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Abstract

The classical Vlasov-Poisson-Landau system describes dynamics of a
collisional plasma interacting with its own electrostatic field as well as
its grazing collisions. Such grazing collisions are modeled by the famous
Landau (Fokker-Planck) collision kernel, proposed by Landau in 1936. We
construct global unique solutions to such a system for initial data which
have small weighted H? norms, but can have large H*(k > 3) norms with
high velocity moments. Our construction is based on accumulative study
on the Landau kernel in the past decade [G1] [SG1-3], with four extra
ingredients to overcome the specific mathematical difficulties present in
the Vlasov-Poisson-Landau system: a new exponential weight of electric
potential to cancel the growth of the velocity, a new velocity weight to
capture the weak velocity diffusion in the Landau kernel, a decay of the
electric field to close the energy estimate, and a new bootstrap argument
to control the propagation of the high moments and regularity with large
amplitude.

1 Introduction

In the absence of magnetic effects, the dynamics of charged dilute particles (e.g.,
electrons and ions) is described by the Vlasov—Poisson-Landau system:

OFy +v-V,Fy + %E VoI = Q(Fy, Fy) + Q(F-, Fy),

+
OF_ +v -V F_ — ;;E Vo F_ =Q(F, F)+Q(F_,F.), (1)
Fy(0,z,v) = Fy 4 (z,v).

Here Fy(t,z,v) > 0 are the spatially periodic number density functions for the
ions (+) and electrons (-) respectively, at time ¢ > 0, position z = (z1, z2,x3) €
[ — 7,72 = T3, velocity v = (v1,v2,v3) € R3, and ex, my the magnitude of
their charges and masses, ¢ the speed of light. The collision between charged



particles is given by

Gl(v’)Vsz(v) _ Gg(v)szGl(v’) } d’U’
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where @ is the famous Landau (Fokker-Planck) kernel [G1]:
1 U U
O(u)=-— I - —5 (3)

and c1p = 2mefe3 In A, In A = In(32), Ap = (55—=)"/? being the Debye shield-

4mtn.e?

ing distance and by = Tl being a typical ‘distance of closest approach’ for a
3T

thermal particle [H]. The self-consistent electrostatic field E(t,z) = —V¢, and
the electric potential ¢ satisfies:

—A¢ =4dnp = 47r/ {efFy —e_F_}dv, o(t, z)dz = 0. (4)
R3 TS

It is well-known that for classical solutions to the Vlasov-Poisson-Landau
system, the following conservation laws of mass, total momentum, and total
energy hold:

d
@ TSXRS
d

dt {/Tsst v(my Fy(t) + mF(t))} =0,

il [ wkonremo o)+ - [ E0R} -0

Moreover, we also have the following celebrated H-Theorem of Boltzmann

miFi(t) =0,

d
— / (Fy()In Fy () + F_(t)In F_(t)) p <0. (5)
dt | Jrsxrs

It is our purpose in this article to construct unique global solutions for the
Vlasov-Poisson-Landau system (1) and (4) near global Maxwellians:

o m _ 2 Un) m_ _ 2
o + 3/2e m4|v| /2/$T0, M_(U) _ 0 )3/26 m_|v| /2NTQ.
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For notational simplicity, we normalize all constants in the Vlasov-(Poisson)-
Landau system to be one. Accordingly, we normalized the Maxwellian as

B(V) = 1y (0) = p_(0) = P (6)
We define the standard perturbation fi(¢,z,v) to p as
Fi = pit iifs. (7)



Let f(t,z,v) = (}Cf Eiig;), the Vlasov-Poisson-Landau system for the perturba-

tion now takes the form

{0i+0v- Vo £ E- Vol fe F2HE v} /p+Lif = H{E-v}fe +TL(f, f(8)

Ap = / Valfe — f_dv (9)

with fT3 ¢dx = 0. For any g = (g;)7 the linearized collision operator Lg in (8)
is given by the vector

L= <L+g> _ 1 (2Q(u, Vig) + Q{91 + g2} 1) ) (10)

L_g) ™~ Va\2Q(u /iigs) + Q(\/ii{g1 + g2}, 1)

For g = [g1, g2) and h = [hq, hs], the nonlinear collision operator I'(g, h) is given
by the vector

T(g,h) = (F+(97h)> _ 1(@(\//7917\/ﬁh1) + Q(\/1g2, \/ﬁh1)> (11)
’ F—(g?h) \/.U“ Q(\//j’gly\/ﬁhQ) +Q(\/ﬁ92a\//jh2)
By assuming that initially Fy+ has the same mass, total momentum and total

energy as the steady state p, we can then rewrite the conservation laws in terms
of the perturbation f as

[, tovis (Vi =0, (12)

T3xR3 T3xR3

/ ol () + F- ()} =0, (13)
T3xR3

/ WP+ f )= [ E®P. (14)
T3xR3 T3

In an attempt [G1-2] to construct global smooth solution near Maxwellian
for the Vlasov-Poisson-Landau system, the author initiated a nonlinear energy
method for a general dissipative problem:

Ohg + Lg = N(g). (15)

We denote || - ||2 to be the L? norm. Upon taking L? inner product with g, we

obtain
1d

2
- L = . 16
5 2 lgll3 + (£9,9) = (W(g).9) (16)
Global solutions with small L? norm can be constructed if one can identify a
dissipation rate ||| - ||| such that the following estimates can be established
(Lg:h) 2 llglll?, (17)
WN(9),9) < llgll - Illgll>- (18)



For ||h]]2 << 1 we obtain

1d
5 1Bl + 1Rl < o,

with some ¢ > 0. This implies global uniform bound for ||g||2 and hence stability.
Several remarks are needed: (1) Usually higher order Sobolev norms are needed
to close the argument. (2) Such a dissipation rate ||| - ||| satisfying both (17)
and (18), if exists, usually is unique up to a constant. The proof of (17) and
(18) can be very challenging [G1] [GrS1-2]. (3) Such an approach is designed
to treat cases when ||| - ||| is weaker, or it can not be compared with || - ||2 so
that standard spectra analysis and semigroup approach is difficult to apply. (4)
In many interesting applications, such (Lg, g) can not control full |||g|[|?, and
one has to control the missing part via further study of the nonlinear equation
(15). In particular, in the context of Landau or Boltzmann equations, the linear
collision operator L as in (10) can be shown to be positive definite ([G1], [SG1-3])
along the nonlinear dynamics even it has a kernel.

Such a flexible approach turns out to be robust, leading to constructions of
global solutions to several different applied PDE [G1-5], [GS], [GrS1-2], [SG1-
3], [GT], [Ha]. Unfortunately, despite these advances and many attempts, the
original motivation in this program, the stability of Maxwellian for the Vlasov-
Poisson-Landau system has remained out of reach, as pointed out in [SG3]. For
other work related to the Landau equation from different approaches, see [AB],
[AV], [CDL], [HY], [L], [V], and [Z1-2] among others. Let w(v) > 1 be a weight

function and || - ||2,, to denote the weighted L? norm. We define
_1 _3 v _1 v
A llow = 11 llerg = [10) 72 fll2,w +[[{0) 2 Vo f- mllz,wHI(U) 2V, f % ml 2w
(19)

with (v) = /14 |[v|2. It is well-known that ||f||, = ||f||+,1 captures the dissi-
pation for the Landau kernel [DL], [G1]. There are two intrinsic difficulties [G1]
associated with the Landau kernel: the vanishing factors (v)~2 and (v)~% make
[If]ls ‘soft’, and their different vanishing rates along different directions makes
[|f]lo non-isotropic for V, f .

There are two major mathematical difficulties in the study of stability in
Vlasov-Poisson-Landau system. The first difficulty is created by the (innocent
looking!) nonlinear term E - vf+ in (8). Such a term comes from the factor
\/# in our linearization Fy = p + /pf+, which is the only known choice so
far capturing the linear dissipation rate of L, a linear analog to the entropy
production in the fundamental Boltzmann’s H-theorem. Hence, the presence of
the term E - vfy is a basic feature of interaction between the electric field and
the particles in the near Maxwellian context. Upon multiplying fi one hopes
to bound

/ S| (20)

in terms of ||f||2 - [|f]|2 (19). The electric field E = Ef behaves nicely, but
the extra velocity factor v makes the control by ||f||2 (which only controls



[[(v)=1/2f]|3 in (19)) impossible. In a simpler model problem [G2], the Landau
collision is replaced by the hard-sphere interaction so that [ |v]f 2 can be exactly
bounded by the dissipation rate of the hard-sphere kernel. In a relativistic
Landau collision kernel [SG3] [DL], the relativistic counterpart is [ |E - pf?|,
where the velocity p is bounded, and || f||3 is controlled by the relativistic Landau
dissipation. These two facts led to the resolution for the relativistic Landau
problem [SG3]. As a matter of fact, this extra v factor is the key reason that only
hard-sphere like interaction can be treated for the Boltzmann type of equations
in the presence if a force term. With even a bit weaker (softer) than hard-
sphere interaction, (20) is beyond the control of either the energy or dissipation
rate so that even the local in-time solutions can not be constructed within this
framework.

The second main difficulty stems from controlling the velocity v derivative
of f. Taking v derivative of (8), we estimate ||V, f||3 via the standard energy
method. In this process, the free streaming term v - V, f produces a quadratic
term as:

/ Vo f Vof. (21)

It is well-known that V, f can produce growth in time in the kinetic theory. To
estimate (21) by the norm (19) is tricky, again due to the negative weight. In
the absence of the electric field £ [G1], the author designed a weighted norm to
overcome this difficulty with more v derivatives associated with more negative
velocity weights. The first step was to take pure z derivative (with no weight
and no electric field E) and to bound

t
/ 1, £112.
0

In the next step, ||{(v) "tV f||3 (instead of ||V, f||3) was estimated in the v—derivative
of (8), which contains a dissipation rate of ||V, f||? (vy-1- The weighted mixed

terms (21) could be bounded by (see (19)):

t t
/ () 2|V f - Vuf| < C. / IV fI2 + e / IV 1 0y

which could be closed for € small. Such a weight disparity between x and v deriv-
atives of f has played an important role in treating soft potentials [G3][GrS1-
2]. Unfortunately, in the presence of E, this strategy fails completely because

fot [|V.f||2 can not be estimated independently of V, f at the first step. In fact,
taking x—derivatives of (8) produces new contribution

/ EV.f-V.f (22)

Now this can not be controlled with a norm for V, f with a negative weight
()~

The key to overcome the first difficulty (20) is to realize that, instead of
treating F - vfi as a second order perturbation in (8), we need to combine or



cancel it with the linear term streaming term v-V, f in (8), which also contains
an extra v factor! Upon using the fact that £ = —V ¢ in this problem, upon
multiplying with e*?, we can rewrite

e Vofe £ Voo vfe] = v Vo{eF?fol.

Indeed, such a perfect derivative leads no contribution in the integration (see
(74)). Even though such a spatial weight destroys the exact energy structure
from the Poisson equation, fortunately, new error contributions are of the type
f V@ -v\/If+ (ei2¢ — 1) which can be controlled if ¢ is small. Our observation
works for all forces given by a potential.

To overcome the second main difficulty and to control the v—derivative of
f, we need to design new weight function in v. In light of (22), we need to
assign same weight functions for both V. f and V,, f, which seems to contradict
to the weight disparity for controlling (21). We observe crucially that ||f||,
contains (weak) v—derivative of f. Hence V, f can be also viewed, not as a part
of ||V, flls, but as a part of [|f ||, ()2 with no v—derivative but with an extra
stronger weight (v)2. In fact, thanks to (19), we can estimated (21) by

/wa Vo f <V fllollFllo. 2

provided || f||s,(v)2 is controlled at an earlier step. The weight disparity is not
between = and v derivatives, but between || || )2 and ||V, f||o. That is, less
derivatives of f should requires stronger weight. Since higher spatial deriva-
tives are associated with weaker velocity weight in our norm (26), more careful
analysis is needed for spatial Sobolev imbedding to close the energy estimate,
especially when we take one derivative (Step 2 in the proof of Proposition 6).
Such a cascade of weight takes advantage of the crucial feature of the Landau
operator: a weak gain of V,,. Because of this reason, our new strategies do not
work for a soft potential with Grad’s angular cutoff, even if it just a bit weaker
than the hard-sphere interaction. On the other hand, it is interesting to use
such a weight for the full inverse power law without angular cutoff [GrS1-2].

For notational simplicity, we use || - ||, to denote LP norms with weight
w(v) in T3 x R3 or T3, and || - || for LP norms with weight w(v). Let the
multi-indices @ and 8 be a = [y, 2, a3], B = [B1, 82, 83], and we define

0f = 051032002 ooz 8533. If each component of € is not greater than that of
6’s, we denote by 8 < 0; 0 < 6 means 6 < 0, and || < ||. We define the velocity
weight

wla, B)(v) = ™8 ()20 1> ol 418, 0<g<1l  (23)

alv|?

The presence of e” 2z~ would lead to stretched exponential decay. Recall (19).



Let the instant energy and dissipation rate are:

Emia(DN®) = Y D 050|208, (24)

laf+]Bl<m £

Z Z 195 f+ ®)llow(a.5), (25)

la+]B]<m £

Dinst,q(F)(1)

We remark that from the definition,

50;l+m,q(f) C gl;lerfl,q(f) C...C gm;l,q(f),
Dojt+m,g(f) € Drugm—1,4(f) C .. T Dy g(f), (26)

so that less derivatives of f demands stronger velocity weight. It is important to
note that due to the presence of (20), all our estimates can only be obtained with
(nonlinear) exponential weight of e*(1+9?%; (see Eqs (76) to (86) and Lemma
14). But if the electric potential ||¢ ||~ is bounded (as we shall prove), such
weighted norms are equivalent to &E,.1,4(f) and Dy, 4(f), and we need to use
Emitq(f) and Dy, 4(f) without the nonlinear weight to close our continuity
argument. Our main result is as follows.

Theorem 1 Assume that fo satisfies the conservation laws (12), (13), (14)
with Fo +(x,v) = p+ /fufo,+(x,v) > 0. There exists a sufficiently small M > 0
such that if

Exn0(fy) <M,

then there exists a unique global solution f(t,x,v) to the Viasov-Poisson-Laudau
system (8) and (9) with F1(t,x,v) = p+ /puf+(t,z,v) > 0.
(1) If E2,,4(f) < +00 for 1 > 2 and q > 0, then there exists C; > 0,

Sup Ea1q(f(5)) + / Do (f(5))ds < Cin(fo). (27)
0<s<00 0
Furthermore,
18:6() oo + IVad(B)lloo + [1FB)]l2 < Ci(1 + 1)~ 2E500(fo), (28)
10:3(E)[oo + [V (@)oo + [1FD)]l2 < Cre= 0y 4(fo)  for g > 0(29)

(2) In addition, if Emyq(fo) < 0o foranyl > 2,1>m > 2, ¢ > 0, there
exists an increasing continuous function Py, () with Py, (0) = 0 such that the
unique solution satisfies

sup  Emirq(f(8) + /Ooo Dt q(f(5))ds < Prni(Emitq(fo))- (30)

0<t<oo

The continuous function P, ;(-) can be determined inductively on m. We
remark that we only require 2.2 ¢ (fo) to be small, but for I > 2 and m > 2, the
high momentum or high Sobolev norm &, 4(fo) can be arbitrarily large. A H?



type of construction was first carried out in [GrS1-2] for the Boltzmann equa-
tion with an non-cutoff inverse power collision kernel. Note from the Sobolev’s
imbedding, L™ is not necessarily bounded by £2.29 (fo). We also note that the
estimate (30) is uniform in time, so that we verify the bounds in [DV] and more
decay can be obtained (see also [SG1-2]). Such an estimate (30) also gives a
natural approximation mechanism to establish the gain of smoothness for ¢ > 0
[CDH].

Throughout the paper, we introduce the notation A < B (A 2 B and
A « B) if A is bounded by B up to a universal constant C' which does not
depend on either [ or m.

The introduction of the weight spatial weight function e=(1t9% creates a
new analytical difficulty: we need to control (see Egs. (115) and (116))

/ " 11866(3) 10 + 10 b(5)] o) (31)

to close the global energy estimate for £2.2 9 (f). Note that (31) is different from
the dissipation estimate [~ Da,0(f(s))ds < oo since

10:6(8) oo + [[Va(8)lloo S 1/ P2i2,0(f(5)),

and Da.2 0(f(s)) is expected to be small most of the time. It is a typical difficulty
that [~ \/Dai2,0(f(s))ds < oo can not be derived directly from the energy-
dissipation estimate (27). We need to make an interplay (see (143)) between
the decay estimate of (28) (with [ = 2,¢ = 0) and the energy estimate (27).
This is different from the program in [SG1-2], in which the energy estimate
can be close alone first and the decay is obtained after. In fact, the proof of
(28) is intertwined with (27) with [ = 2, and we are able to close a differential
inequality (142) with up to only one spatial derivative. This leads to a decay

rate of 1
10:(s)lloc + IV (s)]] -~

in terms of (27) with [ = 2, which is sufficient to close the estimate. The strong
decay rate of S% is a consequence of the periodic box T? and it remains an open
question if sufficient decay rate can be obtained for the Vlasov-Poisson-Landau
system in the whole space R3.

The last novelty of the paper is the proof of high moments and high regularity
(30) with only small £.2.0(fo). It is important to note, that we require | > m,
the total number of derivatives in w(a, 5) (23). This is because that the starting
point of our method is to control pure x—derivatives of f without any weight,
which demands that [ > m at the highest level of derivatives. It is also important
for our analysis to require w(a, 8) > 1. This implies that ||f||2; < Emiiq(fo),
which can not be small for all {! Therefore it is natural to assume &£, 4(fo) is
only finite but not small for [ > 2. The hope is to obtain, at the highest order




derivatives,
/ (e, BYL(OS £, )05 | + / w0, AT(F, 0551 (32)

S E&20NNOFFOZ ia5)

so that the smallness of £2.20(fo) would be sufficient. Unfortunately, due to
the combination of the non-local feature of the Landau operator as well as the
velocity weight w(a, ), as in Lemma 10 [SG2], a term like

2.4 (NNOF F Ol 1105 f (D)l 00(a)

will occur in the upper bound for (32). Since /&2 4(f) is large for [ > 2, we
can not absorb the whole product by the dissipation rate of ||5‘g‘f(t)|\§_w(a )

In Proposition 6, we are able to move the weight function from /&a2,4(f) to
105 f(t)||o and the price to pay is an additional contribution of

CiDa g (NG L3 (e, )

Even though C; Dy 4(f) can be very large, but ||3§f(t)||§’w(aﬁ) belongs to the
instant energy not the dissipation rate, therefore we can still control this via
the Gronwall lemma and the fact fot Do.1.q(f)(s)ds < co. A new splitting of the
domain needs to designed to achieve this goal. We believe that our method
will lead to new estimates for solutions recently constructed in [GrS1-2] for the
inverse power law. Moreover, the presence of F also makes the construction
of the local solutions more delicate and we need to employ fractional Sobolev
spaces to gain compactness of the approximate solutions.

Our paper is organized as follows. In section 2, new refined estimates are
developed to cope with nonlinear terms in (8). In section 3, local in time
solutions are constructed via estimates of the pseudo energy and dissipation
rate (24) and (25). In section 4, decay estimates (28) and (29) are obtained to
bootstrap into global in time solutions.

2 Basic Estimates

We use (-, -) to denote the standard L? inner product in R3 for a pair of functions
g= (gf) and h = (Zf) and define:

(fih) = (forhy) + (f-, b)) (33)

We also denote | - |2, and | - |, to be corresponding w—weighted L? and H®
norms (19) in R3.

Recall the linear Landau operator L in (10). We first recall a basic property
of L (see [H1] [G1] [SG3] for a proof).



Lemma 2 We have (Lg,h) = (Lh,g), (Lg,g) > 0, and Lg = 0 if and only if
g = Pg where P being the L?(R?) projection with respect to the vector L? inner
product (33) onto the null space of L :

() () wrl() o))

with 1 < ¢ < 3. Moreover

(Lg,g) 2 {1 = Pyglz = _Il{I — PYolsls (35)
+

where [{I — P}gl+ are two components of {I — P}g.

Lemma 3 Let w(v) > 0. Then for anyn >0

sup [9(z, )lw S lgl2wll,z <7 D, 11079ll20 + Cllgll2.w,
T Ha

lv|=2

sup[g(z, )ow < |||9|0,w||H§ NE Z 1079llo,w + Cyllgllo,w,
* [v|=2

lgllzazzy S Malzwll iz S1) 7 11079l + Collgll2w,
lvl=1

lgllzag) S Mglowllyz S1D 1107glo.w + Chllgllo.w-
lvlI=1

We note that L>(T3) ¢ Hi(T?), L*(T3) c H1(T?). Moreover, H2 C H7,
and H' c H1 compactly, which gives rise to the arbitrary small constant 7.
The Lemma then follows from general functional Sobolev inequality of H*, see
[GrS1-2].

We also need the following version of the Gronwall Lemma.

Lemma 4 Let A(t), B(t),y(t) > 0 satisfy y(t) < f(f A(s)y(s)ds + B(t), then

y(t) < elo AG)ds / t A(s)B(s)ds + B(t).
0

The following lemma is the key to treat the streaming term V,f -V, f via
our dissipation rate (25). Denote

0 =1 if e <p; or 03 =0, otherwise. (36)

Lemma 5 We have

/ WP (o, B)IS 05 FO5 S < 110508

|agi_2: f:l: | |o-,w(a+eq‘,75*ei)’

lo (. —e:)

10



Proof. Recalling (23), we note w(a+e;, 8 —e;)(v) = w(w, 8)(v) and w(a, f —
e;))(v) = (v)"w(a, B)(v). We rewrite from (36) 9§ = 0,05 _,,05 and we use
(19) for 8gfe_"fi to get

€;

[ty ogte rog s

IN

/ e, B) ()25 Do, 05, F l(ct, B) () /2054 £ |

llw(a, 8 — e:)(0)~*/265 De, 0 _e, F 112110578 fello ()

where (v)'?w(a, B) = (v) 732w (a, f—e;)(v). We now use (19) again for 0f o, [+
to conclude the proof

llw(er, B — e:){(v)~*/205 D6, 08 _e, 1 |l2 S 1165 95—, /]

IN

ow(a,B—e;):
(]

The following proposition is a refined estimate for the non-linear collision
term T'(g, g) in [G1] [SG1-2]. The key improvement is that the factors in front
of the highest order dissipation rate is bounded by only\/gg;g,o(gl)—l— \/52;270(92).

Proposition 6 (1) For |a|+|8] = m < 2, recall w = w(a, ) in (23). We have
<w23gr[91,92]73392>
S 0 Y 105 ilol055 g2lo,wl 05 922
B<B<B
+ D 105 011210525 9210w + 105" 11610525 921201105 92,0 (37)

a1<a,

B<B,<B
Moreover, for any n > 0, there exists Cy,, > 0 such that

/ (w?5T (g1, g2], 05 g2) |da
T3

, 2
S (E220(91) +MD2g(92) + Cry 30 108 1ls]| 4 E20a(02).(38)

o/ 187 <1

(2) For |a|+|8] =m > 3, we have
(w?08T (g1, g2), 05 g2)
> CRCRC Y 105 91la10575 92l |35 92
a B B ol¥g—-p8, o,w|YpY212,w
on<af<B B<p,
Cor 0 0 gul2l05— 5" 9 1101055
+ Z o' Cg' 195 91121055 92l + | 3 91le1055" 92
|ory |+|B| < Lol 2l
+Y CCs0s gl
| | +]B] > 1AL
+Y O Clapld a0 galow
| |+]5]> eLH1eL

A

95519210 +105" 91w

9592

o,w-e

11

2,w]|ag.92|07w

95_5. 92121105 9210w



Furthermore, for any n > 0, there exists Cy .y > 0

| 1@ 935 o 21, 050 o

< {yEeoa) + /e 0} 1050112, + 195021 2.}
1y En0(00) + \/E220(0) +13 X {105 01l120 + 1105 92112.0)

o |+|8"|=m
B'<B
2 2
+Cl,m,77 Z H|8,g' 91\,, w(a’,B") 3 + H|8gr 92|0 w(a!,B") . {gm;hq(gl) + gm;l,q(gz)}
o’ |+18" <[] @ g T | g2

+Clmm{€m—11,4(91) + Em—1:1,4(92) + IH{DPm—1:1,4(91) + Dm—-151,4(92)}-
We remark that from (23), (25) and Lemma 3,

! 2 ’
S |esdl s s X 199l S Draele). (D)

le’|+]871<1 la/|+[8|<1,[v|<1

2
Z {ng/gb’w 3} Z Ha’yaglgni,w(u/'f‘"hﬁl) SD[%}FI;Lq(g)’
o' +181<(%] v o 11871 <[%]
[v]<1

A

(replacing H iby H 1) which are sufficient for our estimates for global solutions.
However, for the construction of the local solutions, such sharper estimates are
important for compactness of the approximate solutions.

Proof. Recall Lemma 10 in [SG2] and Theorem 3 in [G1]. We first separate:

di[w?) = {4qu;w?} + {inwQ} . (42)

We can express <w28§I‘[gl,gg]7 6%92) =3 Cgfngl X Ga, 8, With G, g, as

(W { @Y % 05, 120 11}0; 055" 92, 0:03 9o) (43)
(1+ 49) (W {® * Og, [v:ip" 20 6:]}0;05 75" g2, 05 g2) (44)
( (45)
( (46)

Huw{ BV« 0p, [1/?0;0° 1] 10575 g2, 0:05 92) 45
+(1+ 4g) (w*{@ * D, [vip'/?0;0 9113055 92,05 92) 46
2 l* ol — 5 % (e %1 a—op fe"
T (0 50y, o 20 1103055 on, D) (47
2 l_ af — ﬂ 1] (o5} x—] (67
+<Mm2{¢ T 851[u1/2vi8j3 gl]}aﬂ_glgz,aﬁgg>. (48)

with double summations over 1 <,5 < 3 and Je;, = 9y, = 0;.
Step 1. Estimate of (47) and (48).
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We note that there is a (large) factor 2(I — || — |8]) in both (47) and (4 )
We follow exactly as in the proof of Lemma 10 in [SG2]. From &% «p!/8 < - | ‘

and the Cauchy-Schwarz inequality,

|9 % D, [vip20;07 g1]| + | @ % O, [vin' /201 g1] Y 10591,
B<B,

and we use the exponential weight v;u'/? to bound |8gg1\g in (19). Therefore

2
w LJ a—ao «
2l = |af = \5|)|<7<U>2‘I>” 5 {03, [vip 0% 110,055 g2, 05 g2) |

2
w 1] [e%31 a—op le%
+2(l = | - Iﬁl)\<7<v>2<1> 75 {0p, [oap 20,07 911055 g2, 05 95)]

2
(%] w —Q ] —Q ]
Cunlo'le | 550,055 021 + 195751 u D05l

Cl’mz‘aglgﬂ |8g gllg2|o,w|ag.92|2,wa
B

IN

IN

where we have used |w<v>_38jag:gll 92l2 S 10525 92/0w by (19). This concludes
the control of (47) and (48) via the first terms on the right hand side of both
(37) and (39).

Step 2. Proof of (87) and (38) for |a|+ |B| =m < 2.

In light of step 1, we only need to bound (43) to (46), which are precisely
bounded as in Lemma 10 of [SG2] leading to (37). Note that one can eliminate
the weight function in the g; factor due to exponential decay factor 1'/? in the
Landau integral.

To conclude (38), we need to take x integration of (37) and we need to
separate three cases.

If |a| + |8 = 0, w = w(0,0), we have

/ (w?T(g1, 92, g2)
T3

A

A

Crllgnlolly 3 \/Dara(92)y/E204(92) + 1/ E2.2.0(91) D1 (62)
S (\/€220(91) + MD2g(92) + Cip 91lo %, 7 E2,1.4(92)-

We have used from (24) and (25) and Lemma 3:
sup |g1]o < [llg1lol 7 and suplgila < y/€220(91)- (49)

If |a| + |B8] = 1, either (a1,6;) =0 or (@ — 1,8 — ;) = 0. In the case

13

C Sup|91|a/ |92],wg22,w + sup |91|2/ |92|L27,w+5up |91\a/ |92]2,w192]0w
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(a1,81) = 0, we use (49) to bound similarly

Cysup Iglla/ 105 92|0,w| 05 92]2,w
xT T3

+sup |g1|z/ |05 9213 ., + sup Iglla/ 105 9212,10105 921w
xT T3 xT T3

S (VE20(01) + MD2ug(g2) + Crylllgrlol, 7 E20.4(g2).

On the other hand, if (& — a1, 8 — B;) = 0, we take L* — L* — L? and use
Lemma 3 to get

Ci [ 1050110192000l 0502l + [ 105 g1lalgelo.n + 105 gulolgele] O gl
T3 T3

s aiiegal.

2 110792llo.w]105 921120 + 110795 01121107 921l w1105 9200 (50)

where |y| < 1. Note ||878glgl||2 S VE2.2,0(01). For w = w(w, B),

18792l . S \/Pig(92) S \/Dasalo2)
from (24) and (25). Therefore, (50) is further bounded by

G H|3gg1|a e \/D2,l,q(92)\/52,l,q(gl) + \/52,2,()(91)D2,z,q(92)

S (Y&2,2,0(91) +M)D2uq(92) + Ciy Hla;%glla

We remark that we can not take L3° of sup,, |92|s,w(a,8) and sup,, [92/2,w(a,8)
in this case, because w(q, 8) now is associated with |a| + |5] = 1, and stronger
than w allowed for second order derivatives from (23): for |y| > 2,

w(7,0) <w(a, B).

As a consequence, } <5 |0792/|o,w(a,p) and 32\ <5 107 92][2,u(a,8) can not be

bounded by /D2 4(g2) or \/E2.1.4(g2)-
We now consider the third case |a| + |3] = 2. We first consider

2
3 E20a(92)-

either oy = =0 ora—a; =5—p5;, =0. (51)

We take L2° of the term without derivatives and L2 of the other two terms. We
note that by (23), accordingly,

w(aaﬁ) < UJ(’Y—FOQ,/B) or ’U)(Oé,,B) < U)(’}/—FOZ - Oll,,@ - Bl) (52)
for |y| < 2. Therefore for any g

suplgle < llglell,,z, and suplglz < 1/€22,0(9)
xr xr

suplglow S Y 11079]
T

o,w(a,B) S Z Hanga,w('y,O) S DQ,l,q(g)

[v]<2 [v]<2
suplglew S Y. 11070l2wias S D, 11070l2,001,0) S \/E2.1.4(9)- (53)
” lvl<2 ly|<2

14



By Lemma 3 and (53), we bound (37) by
[ 105 Tlon. 02 05
T3

S Cilllarlol, 7 /Poia(92)y/E210(02)

+/8220(90)D2.1.0(02) + llonlo | 7 /E2.2.0(92)1/ Pt a(2)
S Cilllgrlolly g \/Pona(92)/E20a(92) + y/E2.2.0(91)Danal92)
We note
2
lg1loll 7 v/ D2a(92)1/E2.0.0(02) < 1Ds1.4(02) + Co 11612 7 E2..0(02)- (54)

We conclude (38) if (51) is valid. B
If (a1,8) # 0 and (o — a1, 5 — B1) # 0. Now |a1| + 8] = 1 and |oo — aq| +
|8 — B1| = 1 since |a| + |3| = 2. We take L* — L* — L? to get:

<w2a§F[91792]7 6(592>
c |05 1

N

e Hmagfgfgﬂ |6,w||8592”2,w

99551 9212,u]1105 92l 0w

(o3 o — O (63
110785 91 121107055 o + || 105 gl |y |

3 \/D2,l,q(g2)\/52,l,q(g2) + \/52,2,0(91)Dz,l7q(92),

where || < 1. This concludes step 2 by (54).

Step 3. Proof of (39).

In the case of |a;| + |B] < \M;Iﬁ\v the estimate again follows exactly as in
Lemma 10 of [SG2] for (43) to (46).

The case of |ay| + 8] > |a|—2HB| is most delicate as we need to avoid a
contribution of [9§g1]s|g2]2,w|05 92]o,w in Lemma 10 of [SG2]. Our goal is to
‘move’ the weight w out of |g2[2,, to [9§g1],. To accomplish this, we following
exactly the proof of Lemma 10 of [SG2] but with a different splitting of the

phase space v,v’, depending on [ and m :

s aiogails

V'] V']
{|w| S 2}a W -1 S El,rm |’LU‘ Z 2 and W - Z El,rm |’LU‘ Z 2
with &, ,,, < 1 satisfying (I > |a| + |3] from (23)):
q€i,m 1 —2(1—|a|=|8])
m < Z and (1 — El,m,) < 2. (55)

The estimate in the first region {|w| < 2} follows the proof of case 1 in

Lemma 10 in [SG2] with an upper bound of terms (43) to (46) for |as| + (3| >

led+18l 4o
5 — as

0w (56)
o,w |ag:§1192 |2 |ag.92 |a',w7

185" 911210575 g2lo s + 105" 91|o 10575 9212, 95 92

S 105 9112010575 9200105 92low + 105" 91

15



where we have used the important fact w < 2 and the property
w(a, ) > 1
We remark even if ¢ > 0 and [ = 0 in (23):
w(a, B) = e%‘”|2<v>_2‘0‘|_2‘5‘ LW > a3 — 0

as |a|+|8] — 00.A large constant of —ﬁ appears in front of |5‘D‘191\J wl0525" 92(2105 92| w
n (56), when we bound |3algl|a by |8 '91|ow- In partlcular

\3391 |92|2|aggz|a,w

a)

can not be absorbed by the dissipation rate (25). This illustrates the importance
of the choice of [ > |a| 4 |8] to guarantee w > 1.
For the second region {‘% - 1‘ <eim, |wl> 2} we shall swap the weight

w(v) by w(v'). Since (1 — 1) |v] < |v'| < (1 + €1,m)|v], we deduce that

l=|a|—|8]
’U)(’U) 62 U‘2 ql,U/|2 ( 1+ ‘U|2 ) “

w(v') 1+ o2
Y ) 14 o' |2 I=lal=18]
< Z1 [<1,El’m>2—1] (I—c1,m)2
- 1+ [v'[?
94, m 72
< etV gy y20lal=l8D
< 2kl (57)

by (55). In the Case 2 of the proof of Lemma 10 of [SG2], due to exponential
decay of v'e2!"'” in the Landau kernel which dominates 2¢1V'”, by (57) we can
move weight function w(v) = w(v’) x Zj((;’,)) to g1 to obtain bounds (w > 2) for

(43) to (46) as

105 91l2,w|05=5 920 + 105 9110|0557 9212]105 92l 0

For the third region of {

) 1’>5lm, |w|>2} we note

[ —v| > ||| = [v|]| > erm|v]  and |v] >0, > 0.

We can repeat the same argument as in Case 3 of the proof for Lemma 10
[SG2], upon further integration by parts in v’ to bring down the v" derivative
in |Bglgl|g. This process creates a constant depending on (large) constant Cj p,
and we obtain a desired upper bound of
Cim|05" 911210575 92

|aw

16



to conclude step 3.

Step 4. Proof of (40). )
We shall separate three cases in (39). The first case is either oy = «, 5 = 8

or a—ay = a, and f—f; = (. Indeed we now have the coeflicients Cgngl =1
Recall (51) and (52) in this case. We note that m > 3 so that we can apply L°
estimate to terms without derivatives, and then take corresponding L>° — L% —L?
for the z integration. By (53), we obtain an upper bound of (39)

Cillllgrloll ;7 1105 92llo.w + 105 91116 lg2lo 1| 311/ Emit.a(92)

i/ E22,0(90)1105 9210w + llg1loll ;7 \/Emita(92)]l105 g2l lorw
i/ Emita(91) Ngzloll ;5 + 11059111001/ E22,0(92)1195 92l o

+Cim A/ Emi.0(91) lllg2

o,wHH% 1105 92|
{y/E220(90) + \/E220(02) + THIOF 0112 00 + 1105 02112, }

2 2
+Cimm{lllg1lowlly 1 + Mg2lowlly, 7 HEmita(91) + Emiqg(g2)}-
We have used the fact w > 1 and [ > 2, ¢ > 0. We note that

oW

N

2 2
H|91|cr’w||H§ + |||92|0,w||H%

I SR [ M
[’ [+]8"<1

DY

le’[+]8" <[]

2 , 2
H% + H |ag’ 92|0,w(a,,6) HH%

2

NG
Hi

2
’
o
3 + H|8B/92|o‘ 7"”((!,"3,)
H1 T (v)?

7
\3a/g1| w(al,p")

as [2] > 1 and w(o, B) < 8 for |af + [B] > |of| + |#'] + 1 from (23). We
thus conclude the first case.

The second case is when 2 < |a;|+|3] <m—2and 2 < |a—ay|+|3—5;] <
m —2. In this case, we shall take L* — L* — L? and by Lemma 3 to find an upper
bound of (39):

Cum |[105" 9115

2w

Lo 1058 el 105 02

531
unl o],

9552 2lo.u]| 5 + 105201l

3
Ha

it 15 9l

+Cl,7n[

05 91120 ), 5

3
4

05 0l

5 1105 920w

+Cim H|aglgl|2H 3 3
H4 H4a

|ag:g1192|a,wH

For the last three terms, we use H' ¢ H 1 and the facts

H|8§:gllg|2,wH 1+H‘8g192’wHHl S Emoial9)

195529l

H

Hi + H|aglg|a,w”Hl S Dm,—l;l,q(g)

17
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9575 92 l200 |5 10592l

95752 2l2|| 41105 g2llo

(59)



to obtain a desired upper bound of

77||3gg2||§)w + Cl,mm{gm—l;l,q(gl) + gm—l;l,q(g2)}{Dm—l;l7q(gl) + Dm—l;l,q(g2)}~

For the first term in (59), we combine the factor of smaller total derivatives (less
m

then [%3]) with |[0Fg2]|2,, to obtain an upper bound:

n Z {Hlaa’/91|a wH2 + H|aa’/92|a sz E }
B g B g

[F]<|e/[+]8|<m—1

’ 2 ’ 2
Cimn D A0 g1l g + 108 g2l 4 HIOG I

la’|+18'1<[%]
< {1105 91112 0 + 110% 9212w} + 1{Dm—1:1.9(91) + Do—1:0.4(g2)}
> 7N 8 91llo,w 3 921lo,w MEPm-1;1,¢\91 m—1:1,q(92
|’ [+B8"|=m
2 2
+Clm,n Z {H|3§/g1|a’w 3+H|8g,g2|0’ w 3}H8§92||§(§0)
lo/|+18" <[ %] w2 llga W? || g2

where w' = w(a/, ") and w(a, ) < % for |o| + 8] > |o/| + |8'| + 1 by
(23). We therefore conclude the second case.

We now consider the last case of following possibilities: 1 = |a1] + 18],
loa| + B[ =m—1,1=|a—ai|+|B— 4| or [a —au|+ |8 — 1] =m—1. Note
that in this case the weight function satisfies:

w(a, B) < wlar +7,8), wle,B) < wla— a1+, 8y),
for |y| < 1. We bound (59) by taking L* — L* — L? as
1
Cun Y |05 911s | 4

i T (],

x—Q1 (%
055 o]y 19592 k2w

0575 el 3+

la+1B1<1
+ 1052 gulo |y (19575 2], 41195 g2l
Cm D 05k 19575021 4+

lo—an|+]8—B: <1

195 91lowa |, 105752 0212 105 92l

R S [
la—a1]+|B8—B,]<1

a—aq 1o
|8ﬁ,51 92|a,w HH% ||8@g2| |0,w'(61)

The first term above can be estimated exactly as (60). Note that from (25)

Z Hla},’”gIzHH% S 2:2,0(9), (62)
laf+1BI<1

18



by Lemma 3, the second term in (61) is bounded by a desired upper bound:

2 2 2
9592112 0 + Clomn€azolon) [958 gelowu]| s + Cromn D |05 00la ], 4 10582 92lou| 4
lef+8]<1
5 T]\|5§gz| g,w + Cl,vrz,7/77182;2,0(gl) Z Hag’ gQ”i,w(a’,B’) + Cl,'rn,'r],'r]l52;270(91)Dm—1;l,q(92)
lo/ |+ [=m
2
Crima D 105 91lo] 4 Emtala2)
laf+]B1<1
, 2
S Gl +nEa0le) Y 05l e+ Clma D (105201l s Emivala2)
lo/|+[8'|=m le|+1B1<1

+C1mn€2:2,0(91)Dim—1.1,4(g2),

with 7, further small.
Similarly, the second and the third terms in (61) are bounded by a desired
upper bound of (w = w(«, 8))

9%gs]|2 C % * s o0 P s
n 105905 +Clmn 105 92lo | 5 Emitalgr) + 105" 91w, 5 E2:2.0(g2)
la/[+]8"]<1 la—ai|[+[8—B1|<1
, 2
< eIl Cny S (108 02l g Emitaler)
o’ +]8]<1
+n Z ||8§’ ngi,w(a’ﬁ’) + Climn€2;2,0(92) Dimn—1;1,4(91),

le/|+]8"|=m

) 2
where we have applied compact imbedding again to H|8°‘/ gl|g,wHH% . By (58),

we complete the proof of the proposition. m
In order to obtain decay for the electric field, we now treat pure spatial
derivatives in more details of 9T L (f, f)0° f+.

Lemma 7 (1) If |a| =0,1,2, then
[t w00 ) £ fEzanlh) Y 1107 1]
lo’|<|a
(2) If |o| = m > 3, then for any n > 0 there exists Cy,,, > 0 such that

/\<3aFi(f,f),8“fi>|dx S [ E&eolh) +nlllo* I +nly/Exzo()) +1] D 1197 f1l>

la’|=m
+Cm,n[D2;2,0(f)gm;l,q(f) + 5m71;l,q(f),Dmfl;l,q(f)]-

Proof. Since there is no weight w, we use Theorem 3 in [G1] with w = 1:

/(8“1}(]“, ), 0%+)dx < Z ijl/|8"_a1f|2|8“1f|6|8af|gdx. (63)

a1 <a
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We now estimate case by case according to .
Assume |a| = 0. We can take sup, |f|2 < \/E2.2.0 by (24) and L>® — L? — L?
in (63) to obtain an upper bound of

/ Flalflolflode < /Eamoll I

Assume |a| = 1. We take L* — L* — L% in (63) if oy =0, and L™ — L? — L2
in (63) if |a1| = 1. By Lemma 3 with n = 1 and w = 1, we obtain an upper
bound of

3 / 0% F1210% 1,107 floda < \/Ermp 3 [10° 112,

a;<a la|<1

Assume |a| = 2. If a1 = 0, we take L2 — L — L?; if || = 1 we L*— L*— L%
if || = 2, we take L™ — L? — L? in (63) respectively. By Lemma 3 with w = 1
and n = 1, we obtain:

S [ 102 el f1o107 lude S V/Erzs 3 0%

a1 <a || <2

Combining with the cases |a] =0, 1,2 we conclude part (1) of the lemma.
Assume |a| = m > 3. We need to be careful with the (large) constant C§*.

We single out the terms with highest order derivatives with either oy = 0 or

a1 = a. By taking L™ on the term without any derivatives with sup, |f|s <

/D220, sup, | flo S /E2:2,0, we apply Lemma 3 with w = 1 to find an upper
bound of (63):

/ 1£1210% 12 + 107 Flo] f1o10° f1,)dx
V22 ll0°F112 + \/Darzl|0® £112110° o
[v 52;2,0 + 77]||aaf||g + CnD2;2705M;l7q(f)-

For the remaining cases of 1 < |a;| < |a| — 1, we always take L* — L* — L2
and use Lemma 3 with small 1 (depending on «). By singling out the cases of
|oi| = m—1 and || = 1, and combining the rest of lower order terms together,
we obtain

1Cm Y 11077187 fII2110% 07 £11o110° fls + Connll0* = £112110° flo][0° £

[VARVAN

[v[=1
< nCnly/Ea0(f) X NS 4 Danof) S 110707 fal0° 1]
|v|=1,|a1|=m—1 [v|=1,]a1|=1
+Coman\Em 1.0 (F)y P14 (£)11O° £l
< NCmy[Ex20(1) + 1] 32 1101 + Con gl D20 Emita () + Em1:.4(F) D114

|a]=m
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We thus conclude the lemma by further adjusting 1 (depending on m). m
Next we estimate the other nonlinear terms with the electric field.

Lemma 8 Let |a|+ |5 =m > 1. For oy < a with w = w(a, ) defined in (23)
[ 1005 1207 V.0 9,05 el + [ 10205 £20° 0 V6 0500 £2]

2
S nllo5 f+

g,w + C”]

el mop || 10°2613 + CyllI V261 3nms + V26l Dnrig ().

H

Proof. Note a; < a,
w(a, B) = w(a, B)(v) 22l = gy(ay, B)(v) 2 (v) ~2lel=lenl=t (64

from (19), we obtain:
_ / w28gfiaa—a1 vw¢ . Vvagl fi
5 /|w<v>71/2agfi8a7a1vx¢, <U>72[\a|*|a1\*1]w(a1’/3)<U>73/2vvaglfi‘

< / 108 Filo ol Vo105 fil iy da (65)
(v)

2[laf—fay[-1]

We now separate three cases.

Case 1. |a1]| +|8) =m —1 or m = 1. Since |ay| + |B] + |& — a1| = m and
a1 > a, we have |a| — |a1| = 1 in this case. Taking L? — L> — L? in (65) yields
a desired upper bound:

105 f=lo 1w

926112 {105 Felowtan,) |, S IO Fel 2 s+ ColVEGIBDr-1.4(f).

For the rest of the cases, we take L2 — L* — L* of (65) to get an upper bound:

1108 Fllo w1071 V,01 3 @
HZ

|aglf:|:|07 w(og,B)
(v)

2[fal—Tar[—1]

Case 2. |a—ay| =m > 2. We have a; = 8 = 0 now. Since |a|—|a;|—1>1
now, we further estimate (66) by ()

10° Fellowll0°Vadll g |1y 00 3
2
S nll0 f2llZ w + Collo“ V2R3 ||| £, wom
w2 || g
2
< llo* f2ll7 . + Cy | fely m00 , [10°V20l13.
ol |
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Case 3. |aq|+|8] < m—2 and |a—a1| <m—1. By |ai|+|a—a1|+|B8] =m
we deduce |a — a;| > 2. Hence (v)~2llel=letl=1] < (4)=2, We estimate (66) as

ai
|03 fi|a,%

Ha

S 05 Lelz 0 + Callo™ abllin (105" fel, wiar 0

v Hl
S nll0g fell2w + Collo™ "1 V26| 3D 1,4 (f)
S nllOg fel2w + CollV2 @l 3m—1 D1, (f).

Here we have used the fact % < w(oy +7,0) for |y] <1 from (23) so that

>

HY lyI<1
SJ Dm—l;l,q(f)'

105" x|, jleyo)

0705 fl, jetlenp)

5 Z H \3”851fi|a,w(a1+7,,8) H

2
2 |yt

We now turn to the second term. Similarly, by (64) w(e, ) = w(ay, 8 —
e;)(v)~4(v)2llel=leal=1 " we have from (19):

/wQagfiaa—alvxqb - Og[vd** fy]

< | [ o pe0n Vag v )|+ Cal [ w0 £o07 VL0 8505 1)
aq a—aq (al,ﬂ) —3 noq
< [lutorm0 fu0 V. T (0305
le% a—op o 76 €; —3 ce; qon
—|—C’5/|w 28 f+0 Vi M(@ 20505 o, f+|
<

Cm/m?fib,w(aﬂﬂa“alvr¢|5§1fi|m< AT

[Tal=Tar [-1]

Con / 195 Filo ) |07 Vo Bl105 O o fil, st e -

(oy2lal—Tar1l]

The first term is estimated exactly as in (66). For the second term, we note
that |5] > 1 so that | —a1| <m —1, and |oy |+ [8] —1 < m —2. Since o <

I5Zia§ie.fi| M<|5elaal Jel, ,2lerfoed) )
i Mal—Ta1l] (v)?

we thus can apply case 3 above to complete the proof. m
We also need more precise estimate for purely spatial derivatives of £-V,, fy.

Lemma 9 Let —A¢ = [ \/u[fy — f-]dv with [ ¢ = 0.
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(1) For |a| = 1,2, then for a; < a,

/

S W/E0(f) D 110 fI2.

lo/|<|e]

/ 0 FLd™ N - V0 fudv

dﬂer/‘/aafi@aalvzqﬁ-vaalfﬁ:dv dx

(2) For |a| = m > 3, then for a; < a,any n > 0,

/

S &N FIE+n D 110% fI2 + CovnPim—1:0.0(f)Em—11.0(f)-

lo|=|e|

/ O FLd™ V- V0 fudy

dsc—l—/‘/aafiaaalVIquao‘lfidv dx

Proof. We first perform integration by part in v to get:

/ ‘ / 0% FL 0V, V0% fadv| + /

da:—l—/‘/ao‘fiaa_o‘lvxfbmao‘lfidv dx

/8O‘fi3afo‘lvx¢ -0 frdv

(67)

/ ‘/Vv(?“fi S0YT MV 00 frdu

= / [(0) =20V, fu| + [{v)"20% fo[][0° 1V, [(v) 20 fo]]

S /|aafi|a|3a_°”Vz¢||<v>3/23“1fi|2dfﬂ~

Here we have used norm (19) for 0% fu.
If |a| = 1, then since a; < a so a3 = 0. From the elliptic estimate:

10°Vaglla S 110°VE0|l2 = II/\/ﬁaafin S 0% Fllo

and Y- oy [[(0)2207 frll2 S /Ex2,0(f)- Since [(v) 320V, filo $ [0 fx]s in
(67), we take L? — L* — L* to get

67) S 10" fllo10°Vadlla > [[(v)*?07 x| (68)
[vI<1
SO NOYFIE X Y )P0 flle S \/Ea0(H)IIO° FIIZ
lvl<1

If |o| = 2, the case ay = 0 is treated as in (68) and we only need to treat
the case of |a1| = 1. Note |[(v)3/20% fi||2 < \/52 2.0(f). We take L? — L> — L?
n (67) to obtain

61 & [ 10 falol0 Vo0l ()20 fxlads

S 10 il lo| [V 20 @] |oo| | (0) 320 £ ||
S D 10Y fellZy/ Ea0(F). (69)

|’ <]l
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Here we have used the elliptic estimate (Jay| = 1):
V20" lloe S V2l S Y 110 fllo
lo'|<|al

This completes the proof of the first part of the lemma.
If |a] = m > 3, the case |a1| = 0 is again treated in (68). When |o;| = m—1,

as in (69), by (24), [|(v)*/20 fell2 < Em-11.4(f), and [|V3¢llsc S v/D22,0(f)-
We take L? — L> — L? in (67) to get

67) S 110 Fello|[Vadllol[(v)*20% fillo
S 0llo* fl2 + CyDaoo(f)Em-11.4(f)-
When 1 < |a1] <m —2,

0%V, 00l S 110% V22 S 110° fll2 S \/Drn—r0(f),
S0 fulls S /Emto(f)-

[vI<1

By (69), we obtain by taking L? — L* — L* in (67):

10° fello]|0° ™ Vadlls Y [[(0)¥20™ 7 fi 2

lvI<1
5 7]‘ |8afi”§ + Om,nD'rrL—l;l,O (f)(‘:'rn—l;l,O(f)~

This completes the proof of the lemma. =

3 Local Solutions

Our goal is to construct a unique local-in time solution to the Vlasov-Poisson-
Landau system (8) and (9) if £2.2,0(fo) is sufficiently small. The construction
is based on an uniform energy estimate for a sequence of iterating approximate
solutions. We first note, by direct computations Zij 0;;®% = 876 and the
Landau collision operator has the following non-divergent form of [G1]:

Q(Gl,GQ> = {(I)ij * Gl}(')ing + 87TG1G2

We start with
FO(t,z,v)=p or f°=0. (70)

To preserve the positivity for F”*!, we design the following iterating sequence
of FI™* as [SG3]:

[0y +v- Vo F Ved" VFIT = Q(F}, F) — 8nFR(Fyt — F)
+QFR, FitY) — 8rFR(FEH — FY)
= OV« [F} + F2|0;; Fit 4 8m{F}} 4+ 8T FLFE,

At = —/(F1+1—Fﬁ+1)du (71)
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with fTS #" ! = 0. We note that F} >0 implies Ffrl > 0 from (71). We now
rewrite the above iteration in the perturbation form of F"*! =y + \/pf"*! :

[0 +v- Vo F Vag" - V| f2H — AfIH £ V6" 0 fit!
= F2V.¢" v+ Ko f" +To(f",
—8n(fL + fOVE(fET = 1) — 16mu(f27 — f1)

—Ag™H = / (fih = o do. (72)
with f7*1,—g = fo. Here for g = (gf), we denote as in [G1] [SG1-2]:
2
A -z
9+ \/EQ(% VHga),
1
Kig = ﬁ@(\/ﬁ[gi + 9%l 1)-

To solve such f**!, we can add an artificial dissipation
e{ANVET + A (1 o) fH1)

with

12 wi Yu) = |u _ugu in
A= QU iigs) it 81(w) =l (1= 55t ) i )

This choice makes the problem strongly parabolic in both z and v with strong
bound in v which justifies the moments estimates [SG2]. We shall construct f+!
as € — 0 with uniform bound in €. The procedure is standard and for notational
brevity, we ignore such a regularization. We take ag of the Landau-Poisson
system (setting e = 0):

[0 + v Vo FVa0" - V|05 T £ [Vao™ - 005 f2T] — 05 AfET

= SOFOSISATIE Y OO NVL" - V05 fET = 90T VLg" - 9500 fH])

a1 <o

F205[Voo" - vy + O3 Ko f* + 05T (f7, )
—8m3 [VAE(FL + F2)(FET — fD)] = 16705 [u(fE+ — F2)].
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We multiplying with e(29%2)¢n? with w = w(a, B) in (23) to get:

[ei2(q+1)¢nw2agfi+l] « {[815 +v-V,F qusn . Vu]aﬁ fn—i-l [ m¢n
d e:l:2(q+1)¢nw2(8gfn+1)2

= ) a+ DoF e w2 (g prt

et2(q+1)¢" 2 (agf$+1)2

2
’ i2(q+1 ¢” (aafrH»l)
£V.6" Vo d

iqv$¢n . U(agf;+l)26:|:2(q+1)¢"w2

2(1 ol - ) o »
£ K T e g

£V, 0" 0(0f f1 P

+v -V {

}

where we have used (42). Our weight function is so designed such that there is
an exact cancellation for the high momentum contributions:
Flg+ Do Vet (g f1H1)2e?
£qVa " - ve D (9 £
ivrd)n . U(agfl+l)2w26:t2(q+l)¢"
= 0. (74)

Therefore, we can rewrite (73) as

d eiZ(q+1)¢"‘w2(8af:ré+l) . ; o
- 5 B }JF(q+1)¢ +2(g+1)¢ 2(85f£+1)2

6:|:2(q+1)¢"w2(8o¢f;+1)2

) (75)
eiQ(q+1)¢"w2(8afn+l)2
:szgbn ! vu{ 2 CAEs }

2(l—|0¢|—|ﬁ|) n i2( 145" o pn+1
e A T

+v-V.{

26
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Upon integration over T3 x R?, and combining terms we obtain:

d eiQ(q+1)q§"w2 (8afn+1)2
dt{ / R / (WG A5 ) (76)

_ 7/ +2(g+1)¢ 25e18a+e1fn+1aaf$+l (77)
£ Y o [ tog prtior gLt Vg (19
ayp<o
F Z Cgl /6:‘:2(q+1)¢"w28§fi+1aa7041vrqsn . aﬁ[vaalf;—i—l] (79)
ap<a
200 —Jaf = 18]) n +£2(q+1)¢" 2 ga prtly2
F [T 290 o = (g et o £ Fso)
+ / w? (BTN 1)og fritog AfEt! (81)
F2 / eF2TO 27, 079" - 95[v\/pl0g f1 T (82)
+ / w?ePIENOn e Ky frog f1 (83)
_|_/ 2 i2(q+1)¢" (fn fn+1)8afn+1 (84)

s [P G 4 DT - DS (89)
*167‘1’/ 2 :|:2 (¢+1)o 804[ ( 7fi)]8a n+1' (86)

We now derive estimates for (76) to (86).
Lemma 10 Assume for M sufficiently small,

Eapo(f™) < M.
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(1) We have

t
Enra(FH) + / D o(f"+)ds

IA

/Dm Jds + CilExa.a(fo) / S {0 + (IS o 3]
0
|| <2
+Cl/[ >
O jar|+pI<1
+Cl/
O |/ |+18|<1

+Cl/o \/52;l,q(fn+1 _ fn)[l + ||f7,,HH%] gg;l’q(fn-&-l)

Ve oo + 110:0" ||cc]€21,4 (F"F)

3
Ha

n
‘35/f \07%

2

3 52;l,q(fn)

’
% n+1 a
| ﬁ’f |07%

t
ey N A RN TIN A TED) (87)
(2) For m > 3, we have

+1 n +1
g’m;l,q fn / D'rn ilq fn

IN

/ Dmlq )dS+Cl(€mlq(f0 +Clm/ Z {H:U' aafn‘|2+”u 8°‘f"+1\| }

|a]=m
t ’
+Cim / Yy ng/ 7, o
0 Y (v)2

lo/|+|8'1<[%]
X [gm;l,q(fn) =+ Sm;l,q(fn+1)]

t
+Cum WAl yere 31 Emtal 7 = 1) e ()
0

2 2

!’
+ H |6g, fn+1 |a’ w((r:)’>,2/3’)

\ } +IV6"loo + [10:9™]]

Hz H1a

+Cl,m /0 ||fn+1 - anH[%H—% \/gm;l,q(fn)\/gm;l,q(fn+1)
t
"‘Cl,m / [’Dmfl;l,q(fn) + Dmfl;lyq(frwl)][gmfl;lyq (fn) + gmfl;l,q(fnﬂ) + 1}- (88)
0

We remark the exponential factor u%l is chosen for convenience.
Proof. First note that A¢" = [ \/u(f?— f™)dv and [ ¢" = 0 so that [|¢"||ec S
M by the elliptic estimate so that

R < .
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We shall estimate term by term in (76) to (86). In the second term of (76), we
apply both Lemma 8 and 9 of [SG2]. For 8 =0,
—/< 2(a, 0)0*ASEF 0% ) de 2 10 F 17 a0y — Coml X0 £ I3

(89)
X(v) being a general cutoff function in v. For 3 # 0, for any 1 > 0, we have

- [wHamogare of s
2 NO5S M3 i) — MPmita(f) = Cra D 105 " 12 (1) £90)
B'<B
From Lemma 5, we have for any n > 0 and 5 > e;
(77) 5 Ha,g"—eifn—i_lna,w(a,ﬁ e;) ang:: fl—‘rlHU,w(aJrei,ﬁ*ei)
< an;l,q(fTL+1) + C7I||6glaﬁfei fi+1||d,w(a,ﬁ7ei)' (91)
To estimate (78) and (79), from the elliptic estimate and our assumption,

V4"l S ™Ml S VM,
1926 s & N[ VA lans S Encrimo10()
We deduce from Lemma 8 that

(78) + (79)

S nllog

~

2
i

+ ),

w(0,0)
7 w2

In particular, if m = 2, we have &£,,.,,0(f™) < M and by (23)

SN w0 S D NOSFEIS wons)

2

+1
iz e

HY y<t lal+8l<2
so that
(18) + (79) S (n+CyM) D logf2 (93)
lee|+181<2
Next, we easily control
(80) <sz/ {110 + V20" oo yw® (95 f1H)2. (94)

To estimate (81), since (e*2(a+1)¢" — 1) < /M, we control from Lemmas
8-9 of [SG2]: for any n > 0,

(81) < VMIOZS Mz ey T CranVM Y (107X (95)

~y
|a]<m

+77Dmlq(fn+1) +Clm77 Z Haa fn+1||ow (e,7)"
B'<pB

29

(92)

gm;mﬁ(fn) + 077 [gm—l;m—l,o(fn) + M]Dm—l;l7q(fn+l)~



In (82), since 0 < ¢ < 1 in (23), via repeated integration by part in v, we can
move all the v derivatives ds out of Jf f™T to the factor ds[vy/pw?], so that

(82) < Crom / W00 R 4 (0% £ 2 dvde, (96)

By Lemma 8 in [SG2], we have

(83) 5 {n\/DnL;l,q(fn)+Cl,m,n Z ||X8afn||2} D?rz;l,q(fn+1) (97)

la|<m

S MPumitg(F") + Pt (S + Climy Y 1IXO*S"13-

lal<m

We now turn to (85) and (86). If |a| + || < 2, due to the decay of /i and
the fact ¢ < 1 in (23), by product rule and Sobolev imbedding (Lemma 3) in
T3:

O [VA(FE + FEFET = £)] + O n(Ft = e
< O EaFm = PO, 3) + € DI = 7,7 ),

so that for |a| + |5| < 2, we have
(85) + (86) (98)
S ClyEanam = LA W E20a ) + g I = 7113}
For |a| 4 |8| = m > 3, due to the decay of \/z, we have

WO [VESE + F2 (= F] + 05 (e — )]l (99)
S Oy fEmta(F7 = I+ 1 e a] + 11 = £ s\ Emaa ()}

We now prove the first part (1). Applying Proposition 6 with g1 = f",
g2 = ™1, we choose 7 small and M further small such that C;,M << 1. By
(23) and (25), | g,/f|g < |3a/'f|g (el 1) for [o/| + |B'| < 1. We collect terms to

)

~
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get

105 £ 2, + / 195 £ 2.

A

RS O+ [ 13

+cm/ S (1500 3 4 (1 0m 3

|| <2
t , 2
40 [T 108wt H1IT28" e + 11006 e f EzaaF)
0 |/ |+]8'|<1 (v) H4a
2
e / 05w | Eanal)
O Jar|+]pr<1 e s
e / S 1O
la/[<2,]8|<B|

+Cr / Eana o = PO+ 171130+ fE2aa FIF = £ 7 1y €.

Here we have bounded the cutoff function x by u%. As in [G1], we can get
. o t

rid of the contribution of Ci .y [y 374 <0, 51<| 1105 f"" 12 (o
less v—derivatives. Upon an induction starting from |3| = 0, 1,2 by choosing
different small value of 7 each time, we conclude that for any 1 > 0 (different
value of C;) that

S (R R, + / S 0g R,

8" which has

la|+]B]<2 la|+|B|<m
SR ST RN S T Ol
O Jal+IB8l<2 |lal+|81<m
t 2
w0 [ S O, | AT 1007 o a4
O Lo +1871<1 R
2
+Cln/ Z |aa Y y(a |, E2q(fM)
lo|+]8'|<1 H4
+Czn/ STl T O R T 0% £ 2]
|| <2

+Cin / (/20— LA I 1)+ E20a N = £ 1 3y E20al ).

We sum over |a|+|5] < 2 then choose 7 sufficiently small (but fixed) to conclude
the first part of our lemma. We remark that M is also small but fixed.
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For |a| + 8] = m > 3, we simply put terms like >3 ||8a,f"+1||37w(aﬁ,)
into Dyy—1.1,4(f" ). We apply Proposition 6 and collect terms to get

t
105 £ 2.0 + / 195 £+ 2.

A

t
7 / Do (") + Donstoa ("] 4 Chomn 108 771 (0) B

t
i [ 3 I B o

la]=m

t
+Cl,m/ [ Z {H|ag/ fn|g w(a/f/)
0 T ()

[a/|+]B8" <[]
X{Emitq (") + gm;l7q(fn+1)}

t
+Cuma [ W+ 17 s3]y Bl = £ £)

2 2

!
+ H|3§f S waren
T (w)2

3 3
Ha H2

}+ IVe" [loo + 110" ]

t
+Cl,m,n/0 ||fn+1_anH[%H%\/gm;l,q(fn—i_l)\/gm;l,q(f")
t
+Cl,m/ {gm_l;hq(‘fn)+£m_1;l’q(fn+1)+1}{Dm—1;l,q(fn)+1Dm_1;l,q(fn+1)}.
0

We therefore conclude the lemma by setting n sufficiently small. m
We are now ready to construct local in time solutions by showing uniform
bounds for f™ which requires the use of fractional Sobolev norms.

Lemma 11 Assume fo € C° such that Fo = pu+ \/iefo > 0 with (70).
(1) There exist small constants 0 < T < 1 and M > 0, such that if

Ea.2.0(fo, Po) sufficiently small,
t
Eaaa(f") + [ Daao(r™)(e)ds < M. (100)
0

(2) {f"} is Cauchy in L>=([0,T],L2 ).
(8) There exists C; > 0 such that for 0 <t <T:

t
52;lyq(fn+1)(t) +/0 D2;l,q(fn+1)(3)ds < C1€2;1,4(0). (101)

(4) Assume (2) is valid. For m > 3, there exists an increasing continuous
function Py, with Py, ;(0) = 0 such that for 0 <t <T:

t
Emitg (1) + / Dot (F)ds < Pyt a o). (102)

(5) {F" > 0}.
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Proof. To prove (1), we apply (87) with an induction over n. We assume (100)
is valid for k = 0,1,2,..n. Recall p" = [ \/u[f? — f"]dv and j" = [v/n[f} —
f"]dv. We now note that from the continuity equation of

p£L+Vm 'jn = Oa

we have

—AV.¢" =Vyp", AO" =V, 5" (103)

and

|I3t¢"||oo+llvz¢"\looSlat/[ — 2 Vpdvls + 10, / — fr)/hdvls S VM.

(104)
We therefore deduce that for t < T

T
/0 {1160 loe + V2o }ds < VAT,
It follows that
¢ t
/0 ST 00 R + (15 0% 2 S / Ea0a(F™) + Enag ().

We then summarize from Lemma 10 with [ = 2, by ||f|\H% S VE2:2,0(f™), and
by (41):

t
Exmo(f) + / Do ol f)ds
0

¢

i/o Do 0(f™)ds

+C&:2,0(fo) +C/ [Das2,0(f") + 1/ E2:2,0(f™) + + 1]E2.0,0(f"h)
¢

+C/ [Daoo(f™) + 1/ E2i2.0(f) + 1]€22.0(f™)]

2M t
s 3 + C{&21,4(fo) + + M3PPT + MT + [M + VM + T) iug Ea O(fn+1 )+ M/ D2;2,0(fn+1)}-
0<t 0

IN

We have used the induction hypothesis for f". For M and T both small, we
have

! AM
Ea0(f") +/ Dy o(f"*)ds < — T Cézo(fo) <M
0
We thus deduce part (1) of the lemma for &2 0(f) sufficiently small.

We now prove part (2). It is standard to prove {f™} is Cauchy in light of
strong bound obtained in part (1). In particular, sup |vf}| and sup |V, f}| are
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bounded (part of E2.20(f™)). We take difference in (72) to obtain
[0+ v Vo F V20" VUJIfET = f2] = Ap[f"5 = "1 & Vg™ o[ 27 = f1]
FIVad" — V"™ l]vvfi v x¢n_vx¢n_l}'1’fi
= F2Ve¢" — Voo ~wﬁ+Ki[f" I+ (f"“,f") L (f", f"‘l)]
—8mulfL(fET = f2) — fEH R = D = 16m /(T = R - 1R - )
Al = ot = - [(irt - 1) [f’l“ ~ I,

By multiplying with e®2¢" (f7+1 — f*), (f**! and f" has the same initial value)

Do = I /Ilei‘ls I = DI (s)ds
+

t
/OZ”M( NI ds+/ S 11t~ 7Bl
4

Since ¢" is uniformly bounded, by Lemma 4, we can repeat this process to
obtain

||fn+1 fn” / ||fn fn 1|| ()

Hence {f"} is Cauchy and we can take the limit as n — oo to obtain H™
solutions for all m. We denote f to be the limit of f”. We remark, however,
unlike [G1], it is impossible to establish f" is Cauchy with respect to /€220,
due to the presence of the electric field E.

We now turn to part (3) for which we have to make use of the sharper
estimates of H 3norms. Collecting terms, we rewrite (87) as

t
52;l,q(f"+1)+/ Doy (" 1)ds (105)
0
1/t t
< 1/ Dz;l,q(f")ds+0152;z,q(fo)+Cz/ A (8)[E20.g (™) + Eautg (f™)]
0 0
where
2 2
— o’ pn o pn+1
An(s) = >, {H|8ﬁ'f |g,w<<av’>,ﬁ’> , 1 ‘ 05 f"F |07w(<°;’>”3/) 3}
la/[+18"|<1 H Hi

Iz Iz + V20" oo + 11060™ |00 + 1

The key difficulty to prove (101) is to replace A, (s) by a fixed, integrable func-
tion. First of all, in light of parts (1) and (2), we shall prove

T T 2
lim [ A,(s)ds = / 2 Y 105 fl, weran |, +20f1,7 +11Vedlloo + 10:6] oo + 1]
o O gt R
T
= A(s)ds < oo. (106)

0
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In fact, since f* — f in L? from part (1), we deduce from (100):

T
Ean.0(f) +/0 Dano(f) < M.

Again from (100), supg<;<r E2;2,0(f™) is uniformly bounded so that

0<t<T

T
a1 = Fllg =0 and [ (1" = ], qds 0
0

by compact imbedding. Moreover, by (103) and (104),

max [|016" — 016low + 176" = Vo

S = fllar — 0, (107)

from (100) and f™ — f in L?.
We separate |v| > R and |v| < R to get, for any 1 > 0, by (23) and (25)

T , , 2
/ > llog oy flywerpnll
O |81 o s
T 2 T 2
<ol X Ol | O [ S 05~ 051, i
0 / / @2 |l 0 , / @2l
o [+[B'I<1 o [ +H]BI<1
T ’ ’ T ’ ! 2
< n/ Z 0705 " — mag,fujw(a,ﬂﬁ,) + Cn/ Z 05 f™ — 8§/flg7w<a/,§/>
O jal|+18' <1 O Jar|+|p<1 = ll2
lv|<1
T T C T , , 2
< 77[/ D2;2,0(f”)+/ Da,0(f)] + FZ/ > H|3§' £ —8§'fa,w(auﬁ’)H2
0 0 O Jar|+]1<1
T , , 2
+Cn/ Do 185" = 05 11, e 0 X i<y
O Jar|+1B/I<1 “ 2
T T C T T
S 0l Daaar)+ [ Daao(f)+ [ Daan(r™)+ [ Daao(s)
0 0 0 0
1
+Col [ 908" = V. fquizn i (108)

where x is a cutoff function. In light of fOT Do2o(f™) + fOT Da.2.0(f) < 00, and
by (25), fOT Vo f™ = Vo fIX(o|<rll72 15 uniformly bounded. Hence

T
lim Vo f™ = Vo fIX(oj<r)ll T — 0
0

n—oo
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from f* — f in L?. We thus deduce that

T
[0y

O Jar|+p<1

2
=0

3
H42

’7 !
05 1™ = 05 £, wior g0
T (v)

by first choosing n sufficiently small, then R sufficiently large and letting n — oo.
We thus complete the proof of (106).

Now from (106), for any e small, we can find N(g) such that for n > N,

/ Tl () — A(s))ds < <. (109)
0

Our strategy of establishing (101) is to separate two cases of n > N and
n < N. For n < N, by (105),

t
Enta(F7H) + / Do (f+)ds
0

< 1 [ Darals + Cnaalio) + G [ Aol ) + Exta7")
4 0 0

for 1 < n < N — 1. We apply the Gronwall Lemma 4 to . ,(f"*1)(t) with
A=A,(s) and

s 1 s t ’

B = —/ Dz;l,q(f"+1)d7+1/ Dz;l,q(f”)dT+0152;z,q(f0)+Cz/ An(8)€2;1,4(f™)
0 0 0

to obtain

52;l7q(fn+1)(t)
Ji An(a)ds / An(s) x
0

S 1 S S
x{ /0 Do ()i + /O Dot o f")dr + CilEna(fo) + /0 An(s)é’z;z,q(f”)]}

1 t t
— Dz;l,q(fnJrl)dT =+ 1 / DZ;l,q(fn)dT + CISZ;Z,q(fO) +C / An(s)gzl,q(fn)-
0 0

IN

0

By the boundedness of fOT Apn(s), fot An(8)E21,4(f™") < Csupgeiar Eai,4(f").
Collecting terms, dropping — [, Day,q(f")dr above, we use induction over n
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to get

IN

IN

<

<

T
swp Ea1g( 0+ [ DaalF)dr
0<t<T 0

T
G { sup Ea,4(f") +/ D2;l7q(fn)d7'} + Ci€21,4(fo)
0<t<T 0

0<t<T

T
012 { sup gQ;Lq(fn_l) +/ D2;l7q(fn_l)d7} +[Ci + Cl2]52;l7q(f0)
0

T
C’ln+1 { Sup 52;l7q(f0) +/ D2;l7q(f0)d7} + [Cl + ---C;Hl]&;hq(fo)
0

0<t<T

O 2E21,4(fo), (110)

as f = 0 from (70). This conclude the case for n < N.
For n > N, we define for K > N :

Au(t) = max Exiq(f")

and our goal is to show uniform bound for X (¢). By (105) and (109), for n4+1 <
k, we replace A, by A to get

<

<

t
Entg (1) + / D o(fH )ds
0

1t ¢
- Ds. ™d Ci&s. C A, (8)X
4/0 2:0,q(f")ds + CiE2,1.4(fo) + 1/0 (s)Xi(t)

1 t t
1 Doy o(f")ds + Cia..4(fo) + C1 [ A(s)Xk(t) + Cie sup Xi(t).
0 0 0<t<T

We iterate such an inequality n + 1 back to n..., N to get

IN

IN

IA

IN

t
Enng(F) + / Daag (™) ds
0

: / D o(f")ds + Co{Erag(fo) + / A(s)Xe() + sup_Xi(t)}
0 0 0<t<T

t t
& [ Panatr s+ 0410 { gt + [ A@x0 +e s 200}

0<t<T
1 t N n+1 1 t
— | D, — . A(s)X, up A
o | Ponaln s 3 G0 {Eanal) + [ A + 2 sup 2000}
t
Cl,Neg;z,q(fo)jLCl{/ A(s) X (t) + & sup Xk(t)}, (111)
0 0<t<T
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from the estimate for fot Doy q(fN)ds. We now take maxy<n<p to get

Xi(t) < CinE2,4(fo) + C {/0 A(s)Xk(t) +¢ sup Xk(t)} .

0<t<T
From the Gronwall Lemma 4, we obtain from fOT A(s)ds < +o0:

Xy (t) < CinE2,4(fo) + Cre sup Xy (t).
0<t<T

With e sufficiently small we obtain

sup Ay (t) < CpnE2.4(fo)-
0<t<T

Plugging this into (111) yields

t
/ Do (f"T)ds < CinEayq(fo)
0

and we complete part (3) and the proof of (101).
We now turn to part (4) and (102). We shall use an induction over m. We
assume that (102) is valid for m — 1 and all [ :

T
sup gmfl;l;q(fn+1(t)) +/ Dmfl;l,q(fnJrl)dS < P—1,(Em-1;1,4(fo0)) (112)
0<t<T 0

for some increasing function P,,—1,;(0) = 0. Clearly, this is valid for m —1 =2
in light of (101).

We follow the same argument as in the proof of (101). Collecting terms and
using the induction hypothesis (112), we summarize (88) as

t
Emita () + / Dt (f+)ds
0

< i/o Dm;hq(f”)dS‘Fgm;l,q(fO) +Cl,m/0 An,m(s)[gm;l,q(fn) +gm;l,q(fn+1)]
t

JrCl,m/ [’Dm—l;l,q(f”) +Dm_l?lyq(fn+1)][5m—1;l,q(fn) +€m—1;l,q(fn+1) +1]
0

< i /0 Dinitg(f")ds + Emipa(fo) + Crim /0 Ao () Emita ™) + Emata (F )]

+C1m P21 (Em—11,4(f0)) + Pm—1,1(Em—151,4(f0))]
1/ ¢
< 1/ Dm;l7q(fn)d8+Pm,l(gm;l7q(f0))+Cl)m/ An,m(s)[gm;z,q(f")+8m;l,q(f"+1)].
0 0
Anm = > {Hwﬁ,f |a7%

where P, 1(2) = Cim[P}_1(2) + Pm—1.(2)] + z and
2 }
3
lo’ | +18" <[ %] E

IV oo+ 110068 oo + 17 mres + 1] ies + 1.

2
’
+ 0% n+1 il B
Hi H GRS T
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The major step is to show that

T T
im [ Ay (s)ds — / A (s)ds (113)
with
2
Am =2 Z |3§/f|c,’w(<a'>,§') , TIVOlloo+H10el oo+ fI i1 g HIFI ooz +1-
v HZ

le’[+]8" <[]

Note fOT Ay, < 00 by (112). Moreover, f* — fin L? by m — 1 > [2] + 2 for
m > 3,

n __ n __ n o__
o2 15" = fll yogieg <0 max |If" = fllzm-2 + Gy max [|f* =~ fllz2 — 0

by choosing first 1 small then n — oco. Similarly, as in (108),

T
[ g -ogs, o

O || +187<[ 2]

2

i
T T C T T
S 77[/0 Dmfl;l,q(fn) + /0 Dmfl;l,q(f)] + RfZ[/O ’Dmfl;l,q(fn) + A ’Dmfl;l,q(f)}
T
+Cn7R[/O Vo f™ = va]X(ng)qu[%]]-

We note that [] < m—2form > 3, from (112), fOT ||[va"fvvf]x(‘v|§3)||§{m_1
is bounded for fixed R and

T
lim i Vo f" — va]X(MgR)HiI[%J — 0.

n— oo

We therefore conclude that (113) is valid and (102) is proven exactly as in part
(3).

We note that from the maximum principle for the original (71) F™ > 0 for
alln=0,1,2.... m

We summarize the local well-posedness as n — oo.

Theorem 12 Assume that Ea.2.0(fo) is sufficiently small. Then there exist 0 <
T <1 and M > 0 small such that there is a unique solution F' = p+ \/uf >0
with

Ea2,0(f)(t) + /Ot Do o(f)(s)ds < E2(0) < M.

In general, if 0 < t < T, there exists an increasing continuous function Py, ;(+)
with Py, ;(0) =0 such that

Emita(F)(0) + / Do () ()5 < Pt (Emnt g (fo)
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The uniqueness is standard with the strong bound &s.20(f)(t) < co. To
establish Theorem 12 for &,,.1,(fo) < oo and p + \/fo > 0, we first choose

a velocity cutoff function x such that (1 — %) fox(%) has compact support
in v and Em;l’q(fgx(%)) < 0o. We then choose a smooth approximation of
(1- %)fox(%) as f¥. For fixed R, we can choose f§ such that

[l

Emta (1= i = 1)) =0 (114)

We therefore can construct a solution for the system with initial condition f¥
thanks to Lemma 11. We finally take limits as k¥ — oo, and R — oo to construct
a solution for the desired initial datum fjy.

4 Time Decay and Global Solution

In this section, we establish our main theorem. We first summarize the mixed x
and v derivative estimates by applying Lemma 10 with f* = f**! and ¢" = ¢:

Lemma 13 Let fo € C° and assume f is the solution constructed in Theorem
12. Assume for M sufficiently small,

Ex00(f) < M,

(1) We have
Exvalf) + / Dy f)ds (115)

t t
< 01{52;l,q(fo)+/0 > |\3“f|\§+/0 [D2:2,0(f) + [[VQlloo + 1104l loc]€2;1,4 (f) s}

| <2

(2) If m > 3, we have
t
Emita(f) + / Dot g (f)ds (116)
0

< CumlEanglfo) + / Donr0(F) + [Va6lloo + 1060l oo EmitalF) + / S s

0 0 lal=m

+ /Ot[gm—l;l,q(f) + 1]Dm—1;l,q(f)}'

We note that since fo € C2°, the sequence f,, in Lemma 11 satisfies sup,, Em.1,q(f™) <
+oo for any ! and any m (the bound may depends on I,m). This implies that
for f" is compact in all &, 4 norm so that we can take n — oo in Lemma 10.

We also have used (41) and the fact 3°, <, \Iu%aam? <0 fl)2.
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We next investigate the pure = derivatives to control fot [|0%f]|2 above. We
take 9% of the Vlasov-Poisson-Landau system (8):

0+ v Vo F Vet Vo]0 fe £2V,0% - v\/fi + Lp0" f
= FVi0-00"fLF Z Cat 0"V - 00" fo

a1 <o

+ Y CR10*TNV,0 - V0™ fa + 0°T+(f, f).

a1 <o

Lemma 14 Assume Let fo € C° and assume f is the solution constructed in
Theorem 12 with E2.0.0(f) < M. Then for |a| =0,1,2:

d ei2¢> o™ 2 )
A2 Jrore
< %;/MAWAF+¢M2:|W7%- (117)

lo’|<|al

+ [worson)

For |a| = m > 3, we have for any n > 0,

d i2¢ao¢f 2 N
/S oo

< Z/wmwyu¢Mjwwﬁ+nZHwﬂﬁ
+

la|=m

+Cm,n[D2;2,0(f)gm;l,q(f) + {1 + 5m71;l,q(f)}pmfl;l,q(f)]~ (118)

Proof. We sum over + of (76) to (86) with f* = f"*1 and with w = 1
(I = |a|+]8]).- Note we can combine —A — K = L. From the continuity equation

0%py + Vg - 0% =0 (with p= [ /u[f+ — f-]dv and j = [v\/u[fy — f-]dv)

+ [worsong)

d
—2 [ V.00 olon - o) = 4 [ Voo
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and we deduce:

d 6:|:2¢(aaf )2 N . .
i V‘é?i#va of |+ [wors.onp)
= Z/ei2¢¢t(aafi)2 (119)
+
+22/3i2¢v13a¢ /0% fo (€2 1) (120)
+
‘*’Z/(l — )0 fLLL O f (121)
+
+Z/€i2¢5”‘fi3“1“i(f, f) (122)
+
+ > Cf;‘l/eﬂff’a&fiaa*%vl.gb~v,ua@lfi (123)
+,a1<a
_ Z Cgl/ei2¢aafiaa7a1vm¢'vaa1fi‘ (124)
+,01<a

We estimate each term of (120) to (124). From |1 — e*?| < |||l <
VEi20(f) £ VM, |IV20¢ll2 < 10°fllo and [[op/*0* fl2 < [|0%f]+, then

clearly

(120) S VM[10° £1[3.-
By Lemma 5 of [G1], we have
(121) S VM||o*f]5.

We apply Lemma 7 to estimate (122) and Lemma 9 to estimate (123) and (124)
to conclude the proof. m

We now establish a positivity of L in a ‘differential form’ [G3]. Recalling
(8), we rewrite

{0 +v- Voifs F2HE v}t Lef = Nz(f) (125)
= :FE'vaii{E'v}fiJrri(fvf)'

Proposition 15 Assume that for 0 <t < T, f is the solution to the Vlasov-
Poisson-Landau system (8) and (9) with

52;2,0 (t) S Mv

sufficiently small. Then for m > 0, there exists a function G(t) with

G S [ X NofI? | D ooV, Pfl? (126)

lee|=m lee|=m

42



such that

Y VL0 PfII5 + 110°V.El[3] (127)
|al=m
< gGt V. 0%(I — P)f||2 + [|0*(I — P)f||* + ||0“ Ny ||
S LG+ D IV = P)fII; + |l )G + 110Ny |-
la]=m

Here 0“N)| denotes the L? projection of 0*Ni(f) with respect to the subspace
generated by [\/t, vi\/I, vivj\/1t, V5| v|? /2] Furthermore, for e small,

aG
> /<LVx8af7Vw6°‘f>daxZ€ > {IVa0 15 = 11 = PO fI[5 = [10° N ()13} —e
|a]=m |a]=m

(128)

Proof. The proof of this lemma is now standard in light of methods developed
in [G2], [G3] (with € = 1). We denote the kernel of L as

Pr= () G )+ ()

so that ||V,0%b|[3 + ||V20%c|3 + [[Va0%a|5 ~ [|[PVo0° f|[3.

The first step is to use local conservation laws to estimate the temporal
derivatives of PV,0%f in terms of spatial derivatives. Recalling (8) and (125)
we denote

{0 +v-Votfe + Laf = £2{E v}/u+ Ne(f).

Upon taking vector inner product with \/ﬁ(é),\/ﬁ(?),v\/ﬁ(i) and |v|2\/ﬁ(})
(the null space of L, see (34)), we obtain local conservations of masses, total
momentum and total energy as in Eq. (6.5) in [G3]:

(podhas + padhe) + 2220 = (NL ), (129)

22000 +p2VI[a;+“4+2p4§zc = <—v~Vx(I—P)f7v\//7<1>>+<N,v\/ﬁG>>,
. 2

Opifar +al+ 20,0+ 220 — v v PVa([L ) a0

Here p; = [ |v|*udv and +E-v,/i makes no contribution in the process. Subtract
the + from — parts in Egs. (129), then take

Py X [Eq.(129) 4+ + Eq.(129)_] — p, x Eq.(130)
to get:
podilay —a-] = (Ny—N_,/n),

(Pops = P2)0k[ar +a-] = (N +N_,[pg = polv’ly/i) + pa(v - V(I = P)f, IUIQWG)%
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Since pyps — p3 > 0, py > 0, we solve for dyay and 9,0%as. We then take 9% of
Egs. (129) to (130) to get:

10:0%ll2 S [[(I = P)V20 fll2 + (0% N2, (131)
10:0%l2 - S [[V20?bll2 + [|(I = P)Vo0* fllo + ||0% N|f2, (132)
10:0%0]l2 < [IV20%all2 + |[V20%cllo + [[(T = P)V0% fll5 + [[0 Nx[(333)

The next step is to use so-called macroscopic equations to estimates a,b
and c. In fact, following the same procedures in Lemma 6.1 [G3] (with ¢ = 1),
for b and ¢ in (132) and (133), we obtain for any 7 > 0:

[} [ dG c leY
IV20°BlI5 + [Va0%el[f < = +nl[PV.0°f]3 (134)

+C[IIVO* (I = P)SII7 + 10T = P)fII7 + |10 N]l2],

with some Gpe < ||0“f|| - ||0*VPfl|l2. In the macroscopic equation (6.10) of
[G3], V;a should be replaced by V,at F E. Taking V,- and inner product with
ay with revised Eq. (6.10) in [G3], and using the fact 0“E = —V9%¢ [G4]

80 = [[o° 11~ 0" ) v = (0. \/ﬁ(_ll)> — [0°a; — 6%a_]py,
we deduce that

IV axlf3 + (10" El[3 (135)

dGU« [e] [e} [e} [e}
< 2 CUIVL0|E + VO™ (I = P)fIIz + [10°( = P)fIIZ + (10N |lo],

for some G, S |[0%f|| 1|0V Pf|l2. Assume C' > 1. We take 2C x (134) + (135)
to absorb C||V,0b||3 from the right hand side:

CUIVo0°b3 +2C|[Va0%cl§ + |V axlf + |10 Bl
d2CGp. + G,
< BTGl o py.on s

+2CC, + O)[IVO(I = P)fI[5 + |01 — P)f[5 + |0 N<||2]-
By choosing 7 sufficiently small, we obtain

IV0°bl[3 + [[V20%¢l[3 + ||V0%ax|l5 + [0 E]|3
_ 220Gy + Gu]

S il HIVOU(I = P)fI[7 + 10T = P)fI[5 + |0 Nx|[5.

We therefore deduce the lemma by summing over |a| = m.
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The proof of (128) follows from (35) and (127):

Z /Lv O*f, V0 f)da

lee|=

z > U= PV flI2

la]=m
(1—2) > =PV fI2+e > [I(I - P)V,0"fI2

|a|=m la]=m

dG
(1—c¢) Z (I = P)V,0%f||> +¢ Z |PV, 6“f||2—s —¢ Z ||(I — P> f||?

lee|= lee|= lel=

—€ Z 10“ N+ (/)3

lel=

2 ) Ve aaf||2—ef—s Z (I =P fl2 == Y [[0°N=(£)II3

|a]=m |a]= la]=m

vV

forl—e>c. m

The following proposition establish the crucial decay to obtain global solu-
tion. It is important to only use up to first order derivatives of f to extract
strong decay with a £2.90(t) bound.

Proposition 16 Assume that for 0 < t < T, supg;<r Ea00(t) < M suffi-
ciently small, and

T
/0 160(8)loods < 1. (136)

Assume conservations laws (12), (13) and (14) are valid. Then there exists
C; > 0 such that

Ve @®lloo + Y 1107

; —2142
Bz < G {1 + 4l} sup 1/ &2.1,0(f(s))

la|<1 0=s<T
2
IVead@)lloe + S 10°F@)ll: S e sup \/Enug(f(s). (137)
lal<1 0<s<T

Proof. Summing over |a| < 1 in (117), by the Gronwall’s inequality, we have

d i2¢ 8a
- o= C S 14l (s >de{/ Z 200 f1)? S /IV(?%I )

la|<1 || <1

= C S 1]l (s)ds Z/Laaf,aa

la|<1

S Ve Ol lledl=s 37 e | 7.

lf<1
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for some constant C' > 0. Since e~ Jo l1#ell=(s)ds . 1, Applying (35) for « =0
and (128) for |a| = 0 to L, we obtain for small ¢ > 0

. +2¢ (A
VALY (il 2 o fe e [ 572 CEOE L 5 figaepy

| <1 laf<1 laf<1

. G
HI(I = P)fIl5 +e D 110°fI2 = elltd = P)fIl5 — =" — el N<|l3

dt
|a]=1
d |16y so(s)ds eF20(9° f4)? o
> e ol {/Z — Z/Iva 9%} — G (1)
la|<1 la] <1
+e{ll(T = P)FI2 + D 110°FIZY — el Ny 113, (138)
|a]=1

for some ¢ small. It is clear from Lemma 7 of [G1] that [|N)|||3 < M]||f||2, and
from standard arguments in [G2],

1P flle S IVaPfllo (139)

thanks to the conservation laws (12), (13), (14) with | [ Pf| < v/ M||Pf||> and
the Poincare inequality. Since e*2? <1 and ||[VO%¢||2 < ||0%f||2, by (126), we
can choose ¢ small but fixed such that

Y(t) = e Jollodleds 37 {/Eﬂ%ﬁi)z—l—/waaqﬂﬁ}—sG(t)(MO)

| <1

> 1o fll3

laf<1

S

By (103) and (104) with ¢ = ¢ and f™ = f, we have

18:6(t)] oo + V20 (B)llso + Y N10°F(Dl2 S Y (). (141)

laf<1

With such e, we therefore conclude from (138) that

Y426 Y 10°fIla S VM Y (0% fIl;
lal<1 o] <1
where 0 = d(g). For M sufficiently small, we finally have
s S lon s <o. (142)

lal<1

We now establish polynomial decay by applying the interpolation method
developed in [SG1]. We observe from Holder’s inequality with p = jﬁ%ﬁ and
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g =4l —3:
{Jiese} - { / @;g@ﬁf‘%‘waﬂ?}
< {/ <vl>|aaf|2}iég {/ <v>4"43‘“f|2}4l13-

From (19) and an interpolation, we obtain:

1
leY 2 > T 1Ax £]2
I F

> { / |3“f|2}4l_4 { / <v>4l4|8°‘f2}
> { / |8‘lf|2}4l_4{ sup fg;z,o<f<s>>}_“_4
0<s<T

as 4l — 4 > 0. We therefore have for some other § > 0,

) T 11—12
dY+&*W4{sm>&mU®D} <0.
dt 0<s<T

It thus follows

11 d o
Y -1 Y +§ sup 52;[,0(8) <0
dt 0<s<T

and by integrating over time, we obtain:

(4l — 4){Y74117*4(0) — Yiﬁ(t)} < _6t{ sup 52;1’0(][(8))}414 -

0<s<T
But from (140), Y/(0) < €2;1,0(0) < supg<s<r E2.,0(f(8)), we have

(i -yt 2 &{ sup sz;z,ou(s))}_“+<4Z—4>{Y—4f4<o>}

0<s<T

> (604 (4l - 1)) { sup ez;l,o<f<s>>}“4 |

0<s<T

By (141), we conclude by taking (41 — 4)-th power (positive) of both sides.
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We now prove the stretched exponential decay (137) by the splitting method
in [SR2]. For any 6 > 0,

1
S22 / Lo p2an = / N /
() el<or/s |00 /e

t_1/3

> L 0% fPdo
|v|<6¢1/3
-1/3 t_l /3
- /\80‘f| dv — 0% f 2w
[v]|>6t1/3

7571/3 —1/3

> Loy - / 0% £ 2dv,

By (142), for some other § > 0, £~ ° < |v| and ealvl’ ¢—a0°t ** > 1, so that

d St— 1/3 til/d
—Y + ——Y(t) < 0" fId
il T Y = |v\zet1/3| iy
~1/3
~1/3
¢ L [t
t=1/3 —q02t2/3
s g ¢ sup Ea.,4(f(s))-
0<s<T
We therefore have
+2/3 /3 til/g
YO < D ey e 50)
+2/3 t—1/3
< 635T7Q92t2/3T sup 52;l,q(f(5))'
0<s<T

By (140), Y(0) < supg<s<r E2; l,q(f(s)), we obtain by integrating from 0 to ¢ :

t2/3 $2/3 —-1/3
Y(t) < { _ 35 637529 —q9232/359d5} sup gz;l)q(f(5)>
0<s<T
542/3
< Ce 7T sup Eaug(f(s)),
0<s<T
if 0 large that [;° el -a0%5"" " 2 s < 0. m

We are now ready to prove the main Theorem 1.

Proof. We first choose smooth initial data fo € C° and Fo = p+ \/info > 0.
Step 1. Global Small Es.9 9 Solutions.
We denote

T*:Sup{gg;go / D220 s<Mand/ HVmgb Hoo S<\/ }
t>0
(143)
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Clearly T\ > 01if £2.90(fo) is sufficiently small from Theorem 12. Our goal is to
show T, = oo if we further choose £2.2 0(fo) small.

In (117), by [;
get from (35):

(s)ds < 1, we use the standard Gronwall lemma to

> {irse [rwororb+ [ a-moosiz

la|<2 la|<2

~

t
< Eano(fo) + VM | Doy ol(f)ds.
0

Asin (138), we note ||0* N4 || S VMDa.s0(f) for |a| < 2 from Lemma 7 in [G1]
and —A¢ = [[f+ — f-]\/mdv. We apply Proposition 15 for 1 < |a| < 2 with a
fixed and small € in (128) so that

t
S ll0° f13+ / e 12+ / 1U=PIIE S Exolfo)+VIT [ Daao(f)is

o] <2 1<|a|<2

Thanks to conservation laws (12), (13) and (14), ||Pf|ls S ||[VaPfllo asin (139)
and we deduce

Sz + Y / 10711 5 Exaofo) + VAT | Daaa()is

|| <2 || <2

For v M sufficiently small,

CEEDS / 16FI2 S Eam0(fo): (144)

|| <2 o] <2

We take a large constant C' x (144) + (115) to absorb fot > al<a 10° f||2ds :

82;l7q(f) +/0 DQ;Z,q(f)dS

S CGiléz4(fo) +/0 [19:¢()loo + [[Vad(5)lloo + D2;2,0(f)]E21,4(f)ds]-

Since fo

($)loo + [IVa®(8)]loo + D2:2,0(f)]ds < 1, Lemma 4 implies

t
Entaf) + /0 Doty (f)ds < Ciéan gl fo). (145)

In particular, we choose [ = 2 and ¢ = 0 to conclude

Ea2,0(f)(t) +/O Da.20(f)ds S E2:2.0(f0)-
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Combining this bound with Proposition 16, we obtain

JROZICINE OIS olm, Exalf) | 15 5 Ve

Upon choosing the initial condition €a.2 ¢(fo) further small, we deduce that for

t T,
5z;z,o(f(t>)+/0 Da2,0(f)ds < % < M and /0 {1V ()| so+110:6(5) oo }ds < % < M.

This implies that T, = oo and the solution is global.

Step 2. Higher Moments and Higher Regularity.

We shall prove this via a induction of the total derivatives |a|+|3| = m. By
(145), clearly the theorem is valid for m = 2.

Assume |a] = m — 1 is valid for (30). Summing over |a| = m in (118), by
(35), we deduce

> {iesie+ fiveraip}+ /OtI(IP)f)aflli

la|=m la|=m

t
< Emaalfo) + (VT +1) / S s

la]=m
+ [ Paao(Emsa$) + Conn [ L+ Eneria PPl
0 0

We now integrate (128) with m — 1 from 0 to ¢. We note that from Lemma 7 of
[G1]

Z HaaNng S Cmm{l+gm—l;l7q(f)}pm—1;l7q(f)v
la|<m—1
Yo U =P)l; S Dm-riglf)-

la|<m—1

From (126) with m — 1, we have

Git) S Y @I+ Yo o flF
|a|=m |a]=m—1
S D DI + Em-1q(f(1))
|a]=m
5 Z ||aaf(t)||2+P’m—l,l(gm—l;l,q(fo))
|a]=m

50



by the induction hypothesis. Choosing e small in (128), we obtain:

804 2 K 8a 2
S f|2+|a2 / 10° 12

la]=m
S Emaa(fo) + Pre11(Emiq(fo)) + W"‘W/ Z |0 f||2 /D2,2,0 Emitg(f)
la|=
t
+Cl,m,n/0 {]— + gmfl;l,q(f)}pmfl;l,q(f)
S Enaalfo)+ WA +0) 30 107112+ [ PaoolNEmalh)

lee|=m

+Cl,m,77[1 + Pm—l,l(gm l q(fO))] m—1 l(gm;l,q(fo))

Here P,,_1, is a continuous, increasing function from the induction hypothesis.
For M, n sufficiently small

t
T {|aaf|2+ |vaa¢|2}+ [ ese
/ |a_m‘/0

|a]=m

5 Cl,m[l + Pm—l,l(gm;l,q(fo))][gm;l,q(fo) + Pm—l,l(gm;l,q(fo))]

t
+ [ Daao(Demaa(h), (146)
0

where we have used gm 1; l,q(fO) < grn l,q(f(]) m—1 l(gm—l;l,q(f())) S P’rn—l,l(gm;l,q(fO))-
Multiplying a large constant C' x (146) + (116) to absorb fg 2 laj=m [0 f]]2
n (116), we obtain:

m l,q / Dm i q ,S Cl,m[l + Pm—l,l(gm l q(fO))][ m;l q(fO) + Pm 1 l(gm;l,q(fo))]
t
+Cl,m/ Dmfl;l,q(f)gm;l,q(f)‘
0

We use Gronwall Lemma 4 with fot Din-1:1,4(f)ds S Pr—1,1(Em—1.1,4(f0)) to get

m l,q / Dm l,q

< CleCinPa- 1<smm<fo>>[1 + Pt Emit g Fo)NEmiao) + Prct.Emital o))
= Pui(Emq(fo))

This concludes the theorem for fy € Cg°. For a general datum fo € &y, We
can use a sequence of smooth approximation f(’f as in (114) and take a limit. m
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