(
e−ν(|v0|)t0 − t0CkC

′ − (1− e−ν(|v0|)t0)CΓ(C
′)2 − C ′ 1

w̃(v0)

∫
{v′

1>0}
w̃(v′)dσ(v′)

)
, (129)

where ν(|v|) = ν(v) and Ck and CΓ from (33) and (34). More precisely, first choose |v0| > 0 large enough to have

1

w̃(v0)
=

(1 + ρ2|v0|2)β

e
|v0|2

4

≤ 1

10C ′ ,

then choose t0 > 0 as

0 < t0 = min

{
δ

2
,
tb(x0,−v0)

2
,
δ

|v0|
,

1

10ν(|v0|)
,

1

10CkC ′ ,
1

ν(|v0|)
log

(
10CΓ(C

′)2

10CΓ(C ′)2 − 1

)}
.

Assume the condition for initial datum h0 : there is sufficiently small δ′ = δ′(Ω, t0|v0|) > 0 such thatB((−t0|v0|, 0, 0), δ′) ⊂
Ω and

h0(x0, v0) ≡ ||h0||∞ > 0 for (x, v) ∈ B((−t0|v0|, 0, 0); δ′)×B((|v0|, 0, 0); δ′). (130)

We claim that the Boltzmann solution h with such initial datum h0 is not continuous at (t0, x0, v0) = (t0, (0, 0, 0), (|v0|, 0, 0)).
We will use a contradiction argument : Assume the Boltzmann solution h is continuous at (t0, x0, v0), i.e (98) is valid.

Choose sequences of points (x′n, v
′
n) = ((0, 0, 1

n ), (|v0|, 0, 0)) and (xn, vn) = (( 1n , 0,Φ(
1
n , 0)),

1√
1+ 1

n2

(|v0|, 0, |v0|n )). Because

of our choice, for sufficiently large n ∈ N, we have

(x′n − t0v
′
n, v

′
n) = ((−t0|v0|, 0,

1

n
), (|v0|, 0, 0)) ∈ B((−t0|v0|, 0, 0); δ′)×B((|v0|, 0, 0); δ′).

Hence the Boltzmann solution at (t0, x
′
n, v

′
n) is

h(t0, x
′
n, v

′
n) = h0(x

′
n − t0v

′
n, v

′
n)e

−ν(v′
n)t0 +

∫ t0

0

e−ν(v′
n)(t0−τ)

{
Kwh+ wΓ(

h

w
,
h

w
)

}
(τ, x′n − v(t0 − τ), v′n)dτ

= ||h0||∞e−ν(|v′
n|)t0 +

∫ t0

0

e−ν(|v′
n|)(t0−τ)

{
Kwh+ wΓ(

h

w
,
h

w
)

}
(τ, x− v′n(t0 − τ), v′n)dτ.

Using the diffuse boundary condition (93), the Boltzmann solution at (t0, xn, vn) ∈ [0,∞)× γ− is

h(t0, xn, vn) =
1

w̃(|v0|)

∫
V(xn)

h(t0, xn, v
′)w̃(v′)dσ(v′).

Using a pointwise boundedness (95) of h, and ||h0||∞ ≤ 1, we can estimate

|h(t0, x′n, v′n)− h(t0, xn, vn)|

≥
∣∣ ||h0||∞e−ν(|v0|)t0 −

∫ t0

0

{CkC
′||h0||∞ + ν(v′n)e

−ν(v′
n)(t0−τ)CΓ(C

′)2||h0||2∞}dτ − C ′||h0||∞
1

w̃(|v0|)

∫
V
w̃(v′)dσ(v′)

∣∣
≥ ||h0||∞e−ν(|v0|)t0 − t0CkC

′||h0||∞ − (1− e−ν(|v0|)t0)CΓ(C
′)2||h0||2∞ − C ′||h0||∞

1

w̃(|v0|)

∫
V
w̃(v′)dσ(v′)

= ||h0||∞
(
e−ν(|v0|)t0 − t0CkC

′ − (1− e−ν(|v0|)t0)CΓ(C
′)2 − C ′ 1

w̃(|v0|)

∫
V
w̃(v′)dσ(v′)

)
≥ ||h0||∞

2
̸= 0,
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which is contradiction to (98).

5.2 Continuity away from D

Instead of using the argument of [13] to show continuity in the case of diffuse reflection boundary condition we will use
the sequence (103) with the boundary condition (131) and Lemma 11. This argument also gives a new proof of the
continuity of Boltzmann solution in a strictly convex domain with simpler way than [13].
Proof of 2 of Theorem 3
We will use the sequence (103) with hm+1|t=0 = h0 with following boundary condition

hm+1(t, x, v) =
1

w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ, (131)

with (t, x, v) ∈ γ−.
Step 1 : We claim that

1

w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ(v′), (132)

is continuous function on [0, T ]× γ even if hm ∈ L∞([0, T ]× Ω̄× R3) is only continuous on [0, T ]× Ω̄× R3\G. We will
show as (t̄, x̄, v̄) → (t, x, v),

1

w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ(v′) → 1

w̃(v̄)

∫
V(x̄)

hm(t̄, x̄, v′)w̃(v′)dσ(v′). (133)

Using the fact |V(x)\V(x̄)|, |V(x)\V(x̄)| → 0 as x̄→ x and the exponentially decay weight function of w̃dσ it suffices to
show that ∫

V(x)∩V(x̄)∩{|v′|≤M}
{w̃(v)−1hm(t, x, v′)w̃(v′)− w̃(v̄)−1hm(t̄, x̄, v′)w̃(v′)}dσ(v′), (134)

for sufficiently large M > 0. Using Lemma 5 we can choose open set Ux ⊂ {v′ ∈ R3 : |v′| ≤M} so that |Ux| is small and
hm is uniformly continuous on {|v′| ≤M}\Ux. Therefore we can make

∫
V(x)∩V(x̄)∩{|v′|≤M}∩Ux

small using the smallness

of Ux and make
∫
V(x)∩V(x̄)∩{|v′|≤M}\Ux

small using the uniformly continuity of hm on {|v′| ≤ M}\Ux. Hence (133) is

valid.
Step 2 : We claim

hi is a continuous function in CT (135)

for all i ∈ N where CT is defined in (106). By induction choose h0 = 0 and (135) is satisfied for i = 0. Assume (135) for

all i = 0, 1, 2, ...,m. Let wΓ−

(
hm

w , h
m+1

w

)
= ν

(
hm

w

)
hm+1. Then the equation of hm+1 is

{∂t + v · ∇x + ν(v) + ν

(
hm

w

)
}hm+1 = Kwh

m + wΓ+

(
hm

w
,
hm

w

)
.

From Theorem 4 and Corollary 5 we know that ν
(
hm

w

)
and wΓ+

(
hm

w , h
m

w

)
are both continuous in [0, T ] × Ω × R3.

Because of Step 1 we know that 1
w̃(v)

∫
V(x)

hm(t, x, v′)w̃(v′)dσ(v′) is also continuous function on [0, T ] × γ. So we can

apply Lemma 11 to conclude (135) is valid for i = m+ 1.
Step 3 : We claim hm is a Cauchy sequence in CT for some small T > 0. First we will compute some constants

explicitly. From (6) the normalized constant cµ is
[∫

n(x)·v′>0
e−

|v′|2
2 {n(x) · v′}dv′

]−1

. Choose n(x) = (1, 0, 0) and then

we can compute the right hand side of above term :∫ ∞

0

dv1 v1e
− v2

1
2

∫ ∞

−∞
dv2 e

− v2
2
2

∫ ∞

−∞
dv3 e

− v2
3
2 =

∫ ∞

0

d

dv1

(
−e−

v2
1
2

)
dv1 × (

√
2π)2 = 2π

[
−e−

v2
1
2

]∞
0

= 2π.

Therefore we have cµ = 1
2π . Next we will show

1

w̃(v)

∫
v′·n(x)>0

w̃(v′)dσ(v′)︸ ︷︷ ︸
♠

≤ C̃βρ
2β−4, (136)

where w̃(v)−1 = (1 + ρ2|v|2)βe−
|v|2
4 . We follow the computation of Lemma 25 in [13]. For 1

w̃(v) , in the case of βρ2 > 1
4

we can see that w̃(v)−1 has a maximum value at |v| =
√

4βρ2−1
ρ2 which is

(1 + ρ2|v|2)βe−
|v|2
4

∣∣
|v|=

√
4βρ2−1

ρ2

= 4βββe−βe
1

4ρ2 ρ2β , (137)



5 DIFFUSE REFLECTION BOUNDARY CONDITION 31

and

♠ ≤
∫
v′·n(x)>0

w̃(v′)dσ(v′) =
1

2π

∫
v′
1>0

(1 + ρ2|v′|2)−βe
|v′|2

4 e−
|v′|2

2 v′1dv
′

=
1

2π

∫
u1>0

(1 + |u|2)−βe
−2|u|2

4ρ ρ−4u1du ≤ ρ−4 × 1

2π

∫
u1>0

1

(1 + |u|2)β− 1
2

du

= Cβρ
−4,

where β ≥ 2 and combining with (137) we conclude (136).
First we will show a boundedness (108).

Lemma 12 Let hm be a solution of (103) with hm+1
t=0 = h0 and the boundary condition (131). Then there exist T∗, C, δ >

0 such that if ||h0||∞ < δ then
sup

0≤s≤T∗

||hm(s)||∞ < C||h0||∞ for all m ∈ N.

Proof. We will use mathematical induction. Choose h0 = h0 and assume ||h0||∞ < δ and

sup
0≤s≤T∗

||hi(s)||∞ ≤ C||h0||∞, (138)

for i = 0, 1, 2, ...,m, where δ, C, T∗ > 0 will be determined later. From Lemma 24 of [13] the representation of hm+1

which is a solution of (103) with the boundary condition (131) is given by

hm+1(t, x, v) = 1t1≤0(t, x, v)
{
h0(x− tv, v)e−ν(v)t︸ ︷︷ ︸

[initial data]

+

∫ t

0

e−ν(v)(t−s)qm(s, x− (t− s)v, v)ds︸ ︷︷ ︸
I

}
(139)

+ 10<t1(t, x, v)
{∫ t

t1

e−ν(v)(t−s)qm(s, x− (t− s)v, v)ds︸ ︷︷ ︸
II

+
e−ν(v)(t−t1)

w̃(v)

∫
∏k

j=1 Vj

H
}
, (140)

where qm was defined (104) and

H =
k∑

l=1

1tl+1≤0<tlh0(xl − tlvl, vl)︸ ︷︷ ︸
[initial data]

dΣl(0) +
k∑

l=1

∫ tl

0

1tl+1≤0<tlq
m−l(s, xl − (tl − s)vl, vl)dΣl(s)ds︸ ︷︷ ︸

III

(141)

+
k∑

l=1

∫ tl

tl+1

10<tl+1
qm−l(s, xl − (tl − s)vl, vl)dΣl(s)ds︸ ︷︷ ︸

IV

+10<tk+1
hm−k+1(tk+1, xk+1, vk)dΣk(tk+1)︸ ︷︷ ︸

[many bounces]

. (142)

Here dΣk(tk+1) is evaluated at s = tk+1 of

dΣl(s) = {Πk
j=l+1dσj}{e−ν(vl)(tl−s)w̃(vl)dσl}Πl−1

j=1{e
−ν(vj)(tj−tj+1)dσj}.

First we can estimate [initial data] in (139) and (141),∫
∏k

j=1
Vj

{
1t1≤0|h0(x− tv, v)|+ 1

w̃(v)

k∑
l=1

1tl+1≤0<tl |h0(xl − tlvl, vl)|w̃(vl)

}
dσ1...dσk

≤ max
{
1,

1

w̃(v)
max
1≤l≤k

∫
∏k

j=1 Vj

w̃(vl)dσ1...dσk

}
||h0||∞

≤
{
1 + C̃βρ

2β−4
}
||h0||∞,

where we used (136).
Next we estimate [many bounces] term in (142) which is crucial estimate in this proof. We use Lemma 23 in [13] to
bound a contribution of [many bounces] term in (142) in the last term of (140) by

1

w̃(v)

∫
∏k

j=1 Vj

1{tk+1(t,x,v,v1,v2,...,vk)>0}w̃(vk)dσkdσk−1...dσ1 × sup
0≤s≤t

||hm−k+1(s)||∞

≤ 1

w̃(v)

∫
Vk

w̃(vk)dσk

∫
∏k−1

j=1 Vj

1{tk(t,x,v,v1,...,vk−1)>0}dσk−1...dσ1 × sup
0≤s≤t

||hm−k+1(s)||∞

≤ C̃βρ
2β−4

{
1

2

}C2ρ
5/4

sup
0≤s≤t

||hm−k+1(s)||∞ ≤ C̃βρ
2β−4

{
1

2

}C2ρ
5/4

C||h0||∞,
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where we used (136) at the last step. The remainders I, II, III and IV are contributions of qm, ..., qm−k. We introduce
a notation

Hi ≡ tCk sup
0≤s≤t

||hi(s)||∞ + CΓ sup
0≤s≤t

||hi(s)||∞
(

sup
0≤s≤t

||hi(s)||∞ + sup
0≤s≤t

||hi+1(s)||∞
)

(143)

≤ C||h0||∞(CkT∗ + 2CCΓ||h0||∞), (144)

where the above inequality holds for 0 ≤ t ≤ T∗ and i = 0, 1, 2, ...,m− 1 and

Hm ≤ (T∗Ck + CΓC||h0||∞)C||h0||∞ + CΓC||h0||∞ sup
0≤s≤T∗

||hm+1(s)||∞, (145)

where we used the induction hypothesis (138) for (144) and (145). Easily we have

I, II ≤ Hm,

III, IV ≤
k∑

l=1

1

w̃(v)

∫
V1

dσ1..

∫
Vl−1

dσl−1

∫
Vl+1

dσl+1..

∫
Vk

dσk

∫
Vl

∫ tl

0

Hm−le
−ν(vl)(tl−s)w̃(vl)dsdσl

≤
k∑

l=1

Hm−l
1

w̃(v)

∫
Vl

w̃(vl)dσl ≤ C̃βρ
2β−4

k∑
l=1

Hm−l.

To summarize, we can estimate all terms of representation of hm+1(t, x, v) in (139) to obtain

|hm+1(t, x, v)| ≤ ||h0||∞
{
C
[
2T∗Ck + 2CΓC||h0||∞ + kC̃βρ

2β−4(CkT∗ + 2CCΓ||h0||∞) + C̃βρ
2β−4

{
1

2

}C2ρ
5/4 ]

+1 + C̃βρ
2β−4

}
+ CΓC||h0||∞ sup

0≤s≤T∗

||hm+1(s)||∞.

Choose k = ρ5/4. Choose ρ > 0 sufficiently large so that C̃βρ
2β−4

{
1
2

}C2ρ
5/4

≤ 1
30 and then choose T∗ > 0 sufficiently

small so that T∗ ×CΓ(1+ C̃βρ
5/4ρ2β−4) ≤ 1

30 and then choose C > 0 sufficiently large C > 10(1+ C̃βρ
2β−4) and choose

δ = min
{

1
20CΓC

, 1
30CΓ

(
CC̃βρ

5/4ρ2β−4
)−1
}
. Finally assume ||h0||∞ ≤ δ. Then we have

sup
0≤s≤T∗

||hm+1(s)||∞ ≤ 1

1− CΓC||h0||∞
||h0||∞

{
1 + C̃βρ

2β−4 + C
[
C̃βρ

2β−4

{
1

2

}C2ρ
5/4

+ tCΓ(1 + C̃βρ
5/4ρ2β−4)

+CΓC||h0||∞ + 2CΓC̃βρ
5/4ρ2β−4C||h0||∞

]}
≤ 20

19
||h0||∞

{
C

10
+ C

[ 1

30
+

1

30
+

1

20
+

1

15

]}
≤ C||h0||∞.

Next we will show that hm is a Cauchy sequence in L∞.

Lemma 13 Let hm be a solution of (103) with hm+1|t=0 = h0 and the boundary condition (131). Then there exist
T∗, C, δ > 0 so that if ||h0||∞ < δ then hm is Cauchy in L∞([0, T∗]× Ω̄× R3).

Proof. The equation of hm+1 − hm is

{∂t + v · ∇x + ν}(hm+1 − hm) = q̃m

with {hm+1 − hm}|t=0 = 0 , {hm+1 − hm}|γ− =
1

w̃(v)

∫
(x)

{hm(t, x, v′)− hm−1(t, x, v′)}w̃(v′)dσ(v′),

where q̃m is defined at (110). From Lemma 24 of [13] we have the representation

{hm+1 − hm}(t, x, v) = 1t1≤0(t, x, v)

∫ t

0

e−ν(v)(t−s)q̃m(s, x− (t− s)v, v)ds︸ ︷︷ ︸
Ĩ

(146)

+10<t1(t, x, v)
{∫ t

t1

e−ν(v)(t−s)q̃m(s, x− (t− s)v, v)ds︸ ︷︷ ︸
ĨI

+
e−ν(v)(t−t1)

w̃(v)

∫
∏k

j=1 Vj

H̃
}
,
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where

H̃ =

k∑
l=1

∫ tl

0

1tl+1≤0<tl q̃
m−l(s, xl − (tl − s)vl, vl)dΣl(s)ds︸ ︷︷ ︸

˜III

+

k∑
l=1

∫ tl

tl+1

10<tl+1
q̃m−l(s, xl − (tl − s)vl, vl)dΣl(s)ds︸ ︷︷ ︸

˜IV

+10<tk+1
{hm−k+1 − hm−k}(tk+1, xk+1, vk)dΣk(tk+1)︸ ︷︷ ︸

[[many bounces]]

.

First using Lemma 24 of [13], we estimate [[many bounces]] term for sufficiently large k > 0 by

1

w̃(v)

∫
∏k

j=1 Vj

1{tk+1(t,x,v,v1,v2,...,vk)>0}w̃(vk)dσkdσk−1...dσ1 × sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞

≤ 1

w̃(v)

∫
Vk

w̃(vk)dσk

∫
∏k−1

j=1 Vj

1{tk(t,x,v,v1,...,vk−1)>0}dσk−1...dσ1 × sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞

≤ C̃βρ
2β−4

{
1

2

}C2ρ
5/4

sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞.

Easily we have Ĩ, ĨI ≤ δHm, ˜III, ˜IV ≤ C̃βρ
2β−4δHm−l where

δHi ≡ tCk sup
0≤s≤t

||{hi − hi−1}(s)||∞ + C||h0||∞CΓ

(
sup

0≤s≤t
||{hi − hi−1}(s)||∞ + sup

0≤s≤t
||{hi+1 − hi}(s)||∞

)
≤ τ

4

{
sup

0≤s≤t
||{hi − hi−1}(s)||∞ + sup

0≤s≤t
||{hi+1 − hi}(s)||∞

}
,

with τ = 4max{tCk, C||h0||∞CΓ}.
To summarize, we can estimate all terms of representation of hm+1(t, x, v)−hm(t, x, v) in (146) for any m > k to obtain

sup
0≤s≤t

||{hm+1 − hm}(s)||∞ ≤ 1

1− 2τ

{
τ

2
C̃βρ

2β−4
k∑

l=1

(
sup

0≤s≤t
||{hm−l − hm−l−1}(s)||∞ + sup

0≤s≤t
||{hm−l+1 − hm−l}(s)||∞

)

+
τ

2
sup

0≤s≤t
||{hm − hm−1}(s)||∞ + C̃βρ

2β−4

{
1

2

}C2ρ
5/4

sup
0≤s≤t

||{hm−k+1 − hm−k}(s)||∞
}
,

which is our starting point. Fix a small number τ̃ > 0 chosen later. Choose ρ > 0 sufficiently large so that

2C̃βρ
2β−4

{
1
2

}C2ρ
5/4

< τ̃
4 and then choose τ > 0 so small that τ/2

1−2τ C̃βρ
2β−4 < τ̃

4 and τ/2
1−2τ <

τ̃
4 . Then we have

sup
0≤s≤t

||{hm+1 − hm}(s)||∞ ≤ τ̃

{
sup

0≤s≤t
||{hm − hm−1}(s)||∞ + ...+ sup

0≤s≤t
||{hm−k+1 − hm−k}(s)||∞

}
. (147)

Using (147) for m, j ∈ N so that m− (i+ 1)k > 0 and j = 0, 1, ...,m− 1 it is easy to show

sup
0≤s≤t

||{hm−ik+1+j − hm−ik+j}(s)||∞ ≤

τ̃(1 + τ̃)j
{

sup
0≤s≤t

||{hm−ik − hm−ik−1}(s)||∞ + ...+ sup
0≤s≤t

||{hm−(i+1)k+1 − hm−(i+1)k}(s)||∞
}
.

We apply the above inequality term by term in (147) to have

sup
0≤s≤t

||{hm+1 − hm}(s)||∞ ≤ τ̃{(1 + τ̃)k − 1}{ sup
0≤s≤t

||{hm−k − hm−k−1}(s)||∞ + ...+ sup
0≤s≤t

||{hm−2k+1 − hm−2k}(s)||∞}

≤ τ̃{(1 + τ̃)k − 1}i{ sup
0≤s≤t

||{hm−ik − hm−ik−1}(s)||∞ + ...+ sup
0≤s≤t

||{hm−(i+1)k+1 − hm−(i+1)k}(s)||∞}.

Now we estimate

sup
0≤s≤t

||{hm − hn}(s)||∞ ≤
m−n−1∑

l=0

sup
0≤s≤t

||{hm−l − hm−l−1}(s)||∞

≤
m−n−1∑

l=0

τ̃{(1 + τ̃)k − 1}i{ sup
0≤s≤t

||hm−ik−l−1 − hm−ik−l−2||∞ + ...+ sup
0≤s≤t

||hm−(i+1)k−l − hm−(i+1)k−l−1||∞}

≤
m−n−1∑

l=0

τ̃{(1 + τ̃)k − 1}[
m−l−1

k ]−1{ sup
0≤s≤t

||h2k − h2k−1||∞ + ...+ sup
0≤s≤t

||h1 − h0||∞}
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≤ τ̃{(1 + τ̃)k − 1}[
n
k ]−1

m−n−1∑
l=0

{(1 + τ̃)k − 1}[
m−l−1

k ]−[nk ]{ sup
0≤s≤t

||h2k − h2k−1||∞ + ...+ sup
0≤s≤t

||h1 − h0||∞}

≤ τ̃{(1 + τ̃)k − 1}[
n
k ]−1 1

2− (1 + τ̃)k
{ sup
0≤s≤t

||h2k − h2k−1||∞ + ...+ sup
0≤s≤t

||h1 − h0||∞},

where we choose i =
[
m−l−1

k

]
− 1 so that m − (i + 1)k − l − 1 ∈ [0, k). If τ̃ > 0 is chosen sufficiently small so that

(1 + τ̃)k − 1 ≤ 1
2 then {(1 + τ̃)k − 1}[

n
k ]−1 → 0 as n→ ∞ which implies that

sup
0≤s≤t

||{hm − hn}(s)||∞ → 0, (148)

as m,n→ ∞. Thus hm is Cauchy in L∞.
Step 4 : We claim that h is continuous in C. Notice that T only depends on ||h0||∞ and sup0≤s≤T ||wg(s)||∞ (Theorem
1 of [13]). Using a unform bound of sup0≤s<∞ ||h(s)||∞, we can obtain the continuity of h for all time by repeating
[0, T ], [T, 2T ], .... If the boundary ∂Ω does not include a line segment (6) then every step is valid with [0,∞)×{Ω̄×R3}\D
instead of C and [0, T ]× {Ω̄× R3}\D instead of CT .

5.3 Propagation of Discontinuity

Proof of 2 of Theorem 2
Proof of (18) : The proof is exactly same as in-flow case in Section 4.3.
Proof of (20) The proof is exactly same as the proof of in-flow case in Section 4.3 except Step 2. As we mentioned
in Remark of Step 2, we need to show a continuity of a boundary datum on γ− ∪ γS0 . In diffuse reflection boundary
condition case, we need

0 = [ h|[0,∞)×γ− ]t,y,v = lim
δ↓0

sup
t′, t′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((y, v); δ)\(y, v)

|h(t′, y′, v′)− h(t′′, y′′, v′′)|

= lim
δ↓0

sup
t′, t′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((y, v); δ)\(y, v)

∣∣∣∣∣ 1

w̃(v′)

∫
V(y′)

h(t′, y′, v)w̃(v)dσ(v)− 1

w̃(v′′)

∫
V(y′′)

h(t′′, y′′, v)w̃(v)dσ(v)

∣∣∣∣∣
for (y, v) ∈ γ− ∪ γS0 . This is already proven in section 5.2 Continuity away from D.

6 Bounce-Back Boundary Condition

In this section, we consider the linear Boltzmann equation (91) with the bounce-back boundary condition (94).

6.1 Formation of Discontinuity

We prove part 3 of Theorem 1. Without loss of generality we may assume x0 = (0, 0, 0) and v0 = (1, 0, 0) and
(x0, v0) ∈ γS0 . Locally the boundary is a graph, i.e. Ω ∩ B(0; δ) = {(x1, x2, x3) ∈ B(0; δ) : x3 > Φ(x1, x2)}. The
condition (x0, v0) ∈ γS0 implies tb(x0, v0) ̸= 0 and tb(x0,−v0) ̸= 0 which means Φ(ξ, 0) < 0 for ξ ∈ (−δ, δ)\{0}. (See
Figure 3)

Assume that ||h0||∞ < δ is sufficiently small so that the global solution h of (91) with bounce-back boundary (94)
has a uniform bound (95), from Theorem 2 of [13].

Recall the constants Ck and CΓ from (33) and (34). Choose t0 ∈ (0,min{ δ
2 ,

tb(x0,−v0)
2 , tb(x0,v0)

2 }) sufficiently small
so that

1

2
≤
(
e−ν(1)t0 − t0CkC

′ − (1− e−ν(1)t0)CΓ(C
′)2
)
. (149)

Assume a condition for the initial datum h0 : there is sufficiently small δ′ = δ′(Ω, t0) > 0 such that
B((−t0, 0, 0), δ′), B((t0, 0, 0), δ

′) ⊂ Ω and

h0(x, v) ≡ ||h0||∞ > 0 for (x, v) ∈ B((−t0, 0, 0); δ′)×B((1, 0, 0); δ′),

h0(x, v) ≡ −||h0||∞ > 0 for (x, v) ∈ B((t0, 0, 0); δ
′)×B((−1, 0, 0); δ′).

We will use a contradiction argument : Assume the Boltzmann solution h is continuous at (t0, x0, v0), i.e. (98) is valid.
Choose sequences of points (x′n, v

′
n) = ((0, 0, 1

n ), (1, 0, 0)) and (xn, vn) = (( 1n , 0,Φ(
1
n , 0)),

1√
1+ 1

n2

(1, 0, 1
n )). Because of
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our choice, for sufficiently large n ∈ N, we have

(x′n − t0v
′
n, v

′
n) = ((−t0, 0,

1

n
), (1, 0, 0)) ∈ B((−t0, 0, 0); δ′)×B((1, 0, 0); δ′),

(xn − t0(−vn),−vn) = ((
1

n
+

t0√
1 + 1/n2

, 0,Φ(
1

n
, 0) +

t0

n
√
1 + 1/n2

),
1√

1 + 1/n2
(−1, 0,− 1

n
))

∈ B((t0, 0, 0); δ
′)×B((−1, 0, 0); δ′).

Hence the Boltzmann solution at (t0, x
′
n, v

′
n) and (t0, xn, vn) is

h(t0, x
′
n, v

′
n) = ||h0||∞e−ν(v′

n)t0 +

∫ t0

0

e−ν(−v′
n)(t0−τ){Kwh+ wΓ

(
h

w
,
h

w

)
}(τ, x′n − (−v′n)(t0 − τ),−v′n)dτ,

h(t0, xn, vn) = h(t0, xn,−vn)

= −||h0||∞e−ν(−vn)t0 +

∫ t0

0

e−ν(−vn)(t0−τ){Kwh+ wΓ

(
h

w
,
h

w

)
}(τ, xn − (−vn)(t0 − τ),−vn)dτ.

Using a pointwise boundedness (95) of h with (33) and (34), we have

h(t0, x
′
n, v

′
n) ≥ ||h0||∞e−ν(1)t0 − t0CkC

′||h0||∞ − (1− e−ν(1)t0)CΓ(C
′)2||h0||2∞,

h(t0, xn, vn) ≤ −||h0||∞e−ν(1)t0 + t0CkC
′||h0||∞ + (1− e−ν(1)t0)CΓ(C

′)2||h0||2∞

Therefore using (149),

h(t0, x
′
n, v

′
n)− h(t0, xn, vn) ≥ 2||h0||∞

(
e−ν(1)t0 − t0CkC

′ − (1− e−ν(1)t0)CΓ(C
′)2
)
≥ ||h0||∞ ̸= 0,

which is contradiction to (98).

6.2 Continuity away from Dbb

We recall some basic facts to study the bounce-back boundary condition from [13].

Definition 7 [13] (Bounce-Back Cycles) Let (t, x, v) /∈ γ0 ∪ γ−. Let (t0, x0, v0) = (t, x, v) and inductively define for
k ≥ 1 :

(tk+1, xk+1, vk+1) = (tk − tb(xk, vk), xb(xk, vk),−vk).

We define the back-time cycles as:

Xcl(s; t, x, v) =
∑
k

1[tk+1,tk)(s){xk + (s− tk)vk}, Vcl(s; t, x, v) =
∑
k

1[tk+1,tk)(s)vk. (150)

Clearly, we have vk+1 ≡ (−1)k+1v, for k ≥ 1,

xk =
1− (−1)k

2
x1 +

1 + (−1)k

2
x2, (151)

where x1 = x− tb(x, v)v and x2 = x− [2tb(x, v)+ tb(x,−v)](−v) and let d = t1− t2, then tk − tk+1 = d ≥ tb(t, x, v) > 0
for k ≥ 1, and

t1(t, x, v) = t− tb(x, v) ,

t2(t, x, v) = t1 − tb(x1, v1) = t1 − (tb(x, v) + tb(x1, v1)) = t1 − (2tb(x, v) + tb(x,−v)) ,
...

tk+1(t, x, v) = t1 − k(2tb(x, v) + tb(x,−v)). (152)

Lemma 14 [13] Let h0 ∈ L∞(Ω × R3) and ϕ(t, x, v) with sup[0,T ]×Ω |ϕ(·, ·, v)| < ∞. There exists a unique solution
G(t)h0 of

{∂t + v · ∇x + ϕ}{G(t)h0} = 0, {G(0)h0} = h0,

with the bounce-back reflection {G(t)h0}(t, x, v) = {G(t)h0}(t, x,−v) for x ∈ ∂Ω. For almost any (x, v) ∈ Ω̄×R3 \ γ0,

{G(t)h0}(t, x, v) =
∑
k

1[tk+1,tk)(0)h0 (Xcl(0), Vcl(0)) e
−
∫ t
0
ϕ(τ,Xcl(τ),Vcl(τ))dτ , (153)

where Xcl(τ) = Xcl(τ ; t, x, v) and Vcl(τ) = Vcl(τ ; t, x, v) in (150).

Next we prove a generalized version of Lemma 16 in [13].
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Lemma 15 (Continuity away from Dbb : Transport Equation) Let Ω be an open subset of R3 with a smooth
boundary ∂Ω and an initial datum h0(x, v) be continuous in Ω×R3∪{γ−∪γ+∪γI0}. Also assume q(t, x, v) and ϕ(t, x, v)
be continuous in the interior of [0, T ] × Ω × R3 and sup[0,T ]×Ω×R3 |q(t, x, v)| < ∞ and sup[0,T ]×Ω |ϕ(·, ·, v)| < ∞ for all

v ∈ R3. Let h(t, x, v) be the solution of

{∂t + v · ∇x + ϕ}h = q , h(0, x, v) = h0 , h|γ−(t, x, v) = h(t, x,−v).

Assume the compatibility condition on γ− ∪ γI−0

h0(x, v) = h0(x,−v).

Then the Boltzmann solution h(t, x, v) is continuous on Cbb. Further, if the boundary ∂Ω does not include a line segment
(6) then h(t, x, v) is continuous on a complementary set of the discontinuity set, i.e. [0, T ]× {Ω̄× R3}\Dbb.

Proof. The proof is similar to the proof of Lemma 16 of [13]. Take any point (t, x, v) ∈ [0, T ] × Ω̄ × R3 and recall its
back-time cycle and (153). Assume tm+1 ≤ 0 < tm. Using (153), h(t, x, v) takes the form

h0(xm − tmvm, vm)e
−
∑m−1

k=0

∫ tk
tk+1

ϕ(τ,xk−(tk−τ)vk,vk)dτ−
∫ tm
0

ϕ(τ,xm−(tm−τ)vm,vm)dτ

+

m−1∑
k=0

∫ tk

tk+1

q(s, xk − (tk − s)vk, vk)e
−
∑k−1

i=0

∫ ti
ti+1

ϕ(τ,xi−(ti−τ)vi,vi)dτ−
∫ tk
s

ϕ(τ,xk−(tk−τ)vk,vk)dτ

+

∫ tm

0

q(s, xm − (tm − s)vm, vm)e
−
∑m−1

i=0

∫ ti
ti+1

ϕ(τ,xi−(ti−τ)vi,vi)dτ−
∫ tm
s

ϕ(τ,xm−(tm−τ)vm,vm)dτ
. (154)

Take any point (t, x, v) ∈ Cbb. By the definition of Cbb we assume that (x, v) ∈ Ω×R3 or (x, v) ∈ γ−∪γI−0 and we can sep-
arate three cases : t−tb(x, v) < 0 , (xb(x, v), v) ∈ γ−∪γI−0 with t < 2tb(x, v)+tb(x,−v), and (xb(x,−v),−v) ∈ γ−∪γI−0
with (xb(x, v), v) ∈ γ− ∪ γI−0 .

Case of t < tb(x, v) Simply we have h(t, x, v) = h0(x−tv, v)e−
∫ t
0
ϕ(τ,x−(t−τ)v,v)dτ+

∫ t

0
q(s, x−(t−s)v, v)e

∫ t
s
ϕ(τ,x−(t−τ)v,v)dτds

and use the continuity of q(t, x, v) and ϕ(t, x, v) to conclude the continuity of h(t, x, v).

Case of (xb(x, v), v) ∈ γ− ∪ γI−0 with t < 2tb(x, v) + tb(x,−v) A representation of h(t, x, v) takes the form

h0(x1 − t1v1, v1)e
−
∫ t
t1

ϕ(τ,x−(t−τ)v,v)dτ−
∫ t1
0 ϕ(τ,x1−(t1−τ)v1,v1)dτ +

∫ t

t1

q(s, x− (t− s)v, v)e−
∫ t
s
ϕ(τ,x−(t−τ)v,v)dτds

+

∫ t1

0

q(s, x1 − (t1 − s)v1, v1)e
−
∫ t
t1

ϕ(τ,x−(t−τ)v,v)dτ−
∫ t1
s

ϕ(τ,x1−(t1−τ)v1,v1)dτds.

Thanks to Lemma 1 and Lemma 2, the condition (xb(x, v), v) ∈ γ− ∪ γI−0 implies continuity of x1(x, v) = x −
xb(x, v) , t1(t, x, v) = t− tb(x, v). Therefore we can show the continuity of h(t, x, v).

Case of (xb(x,−v),−v) ∈ γ− ∪ γI−0 with (xb(x, v), v) ∈ γ− ∪ γI−0 We have (154) for h(t, x, v). Thanks to (151) and

(152) and Lemma 1 and Lemma 2, the conditions (xb(x,−v),−v) ∈ γ− ∪ γI−0 and (xb(x, v), v) ∈ γ− ∪ γI−0 imply
continuity of xk(x, v), vk(x, v), tk(t, x, v). Therefore we can show the continuity of h(t, x, v).

Proof of Part 1 of Theorem 3
Following the in-flow and diffuse cases, we use the iteration scheme (103) which is equivalent to (107) with bounce-back
boundary condition hm+1|γ−(t, x, v) = hm+1(t, x,−v) and an initial condition hm+1|t=0 = h0.
Step 1 : We claim that hi is a continuous function in Cbb,T for all i ∈ N and for any T > 0 where Cbb,T =
Cbb∩{[0, T ]×Ω̄×R3}. Choose h0 ≡ 0 and use mathematical induction. Assume hi is continuous Cbb,T for i = 0, 1, 2, ...,m.
Apply Lemma 15 to concluse that hm+1 is continuous in Cbb,T .
Step 2 : We claim that there exist C > 0 and δ > 0 such that if C||h0||∞ < δ then there exists T = T (C, δ) > 0 so that
sup0≤s≤T ||hm(s)||∞ ≤ C||h0||∞ and {hm}∞m=0 is Cauchy in L∞([0, T ]× Ω̄× R3).
Fisrt we will show the boundedness using mathematical induction. Assume sup0≤s≤T ||hm(s)||∞ ≤ C||h0||∞ where
T > 0 will be chosen later. Applying Lemma 14, ϕ and q correspond with ν and the right hand side of (103) respectively
to have a representation of hm+1(t, x, v)

h0(Xcl(0), Vcl(0))e
−ν(v)t +

∫ t

0

e−ν(v)(t−s){Kwh
m + wΓ+

(
hm

w
,
hm

w

)
− wΓ−

(
hm

w
,
hm+1

w

)
}(s,Xcl(s), Vcl(s))ds,

where [Xcl(s), Vcl(s)] = [Xcl(s; t, x, v), Vcl(s; t, x, v)] is in (150). The above term is bounded by

||h0||∞ + tCk sup
0≤s≤t

||hm(s)||∞ + CΓ sup
0≤s≤t

||hm(s)||∞ sup
0≤s≤t

(||hm(s)||∞ + ||hm+1(s)||∞),
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where the constants are coming from basic estimates, (33) and (34). Choose C > 4 and δ < 1
2CΓ

and T = C−3
2CkC

. Then

we have sup0≤s≤T ||hm+1(s)||∞ ≤ C||h0||∞.
Next we will show {hm}∞m=0 is Cauchy in L∞([0, T ]×Ω̄×R3). Recall q̃m(t, x, v) from (110). The equation of hm+1−hm is
(109) with a zero initial condition (hm+1−hm)|t=0 = 0 and a bounce-back boundary condition (hm+1−hm)|γ−(t, x, v) =
(hm+1 − hm)(t, x,−v). Applying Lemma 14 to (109) we have

(hm+1 − hm)(t, x, v) =

∫ t

0

e−ν(v)(t−s)q̃m(s,Xcl(s), Vcl(s))ds,

where [Xcl(s), Vcl(s)] = [Xcl(s; t, x, v), Vcl(s; t, x, v)] is in (150). Then we have exactly same estimates of in-flow case to
conclude {hm} is Cauchy.
Step 3 : Same argument as in-flow case but substitute Cbb,T , Cbb , Dbb,T , Dbb for CT , C , DT , D respectively.

6.3 Propagation of Discontinuity

Proof of 2 of Theorem 2
Proof of (18) : The proof is exactly same as in-flow case in Section 4.3.
Proof of (20) Recall that we have [h(t0)]x0,v0 ̸= 0 for (x0, v0) ∈ γS0 and t0 ∈ (0,min{tb(x0,−v0), tb(x0, v0)}). The
proof is exactly same as the proof of in-flow case in Section 4.3 except Step 2. We need to show a continuity of a
boundary datum on γ− ∪ γS0 . In bounce-back reflection boundary condition case, we need to show

0 = [ h|[0,∞)×γ− ]t0,x0,v0 = lim
δ↓0

sup
t′, t′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((x0, v0); δ)\(x0, v0)

|h(t′, y′, v′)− h(t′′, y′′, v′′)|.

Because (y′, v′) is in the incoming boundary γ−, using the bounce-back boundary condition, we have h(t′, y′, v′) =
h(t′, y′,−v′). Further due to the condition 0 < t0 < tb(x0,−v0) we have 0 < t′ < tb(y

′,−v′) and

h(t′, y′, v′) = h(t′, y′,−v′) = h0(y
′ + t′v′, v′)e−ν(v′)t′−

∫ t′
0

ν(
√
µ h

w )(τ,y′+(t′−τ)v′,v′)dτ

+

∫ t′

0

{Kwh+ wΓ+(
h

w
,
h

w
)}(s, y′ + (t′ − s)v′, v′)e−ν(v′)(t′−s)−

∫ t′
0

ν(
√
µ h

w )(τ,y′+(t′−τ)v′,v′)dτds,

and similar representation for h(t′, y′, v′). Using the continuity of ν(
√
µ h

w ),Kwh and wΓ+(
h
w ,

h
w ) we have

0 = [ h|[0,∞)×γ− ]t0,x0,v0 = lim
δ↓0

sup
t′, t′′ ∈ B(t; δ)

(y′, v′), (y′′, v′′) ∈ γ− ∩ B((x0, v0); δ)\(x0, v0)

|h0(y′ + t′v′, v′)− h0(y
′′ + t′′v′′, v′′)|

×e−ν(v0)t0−
∫ t0
0 ν(

√
µ h

w )(τ,x0+(t0−τ)v0,v0)dτ ,

where we used the continuity of the initial datum h0 in the last equality.
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