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Abstract

The classical Vlasov-Poisson-Landau system describes dynamics of a
collisional plasma interacting with its own electrostatic �eld as well as
its grazing collisions. Such grazing collisions are modeled by the famous
Landau (Fokker-Planck) collision kernel, proposed by Landau in 1936. We
construct global unique solutions to such a system for initial data which
have small weighted H2 norms, but can have large Hk(k � 3) norms with
high velocity moments. Our construction is based on accumulative study
on the Landau kernel in the past decade [G1] [SG1-3], with four extra
ingredients to overcome the speci�c mathematical di¢ culties present in
the Vlasov-Poisson-Landau system: a new exponential weight of electric
potential to cancel the growth of the velocity, a new velocity weight to
capture the weak velocity di¤usion in the Landau kernel, a decay of the
electric �eld to close the energy estimate, and a new bootstrap argument
to control the propagation of the high moments and regularity with large
amplitude.

1 Introduction

In the absence of magnetic e¤ects, the dynamics of charged dilute particles (e.g.,
electrons and ions) is described by the Vlasov�Poisson-Landau system:

@tF+ + v � rxF+ +
e+
m+

E � rvF+ = Q(F+; F+) +Q(F�; F+);

@tF� + v � rxF� �
e�
m�

E � rvF� = Q(F+; F�) +Q(F�; F�); (1)

F�(0; x; v) = F0;�(x; v):

Here F�(t; x; v) � 0 are the spatially periodic number density functions for the
ions (+) and electrons (-) respectively, at time t � 0, position x = (x1; x2; x3) 2
[ � �;�]3 = T3, velocity v = (v1; v2; v3) 2 R3, and e�; m� the magnitude of
their charges and masses, c the speed of light. The collision between charged
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particles is given by

Q(G1; G2)(v) =
c12
m1
rv �

Z
R3

�(v�v0)
�
G1(v

0)rvG2(v)
m1

� G2(v)rv
0G1(v

0)

m2

�
dv0

(2)
where � is the famous Landau (Fokker-Planck) kernel [G1]:

�(u) =
1

juj

�
I � u
 ujuj2

�
(3)

and c12 = 2�e21e
2
2 ln�; ln� = ln(

�D
b0
); �D = (

T
4�nee2

)1=2 being the Debye shield-

ing distance and b0 = e2

3T being a typical �distance of closest approach� for a
thermal particle [H]. The self-consistent electrostatic �eld E(t; x) = �r�, and
the electric potential � satis�es:

��� = 4�� = 4�
Z
R3

fe+F+ � e�F�gdv;
Z
T3

�(t; x)dx = 0: (4)

It is well-known that for classical solutions to the Vlasov-Poisson-Landau
system, the following conservation laws of mass, total momentum, and total
energy hold:

d

dt

Z
T3�R3

m�F�(t) = 0;

d

dt

�Z
T3�R3

v(m+F+(t) +m�F�(t))

�
= 0;

d

dt

�
1

2

Z
T3�R3

jvj2(m+F+(t) +m�F�(t)) +
1

8�

Z
T3

jE(t)j2
�
= 0:

Moreover, we also have the following celebrated H-Theorem of Boltzmann

d

dt

�Z
T3�R3

(F+(t) lnF+(t) + F�(t) lnF�(t))

�
� 0: (5)

It is our purpose in this article to construct unique global solutions for the
Vlasov-Poisson-Landau system (1) and (4) near global Maxwellians:

�+(v) =
n0
e+
(
m+

2��T0
)3=2e�m+jvj2=2�T0 ; ��(v) =

n0
e�
(
m�
2��T0

)3=2e�m�jvj2=2�T0 :

For notational simplicity, we normalize all constants in the Vlasov-(Poisson)-
Landau system to be one. Accordingly, we normalized the Maxwellian as

�(v) � �+(v) = ��(v) = e�jvj
2

: (6)

We de�ne the standard perturbation f�(t; x; v) to � as

F� = �+
p
�f�: (7)
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Let f(t; x; v) =
�f+(t;x;v)
f�(t;x;v)

�
; the Vlasov-Poisson-Landau system for the perturba-

tion now takes the form

f@t + v � rx � E � rvgf� � 2fE � vg
p
�+ L�f = �fE � vgf� + ��(f; f)(8)

��� =

Z p
u[f+ � f�]dv (9)

with
R
T3 �dx = 0: For any g =

�
g1
g2

�
; the linearized collision operator Lg in (8)

is given by the vector

Lg �
�
L+g

L�g

�
� � 1

p
�

�
2Q(�;

p
�g1) +Q(

p
�fg1 + g2g; �)

2Q(�;
p
�g2) +Q(

p
�fg1 + g2g; �)

�
: (10)

For g = [g1; g2] and h = [h1; h2]; the nonlinear collision operator �(g; h) is given
by the vector

�(g; h) �
�
�+(g; h)

��(g; h)

�
� 1
p
�

�
Q(
p
�g1;

p
�h1) +Q(

p
�g2;

p
�h1)

Q(
p
�g1;

p
�h2) +Q(

p
�g2;

p
�h2)

�
: (11)

By assuming that initially F0� has the same mass, total momentum and total
energy as the steady state �, we can then rewrite the conservation laws in terms
of the perturbation f asZ

T3�R3

f+(t)
p
� �

Z
T3�R3

f�(t)
p
� � 0; (12)Z

T3�R3

vff+(t) + f�(t)g
p
� � 0; (13)Z

T3�R3

jvj2ff+(t) + f�(t)g
p
� � �

Z
T3

jE(t)j2; (14)

In an attempt [G1-2] to construct global smooth solution near Maxwellian
for the Vlasov-Poisson-Landau system, the author initiated a nonlinear energy
method for a general dissipative problem:

@tg + Lg = N (g): (15)

We denote jj � jj2 to be the L2 norm. Upon taking L2 inner product with g; we
obtain

1

2

d

dt
jjgjj22 + (Lg; g) = (N (g); g): (16)

Global solutions with small L2 norm can be constructed if one can identify a
dissipation rate jjj � jjj such that the following estimates can be established

(Lg; h) & jjjgjjj2; (17)

(N (g); g) . jjgjj2 � jjjgjjj2: (18)
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For jjhjj2 << 1 we obtain

1

2

d

dt
jjhjj22 + �jjjhjjj2 � 0;

with some � > 0: This implies global uniform bound for jjgjj2 and hence stability.
Several remarks are needed: (1) Usually higher order Sobolev norms are needed
to close the argument. (2) Such a dissipation rate jjj � jjj satisfying both (17)
and (18), if exists, usually is unique up to a constant. The proof of (17) and
(18) can be very challenging [G1] [GrS1-2]. (3) Such an approach is designed
to treat cases when jjj � jjj is weaker, or it can not be compared with jj � jj2 so
that standard spectra analysis and semigroup approach is di¢ cult to apply. (4)
In many interesting applications, such (Lg; g) can not control full jjjgjjj2; and
one has to control the missing part via further study of the nonlinear equation
(15). In particular, in the context of Landau or Boltzmann equations, the linear
collision operator L as in (10) can be shown to be positive de�nite ([G1], [SG1-3])
along the nonlinear dynamics even it has a kernel.
Such a �exible approach turns out to be robust, leading to constructions of

global solutions to several di¤erent applied PDE [G1-5], [GS], [GrS1-2], [SG1-
3], [GT], [Ha]. Unfortunately, despite these advances and many attempts, the
original motivation in this program, the stability of Maxwellian for the Vlasov-
Poisson-Landau system has remained out of reach, as pointed out in [SG3]. For
other work related to the Landau equation from di¤erent approaches, see [AB],
[AV], [CDL], [HY], [L], [V], and [Z1-2] among others. Let w(v) � 1 be a weight
function and jj � jj2;w to denote the weighted L2 norm. We de�ne

jjf jj�;w � jjf jjH�
w
� jjhvi� 1

2 f jj2;w+ jjhvi�
3
2rvf �

v

jvj jj2;w+ jjhvi
� 1
2rvf �

v

jvj jj2;w
(19)

with hvi =
p
1 + jvj2: It is well-known that jjf jj� � jjf jj�;1 captures the dissi-

pation for the Landau kernel [DL], [G1]. There are two intrinsic di¢ culties [G1]
associated with the Landau kernel: the vanishing factors hvi� 1

2 and hvi� 3
2 make

jjf jj� �soft�, and their di¤erent vanishing rates along di¤erent directions makes
jjf jj� non-isotropic for rvf .
There are two major mathematical di¢ culties in the study of stability in

Vlasov-Poisson-Landau system. The �rst di¢ culty is created by the (innocent
looking!) nonlinear term E � vf� in (8). Such a term comes from the factorp
� in our linearization F� = � +

p
�f�; which is the only known choice so

far capturing the linear dissipation rate of L, a linear analog to the entropy
production in the fundamental Boltzmann�s H-theorem: Hence, the presence of
the term E � vf� is a basic feature of interaction between the electric �eld and
the particles in the near Maxwellian context. Upon multiplying f� one hopes
to bound Z

jvEf2j (20)

in terms of jjf jj2 � jjf jj2� (19). The electric �eld E = Ef behaves nicely, but
the extra velocity factor v makes the control by jjf jj2� (which only controls

4



jjhvi�1=2f jj22 in (19)) impossible. In a simpler model problem [G2], the Landau
collision is replaced by the hard-sphere interaction so that

R
jvjf2 can be exactly

bounded by the dissipation rate of the hard-sphere kernel. In a relativistic
Landau collision kernel [SG3] [DL], the relativistic counterpart is

R
jE � p̂f2j;

where the velocity p̂ is bounded, and jjf jj22 is controlled by the relativistic Landau
dissipation. These two facts led to the resolution for the relativistic Landau
problem [SG3]. As a matter of fact, this extra v factor is the key reason that only
hard-sphere like interaction can be treated for the Boltzmann type of equations
in the presence if a force term. With even a bit weaker (softer) than hard-
sphere interaction, (20) is beyond the control of either the energy or dissipation
rate so that even the local in-time solutions can not be constructed within this
framework.
The second main di¢ culty stems from controlling the velocity v derivative

of f: Taking v derivative of (8), we estimate jjrvf jj22 via the standard energy
method. In this process, the free streaming term v � rxf produces a quadratic
term as: Z

rxf � rvf: (21)

It is well-known that rvf can produce growth in time in the kinetic theory. To
estimate (21) by the norm (19) is tricky; again due to the negative weight. In
the absence of the electric �eld E [G1], the author designed a weighted norm to
overcome this di¢ culty with more v derivatives associated with more negative
velocity weights. The �rst step was to take pure x derivative (with no weight
and no electric �eld E) and to boundZ t

0

jjrxf jj2�:

In the next step, jjhvi�1rvf jj22 (instead of jjrvf jj22) was estimated in the v�derivative
of (8), which contains a dissipation rate of jjrvf jj2�;hvi�1 : The weighted mixed
terms (21) could be bounded by (see (19)):Z

hvi�2jrxf � rvf j � C"
Z t

0

jjrxf jj2� + "
Z t

0

jjrvf jj2�;hvi�1 ;

which could be closed for " small. Such a weight disparity between x and v deriv-
atives of f has played an important role in treating soft potentials [G3][GrS1-
2]. Unfortunately, in the presence of E; this strategy fails completely becauseR t
0
jjrxf jj2� can not be estimated independently of rvf at the �rst step: In fact,

taking x�derivatives of (8) produces new contributionZ
Erxf � rvf (22)

Now this can not be controlled with a norm for rvf with a negative weight
hvi�1:
The key to overcome the �rst di¢ culty (20) is to realize that, instead of

treating E � vf� as a second order perturbation in (8), we need to combine or
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cancel it with the linear term streaming term v �rxf in (8), which also contains
an extra v factor! Upon using the fact that E = �rx� in this problem, upon
multiplying with e��; we can rewrite

e��[v � rxf� �rx� � vf�] = v � rxfe��f�g:

Indeed, such a perfect derivative leads no contribution in the integration (see
(74)). Even though such a spatial weight destroys the exact energy structure
from the Poisson equation, fortunately, new error contributions are of the typeR
rx� � v

p
�f�(e

�2�� 1) which can be controlled if � is small. Our observation
works for all forces given by a potential.
To overcome the second main di¢ culty and to control the v�derivative of

f; we need to design new weight function in v: In light of (22), we need to
assign same weight functions for both rxf and rvf , which seems to contradict
to the weight disparity for controlling (21). We observe crucially that jjf jj�
contains (weak) v�derivative of f: Hence rvf can be also viewed, not as a part
of jjrvf jj�; but as a part of jjf jj�;hvi2 with no v�derivative but with an extra
stronger weight hvi2: In fact, thanks to (19), we can estimated (21) byZ

rxf � rvf � jjrxf jj�jjf jj�;hvi2

provided jjf jj�;hvi2 is controlled at an earlier step. The weight disparity is not
between x and v derivatives, but between jjf jj�;hvi2 and jjrxf jj�: That is, less
derivatives of f should requires stronger weight. Since higher spatial deriva-
tives are associated with weaker velocity weight in our norm (26), more careful
analysis is needed for spatial Sobolev imbedding to close the energy estimate,
especially when we take one derivative (Step 2 in the proof of Proposition 6).
Such a cascade of weight takes advantage of the crucial feature of the Landau
operator: a weak gain of rv: Because of this reason, our new strategies do not
work for a soft potential with Grad�s angular cuto¤, even if it just a bit weaker
than the hard-sphere interaction. On the other hand, it is interesting to use
such a weight for the full inverse power law without angular cuto¤ [GrS1-2].
For notational simplicity, we use jj � jjp to denote Lp norms with weight

w(v) in T3 � R3 or T3; and jj � jjp;w for Lp norms with weight w(v): Let the
multi-indices � and � be � = [�1; �2; �3]; � = [�1; �2; �3]; and we de�ne
@�� � @�1x1 @

�2
x2 @

�3
x3 @

�1
v1 @

�2
v2 @

�3
v3 : If each component of � is not greater than that of

���s, we denote by � � ��; � < �� means � � ��; and j�j < j��j:We de�ne the velocity
weight

w(�; �)(v) � e
qjvj2
2 hvi2(l�j�j�j�j); l � j�j+ j�j; 0 � q < 1: (23)

The presence of e
qjvj2
2 would lead to stretched exponential decay. Recall (19).
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Let the instant energy and dissipation rate are:

Em;l;q(f)(t) �
X

j�j+j�j�m

X
�
jj@�� f�(t)jj2;w(�;�); (24)

Dm;l;q(f)(t) �
X

j�j+j�j�m

X
�
jj@�� f�(t)jj�;w(�;�); (25)

We remark that from the de�nition,

E0;l+m;q(f) � E1;l+m�1;q(f) � ::: � Em;l;q(f);
D0;l+m;q(f) � D1;l+m�1;q(f) � ::: � Dm;l;q(f); (26)

so that less derivatives of f demands stronger velocity weight. It is important to
note that due to the presence of (20), all our estimates can only be obtained with
(nonlinear) exponential weight of e�(1+q)�f (see Eqs (76) to (86) and Lemma
14): But if the electric potential jj�f jj1 is bounded (as we shall prove); such
weighted norms are equivalent to Em;l;q(f) and Dm;l;q(f); and we need to use
Em;l;q(f) and Dm;l;q(f) without the nonlinear weight to close our continuity
argument. Our main result is as follows.

Theorem 1 Assume that f0 satis�es the conservation laws (12), (13), (14)
with F0;�(x; v) = �+

p
�f0;�(x; v) � 0: There exists a su¢ ciently small M > 0

such that if
E2;2;0(f0) �M;

then there exists a unique global solution f(t; x; v) to the Vlasov-Poisson-Laudau
system (8) and (9) with F�(t; x; v) = �+

p
�f�(t; x; v) � 0:

(1) If E2;l;q(f0) < +1 for l � 2 and q � 0; then there exists Cl > 0;

sup
0�s�1

E2;l;q(f(s)) +
Z 1

0

D2;l;q(f(s))ds � ClE2;l;q(f0): (27)

Furthermore,

jj@t�(t)jj1 + jjrx�(t)jj1 + jjf(t)jj2 � Cl(1 + t)
�2l+2E2;l;0(f0); (28)

jj@t�(t)jj1 + jjrx�(t)jj1 + jjf(t)jj2 � Cle
�Clt2=3E2;l;q(f0) for q > 0:(29)

(2) In addition, if Em;l;q(f0) < 1 for any l > 2; l � m � 2; q � 0; there
exists an increasing continuous function Pm;l(�) with Pm;l(0) = 0 such that the
unique solution satis�es

sup
0�t�1

Em;l;q(f(t)) +
Z 1

0

Dm;l;q(f(s))ds � Pm;l(Em;l;q(f0)): (30)

The continuous function Pm;l(�) can be determined inductively on m: We
remark that we only require E2;2;0 (f0) to be small, but for l > 2 and m � 2; the
high momentum or high Sobolev norm Em;l;q(f0) can be arbitrarily large. A H2
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type of construction was �rst carried out in [GrS1-2] for the Boltzmann equa-
tion with an non-cuto¤ inverse power collision kernel. Note from the Sobolev�s
imbedding, L1 is not necessarily bounded by E2;2;0 (f0): We also note that the
estimate (30) is uniform in time, so that we verify the bounds in [DV] and more
decay can be obtained (see also [SG1-2]). Such an estimate (30) also gives a
natural approximation mechanism to establish the gain of smoothness for t > 0
[CDH].
Throughout the paper, we introduce the notation A . B (A & B and

A v B) if A is bounded by B up to a universal constant C which does not
depend on either l or m:
The introduction of the weight spatial weight function e�(1+q)� creates a

new analytical di¢ culty: we need to control (see Eqs. (115) and (116))Z 1

0

[jj@t�(s)jj1 + jjrx�(s)jj1]ds (31)

to close the global energy estimate for E2;2;0 (f): Note that (31) is di¤erent from
the dissipation estimate

R1
0
D2;2;0(f(s))ds <1 since

jj@t�(s)jj1 + jjrx�(s)jj1 .
q
D2;2;0(f(s));

and D2;2;0(f(s)) is expected to be small most of the time. It is a typical di¢ culty
that

R1
0

p
D2;2;0(f(s))ds < 1 can not be derived directly from the energy-

dissipation estimate (27). We need to make an interplay (see (143)) between
the decay estimate of (28) (with l = 2; q = 0) and the energy estimate (27).
This is di¤erent from the program in [SG1-2], in which the energy estimate
can be close alone �rst and the decay is obtained after. In fact, the proof of
(28) is intertwined with (27) with l = 2, and we are able to close a di¤erential
inequality (142) with up to only one spatial derivative. This leads to a decay
rate of

jj@t�(s)jj1 + jjrx�(s)jj v
1

s2

in terms of (27) with l = 2; which is su¢ cient to close the estimate. The strong
decay rate of 1

s2 is a consequence of the periodic box T
3 and it remains an open

question if su¢ cient decay rate can be obtained for the Vlasov-Poisson-Landau
system in the whole space R3:
The last novelty of the paper is the proof of high moments and high regularity

(30) with only small E2;2;0(f0): It is important to note, that we require l � m;
the total number of derivatives in w(�; �) (23): This is because that the starting
point of our method is to control pure x�derivatives of f without any weight,
which demands that l � m at the highest level of derivatives. It is also important
for our analysis to require w(�; �) � 1: This implies that jjf jj2;l � Em;l;q(f0);
which can not be small for all l! Therefore it is natural to assume Em;l;q(f0) is
only �nite but not small for l > 2: The hope is to obtain, at the highest order
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derivatives, Z
jw2(�; �)�(@�� f; f)@�� f j+

Z
jw2(�; �)�(f; @�� f)@�� f j (32)

.
q
E2;2;0(f)jj@�� f(t)jj2�;w(�;�);

so that the smallness of E2;2;0(f0) would be su¢ cient. Unfortunately, due to
the combination of the non-local feature of the Landau operator as well as the
velocity weight w(�; �), as in Lemma 10 [SG2], a term likeq

E2;l;q(f)jj@�� f(t)jj�jj@�� f(t)jj�;w(�;�)

will occur in the upper bound for (32). Since
p
E2;l;q(f) is large for l > 2, we

can not absorb the whole product by the dissipation rate of jj@�� f(t)jj2�;w(�;�).
In Proposition 6, we are able to move the weight function from

p
E2;l;q(f) to

jj@�� f(t)jj� and the price to pay is an additional contribution of

ClD2;l;q(f)jj@�� f(t)jj22;w(�;�):

Even though ClD2;l;q(f) can be very large, but jj@�� f(t)jj22;w(�;�) belongs to the
instant energy not the dissipation rate, therefore we can still control this via
the Gronwall lemma and the fact

R t
0
D2;l;q(f)(s)ds <1: A new splitting of the

domain needs to designed to achieve this goal. We believe that our method
will lead to new estimates for solutions recently constructed in [GrS1-2] for the
inverse power law. Moreover, the presence of E also makes the construction
of the local solutions more delicate and we need to employ fractional Sobolev
spaces to gain compactness of the approximate solutions.
Our paper is organized as follows. In section 2, new re�ned estimates are

developed to cope with nonlinear terms in (8). In section 3, local in time
solutions are constructed via estimates of the pseudo energy and dissipation
rate (24) and (25). In section 4, decay estimates (28) and (29) are obtained to
bootstrap into global in time solutions.

2 Basic Estimates

We use h�; �i to denote the standard L2 inner product inR3
v for a pair of functions

g =
�
g+
g�

�
and h =

�
h+
h�

�
and de�ne:

hf; hi = hf+; h+i+ hf�; h�i: (33)

We also denote j � j2;w and j � j�;w to be corresponding w�weighted L2 and H�

norms (19) in R3
v:

Recall the linear Landau operator L in (10). We �rst recall a basic property
of L (see [H1] [G1] [SG3] for a proof).
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Lemma 2 We have hLg; hi = hLh; gi; hLg; gi � 0; and Lg = 0 if and only if
g = Pg where P being the L2v(R

3) projection with respect to the vector L2 inner
product (33) onto the null space of L :

span

�
p
�

�
1

0

�
;
p
�

�
0

1

�
; vi

p
�

�
1

1

�
; jvj2p�

�
1

1

��
; (34)

with 1 � i � 3: Moreover

hLg; gi & jfI � Pggj2� �
X
�
j[fI � Pgg]�j2� (35)

where [fI � Pgg]� are two components of fI � Pgg:

Lemma 3 Let w(v) � 0: Then for any � > 0

sup
x
jg(x; �)jw . kjgj2;wk

H
7
4
. �

X
jj=2

jj@gjj2;w + C�jjgjj2;w;

sup
x
jg(x; �)j�;w . kjgj�;wk

H
7
4
. �

X
jj=2

jj@gjj�;w + C�jjgjj�;w;

jjgjjL4x(L2w) . kjgj2;wk
H

3
4
. �

X
jj=1

jj@gjj2;w + C�jjgjj2;w;

jjgjjL4(H�
w)

. kjgj�;wk
H

3
4
. �

X
jj=1

jj@gjj�;w + C�jjgjj�;w:

We note that L1(T3) � H 7
4 (T3), L4(T3) � H 3

4 (T3): Moreover, H2 � H 7
4 ,

and H1 � H
3
4 compactly, which gives rise to the arbitrary small constant �:

The Lemma then follows from general functional Sobolev inequality of Hk, see
[GrS1-2].
We also need the following version of the Gronwall Lemma.

Lemma 4 Let A(t); B(t); y(t) � 0 satisfy y(t) �
R t
0
A(s)y(s)ds+B(t), then

y(t) � e
R t
0
A(s)ds

Z t

0

A(s)B(s)ds+B(t):

The following lemma is the key to treat the streaming term rvf � rxf via
our dissipation rate (25). Denote

�ei� = 1 if ei � �; or �ei� = 0; otherwise: (36)

Lemma 5 We haveZ
w2(�; �)�ei� @

�+ei
��ei f@

�
� f . jj�ei� @���eif jj�;w(�;��ei)jj@

�+ei
��ei f�jj�;w(�+ei;��ei):

10



Proof. Recalling (23), we note w(�+ ei; � � ei)(v) = w(�; �)(v) and w(�; � �
ei)(v) = hvi�2w(�; �)(v): We rewrite from (36) @�� = @ei@

�
��ei�

ei
� and we use

(19) for @�+ei��ei f� to getZ
w2(�; �)�ei� @

�+ei
��ei f@

�
� f

�
Z
jw(�; �)hvi1=2�ei� @ei@

�
��eif�jjw(�; �)hvi

�1=2@�+ei��ei f�j

� jjw(�; � � ei)hvi�3=2�ei� @ei@
�
��eif�jj2jj@

�+ei
��ei f�jj�;w(�;�);

where hvi1=2w(�; �) = hvi�3=2w(�; ��ei)(v):We now use (19) again for @���eif�
to conclude the proof

jjw(�; � � ei)hvi�3=2�ei� @ei@
�
��eif�jj2 . jj�

ei
� @

�
��eif�jj�;w(�;��ei):

The following proposition is a re�ned estimate for the non-linear collision
term �(g; g) in [G1] [SG1-2]. The key improvement is that the factors in front
of the highest order dissipation rate is bounded by only

p
E2;2;0(g1)+

p
E2;2;0(g2):

Proposition 6 (1) For j�j+ j�j = m � 2; recall w = w(�; �) in (23): We have
hw2@���[g1; g2]; @�� g2i

. Cl
X

����1��

j@�1�� g1j�j@
���1
���1 g2j�;wj@

�
� g2j2;w

+
X
�1��;
����1��

[j@�1�� g1j2j@
���1
���1 g2j�;w + j@

�1
��
g1j�j@���1���1 g2j2;w]j@

�
� g2j�;w:(37)

Moreover, for any � > 0; there exists Cl;� > 0 such thatZ
T3

jhw2@���[g1; g2]; @�� g2ijdx

. (E2;2;0(g1) + �)D2;l;q(g2) + Cl;�
X

j�0j+j�0j�1

j@�0�0 g1j�2
H

3
4
E2;l;q(g2):(38)

(2) For j�j+ j�j = m � 3; we have
hw2@���[g1; g2]; @�� g2i

.
X

�1��;�1��
C�1� C

�1
� Cl

X
����1

j@�1�� g1j�j@
���1
���1 g2j�;wj@

�
� g2j2;w

+
X

j�1j+j��j� j�j+j�j
2

C�1� C
�1
� [j@

�1
��
g1j2j@���1���1 g2j�;w + j@

�1
��
g1j�j@���1���1 g2j2;w]j@

�
� g2j�;w

+
X

j�1j+j��j� j�j+j�j
2

C�1� C
�1
� [j@

�1
��
g1j2;wj@���1���1 g2j� + j@

�1
��
g1j�;wj@���1���1 g2j2]j@

�
� g2j�;w

+
X

j�1j+j��j� j�j+j�j
2

C�1� C
�1
� Cl;�;� j@

�1
��
g1j2j@���1���1 g2j�;wj@

�
� g2j�;w: (39)

11



Furthermore, for any � > 0; there exists Cl;m;� > 0Z
T3

jhw2(�; �)@���[g1; g2]; @�� g2ijdx

. f
q
E2;2;0(g1) +

q
E2;2;0(g2)gfjj@�� g1jj2�;w + jj@�� g2jj2�;wg

+�f
q
E2;2;0(g1) +

q
E2;2;0(g2) + 1g

X
j�0j+j�0j=m

�0��

fjj@�
0

�0 g1jj2�;w + jj@�
0

�0 g2jj2�;wg

+Cl;m;�
X

j�0j+j�0j�[m2 ]

(j@�0�0 g1j�;w(�0;�0)hvi2

2
H

3
4

+

j@�0�0 g2j�;w(�0;�0)hvi2

2
H

3
4

)
fEm;l;q(g1) + Em;l;q(g2)g

+Cl;m;�fEm�1;l;q(g1) + Em�1;l;q(g2) + 1gfDm�1;l;q(g1) +Dm�1;l;q(g2)g: (40)

We remark that from (23), (25) and Lemma 3,X
j�0j+j�0j�1

j@�0�0 gj�2
H

3
4

.
X

j�0j+j�0j�1;jj�1

jj@@�
0

�0 gjj2� . D2;2;0(g); (41)

X
j�0j+j�0j�[m2 ]

(j@�0�0 gj�;w(�0;�0)hvi2

2
H

3
4

)
.

X
j�0j+j�0j�[m2 ]

jj�1

jj@@�
0

�0 gjj2�;w(�0+;�0) . D[m2 ]+1;l;q(g);

(replacing H
3
4 by H1) which are su¢ cient for our estimates for global solutions.

However, for the construction of the local solutions, such sharper estimates are
important for compactness of the approximate solutions.
Proof. Recall Lemma 10 in [SG2] and Theorem 3 in [G1]. We �rst separate:

@i[w
2] = f4qviw2g+

�
2(l � j�j � j�j)

1 + jvj2 viw
2

�
. (42)

We can express hw2@���[g1; g2]; @�� g2i =
P
C�1� C

�1
� �G�1;�1 with G�1;�1 as

�hw2f�ij � @�1 [�
1=2@�1g1]g@j@���1���1 g2; @i@

�
� g2i (43)

�(1 + 4q)hw2f�ij � @�1 [vi�
1=2@�1g1]g@j@���1���1 g2; @

�
� g2i (44)

+hw2f�ij � @�1 [�
1=2@j@

�1g1]g@���1���1 g2; @i@
�
� g2i (45)

+(1 + 4q)hw2f�ij � @�1 [vi�
1=2@j@

�1g1]g@���1���1 g2; @
�
� g2i (46)

�h2(l � j�j � j�j)
1 + jvj2 w2f�ij � @�1 [vi�

1=2@�1g1]g@j@���1���1 g2; @
�
� g2i (47)

+h2(l � j�j � j�j)
1 + jvj2 w2f�ij � @�1 [�

1=2vi@j@
�1g1]g@���1���1 g2; @

�
� g2i: (48)

with double summations over 1 � i; j � 3 and @ei = @vi = @i:
Step 1. Estimate of (47) and (48).

12



We note that there is a (large) factor 2(l � j�j � j�j) in both (47) and (48):
We follow exactly as in the proof of Lemma 10 in [SG2]. From �ij ��1=8 � 1

1+jvj
and the Cauchy-Schwarz inequality,

j�ij � @�1 [vi�
1=2@j@

�1g1]j+ j�ij � @�1 [vi�
1=2@�1g1]j . hvi�1

X
����1

j@��� g1j�;

and we use the exponential weight vi�1=2 to bound j@��� g1j� in (19): Therefore

2(l � j�j � j�j)jh w
2

hvi2�
ij � f@�1 [vi�

1=2@�1g1]@j@
���1
���1 g2; @

�
� g2ij

+2(l � j�j � j�j)jh w
2

hvi2�
ij � f@�1 [vi�

1=2@j@
�1g1]@

���1
���1 g2; @

�
� g2ij

� Cl;mj@�1�� g1j�
Z

w2

hvi3 (j@j@
���1
���1 g2j+ j@

���1
���1 g2j)j@

�
� g2jdv

� Cl;m
X
�

j@�1�� g1j�j@
���1
���1 g2j�;wj@

�
� g2j2;w;

where we have used jwhvi�3@j@���1���1 g2j2 . j@
���1
���1 g2j�;w by (19). This concludes

the control of (47) and (48) via the �rst terms on the right hand side of both
(37) and (39).
Step 2. Proof of (37) and (38) for j�j+ j�j = m � 2:
In light of step 1, we only need to bound (43) to (46), which are precisely

bounded as in Lemma 10 of [SG2] leading to (37). Note that one can eliminate
the weight function in the g1 factor due to exponential decay factor �1=2 in the
Landau integral.
To conclude (38), we need to take x integration of (37) and we need to

separate three cases.
If j�j+ j�j = 0; w = w(0; 0); we haveZ

T3

hw2�[g1; g2]; g2i

. Cl sup
x
jg1j�

Z
T3

jg2j�;wjg2j2;w + sup
x
jg1j2

Z
T3

jg2j2�;w + sup
x
jg1j�

Z
T3

jg2j2;wjg2j�;w

. Cl kjg1j�k
H

7
4

q
D2;l;q(g2)

q
E2;l;q(g2) +

q
E2;2;0(g1)D2;l;q(g2)

. (
q
E2;2;0(g1) + �)D2;l;q(g2) + Cl;� kjg1j�k2

H
7
4
E2;l;q(g2):

We have used from (24) and (25) and Lemma 3:

sup
x
jg1j� . kjg1j�k

H
7
4
and sup

x
jg1j2 .

q
E2;2;0(g1): (49)

If j�j + j�j = 1, either (�1; �1) = 0 or (� � �1; � � �1) = 0. In the case

13



(�1; �1) = 0; we use (49) to bound similarly

Cl sup
x
jg1j�

Z
T3

j@�� g2j�;wj@�� g2j2;w

+sup
x
jg1j2

Z
T3

j@�� g2j2�;w + sup
x
jg1j�

Z
T3

j@�� g2j2;wj@�� g2j�;w

. (
q
E2;2;0(g1) + �)D2;l;q(g2) + Cl;� kjg1j�k2

H
7
4
E2;l;q(g2):

On the other hand, if (� � �1; � � �1) = 0; we take L4 � L4 � L2 and use
Lemma 3 to get

Cl

Z
T3

j@��� g1j�jg2j�;wj@
�
� g2j2;w +

Z
T3

[j@�1�� g1j2jg2j�;w + j@
�1
��
g1j�jg2j2;w]j@�� g2j�;w

. Cl

j@��� g1j�
H

3
4
jj@g2jj�;wjj@�� g2jj2;w + jj@@�1�� g1jj2jj@

g2jj�;wjj@�� g2jj�;w (50)

where jj � 1: Note jj@@�1�� g1jj2 .
p
E2;2;0(g1): For w = w(�; �);

jj@g2jj�;w .
q
D1;l;q(g2) .

q
D2;l;q(g2)

from (24) and (25). Therefore, (50) is further bounded by

Cl

j@��� g1j�
H

3
4

q
D2;l;q(g2)

q
E2;l;q(g1) +

q
E2;2;0(g1)D2;l;q(g2)

. (
q
E2;2;0(g1) + �)D2;l;q(g2) + Cl;�

j@��� g1j�2
H

3
4
E2;l;q(g2):

We remark that we can not take L1x of supx jg2j�;w(�;�) and supx jg2j2;w(�;�)
in this case, because w(�; �) now is associated with j�j+ j�j = 1; and stronger
than w allowed for second order derivatives from (23): for jj � 2;

w(; 0) < w(�; �):

As a consequence,
P

jj�2 jj@g2jj�;w(�;�) and
P

jj�2 jj@g2jj2;w(�;�) can not be
bounded by

p
D2;l;q(g2) or

p
E2;l;q(g2):

We now consider the third case j�j+ j�j = 2: We �rst consider
either �1 = �� = 0 or �� �1 = � � �1 = 0: (51)

We take L1x of the term without derivatives and L2x of the other two terms. We
note that by (23), accordingly,

w(�; �) � w( + �1; ��) or w(�; �) � w( + �� �1; � � �1) (52)

for jj � 2: Therefore for any g

sup
x
jgj� . kjgj�k

H
7
4
; and sup

x
jgj2 .

q
E2;2;0(g)

sup
x
jgj�;w .

X
jj�2

jj@gjj�;w(�;�) .
X
jj�2

jj@gjj�;w(;0) .
q
D2;l;q(g)

sup
x
jgj2;w .

X
jj�2

jj@gjj2;w(�;�) .
X
jj�2

jj@gjj2;w(;0) .
q
E2;l;q(g): (53)
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By Lemma 3 and (53), we bound (37) byZ
T3

jhw2@���[g1; g2]; @�� g2ij

. Cl kjg1j�k
H

7
4

q
D2;l;q(g2)

q
E2;l;q(g2)

+
q
E2;2;0(g1)D2;l;q(g2) + kjg1j�k

H
7
4

q
E2;2;0(g2)

q
D2;l;q(g2)

. Cl kjg1j�k
H

7
4

q
D2;l;q(g2)

q
E2;l;q(g2) +

q
E2;2;0(g1)D2;l;q(g2):

We note

kjg1j�k
H

7
4

q
D2;l;q(g2)

q
E2;l;q(g2) � �D2;l;q(g2) + C� kjg1j�k2

H
7
4
E2;l;q(g2): (54)

We conclude (38) if (51) is valid.
If (�1; ��) 6= 0 and (� � �1; � � �1) 6= 0: Now j�1j + j��j = 1 and j� � �1j +

j� � �1j = 1 since j�j+ j�j = 2. We take L4 � L4 � L2 to get:

hw2@���[g1; g2]; @�� g2i

. Cl

j@�1�� g1j�H 3
4
jj@@���1���1 g2jj�;wjj@

�
� g2jj2;w

+[jj@@�1�� g1jj2jj@
@���1���1 g2jj�;w +

j@�1�� g1j�H 3
4
jj@@���1���1 g2jj2;w]jj@

�
� g2jj�;w

. Cl

j@�1�� g1j�H 3
4

q
D2;l;q(g2)

q
E2;l;q(g2) +

q
E2;2;0(g1)D2;l;q(g2);

where jj � 1: This concludes step 2 by (54).
Step 3. Proof of (39).
In the case of j�1j + j��j � j�j+j�j

2 ; the estimate again follows exactly as in
Lemma 10 of [SG2] for (43) to (46).
The case of j�1j + j��j � j�j+j�j

2 is most delicate as we need to avoid a
contribution of j@�� g1j�jg2j2;wj@�� g2j�;w in Lemma 10 of [SG2]. Our goal is to
�move�the weight w out of jg2j2;w to j@�� g1j�: To accomplish this, we following
exactly the proof of Lemma 10 of [SG2] but with a di¤erent splitting of the
phase space v; v0; depending on l and m :

fjwj � 2g;
����� jv0jjvj � 1

���� � "l;m; jwj � 2� and
����� jv0jjvj � 1

���� � "l;m; jwj � 2�
with "l;m < 1 satisfying (l � j�j+ j�j from (23)):

q"l;m
(1� "l;m)2

<
1

4
and (1� "l;m)�2(l�j�j�j�j) � 2: (55)

The estimate in the �rst region fjwj � 2g follows the proof of case 1 in
Lemma 10 in [SG2] with an upper bound of terms (43) to (46) for j�1j+ j��j �
j�j+j�j

2 as

[j@�1�� g1j2j@
���1
���1 g2j�;w + j@

�1
��
g1j�j@���1���1 g2j2;w]j@

�
� g2j�;w (56)

. j@�1�� g1j2;wj@
���1
���1 g2j�j@

�
� g2j�;w + j@�1�� g1j�;wj@

���1
���1 g2j2j@

�
� g2j�;w;
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where we have used the important fact w � 2 and the property

w(�; �) � 1:

We remark even if q > 0 and l = 0 in (23):

w(�; �) = e
q
2 jvj

2

hvi�2j�j�2j�j ; w � c�;� ! 0

as j�j+j�j ! 1:A large constant of 1
c�;�

appears in front of j@�1�� g1j�;wj@
���1
���1 g2j2j@

�
� g2j�;w

in (56); when we bound j@�1�� g1j� by j@
�1
��
g1j�;w: In particular

1

c�;�
j@�� g1j�;wjg2j2j@�� g2j�;w

can not be absorbed by the dissipation rate (25). This illustrates the importance
of the choice of l � j�j+ j�j to guarantee w � 1:
For the second region

n��� jv0jjvj � 1
��� � "l;m; jwj � 2o we shall swap the weight

w(v) by w(v0): Since (1� "l;m)jvj � jv0j � (1 + "l;m)jvj, we deduce that

w(v)

w(v0)
= e

q
2 jvj

2� q
2 jv

0j2
�
1 + jvj2
1 + jv0j2

�l�j�j�j�j

� e
q
2 jv

0j2[ 1
(1�"l;m)2

�1]

0@1 + jv0j2
(1�"l;m)2

1 + jv0j2

1Al�j�j�j�j

� e
q"l;m

(1�"l;m)2
jv0j2

(1� "l;m)�2(l�j�j�j�j)

� 2e
1
4 jv

0j2 (57)

by (55). In the Case 2 of the proof of Lemma 10 of [SG2], due to exponential
decay of v0e

1
2 jv

0j2 in the Landau kernel which dominates 2e
1
4 jv

0j2 ; by (57) we can
move weight function w(v) = w(v0)� w(v)

w(v0) to g1 to obtain bounds (w � 2) for
(43) to (46) as:

[j@�1�� g1j2;wj@
���1
���1 g2j� + j@

�1
��
g1j�;wj@���1���1 g2j2]j@

�
� g2j�;w:

For the third region of
n��� jv0jjvj � 1

��� � "l;m; jwj � 2o ; we note
jv0 � vj � jjv0j � jvjj � "l;mjvj and jvj � �l;m > 0:

We can repeat the same argument as in Case 3 of the proof for Lemma 10
[SG2], upon further integration by parts in v0 to bring down the v0 derivative
in j@�1�� g1j�. This process creates a constant depending on (large) constant Cl;m
and we obtain a desired upper bound of

Cl;mj@�1�� g1j2j@
���1
���1 g2j�;wj@

�
� g2j�;w
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to conclude step 3.
Step 4. Proof of (40).
We shall separate three cases in (39). The �rst case is either �1 = �; � = ��

or ���1 = �; and ���1 = �: Indeed we now have the coe¢ cients C�1� C
�1
� = 1:

Recall (51) and (52) in this case. We note that m � 3 so that we can apply L1x
estimate to terms without derivatives, and then take corresponding L1�L2�L2
for the x integration. By (53), we obtain an upper bound of (39)

Cl[kjg1j�k
H

7
4
jj@�� g2jj�;w + jj@�� g1jj� kjg2j�kH 7

4
]
q
Em;l;q(g2)

+[
q
E2;2;0(g1)jj@�� g2jj�;w + kjg1j�kH 7

4

q
Em;l;q(g2)]jj@�� g2jj�;w

+[
q
Em;l;q(g1) kjg2j�k

H
7
4
+ jj@�� g1jj�;w

q
E2;2;0(g2)]jj@�� g2jj�;w

+Cl;m

q
Em;l;0(g1) kjg2j�;wk

H
7
4
jj@�� g2jj�;w

. f
q
E2;2;0(g1) +

q
E2;2;0(g2) + �gfjj@�� g1jj2�;w + jj@�� g2jj2�;wg

+Cl;m;�fkjg1j�;wk2
H

7
4
+ kjg2j�;wk2

H
7
4
gfEm;l;q(g1) + Em;l;q(g2)g:

We have used the fact w � 1 and l � 2; q � 0: We note that

kjg1j�;wk2
H

7
4
+ kjg2j�;wk2

H
7
4

.
X

j�0j+j�0j�1

j@�0�0 g1j�;w(�;�)2
H

3
4
+
j@�0�0 g2j�;w(�;�)2

H
3
4

.
X

j�0j+j�0j�[m2 ]

j@�0�0 g1j�;w(�0;�0)hvi2

2
H

3
4

+

j@�0�0 g2j�;w(�0;�0)hvi2

2
H

3
4

; (58)

as [m2 ] � 1 and w(�; �) �
w(�0;�0)
hvi2 for j�j + j�j � j�0j + j�0j + 1 from (23): We

thus conclude the �rst case.
The second case is when 2 � j�1j+ j��j � m�2 and 2 � j���1j+ j���1j �

m�2: In this case, we shall take L4�L4�L2 and by Lemma 3 to �nd an upper
bound of (39):

Cl;m

j@�1�� g1j�H 3
4

j@���1���1 g2j�;w

H

3
4
jj@�� g2jj2;w

+Cl;m[
j@�1�� g1j2H 3

4

j@���1���1 g2j�;w

H

3
4
+
j@�1�� g1j�H 3

4

j@���1���1 g2j2;w

H

3
4
]jj@�� g2jj�;w

+Cl;m[
j@�1�� g1j2;wH 3

4

j@���1���1 g2j�

H

3
4
+
j@�1�� g1j�;wH 3

4

j@���1���1 g2j2

H

3
4
]jj@�� g2jj�;w

+Cl;m

j@�1�� g1j2H 3
4

j@���1���1 g2j�;w

H

3
4
jj@�� g2jj�;w: (59)

For the last three terms, we use H1 � H 3
4 and the factsj@���1���1 gj2;w


H1
+
j@�1�� gj2;wH1

. Em�1;l;q(g)j@���1���1 gj�;w

H1
+
j@�1�� gj�;wH1

. Dm�1;l;q(g)
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to obtain a desired upper bound of

�jj@�� g2jj2�;w +Cl;m;�fEm�1;l;q(g1) + Em�1;l;q(g2)gfDm�1;l;q(g1) +Dm�1;l;q(g2)g:

For the �rst term in (59), we combine the factor of smaller total derivatives (less
then [m2 ]) with jj@

�
� g2jj2;w to obtain an upper bound:

�
X

[m2 ]�j�0j+j�0j�m�1

f
j@�0�0 g1j�;w2

H
3
4
+
j@�0�0 g2j�;w2

H
3
4
g

+Cl;m;�
X

j�0j+j�0j�[m2 ]

f
j@�0�0 g1j�;w2

H
3
4
+
j@�0�0 g2j�;w2

H
3
4
gjj@�� g2jj22;w

� �
X

j�0j+j�0j=m

fjj@�
0

�0 g1jj2�;w + jj@�
0

�0 g2jj2�;wg+ �fDm�1;l;q(g1) +Dm�1;l;q(g2)g

+Cl;m;�
X

j�0j+j�0j�[m2 ]

f
j@�0�0 g1j�; w0

hvi2

2
H

3
4

+

j@�0�0 g2j�; w0
hvi2

2
H

3
4

gjj@�� g2jj22;w:(60)

where w0 = w(�0; �0) and w(�; �) � w0(�0;�0)

hvi2
for j�j + j�j � j�0j + j�0j + 1 by

(23): We therefore conclude the second case.
We now consider the last case of following possibilities: 1 = j�1j + j��j;

j�1j+ j��j = m� 1, 1 = j���1j+ j� � �1j; or j���1j+ j� � �1j = m� 1: Note
that in this case the weight function satis�es:

w(�; �) � w(�1 + ; ��); w(�; �) � w(�� �1 + ; �1);

for jj � 1: We bound (59) by taking L4 � L4 � L2 as

Cl;m
Xj@�1�� g1j�H 3

4

j@���1���1 g2j�;w

H

3
4
jj@�� g2jj2;w

+Cl;m
X

j�j+j��j�1

[
j@�1�� g1j2H 3

4

j@���1���1 g2j�;w

H

3
4
+

+
j@�1�� g1j�H 3

4

j@���1���1 g2j2;w

H

3
4
]jj@�� g2jj�;w

+Cl;m
X

j���1j+j���1j�1

[
j@�1�� g1j2;wH 3

4

j@���1���1 g2j�

H

3
4
+

+
j@�1�� g1j�;wH 3

4

j@���1���1 g2j2

H

3
4
]jj@�� g2jj�;w

+Cl;m
X

j���1j+j���1j�1

j@�1�� g1j2H 3
4

j@���1���1 g2j�;w

H

3
4
jj@�� g2jj�;w:(61)

The �rst term above can be estimated exactly as (60). Note that from (25)X
j�j+j��j�1

j@�1�� gj2H 3
4
. E2;2;0(g); (62)

18



by Lemma 3, the second term in (61) is bounded by a desired upper bound:

�jj@�� g2jj2�;w + Cl;m;�E2;2;0(g1)
j@���1���1 g2j�;w

2
H

3
4
+ Cl;m;�

X
j�j+j��j�1

j@�1�� g1j�2H 3
4

j@���1���1 g2j2;w
2
H

3
4

. �jj@�� g2jj2�;w + Cl;m;��1E2;2;0(g1)
X

j�0j+j�0j=m

jj@�
0

�0 g2jj2�;w(�0;�0) + Cl;m;�;�1E2;2;0(g1)Dm�1;l;q(g2)

+Cl;m;�
X

j�j+j��j�1

j@�1�� g1j�2H 3
4
Em;l;q(g2)

. �jj@�� g2jj2�;w + �E2;2;0(g1)
X

j�0j+j�0j=m

jj@�
0

�0 g2jj2�;w(�0;�0) + Cl;m;�
X

j�j+j��j�1

j@�1�� g1j�2H 3
4
Em;l;q(g2)

+Cl;m;�E2;2;0(g1)Dm�1;l;q(g2);

with �1 further small.
Similarly, the second and the third terms in (61) are bounded by a desired

upper bound of (w = w(�; �))

� jj@�� g2jj2�;w +Cl;m;�

8<: X
j�0j+j�0j�1

j@�0�0 g2j�;w2
H

3
4
Em;l;q(g1) +

X
j���1j+j���1j�1

j@�1�� g1j�;w2H 3
4
E2;2;0(g2)

9=;
. �jj@�� g2jj2�;w + Cl;m;�

X
j�0j+j�0j�1

j@�0�0 g2j�;w2
H

3
4
Em;l;q(g1)

+�
X

j�0j+j�0j=m

jj@�
0

�0 g1jj2�;w(�0;�0) + Cl;m;�E2;2;0(g2)Dm�1;l;q(g1);

where we have applied compact imbedding again to
j@�0�0 g1j�;w2

H
3
4
: By (58),

we complete the proof of the proposition.
In order to obtain decay for the electric �eld, we now treat pure spatial

derivatives in more details of @���(f; f)@�f�:

Lemma 7 (1) If j�j = 0; 1; 2; thenZ
h@���(f; f); @�f�idx .

q
E2;2;0(f)

X
j�0j�j�j

jj@�
0
f jj2�:

(2) If j�j = m � 3; then for any � > 0 there exists Cm;� > 0 such thatZ
jh@���(f; f); @�f�ijdx . [

q
E2;2;0(f) + �]jj@�f jj2� + �[

q
E2;2;0(f) + 1]

X
j�0j=m

jj@�
0
f jj2�

+Cm;�[D2;2;0(f)Em;l;q(f) + Em�1;l;q(f)Dm�1;l;q(f)]:

Proof. Since there is no weight w; we use Theorem 3 in [G1] with w = 1:Z
h@���(f; f); @�f�idx .

X
�1��

C�1�

Z
j@���1f j2j@�1f j�j@�f j�dx: (63)

19



We now estimate case by case according to j�j.
Assume j�j = 0:We can take supx jf j2 .

p
E2;2;0 by (24) and L1�L2�L2

in (63) to obtain an upper bound ofZ
jf j2jf j�jf j�dx .

p
E2;2;0jjf jj2�:

Assume j�j = 1: We take L4 �L4 �L2 in (63) if �1 = 0; and L1 �L2 �L2
in (63) if j�1j = 1: By Lemma 3 with � = 1 and w = 1, we obtain an upper
bound of X

�1��

Z
j@���1f j2j@�1f j�j@�f j�dx .

p
E2;2;0

X
j�j�1

jj@�f jj2�:

Assume j�j = 2: If �1 = 0; we take L2�L1�L2; if j�1j = 1 we L4�L4�L2;
if j�1j = 2; we take L1�L2�L2 in (63) respectively. By Lemma 3 with w = 1
and � = 1; we obtain:X

�1��

Z
j@���1f j2j@�1f j�j@�f j�dx .

p
E2;2;0

X
j�j�2

jj@�f jj2�:

Combining with the cases j�j = 0; 1; 2 we conclude part (1) of the lemma.
Assume j�j = m � 3: We need to be careful with the (large) constant C�1� .

We single out the terms with highest order derivatives with either �1 = 0 or
�1 = �: By taking L1 on the term without any derivatives with supx jf j� .p
D2;2;0; supx jf j� .

p
E2;2;0; we apply Lemma 3 with w = 1 to �nd an upper

bound of (63): Z
[jf j2j@�f j2� + j@�f j2jf j�j@�f j�]dx

�
p
E2;2;0jj@�f jj2� +

p
D2;2;0jj@�f jj2jj@�f jj�

� [
p
E2;2;0 + �]jj@�f jj2� + C�D2;2;0Em;l;q(f):

For the remaining cases of 1 � j�1j � j�j � 1; we always take L4 � L4 � L2
and use Lemma 3 with small � (depending on �): By singling out the cases of
j�1j = m�1 and j�1j = 1; and combining the rest of lower order terms together,
we obtain

�Cm
X
jj=1

jj@���1@f jj2jj@�1@f jj�jj@�f jj� + Cm;�jj@���1f jj2jj@�1f jj�jj@�f jj�

� �Cm[
q
E2;2;0(f)

X
jj=1;j�1j=m�1

jj@@�1f jj2� +
q
D2;2;0(f)

X
jj=1;j�1j=1

jj@@���1f jj2jj@�f jj�]

+Cm;�

q
Em�1;l;q(f)

q
Dm�1;l;q(f)jj@�f jj�

� �[Cm

q
E2;2;0(f) + 1]

X
j�j=m

jj@�f jj2� + Cm;�[D2;2;0(f)Em;l;q(f) + Em�1;l;q(f)Dm�1;l;q(f)]:
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We thus conclude the lemma by further adjusting � (depending on m).
Next we estimate the other nonlinear terms with the electric �eld.

Lemma 8 Let j�j+ j�j = m � 1: For �1 < � with w = w(�; �) de�ned in (23)Z
jw2@�� f�@���1rx� � rv@�1� f�j+

Z
jw2@�� f�@���1rx� � @� [v@�1f�]j

. �jj@�� f�jj2�;w + C�
jf�j�;w(0;0)hvi2

2
H

3
4

jj@�r2x�jj22 + C�[jjr2x�jj2Hm�1 + jjr4x�jj2]Dm�1;l;q(f):

Proof. Note �1 < �;

w(�; �) = w(�1; �)hvi�2j�j+2j�1j = w(�1; �)hvi�2hvi�2[j�j�j�1j�1]; (64)

from (19), we obtain:

�
Z
w2@�� f�@

���1rx� � rv@�1� f�

.
Z
jwhvi�1=2@�� f�@���1rx� � hvi�2[j�j�j�1j�1]w(�1; �)hvi�3=2rv@�1� f�j

.
Z
j@�� f�j�;wj@���1rx�jj@�1� f�j�; w(�1;�)

hvi2[j�j�j�1j�1]
dx (65)

We now separate three cases.
Case 1. j�1j + j�j = m � 1 or m = 1: Since j�1j + j�j + j� � �1j = m and

�1 > �; we have j�j � j�1j = 1 in this case: Taking L2 �L1 �L2 in (65) yields
a desired upper bound:

jj@�� f�jj�;wjjr4x�jj2
j@�1� f�j�;w(�1;�)

2
. �jj@�f�jj2�;w+C�jjr4x�jj22Dm�1;l;q(f):

For the rest of the cases, we take L2�L4�L4 of (65) to get an upper bound:

. jj@�� f�jj�;wjj@���1rx�jjH 3
4

j@�1� f�j�; w(�1;�)

hvi2[j�j�j�1j�1]


H

3
4

: (66)

Case 2. j���1j = m � 2:We have �1 = � = 0 now. Since j�j� j�1j�1 � 1
now; we further estimate (66) by ()

jj@�f�jj�;wjj@�rx�jj
H

3
4

jf�j�;w(0;0)hvi2


H

3
4

. �jj@�f�jj2�;w + C�jj@�r2x�jj22
jf�j�;w(0;0)hvi2

2
H

3
4

. �jj@�f�jj2�;w + C�
jf�j�;w(0;0)hvi2

2
H

3
4

jj@�r2x�jj22:
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Case 3. j�1j+ j�j � m�2 and j���1j � m�1: By j�1j+ j���1j+ j�j = m;
we deduce j�� �1j � 2: Hence hvi�2[j�j�j�1j�1] � hvi�2: We estimate (66) as

jj@�� f�jj�;wjj@���1rx�jjH 3
4

j@�1� f�j�;w(�1;�)hvi2


H

3
4

. �jj@�� f�jj2�;w + C�jj@���1rx�jj2H1

j@�1� f�j�;w(�1;�)hvi2


H1

. �jj@�� f�jj2�;w + C�jj@���1r2�jj22Dm�1;l;q(f)

. �jj@�� f�jj2�;w + C�jjr2�jj2Hm�1Dm�1;l;q(f):

Here we have used the fact w(�1;�)hvi2 � w(�1 + ; �) for jj � 1 from (23) so thatj@�1� f�j�;w(�1;�)hvi2


H1

=
X
jj�1

j@@�1� f�j�;w(�1;�)hvi2


2

.
X
jj�1

j@@�1� f�j�;w(�1+;�)
2

. Dm�1;l;q(f):

We now turn to the second term. Similarly, by (64) w(�; �) = w(�1; � �
ei)hvi�4hvi�2[j�j�j�1j�1]; we have from (19):Z

w2@�� f�@
���1rx� � @� [v@�1f�]

� j
Z
w2@�� f�@

���1rx� � v@�1� f�]j+ C� j
Z
w2@�� f�@

���1rx� � �ei� @
�1
��eif�]j

�
Z
jwhvi�1=2@�1� f�@

���1rx� �
w(�1; �)

hvi2[j�j�j�1j�1] hvi
� 3
2 @�1� f�j

+C�

Z
jwhvi� 1

2 @�� f�@
���1rx� �

w(�1; � � ei)
hvi2[j�j�j�1j] hvi

� 3
2 �ei� @

�1
��eif�j

� Cm

Z
j@�� f�j�;w(�;�)j@���1rx�jj@�1� f�j�; w(�1;�)

hvi2[j�j�j�1j�1]

Cm

Z
j@�� f�j�;w(�;�)j@���1rx�jj�ei� @

�1
��eif�j�; w(�1;��ei)

hvi2[j�j�j�1j]
:

The �rst term is estimated exactly as in (66). For the second term, we note
that j�j � 1 so that j�� �1j � m� 1; and j�1j+ j�j � 1 � m� 2: Since �1 < �

j�ei� @
�1
��eif�j�; w(�1;��ei)

hvi2[j�j�j�1j]
� j�ei� @

�1
��eif�j�;w(�1;��ei)hvi2

;

we thus can apply case 3 above to complete the proof.
We also need more precise estimate for purely spatial derivatives of E �rvf�:

Lemma 9 Let ��� =
R p

�[f+ � f�]dv with
R
� = 0:
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(1) For j�j = 1; 2; then for �1 < �;Z ����Z @�f�@
���1rx� � rv@�1f�dv

���� dx+ Z ����Z @�f�@
���1rx� � v@�1f�dv

���� dx
.

q
E2;2;0(f)

X
j�0j�j�j

jj@�f jj2�:

(2) For j�j = m � 3; then for �1 < �;any � > 0;Z ����Z @�f�@
���1rx� � rv@�1f�dv

���� dx+ Z ����Z @�f�@
���1rx� � v@�1f�dv

���� dx
.

q
E2;2;0(f)jj@�f jj2� + �

X
j�0j=j�j

jj@�
0
f jj2� + Cm;�Dm�1;l;0(f)Em�1;l;0(f):

Proof. We �rst perform integration by part in v to get:Z ����Z @�f�@
���1rx� � rv@�1f�dv

����+ Z ����Z @�f�@
���1rx� � v@�1f�dv

���� (67)
=

Z ����Z rv@�f� � @���1rx�@�1f�dv
���� dx+ Z ����Z @�f�@

���1rx� � v@�1f�dv
���� dx

�
Z
[jhvi� 3

2 @�rvf�j+ jhvi�
1
2 @�f�j]j@���1rx�[hvi

3
2 @�1f�]j

.
Z
j@�f�j�j@���1rx�jjhvi3=2@�1f�j2dx:

Here we have used norm (19) for @�f�:
If j�j = 1; then since �1 < � so �1 = 0: From the elliptic estimate:

jj@�rx�jj4 . jj@�r2x�jj2 = jj
Z p

�@�f�jj2 . jj@�f jj�

and
P

jj�1 jjhvi3=2@f�jj2 .
p
E2;2;0(f): Since jhvi�3=2@�rvf�j2 . j@�f�j� in

(67), we take L2 � L4 � L4 to get

(67) . jj@�f jj�jj@�rx�jj4
X
jj�1

jjhvi3=2@f�jj2 (68)

. jj@�f jj2� �
X
jj�1

jjhvi3=2@f�jj2 .
q
E2;2;0(f)jj@�f jj2�:

If j�j = 2; the case �1 = 0 is treated as in (68) and we only need to treat
the case of j�1j = 1: Note jjhvi3=2@�1f�jj2 .

p
E2;2;0(f):We take L2�L1�L2

in (67) to obtain

(67) .
Z
j@�f�j�j@���1rx�jjhvi3=2@�1f�j2dx

. jj@�f�jj�jjrx@���1�jj1jjhvi3=2@�1f�jj2

.
X

j�0j�j�j

jj@�
0
f�jj2�

q
E2;2;0(f): (69)
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Here we have used the elliptic estimate (j�1j = 1):

jjrx@���1�jj1 . jjr2x�jj1 .
X

j�0j�j�j

jj@�
0
f jj�:

This completes the proof of the �rst part of the lemma.
If j�j = m � 3; the case j�1j = 0 is again treated in (68). When j�1j = m�1;

as in (69), by (24), jjhvi3=2@�1f�jj2 . Em�1;l;q(f); and jjr2x�jj1 .
p
D2;2;0(f):

We take L2 � L1 � L2 in (67) to get

(67) . jj@�f�jj�jjr2x�jj1jjhvi3=2@�1f�jj2
. �jj@�f�jj2� + C�D2;2;0(f)Em�1;l;q(f):

When 1 � j�1j � m� 2;

jj@���1rx�jj4 . jj@���1r2x�jj2 . jj@���1f jj2 .
q
Dm�1;l;0(f);X

jj�1

jjhvi3=2@�1+f�jj2 .
q
Em�1;l;0(f):

By (69), we obtain by taking L2 � L4 � L4 in (67):

jj@�f�jj�jj@���1rx�jj4
X
jj�1

jjhvi3=2@�1+f�jj2

. �jj@�f�jj2� + Cm;�Dm�1;l;0(f)Em�1;l;0(f):

This completes the proof of the lemma.

3 Local Solutions

Our goal is to construct a unique local-in time solution to the Vlasov-Poisson-
Landau system (8) and (9) if E2;2;0(f0) is su¢ ciently small. The construction
is based on an uniform energy estimate for a sequence of iterating approximate
solutions. We �rst note, by direct computations

P
ij @ij�

ij = 8�� and the
Landau collision operator has the following non-divergent form of [G1]:

Q(G1; G2) = f�ij �G1g@ijG2 + 8�G1G2
We start with

F 0(t; x; v) = � or f0 � 0: (70)

To preserve the positivity for Fn+1, we design the following iterating sequence
of Fn+1� as [SG3]:

[@t + v � rx �rx�n � rv]Fn+1� = Q(Fn�; F
n+1
� )� 8�Fn�(Fn+1� � Fn�)

+Q(Fn�; F
n+1
� )� 8�Fn�(Fn+1� � Fn�)

= �ij � [Fn� + Fn�]@ijFn+1� + 8�fFn�g2 + 8�Fn�Fn�;

��n+1 = �
Z
(Fn+1+ � Fn+1� )dv (71)
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with
R
T3 �

n+1 = 0: We note that Fn� � 0 implies Fn+1� � 0 from (71): We now
rewrite the above iteration in the perturbation form of Fn+1 = �+

p
�fn+1 :

[@t + v � rx �rx�n � rv]fn+1� �Afn+1� �rx�n � vfn+1�

= �2rx�n � v
p
�+K�f

n + ��(f
n; fn+1)

�8�(fn� + fn�)
p
�(fn+1� � fn�)� 16��(fn+1� � fn�)

���n+1 =
Z
(fn+1+ � fn+1� )dv: (72)

with fn+1jt=0 = f0: Here for g =
�
g+
g�

�
; we denote as in [G1] [SG1-2]:

Ag� =
2
p
�
Q(�;

p
�g�);

K�g =
1
p
�
Q(
p
�[g� + g�]; �):

To solve such fn+1; we can add an arti�cial dissipation

"fA1fn+1� +�x(1 + jvj2)fn+1g

with

A1 =
2
p
�
Q(�;

p
�g�) with �1(u) = juj

�
I � u
 ujuj2

�
in (3).

This choice makes the problem strongly parabolic in both x and v with strong
bound in v which justi�es the moments estimates [SG2]:We shall construct fn+1

as "! 0 with uniform bound in ". The procedure is standard and for notational
brevity, we ignore such a regularization. We take @�� of the Landau-Poisson
system (setting " = 0):

[@t + v � rx �rx�n � rv]@�� fn+1� � [rx�n � v@�� fn+1� ]� @��Afn+1�

= ��ei� @
�+ei
��ei f

n+1
� �

X
�1<�

C�1� f@���1rx�n � rv@�1� f
n+1
� � @���1rx�n � @� [v@�1fn+1� ]g

�2@�� [rx�n � v
p
�] + @��K�f

n + @����(f
n; fn+1)

�8�@�� [
p
�(fn� + f

n
�)(f

n+1
� � fn�)]� 16�@�� [�(fn+1� � fn�)]:
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We multiplying with e(2q�2)�nw2 with w = w(�; �) in (23) to get:

[e�2(q+1)�
n

w2@�� f
n+1
� ]� f[@t + v � rx �rx�n � rv]@�� fn+1� � [rx�n � v@�� fn+1� ]g

=
d

dt
f
e�2(q+1)�

n

w2(@�� f
n+1
� )2

2
g � (q + 1)�nt e�2(q+1)�

n

w2(@�� f
n+1
� )2

+v � rxf
e�2(q+1)�

n

w2(@�� f
n+1
� )2

2
g � (q + 1)v � rx�ne�2(q+1)�n(@�� fn+1� )2w2

�rx�n � rvf
e�2(q+1)�

n

w2(@�� f
n+1
� )2

2
g

�qrx�n � v(@�� fn+1� )2e�2(q+1)�
n

w2

�
�
2(l � j�j � j�j)

1 + jvj2

�
rx�n � ve�2(q+1)�

n

w2(@�� f
n+1
� )2

�rx�n � v(@�� fn+1� )2w2e�2(q+1)�
n

(73)

where we have used (42). Our weight function is so designed such that there is
an exact cancellation for the high momentum contributions:

�(q + 1)v � rx�ne�2(q+1)�n(@�� fn+1� )2w2

�qrx�n � ve�2(q+1)�
n

w2(@�� f
n+1
� )2

�rx�n � v(@�� fn+1� )2w2e�2(q+1)�
n

= 0: (74)

Therefore, we can rewrite (73) as:

d

dt
f
e�2(q+1)�

n

w2(@�� f
n+1
� )2

2
g � (q + 1)�nt e�2(q+1)�

n

w2(@�� f
n+1
� )2

+v � rxf
e�2(q+1)�

n

w2(@�� f
n+1
� )2

2
g (75)

�rx�n � rvf
e�2(q+1)�

n

w2(@�� f
n+1
� )2

2
g

�
�
2(l � j�j � j�j)

1 + jvj2

�
rx�n � ve�2(q+1)�

n

w2(@�� f
n+1
� )2:
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Upon integration over T3 �R3; and combining terms we obtain:

d

dt

(Z
e�2(q+1)�

n

w2(@�� f
n+1
� )2

2

)
�
Z
hw2@��Afn+1; @�� fn+1i (76)

= �
Z
e�2(q+1)�

n

w2�ei� @
�+ei
��ei f

n+1
� @�� f

n+1
� (77)

�
X
�1<�

C�1�

Z
e�2(q+1)�

n

w2@�� f
n+1
� @���1rx�n � rv@�1� f

n+1
� (78)

�
X
�1<�

C�1�

Z
e�2(q+1)�

n

w2@�� f
n+1
+ @���1rx�n � @� [v@�1fn+1� ] (79)

�
Z
[
2(l � j�j � j�j)

1 + jvj2 rx�n � v � (q + 1)�nt ]e�2(q+1)�
n

w2(@�� f
n+1
� )2(80)

+

Z
w2(e�2(q+1)�

n

� 1)@�� fn+1� @��Af
n+1
� (81)

�2
Z
e�2(q+1)�

n

w2rx@��n � @� [v
p
�]@�� f

n+1
� (82)

+

Z
w2e(2q�2)�n@��K�f

n@�� f
n+1
� (83)

+

Z
w2e�2(q+1)�

n

@����(f
n; fn+1)@�� f

n+1
� (84)

�8�
Z
w2e�2(q+1)�

n

@�� [
p
�(fn� + f

n
�)(f

n+1
� � fn�)]@�� fn+1� (85)

�16�
Z
w2e�2(q+1)�

n

@�� [�(f
n+1
� � fn�)]@�� fn+1� : (86)

We now derive estimates for (76) to (86).

Lemma 10 Assume for M su¢ ciently small,

E2;2;0(fn) �M:
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(1) We have

E2;l;q(fn+1) +
Z t

0

D2;l;q(fn+1)ds

� 1

4

Z t

0

D2;l;q(fn)ds+ Cl[E2;l;q(f0) +
Z t

0

X
j�j�2

fjj�
q�1
8 @�fnjj22 + jj�

q�1
8 @�fn+1jj22g]

+Cl

Z t

0

[
X

j�0j+j�0j�1

j@�0�0 fnj�;w(�0;�0)hvi2

2
H

3
4

+ jjrx�njj1 + jj@t�njj1]E2;l;q(fn+1)

+Cl

Z t

0

X
j�0j+j�0j�1

j@�0�0 fn+1j�;w(�0;�0)hvi2

2
H

3
4

E2;l;q(fn)

+Cl

Z t

0

q
E2;l;q(fn+1 � fn)[1 + jjfnjj

H
7
4
]
q
E2;l;q(fn+1)

+Cl

Z t

0

jjfn+1 � fnjj
H

7
4

q
E2;l;q(fn)

q
E2;l;q(fn+1): (87)

(2) For m � 3; we have

Em;l;q(fn+1; �n) +
Z t

0

Dm;l;q(fn+1)ds

� 1

4

Z t

0

Dm;l;q(fn)ds+ ClEm;l;q(f0) + Cl;m
Z t

0

X
j�j=m

fjj�
q�1
8 @�fnjj22 + jj�

q�1
8 @�fn+1jj22g

+Cl;m

Z t

0

[
X

j�0j+j�0j�[m2 ]

(j@�0�0 fnj�;w(�0;�0)hvi2

2
H

3
4

+

j@�0�0 fn+1j�;w(�0;�0)hvi2

2
H

3
4

)
+ jjr�njj1 + jj@t�njj]

�[Em;l;q(fn) + Em;l;q(fn+1)]

+Cl;m

Z t

0

[1 + jjfnjj
H[m

2
]+ 3

4
]
q
Em;l;q(fn+1 � fn)

q
Em;l;q(fn+1)

+Cl;m

Z t

0

jjfn+1 � fnjj
H[m

2
]+ 3

4

q
Em;l;q(fn)

q
Em;l;q(fn+1)

+Cl;m

Z t

0

[Dm�1;l;q(fn) +Dm�1;l;q(fn+1)][Em�1;l;q(fn) + Em�1;l;q(fn+1) + 1]: (88)

We remark the exponential factor �
q�1
8 is chosen for convenience.

Proof. First note that ��n =
R p

�(fn+�fn�)dv and
R
�n = 0 so that jj�njj1 .

M by the elliptic estimate so that

e�2(q+1)�
n . 1:
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We shall estimate term by term in (76) to (86). In the second term of (76), we
apply both Lemma 8 and 9 of [SG2]. For � = 0;

�
Z
hw2(�; 0)@�Afn+1� ; @�fn+1� idx & jj@�fn+1jj2�;w(�;0) � Cmjj�@�fn+1jj22;

(89)
�(v) being a general cuto¤ function in v. For � 6= 0; for any � > 0; we have

�
Z
hw2(�; �)@��Afn+1� ; @�� f

n+1
� idx

& jj@�� fn+1jj2�;w(�;�) � �Dm;l;q(fn+1)� Cl;�
X
�0<�

jj@��0fn+1jj2�;w(�;�0):(90)

From Lemma 5, we have for any � > 0 and � � ei
(77) . jj@���eif

n+1jj�;w(�;��ei)jj@
�+ei
��ei f

n+1
� jj�;w(�+ei;��ei)

� �Dm;l;q(fn+1) + C�jj�ei� @
�
��eif

n+1
� jj�;w(�;��ei): (91)

To estimate (78) and (79); from the elliptic estimate and our assumption,

jjr4�njj2 . jjfnjjH2 .
p
M;

jjr2�njjHm�1 . jj
Z p

�fnjjHm�1 . Em�1;m�1;0(fn):

We deduce from Lemma 8 that

(78) + (79) (92)

. �jj@�� fn+1jj2�;w + C�
jfn+1� j

�;
w(0;0)

hvi2

2
H

3
4

Em;m;0(fn) + C�[Em�1;m�1;0(fn) +M ]Dm�1;l;q(fn+1):

In particular, if m = 2; we have Em;m;0(fn) �M and by (23)jfn+1� j
�;

w(0;0)

hvi2

2
H1

.
X
jj�1

jj@fn+1� jj2�;w(;0) .
X

j�j+j�j�2

jj@�� fn+1� jj2�;w(�;�);

so that
(78) + (79) . (� + C�M)

X
j�j+j�j�2

jj@�� fn+1� jj2�;w: (93)

Next, we easily control

(80) � Cl;m
Z t

0

fjj�nt jj1 + jjrx�njj1gw2(@�� fn+1� )2: (94)

To estimate (81); since (e�2(q+1)�
n � 1) .

p
M; we control from Lemmas

8-9 of [SG2]: for any � > 0;

(81) .
p
M jj@�� fn+1jj2�;w(�;�) + Cl;m

p
M

X
j�j�m

jj@�fn+1�jj22 (95)

+�Dm;l;q(f
n+1) + Cl;m;�

X
�0<�

jj@��0fn+1jj2�;w(�;�0):
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In (82); since 0 � q < 1 in (23), via repeated integration by part in v; we can
move all the v derivatives @� out of @�� f

n+1 to the factor @� [v
p
�w2]; so that

(82) . Cl;m
Z
�
q�1
8 [j@�fn+1j2 + j@�fnj2]dvdx: (96)

By Lemma 8 in [SG2], we have

(83) . f�
q
Dm;l;q(fn) + Cl;m;�

X
j�j�m

jj�@�fnjj2g
q
Dm;l;q(fn+1) (97)

. �[Dm;l;q(fn) +Dm;l;q(fn+1)] + Cl;m;�
X
j�j�m

jj�@�fnjj22:

We now turn to (85) and (86). If j�j+ j�j � 2; due to the decay of p� and
the fact q < 1 in (23); by product rule and Sobolev imbedding (Lemma 3) in
T3:

jjw@�� [
p
�(fn� + f

n
�)(f

n+1
� � fn�)] + @�� [�(fn+1� � fn�)]jj2

. Cf
q
E2;l;q(fn+1 � fn)[1 + jjfnjj

H
7
4
] +
q
E2;l;q(fn)jjfn+1 � fnjj

H
7
4
g;

so that for j�j+ j�j � 2; we have

(85) + (86) (98)

. Cf
q
E2;l;q(fn+1 � fn)[1 + jjfnjj

H
7
4
]
q
E2;l;q(fn+1) +

q
E2;l;q(fn)jjfn+1 � fnjj

H
7
4
g:

For j�j+ j�j = m � 3; due to the decay of p�; we have

jjw@�� [
p
�(fn� + f

n
�)(f

n+1
� � fn�)] + @�� [�(fn+1� � fn�)]jj2 (99)

. Cmf
q
Em;l;q(fn+1 � fn)[1 + jjfnjj

H[m
2
]+ 3

4
] + jjfn+1 � fnjj

H[m
2
]+ 3

4

q
Em;l;q(fn)g:

We now prove the �rst part (1). Applying Proposition 6 with g1 = fn;
g2 = f

n+1, we choose � small and M further small such that C�M << 1. By
(23) and (25), j@�0�0 f j� . j@�

0

�0 f j�;w(�0;�0)hvi2
for j�0j + j�0j � 1: We collect terms to
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get

jj@�� fn+1jj22;w +
Z t

0

jj@�� fn+1jj2�;w

. Cljj@�� fn+1(0)jj2w + �
Z t

0

jj@�� fnjj2�;w

+Cl;�

Z t

0

X
j�j�2

[jj�
1�q
8 @�fn+1jj22 + jj�

1�q
8 @�fnjj22]

+Cl

Z t

0

8<: X
j�0j+j�0j�1

j@�0�0 fnj�;w(�0;�0)hvi2

2
H

3
4

+ jjrx�njj1 + jj@t�njj1

9=; E2;l;q(fn+1)
+Cl

Z t

0

X
j�0j+j�0j�1

j@�0�0 fn+1j�;w(�0;�0)hvi2

2
H

3
4

E2;l;q(fn)

+Cl;�

Z t

0

X
j�0j�2;j�0j<j�j

jj@��0fn+1jj2�;w(�0;�0)

+Cm

Z t

0

f
q
E2;l;q(fn+1 � fn)[1 + jjfnjj

H
7
4
] +
q
E2;l;q(fn)jjfn+1 � fnjj

H
7
4
g
q
E2;l;q(fn+1):

Here we have bounded the cuto¤ function � by �
1�q
4 : As in [G1], we can get

rid of the contribution of Cl;�
R t
0

P
j�0j�2;j�0j<j�j jj@��0fn+1jj2�;w(�0;�0) which has

less v�derivatives. Upon an induction starting from j�j = 0; 1; 2 by choosing
di¤erent small value of � each time; we conclude that for any � > 0 (di¤erent
value of Cl) thatX

j�j+j�j�2

jj@�� fn+1jj22;w +
Z t

0

X
j�j+j�j�m

jj@�� fn+1jj2�;w

. �

Z t

0

X
j�j+j�j�2

jj@�� fn+1jj2�;w + Cl;�
X

j�j+j�j�m

jj@�� fn+1(0)jj22;w

+Cl

Z t

0

8<: X
j�0j+j�0j�1

j@�0�0 fnj�;w(�0;�0)hvi2

2
H

3
4

+ jjrx�njj1 + jj@t�njj1

9=; E2;l;q(fn+1)
+Cl;�

Z t

0

X
j�0j+j�0j�1

j@�0�0 fn+1j�;w(�0;�0)hvi2

2
H

3
4

E2;l;q(fn)

+Cl;�

Z t

0

X
j�j�2

[jj�
1�q
8 @�fn+1jj22 + jj�

1�q
8 @�fnjj22]

+Cm

Z t

0

f
q
E2;l;q(fn+1 � fn)[1 +

q
jjfnjj

H
7
4
] +
q
E2;l;q(fn)jjfn+1 � fnjj

H
7
4
g
q
E2;l;q(fn+1):

We sum over j�j+j�j � 2 then choose � su¢ ciently small (but �xed) to conclude
the �rst part of our lemma. We remark that M is also small but �xed.
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For j�j + j�j = m � 3; we simply put terms like
P

�0<� jj@��0fn+1jj2�;w(�;�0)
into Dm�1;l;q(fn+1): We apply Proposition 6 and collect terms to get

jj@�� fn+1jj22;w +
Z t

0

jj@�� fn+1jj2�;w

. �

Z t

0

[Dm;l;q(fn) +Dm;l;q(fn+1)] + Cl;m;�jj@�� fn+1(0)jj22;w

+Cl;m;�

Z t

0

X
j�j=m

[jj�
1�q
8 @�fn+1jj22 + jj�

1�q
8 @�fn+1jj22]

+Cl;m

Z t

0

[
X

j�0j+j�0j�[m2 ]

(j@�0�0 fnj�;w(�0;�0)hvi2

2
H

3
4

+

j@�0�0 fn+1j�;w(�0;�0)hvi2

2
H

3
4

)
+ jjr�njj1 + jj@t�njj]

�fEm;l;q(fn) + Em;l;q(fn+1)g

+Cl;m;�

Z t

0

[1 + jjfnjj
H[m

2
]+ 3

4
]
q
Em;l;q(fn+1 � fn)

q
Em;l;q(fn+1)

+Cl;m;�

Z t

0

jjfn+1 � fnjj
H[m

2
]+ 3

4

q
Em;l;q(fn+1)

q
Em;l;q(fn)

+Cl;m

Z t

0

fEm�1;l;q(fn) + Em�1;l;q(fn+1) + 1gfDm�1;l;q(fn) +Dm�1;l;q(fn+1)g:

We therefore conclude the lemma by setting � su¢ ciently small.
We are now ready to construct local in time solutions by showing uniform

bounds for fn which requires the use of fractional Sobolev norms.

Lemma 11 Assume f0 2 C1c such that F0 = �+
p
�f0 > 0 with (70).

(1) There exist small constants 0 < T � 1 and M > 0; such that if
E2;2;0(f0; �0) su¢ ciently small,

E2;2;0(fn+1) +
Z t

0

D2;2;0(fn+1)(s)ds �M: (100)

(2) ffng is Cauchy in L1([0; T ]; L2x;v):
(3) There exists Cl > 0 such that for 0 � t � T :

E2;l;q(fn+1)(t) +
Z t

0

D2;l;q(fn+1)(s)ds � ClE2;l;q(0): (101)

(4) Assume (2) is valid. For m � 3; there exists an increasing continuous
function Pm;l with Pm;l(0) = 0 such that for 0 � t � T :

Em;l;q(fn+1) +
Z t

0

Dm;l;q(fn+1)ds � Pm;l(Em;l;q(f0)): (102)

(5) fFn � 0g:
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Proof. To prove (1), we apply (87) with an induction over n:We assume (100)
is valid for k = 0; 1; 2; ::n: Recall �n =

R p
�[fn+ � fn�]dv and jn =

R
v
p
�[fn+ �

fn�]dv. We now note that from the continuity equation of

�nt +rx � jn = 0;

we have
��rx�n = rx�n; �@t�

n = rxjn (103)

and

jj@t�njj1+ jjrx�njj1 . j@t
Z
[fn+�fn�]

p
�dvj2+ j@x

Z
[fn+�fn�]

p
�dvj2 .

p
M:

(104)
We therefore deduce that for t � TZ T

0

fjj�nt jj1 + jjrx�njj1gds .
p
M:

It follows thatZ t

0

X
fjj�

1�q
8 @�fn+1jj22 + jj�

1�q
8 @�fnjj22g .

Z t

0

[E2;l;q(fn) + E2;l;q(fn+1)]:

We then summarize from Lemma 10 with l = 2, by jjf jj
H

7
4
.
p
E2;2;0(fn); and

by (41):

E2;2;0(fn+1) +
Z t

0

D2;2;0(fn+1)ds

� 1

4

Z t

0

D2;2;0(fn)ds

+CE2;2;0(f0) + C
Z t

0

[D2;2;0(fn) +
q
E2;2;0(fn) + 1]E2;2;0(fn+1)

+C

Z t

0

[D2;2;0(fn+1) +
q
E2;2;0(fn) + 1]E2;2;0(fn)]

� 2M

3
+ CfE2;l;q(f0) +M3=2T +MT + [M +

p
M + T ] sup

0�t�T
E2;2;0(fn+1) +M

Z t

0

D2;2;0(fn+1)g:

We have used the induction hypothesis for fn: For M and T both small, we
have

E2;2;0(fn+1) +
Z t

0

D2;2;0(fn+1)ds �
4M

5
+ CE2;2;0(f0) < M

We thus deduce part (1) of the lemma for E2;2;0(f0) su¢ ciently small.
We now prove part (2). It is standard to prove ffng is Cauchy in light of

strong bound obtained in part (1). In particular, sup jvfn�j and sup jrvfn�j are
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bounded (part of E2;2;0(fn)). We take di¤erence in (72) to obtain

[@t + v � rx �rx�n � rv][fn+1� � fn�]�A�[fn+1 � fn]�rx�n � v[fn+1� � fn�]
�[rx�n �rx�n�1]rvfn� � [rx�n �rx�n�1] � vfn�

= �2[rx�n �rx�n�1] � v
p
�+K�[f

n � fn�1] + [��(fn+1; fn)� ��(fn; fn�1)]
�8��[fn�(fn+1� � fn�)� fn�1� (fn� � fn�1� )]� 16�p�([fn+1� � fn�]� [fn� � fn�1� ])

�[�n+1 � �n] = �
Z
([fn+1+ � fn+]� [fn+1� � fn+])dv;

By multiplying with e�2�
n

(fn+1�fn), (fn+1 and fn has the same initial value)X
�
jje��

n

(fn+1� � fn�)jj22(t) +
Z t

0

jje��
n

(fn+1� � fn�)jj2�(s)ds

.
Z t

0

X
�
jje��

n

(fn+1� � fn�)jj22(s)ds+
Z t

0

X
�
jje��

n

(fn� � fn�1� )jj22(s)ds:

Since �n is uniformly bounded, by Lemma 4, we can repeat this process to
obtain

jjfn+1 � fnjj22(t) .
Z t

0

jjfn � fn�1jj22(s)ds .
tn

n!
:

Hence ffng is Cauchy and we can take the limit as n ! 1 to obtain Hm

solutions for all m: We denote f to be the limit of fn: We remark, however,
unlike [G1], it is impossible to establish fn is Cauchy with respect to

p
E2;2;0;

due to the presence of the electric �eld E:
We now turn to part (3) for which we have to make use of the sharper

estimates of H
4
3 norms. Collecting terms, we rewrite (87) as

E2;l;q(fn+1) +
Z t

0

D2;l;q(fn+1)ds (105)

� 1

4

Z t

0

D2;l;q(fn)ds+ ClE2;l;q(f0) + Cl
Z t

0

An(s)[E2;l;q(fn+1) + E2;l;q(fn)]

where

An(s) �
X

j�0j+j�0j�1

(j@�0�0 fnj�;w(�0;�0)hvi2

2
H

3
4

+

j@�0�0 fn+1j�;w(�0;�0)hvi2

2
H

3
4

)
+jjfn+1jj

H
7
4
+ jjfnjj

H
7
4
+ jjrx�njj1 + jj@t�njj1 + 1

The key di¢ culty to prove (101) is to replace An(s) by a �xed, integrable func-
tion. First of all, in light of parts (1) and (2), we shall prove

lim
n!1

Z T

0

An(s)ds =

Z T

0

[2
X

j�0j+j�0j�1

j@�0�0 f j�;w(�0;�0)hvi

2
H

3
4

+ 2jjf jj
H

7
4
+ jjrx�jj1 + jj@t�jj1 + 1]

�
Z T

0

A(s)ds <1: (106)
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In fact, since fn ! f in L2 from part (1), we deduce from (100):

E2;2;0(f) +
Z T

0

D2;2;0(f) �M:

Again from (100), sup0�t�T E2;2;0(fn) is uniformly bounded so that

max
0�t�T

jjfn � f jj
H

7
4
! 0 and

Z T

0

jjfn � f jj
H

7
4
ds! 0

by compact imbedding. Moreover, by (103) and (104),

max
0�t�

jj@t�n � @t�jj1 + jjrx�n �rx�jj1

. [jjrxjn �rxjjj2 + jjrx�n �rx�jj2]

. jjfn � f jjH1 ! 0; (107)

from (100) and fn ! f in L2:
We separate jvj � R and jvj � R to get, for any � > 0; by (23) and (25)Z T

0

X
j�0j+j�0j�1

j@�0�0 fn � @�0�0 f j�;w(�0;�0)hvi2

2
H

3
4

� �

Z T

0

X
j�0j+j�0j�1

j@�0�0 fn � @�0�0 f j�;w(�0;�0)hvi2

2
H1

+ C�

Z T

0

X
j�0j+j�0j�1

j@�0�0 fn � @�0�0 f j�;w(�0;�0)hvi2

2
2

� �

Z T

0

X
j�0j+j�0j�1

jj�1

jj@@�
0

�0 f
n � @@�

0

�0 f jj2�;w(�0+;�0) + C�
Z T

0

X
j�0j+j�0j�1

j@�0�0 fn � @�0�0 f j�;w(�0;�0)hvi2

2
2

. �[

Z T

0

D2;2;0(fn) +
Z T

0

D2;2;0(f)] +
C�
R4

Z T

0

X
j�0j+j�0j�1

j@�0�0 fn � @�0�0 f j�;w(�0;�0)2
2

+C�

Z T

0

X
j�0j+j�0j�1

j@�0�0 fn � @�0�0 f j�;w(�0;�0)hvi2
�(jvj�R)

2
2

. �[

Z T

0

D2;2;0(fn) +
Z T

0

D2;2;0(f)] +
C�
R4
[

Z T

0

D2;2;0(fn) +
Z T

0

D2;2;0(f)]

+C�;R[

Z 1

0

jj[rvfn �rvf ]�(jvj�R)jj2H1 ] (108)

where � is a cuto¤ function. In light of
R T
0
D2;2;0(fn) +

R T
0
D2;2;0(f) <1; and

by (25),
R T
0
jj[rvfn �rvf ]�(jvj�R)jj2H2 is uniformly bounded. Hence

lim
n!1

Z T

0

jj[rvfn �rvf ]�(jvj�R)jj2H1 ! 0
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from fn ! f in L2: We thus deduce that

lim
n!1

Z T

0

X
j�0j+j�0j�1

j@�0�0 fn � @�0�0 f j�;w(�0;�0)hvi2

2
H

3
4

= 0

by �rst choosing � su¢ ciently small, then R su¢ ciently large and letting n!1:
We thus complete the proof of (106).
Now from (106), for any " small, we can �nd N(") such that for n � N;Z T

0

[An(s)�A(s)]ds < ": (109)

Our strategy of establishing (101) is to separate two cases of n � N and
n � N: For n � N; by (105),

E2;l;q(fn+1) +
Z t

0

D2;l;q(fn+1)ds

� 1

4

Z t

0

D2;l;q(fn)ds+ ClE2;l;q(f0) + Cl
Z t

0

An(s)[E2;l;q(fn+1) + E2;l;q(fn)]

for 1 � n � N � 1: We apply the Gronwall Lemma 4 to E2;l;q(fn+1)(t) with
A = An(s) and

B = �
Z s

0

D2;l;q(fn+1)d�+
1

4

Z s

0

D2;l;q(fn)d�+ClE2;l;q(f0)+Cl
Z t

0

An(s)E2;l;q(fn)

to obtain

E2;l;q(fn+1)(t)

� e
R t
0
An(s)ds

Z s

0

An(s)�

�
�
�
Z s

0

D2;l;q(fn+1)d� +
1

4

Z s

0

D2;l;q(fn)d� + Cl[E2;l;q(f0) +
Z s

0

An(s)E2;l;q(fn)]
�

�
Z t

0

D2;l;q(fn+1)d� +
1

4

Z t

0

D2;l;q(fn)d� + ClE2;l;q(f0) + Cl
Z t

0

An(s)E2;l;q(fn):

By the boundedness of
R T
0
An(s);

R t
0
An(s)E2;l;q(fn) � C sup0�t�T E2;l;q(fn):

Collecting terms, dropping �
R s
0
D2;l;q(fn+1)d� above, we use induction over n
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to get

sup
0�t�T

E2;l;q(fn+1)(t) +
Z T

0

D2;l;q(fn+1)d�

� Cl

(
sup
0�t�T

E2;l;q(fn) +
Z T

0

D2;l;q(fn)d�
)
+ ClE2;l;q(f0)

� C2l

(
sup
0�t�T

E2;l;q(fn�1) +
Z T

0

D2;l;q(fn�1)d�
)
+ [Cl + C

2
l ]E2;l;q(f0)

:::

� Cn+1l

(
sup
0�t�T

E2;l;q(f0) +
Z T

0

D2;l;q(f0)d�
)
+ [Cl + :::C

n+1
l ]E2;l;q(f0)

� CN+2l E2;l;q(f0); (110)

as f0 � 0 from (70). This conclude the case for n � N:
For n � N; we de�ne for k � N :

Xk(t) = max
N�n�k

E2;l;q(fn)

and our goal is to show uniform bound for Xk(t): By (105) and (109), for n+1 �
k; we replace An by A to get

E2;l;q(fn+1) +
Z t

0

D2;l;q(fn+1)ds

� 1

4

Z t

0

D2;l;q(fn)ds+ ClE2;l;q(f0) + Cl
Z t

0

An(s)Xk(t)

� 1

4

Z t

0

D2;l;q(fn)ds+ ClE2;l;q(f0) + Cl
Z t

0

A(s)Xk(t) + Cl" sup
0�t�T

Xk(t):

We iterate such an inequality n+ 1 back to n:::; N to get

E2;l;q(fn+1) +
Z t

0

D2;l;q(fn+1)ds

� 1

4

Z t

0

D2;l;q(fn)ds+ ClfE2;l;q(f0) +
Z t

0

A(s)Xk(t) + " sup
0�t�T

Xk(t)g

� 1

42

Z t

0

D2;l;q(fn�1)ds+ [1 +
1

4
]Cl

�
E2;l;q(f0) +

Z t

0

A(s)Xk(t) + " sup
0�t�T

Xk(t)
�

:::

� 1

4n�N

Z t

0

D2;l;q(fN )ds+
n+1X
1

1

4j
Cl

�
E2;l;q(f0) +

Z t

0

A(s)Xk(t) + " sup
0�t�T

Xk(t)
�

� Cl;NE2;l;q(f0) + Cl
�Z t

0

A(s)Xk(t) + " sup
0�t�T

Xk(t)
�
; (111)
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from the estimate for
R t
0
D2;l;q(fN )ds: We now take maxN�n�k to get

Xk(t) � Cl;NE2;l;q(f0) + Cl
�Z t

0

A(s)Xk(t) + " sup
0�t�T

Xk(t)
�
:

From the Gronwall Lemma 4, we obtain from
R T
0
A(s)ds < +1:

Xk(t) � Cl;NE2;l;q(f0) + Cl" sup
0�t�T

Xk(t):

With " su¢ ciently small we obtain

sup
0�t�T

Xk(t) � Cl;NE2;l;q(f0):

Plugging this into (111) yieldsZ t

0

D2;l;q(fn+1)ds � Cl;NE2;l;q(f0)

and we complete part (3) and the proof of (101).
We now turn to part (4) and (102). We shall use an induction over m: We

assume that (102) is valid for m� 1 and all l :

sup
0�t�T

Em�1;l;q(fn+1(t)) +
Z T

0

Dm�1;l;q(fn+1)ds � Pm�1;l(Em�1;l;q(f0)) (112)

for some increasing function Pm�1;l(0) = 0: Clearly, this is valid for m� 1 = 2
in light of (101).
We follow the same argument as in the proof of (101). Collecting terms and

using the induction hypothesis (112), we summarize (88) as

Em;l;q(fn+1) +
Z t

0

Dm;l;q(fn+1)ds

� 1

4

Z t

0

Dm;l;q(fn)ds+ Em;l;q(f0) + Cl;m
Z t

0

An;m(s)[Em;l;q(fn) + Em;l;q(fn+1)]

+Cl;m

Z t

0

[Dm�1;l;q(fn) +Dm�1;l;q(fn+1)][Em�1;l;q(fn) + Em�1;l;q(fn+1) + 1]

� 1

4

Z t

0

Dm;l;q(fn)ds+ Em;l;q(f0) + Cl;m
Z t

0

An;m(s)[Em;l;q(fn) + Em;l;q(fn+1)]

+Cl;m[P
2
m�1;l(Em�1;l;q(f0)) + Pm�1;l(Em�1;l;q(f0))]

� 1

4

Z t

0

Dm;l;q(fn)ds+ Pm;l(Em;l;q(f0)) + Cl;m
Z t

0

An;m(s)[Em;l;q(fn) + Em;l;q(fn+1)]:

where Pm;l(z) � Cl;m[P 2m�1;l(z) + Pm�1;l(z)] + z and

An;m �
X

j�0j+j�0j�[m2 ]

(j@�0�0 fnj�;w(�0;�0)hvi2

2
H

3
4

+

j@�0�0 fn+1j�;w(�0;�0)hvi2

2
H

3
4

)
+jjr�njj1 + jj@t�njj1 + jjfnjj

H[m
2
]+ 3

4
+ jjfn+1jj

H[m
2
]+ 3

4
+ 1:
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The major step is to show that

lim
n!1

Z T

0

An;m(s)ds!
Z T

0

Am(s)ds (113)

with

Am � 2
X

j�0j+j�0j�[m2 ]

j@�0�0 f j�;w(�0;�0)hvi2

2
H

3
4

+jjr�jj1+jj@t�jj1+jjf jj
H[m

2
]+ 3

4
+jjf jj

H[m
2
]+ 3

4
+1:

Note
R T
0
Am < 1 by (112). Moreover, fn ! f in L2; by m � 1 > [m2 ] +

3
4 for

m � 3;

max
0�t�T

jjfn � f jj
H[m

2
]+ 3

4
� � max

0�t�T
jjfn � f jjHm�1 + C� max

0�t�T
jjfn � f jjL2 ! 0

by choosing �rst � small then n!1: Similarly, as in (108),Z T

0

X
j�0j+j�0j�[m2 ]

j@�0�0 fn � @�0�0 f j�;w(�0;�0)hvi2

2
H

3
4

� �[

Z T

0

Dm�1;l;q(fn) +
Z T

0

Dm�1;l;q(f)] +
C�
R4
[

Z T

0

Dm�1;l;q(fn) +
Z T

0

Dm�1;l;q(f)]

+C�;R[

Z T

0

jj[rvfn �rvf ]�(jvj�R)jj2H[m
2
] ]:

We note that [m2 ] � m�2 form � 3; from (112),
R T
0
jj[rvfn�rvf ]�(jvj�R)jj2Hm�1

is bounded for �xed R and

lim
n!1

Z T

0

jj[rvfn �rvf ]�(jvj�R)jj2H[m
2
] ! 0:

We therefore conclude that (113) is valid and (102) is proven exactly as in part
(3).
We note that from the maximum principle for the original (71) Fn > 0 for

all n = 0; 1; 2:::.
We summarize the local well-posedness as n!1:

Theorem 12 Assume that E2;2;0(f0) is su¢ ciently small. Then there exist 0 <
T � 1 and M > 0 small such that there is a unique solution F = �+

p
�f > 0

with

E2;2;0(f)(t) +
Z t

0

D2;2;0(f)(s)ds . E2(0) �M:

In general; if 0 � t � T; there exists an increasing continuous function Pm;l(�)
with Pm;l(0) = 0 such that

Em;l;q(f)(t) +
Z t

0

Dm;l;q(f)(s)ds � Pm;l(Em;l;q(f0))
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The uniqueness is standard with the strong bound E2;2;0(f)(t) < 1: To
establish Theorem 12 for Em;l;q(f0) < 1 and � +

p
�f0 � 0; we �rst choose

a velocity cuto¤ function � such that (1 � 1
R )f0�(

jvj
R ) has compact support

in v and Em;l;q(f0�( jvjR )) < 1: We then choose a smooth approximation of
(1� 1

R )f0�(
jvj
R ) as f

k
0 : For �xed R; we can choose f

k
0 such that

Em;l;q
�
(1� 1

R
)f0�(

jvj
R
)� fk0 )

�
! 0: (114)

We therefore can construct a solution for the system with initial condition fk0
thanks to Lemma 11. We �nally take limits as k !1; and R!1 to construct
a solution for the desired initial datum f0:

4 Time Decay and Global Solution

In this section, we establish our main theorem. We �rst summarize the mixed x
and v derivative estimates by applying Lemma 10 with fn = fn+1 and �n = �:

Lemma 13 Let f0 2 C1c and assume f is the solution constructed in Theorem
12. Assume for M su¢ ciently small,

E2;2;0(f) �M;

(1) We have

E2;l;q(f) +
Z t

0

D2;l;q(f)ds (115)

� ClfE2;l;q(f0) +
Z t

0

X
j�j�2

jj@�f jj2� +
Z t

0

[D2;2;0(f) + jjr�jj1 + jj@t�jj1]E2;l;q(f)dsg:

(2) If m � 3, we have

Em;l;q(f) +
Z t

0

Dm;l;q(f)ds (116)

� Cl;mfE2;l;q(f0) +
Z t

0

[Dm�1;l;q(f) + jjrx�jj1 + jj@t�jj1]Em;l;q(f) +
Z t

0

X
j�j=m

jj@�f jj2�

+

Z t

0

[Em�1;l;q(f) + 1]Dm�1;l;q(f)g:

We note that since f0 2 C1c ; the sequence fn in Lemma 11 satis�es supn Em;l;q(fn) <
+1 for any l and any m (the bound may depends on l;m). This implies that
for fn is compact in all Em;l;q norm so that we can take n!1 in Lemma 10.
We also have used (41) and the fact

P
j�j�2 jj�

q�1
8 @�f jj2 . jj@�f jj2�.
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We next investigate the pure x derivatives to control
R t
0
jj@�f jj2� above. We

take @� of the Vlasov-Poisson-Landau system (8):

[@t + v � rx �rx� � rv]@�f� � 2rx@�� � v
p
�+ L�@

�f

= �rx� � v@�f� �
X
�1<�

C�1� @
���1rx� � v@�1f�

�
X
�1<�

C�1� @
���1rx� � rv@�1f� + @���(f; f):

Lemma 14 Assume Let f0 2 C1c and assume f is the solution constructed in
Theorem 12 with E2;2;0(f) �M: Then for j�j = 0; 1; 2 :

d

dt

"Z X
�

e�2�(@�f�)
2

2
+

Z
jr@��j2

#
+

Z
hL@�f; @�fi

.
X
�

Z
j�tj(@�f�)2 +

p
M

X
j�0j�j�j

jj@�
0
f jj2�: (117)

For j�j = m � 3; we have for any � > 0;

d

dt

"Z X
�

e�2�(@�f�)
2

2
+

Z
jr@��j2

#
+

Z
hL@�f; @�fi

.
X
�

Z
j�tjj@�f�j2 +

p
M

Z
j@�f�j2� + �

X
j�j=m

jj@�
0
f jj2�

+Cm;�[D2;2;0(f)Em;l;q(f) + f1 + Em�1;l;q(f)gDm�1;l;q(f)]: (118)

Proof. We sum over � of (76) to (86) with fn = fn+1 and with w = 1
(l = j�j+ j�j): Note we can combine �A�K = L: From the continuity equation
@��t +rx � @�j = 0 (with � =

R p
�[f+ � f�]dv and j =

R
v
p
�[f+ � f�]dv)

�2
Z
rx@�� � v

p
�[@�f+ � @�f�] =

d

dt

Z
jr@��j2;
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and we deduce:

d

dt

"Z X
�

e�2�(@�f�)
2

2
+

Z
jr@��j2

#
+

Z
hL@�f; @�fi

=
X
�

Z
e�2��t(@

�f�)
2 (119)

+2
X
�

Z
e�2�rx@�� � v

p
�@�f�(e

�2� � 1) (120)

+
X
�

Z
(1� e�2�)@�f�L�@�f (121)

+
X
�

Z
e�2�@�f�@

���(f; f) (122)

+
X

�;�1<�
C�1�

Z
e�2�@�f�@

���1rx� � rv@�1f� (123)

�
X

�;�1<�
C�1�

Z
e�2�@�f�@

���1rx� � v@�1f�: (124)

We estimate each term of (120) to (124). From j1 � e��j . jj�jj1 .p
E2;2;0(f) .

p
M; jjrx@��jj2 . jj@�f jj� and jjv�1=4@�f jj2 . jj@�f jj�; then

clearly
(120) .

p
M jj@�f jj2�:

By Lemma 5 of [G1], we have

(121) .
p
M jj@�f jj2�:

We apply Lemma 7 to estimate (122) and Lemma 9 to estimate (123) and (124)
to conclude the proof.
We now establish a positivity of L in a �di¤erential form� [G3]. Recalling

(8), we rewrite

f@t + v � rxgf� � 2fE � vg
p
�+ L�f = N�(f) (125)

� �E � rvf� � fE � vgf� + ��(f; f):

Proposition 15 Assume that for 0 � t � T; f is the solution to the Vlasov-
Poisson-Landau system (8) and (9) with

E2;2;0(t) �M;

su¢ ciently small. Then for m � 0; there exists a function G(t) with

G(t) .
s X
j�j=m

jj@�f jj2
s X
j�j=m

jj@�rxPf jj2 (126)
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such that X
j�j=m

[jjrx@�Pf jj22 + jj@�rxEjj22] (127)

. d

dt
G(t) +

X
j�j=m

[jjrx@�(I � P )f jj2� + jj@�(I � P )f jj2� + jj@�Njjjj2]:

Here @�Njj denotes the L2v projection of @
�N�(f) with respect to the subspace

generated by [
p
�; vi

p
�; vivj

p
�; vijvj2

p
�]: Furthermore, for " small,X

j�j=m

Z
hLrx@�f;rx@�fidx & "

X
j�j=m

�
jjrx@�f jj2� � jj(I � P )@�f jj2� � jj@�N�(f)jj22

	
�"dG

dt
:

(128)

Proof. The proof of this lemma is now standard in light of methods developed
in [G2], [G3] (with " = 1). We denote the kernel of L as

Pf =

�
a+(t; x)

p
�

a�(t; x)
p
�

�
+

�
b(t; x) � vp�
b(t; x) � vp�

�
+

�
c(t; x)jvj2p�
c(t; x)jvj2p�

�
;

so that jjrx@�bjj22 + jjrx@�cjj22 + jjrx@�a�jj22 v jjPrx@�f jj22.
The �rst step is to use local conservation laws to estimate the temporal

derivatives of Prx@�f in terms of spatial derivatives. Recalling (8) and (125)
we denote

f@t + v � rxgf� + L�f = �2fE � vg
p
�+N�(f):

Upon taking vector inner product with
p
�
�
1
0

�
;
p
�
�
0
1

�
; v
p
�
�
1
1

�
and jvj2p�

�
1
1

�
(the null space of L; see (34)), we obtain local conservations of masses, total
momentum and total energy as in Eq. (6.5) in [G3]:

(�0@ta� + �2@tc) +
�2rx � b
3

= hN�;
p
�i; (129)

2�2@tb

3
+
�2rx[a+ + a�]

3
+
2�4rxc
3

= h�v � rx(I � P )f; v
p
�

�
1

1

�
i+ hN; vp�

�
1

1

�
i;

@t(�2[a+ + a�] + 2�4c) +
2�4rx � b

3
= hN � v � rx(I � P )f;

p
�

�
jvj2
jvj2

�
i: (130)

Here �i =
R
jvji�dv and�E�vp�makes no contribution in the process. Subtract

the + from � parts in Eqs. (129), then take

�4 � [Eq:(129)+ + Eq:(129)�]� �2 � Eq:(130)

to get:

�0@t[a+ � a�] = hN+ �N�;
p
�i;

(�0�4 � �22)@t[a+ + a�] = hN+ +N�; [�4 � �2jvj2]
p
�i+ �2hv � rx(I � P )f; jvj2

p
�

�
1

1

�
i:
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Since �0�4 � �22 > 0; �0 > 0; we solve for @ta� and @t@�a�. We then take @� of
Eqs. (129) to (130) to get:

jj@t@�ajj2 . jj(I � P )rx@�f jj2 + jj@�N�jj2; (131)

jj@t@�cjj2 . jjrx@�bjj2 + jj(I � P )rx@�f jj� + jj@�N�jj2; (132)

jj@t@�bjj2 . jjrx@�ajj2 + jjrx@�cjj2 + jj(I � P )rx@�f jj� + jj@�N�jj2:(133)

The next step is to use so-called macroscopic equations to estimates a�; b
and c: In fact, following the same procedures in Lemma 6.1 [G3] (with " = 1),
for b and c in (132) and (133), we obtain for any � > 0:

jjrx@�bjj22 + jjrx@�cjj22 � dGbc
dt

+ �jjPrx@�f jj22 (134)

+C�[jjr@�(I � P )f jj2� + jj@�(I � P )f jj2� + jj@�N�jj2];

with some Gbc . jj@�f jj � jj@�rxPf jj2. In the macroscopic equation (6.10) of
[G3], rxa should be replaced by rxa��E. Taking rx� and inner product with
a� with revised Eq. (6.10) in [G3], and using the fact @�E = �r@�� [G4]

��@�� =
Z
[@�f+ � @�f�]

p
�dv = h@�f;p�

�
1

�1

�
i = [@�a+ � @�a�]�0;

we deduce that

jjrx@�a�jj22 + jj@�Ejj22 (135)

� dGa
dt

+ C[jjrx@�bjj22 + jjr@�(I � P )f jj2� + jj@�(I � P )f jj2� + jj@�N�jj2];

for some Ga . jj@�f jj � jj@�rxPf jj2. Assume C � 1:We take 2C�(134)+(135)
to absorb Cjjrx@�bjj22 from the right hand side:

Cjjrx@�bjj22 + 2Cjjrx@�cjj22 + jjrx@�a�jj22 + jj@�Ejj22

� d[2CGbc +Ga]

dt
+ 2�CjjPrx@�f jj22

+(2CC� + C)[jjr@�(I � P )f jj2� + jj@�(I � P )f jj2� + jj@�N�jj2]:

By choosing � su¢ ciently small, we obtain

jjrx@�bjj22 + jjrx@�cjj22 + jjrx@�a�jj22 + jj@�Ejj22

. d[2CGbc +Ga]

dt
+jjr@�(I � P )f jj2� + jj@�(I � P )f jj2� + jj@�N�jj22:

We therefore deduce the lemma by summing over j�j = m:
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The proof of (128) follows from (35) and (127):X
j�j=m

Z
hLrx@�f;rx@�fidx

&
X
j�j=m

jj(I � P )rx@�f jj2�

= (1� ")
X
j�j=m

jj(I � P )rx@�f jj2� + "
X
j�j=m

jj(I � P )rx@�f jj2�

& (1� ")
X
j�j=m

jj(I � P )rx@�f jj2� + "
X
j�j=m

jjPrx@�f jj2� � "
dG

dt
� "

X
j�j=m

jj(I � P )@�f jj2�

�"
X
j�j=m

jj@�N�(f)jj22

& "
X
j�j=m

jjrx@�f jj2� � "
dG

dt
� "

X
j�j=m

jj(I � P )@�f jj2� � "
X
j�j=m

jj@�N�(f)jj22

for 1� " � ":
The following proposition establish the crucial decay to obtain global solu-

tion. It is important to only use up to �rst order derivatives of f to extract
strong decay with a E2;2;0(t) bound.

Proposition 16 Assume that for 0 � t � T; sup0�t�T E2;2;0(t) � M su¢ -
ciently small, and Z T

0

jj�t(s)jj1ds � 1: (136)

Assume conservations laws (12), (13) and (14) are valid. Then there exists
Cl > 0 such that

jjrt;x�(t)jj1 +
X
j�j�1

jj@�f(t)jj2 . Cl

�
1 +

t

4l � 4

��2l+2
sup

0�s�T

q
E2;l;0(f(s))

jjrt;x�(t)jj1 +
X
j�j�1

jj@�f(t)jj2 . e�Clt
2
3 sup
0�s�T

q
E2;l;q(f(s)): (137)

Proof. Summing over j�j � 1 in (117), by the Gronwall�s inequality, we have

d

dt

24e�C R t0 jj�tjj1(s)dsfZ X
j�j�1

e�2�(@�f�)
2

2
+
X
j�j�1

Z
jr@��j2g

35
+e�C

R t
0
jj�tjj1(s)ds

X
j�j�1

Z
hL@�f; @�fidx

.
p
Me�C

R t
0
jj�tjj1(s)ds

X
j�j�1

jj@�f jj2�:
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for some constant C > 0: Since e�
R t
0
jj�tjj1(s)ds v 1; Applying (35) for � = 0

and (128) for j�j = 0 to L; we obtain for small " > 0

p
M

X
j�j�1

jj@�f jj2� &
d

dt

24e� R t0 j�tj1(s)dsfZ X
j�j�1

e�2�(@�f�)
2

2
+
X
j�j�1

Z
jr@��j2g

35
+jj(I � P )f jj2� + "

X
j�j=1

jj@�f jj2� � "jj(I � P )f jj2� � "
dG

dt
� "jjN�jj22

� d

dt

24e� R t0 jj�tjj1(s)dsfZ X
j�j�1

e�2�(@�f�)
2

2
+
X
j�j�1

Z
jr@��j2g � "G(t)

35
+"fjj(I � P )f jj2� +

X
j�j=1

jj@�f jj2�g � "jjNjjjj22; (138)

for some " small. It is clear from Lemma 7 of [G1] that jjNjjjj22 . M jjf jj2�; and
from standard arguments in [G2],

jjPf jj� . jjrxPf jj� (139)

thanks to the conservation laws (12), (13), (14) with
��R Pf �� . pM jjPf jj2 and

the Poincare inequality. Since e�2� . 1 and jjr@��jj2 . jj@�f jj2; by (126), we
can choose " small but �xed such that

Y (t) � e�
R t
0
jj�tjj1ds

X
j�j�1

f
Z
e�2�(@�f�)

2

2
+

Z
jr@��j2g � "G(t)(140)

v
X
j�j�1

jj@�f jj22:

By (103) and (104) with �n = � and fn = f , we have

jj@t�(t)jj1 + jjrx�(t)jj1 +
X
j�j�1

jj@�f(t)jj2 . Y (t): (141)

With such "; we therefore conclude from (138) that

_Y + 2�
X
j�j�1

jj@�f jj2� .
p
M

X
j�j�1

jj@�f jj2�

where � = �("): For M su¢ ciently small, we �nally have

_Y + �
X
j�j�1

jj@�f jj2� � 0: (142)

We now establish polynomial decay by applying the interpolation method
developed in [SG1]. We observe from Holder�s inequality with p = 4l�3

4l�4 and
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q = 4l � 3:�Z
j@�f j2

�
=

(Z
1

hvi
4l�4
4l�3

hvi
4l�4
4l�3 j@�f j2

)

�
�Z

1

hvi j@
�f j2

� 4l�4
4l�3

�Z
hvi4l�4j@�f j2

� 1
4l�3

:

From (19) and an interpolation, we obtain:

jj@�f jj2� &
Z

1

hvi j@
�f j2dv

&
�Z

j@�f j2
� 4l�3

4l�4
�Z

hvi4l�4j@�f j2
�� 1

4l�4

&
�Z

j@�f j2
� 4l�3

4l�4
�
sup

0�s�T
E2;l;0(f(s))

�� 1
4l�4

as 4l � 4 > 0: We therefore have for some other � > 0;

d

dt
Y + �Y 1+

1
4l�4

�
sup

0�s�T
E2;l;0(f(s))

�� 1
4l�4

� 0:

It thus follows

Y �1�
1

4l�4
d

dt
Y + �

�
sup

0�s�T
E2;l;0(s)

�� 1
4l�4

� 0

and by integrating over time, we obtain:

(4l � 4)fY � 1
4l�4 (0)� Y � 1

4l�4 (t)g � ��t
�
sup

0�s�T
E2;l;0(f(s))

�� 1
4l�4

:

But from (140), Y (0) . E2;l;0(0) � sup0�s�T E2;l;0(f(s)); we have

(4l � 4)Y � 1
4l�4 (t) & �t

�
sup

0�s�T
E2;l;0(f(s))

�� 1
4l�4

+ (4l � 4)fY � 1
4l�4 (0)g

& f�t+ (4l � 4)g
�
sup

0�s�T
E2;l;0(f(s))

�� 1
4l�4

:

By (141), we conclude by taking (4l � 4)-th power (positive) of both sides.
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We now prove the stretched exponential decay (137) by the splitting method
in [SR2]: For any � > 0;

jj@�f jj2� &
Z

1

hvi j@
�f j2dv =

Z
jvj��t1=3

+

Z
jvj��t1=3

� t�1=3

�

Z
jvj��t1=3

j@�f j2dv

=
t�1=3

�

Z
j@�f j2dv � t

�1=3

�

Z
jvj��t1=3

j@�f j2dv

& t�1=3

�
Y (t)� t

�1=3

�

Z
jvj��t1=3

j@�f j2dv:

By (142), for some other � > 0; t
�1=3

� � jvj and eqjvj2e�q�2t2=3 � 1; so that

d

dt
Y +

�t�1=3

�
Y (t) � t�1=3

�

Z
jvj��t1=3

j@�f j2dv

� t�1=3

�

Z
eqjvj

2

e�q�
2t2=3 j@�f j2dv

� t�1=3

�
e�q�

2t2=3
Z
eqjvj

2

j@�f j2dv

� t�1=3

�
e�q�

2t2=3 sup
0�s�T

E2;l;q(f(s)):

We therefore have

fe 3�t
2=3

2� Y (t)g0 � e
3�t2=3

2�
t�1=3

�
e�q�

2t2=3 sup
0�s�T

E2;l;q(f(s))

� e
3�t2=3

2� �q�2t2=3 t
�1=3

�
sup

0�s�T
E2;l;q(f(s)):

By (140), Y (0) . sup0�s�T E2;l;q(f(s)); we obtain by integrating from 0 to t :

Y (t) �
�
1+e�

3�t2=3

2�

Z t

0

e
3�s2=3

2� �q�2s2=3 s
�1=3

�
ds

�
sup

0�s�T
E2;l;q(f(s))

� Cle
� 3�t2=3

2� sup
0�s�T

E2;l;q(f(s));

if � large that
R1
0
e[

3�
2��q�

2]s2=3 s�1=3

� ds <1:
We are now ready to prove the main Theorem 1.

Proof. We �rst choose smooth initial data f0 2 C1c and F0 = �+
p
�f0 > 0:

Step 1. Global Small E2;2;0 Solutions.
We denote

T� = sup
t�0

�
E2;2;0(f)(t) +

Z t

0

D2;2;0(f)(s)ds �M and
Z t

0

jjrt;x�(s)jj1ds �
p
M

�
:

(143)
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Clearly T� > 0 if E2;2;0(f0) is su¢ ciently small from Theorem 12. Our goal is to
show T� =1 if we further choose E2;2;0(f0) small.
In (117), by

R T�
0
jj@t�jj1(s)ds � 1; we use the standard Gronwall lemma to

get from (35):

X
j�j�2

�
j@�f j2 +

Z
jr@��j2

�
+
X
j�j�2

Z t

0

jj(I � P )@�f jj2�

. E2;2;0(f0) +
p
M

Z t

0

D2;0;0(f)ds:

As in (138), we note jj@�N�jj .
p
MD2;2;0(f) for j�j � 2 from Lemma 7 in [G1]

and ��� =
R
[f+ � f�]

p
�dv: We apply Proposition 15 for 1 � j�j � 2 with a

�xed and small " in (128) so that

X
j�j�2

jj@�f jj22+
X

1�j�j�2

Z t

0

jj@�f jj2�+
Z t

0

jj(I�P )f jj2� . E2;2;0(f0)+
p
M

Z t

0

D2;2;0(f)ds:

Thanks to conservation laws (12), (13) and (14), jjPf jj� . jjrxPf jj� as in (139)
and we deduceX

j�j�2

jj@�f jj22 +
X
j�j�2

Z t

0

jj@�f jj2� . E2;2;0(f0) +
p
M

Z t

0

D2;2;0(f)ds:

For
p
M su¢ ciently small,

X
j�j�2

jj@�f jj22 +
X
j�j�2

Z t

0

jj@�f jj2� . E2;2;0(f0): (144)

We take a large constant C � (144) + (115) to absorb
R t
0

P
j�j�2 jj@�f jj2�ds :

E2;l;q(f) +
Z t

0

D2;l;q(f)ds

. Cl[E2;l;q(f0) +
Z t

0

[jj@t�(s)jj1 + jjrx�(s)jj1 +D2;2;0(f)]E2;l;q(f)ds]:

Since
R T�
0
[jj@t�(s)jj1 + jjrx�(s)jj1 +D2;2;0(f)]ds � 1; Lemma 4 implies

E2;l;q(f) +
Z t

0

D2;l;q(f)ds . ClE2;l;q(f0): (145)

In particular, we choose l = 2 and q = 0 to conclude

E2;2;0(f)(t) +
Z t

0

D2;2;0(f)ds . E2;2;0(f0).
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Combining this bound with Proposition 16, we obtainZ t

0

fjjrx�(s)jj1+jj@t�(s)jj1gds .
r

sup
0�s�T�

E2;2;0(f(s))
Z t

0

ds

1 + s2
.
q
E2;2;0(f0):

Upon choosing the initial condition E2;2;0(f0) further small, we deduce that for
0 � t � T�;

E2;2;0(f(t))+
Z t

0

D2;2;0(f)ds �
M

2
< M and

Z T�

0

fjjrx�(s)jj1+jj@t�(s)jj1gds �
M

2
< M:

This implies that T� =1 and the solution is global.
Step 2. Higher Moments and Higher Regularity.
We shall prove this via a induction of the total derivatives j�j+ j�j = m: By

(145), clearly the theorem is valid for m = 2:
Assume j�j = m � 1 is valid for (30). Summing over j�j = m in (118), by

(35), we deduce

X
j�j=m

�
jj@�f jj2 +

Z
jjr@��jj2

�
+
X
j�j=m

Z t

0

jj(I � P )@�f jj2�

. Em;l;q(f0) + (
p
M + �)

Z t

0

X
j�j=m

jj@�f jj2�

+

Z t

0

D2;2;0(f)Em;l;q(f) + Cm;�
Z t

0

f1 + Em�1;l;q(f)gDm�1;l;q(f):

We now integrate (128) with m� 1 from 0 to t: We note that from Lemma 7 of
[G1] X

j�j�m�1

jj@�N�jj22 . Cm;�f1 + Em�1;l;q(f)gDm�1;l;q(f);

X
j�j�m�1

jj@�(I � P )f jj2� . Dm�1;l;q(f):

From (126) with m� 1; we have

G(t) .
X
j�j=m

jj@�f(t)jj2 +
X

j�j=m�1

jj@�f(t)jj2

.
X
j�j=m

jj@�f(t)jj2 + Em�1;l;q(f(t))

.
X
j�j=m

jj@�f(t)jj2 + Pm�1;l(Em�1;l;q(f0))
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by the induction hypothesis. Choosing " small in (128), we obtain:

X
j�j=m

jj@�f jj22 +
X
j�j=m

Z t

0

jj@�f jj2�

. Em;l;q(f0) + Pm�1;l(Em;l;q(f0)) + (
p
M + �)

Z t

0

X
j�j=m

jj@�
0
f jj2� +

Z t

0

D2;2;0(f)Em;l;q(f)

+Cl;m;�

Z t

0

f1 + Em�1;l;q(f)gDm�1;l;q(f)

. Em;l;q(f0) + (
p
M + �)

X
j�j=m

jj@�
0
f jj2� +

Z t

0

D2;;2;0(f)Em;l;q(f)

+Cl;m;�[1 + Pm�1;l(Em;l;q(f0))]Pm�1;l(Em;l;q(f0))

Here Pm�1;l is a continuous, increasing function from the induction hypothesis.
For M;� su¢ ciently smallX

j�j=m

�
j@�f j2 +

Z
jr@��j2

�
+
X
j�j=m

Z t

0

jj@�f jj2�

. Cl;m[1 + Pm�1;l(Em;l;q(f0))][Em;l;q(f0) + Pm�1;l(Em;l;q(f0))]

+

Z t

0

D2;2;0(f)Em;l;q(f); (146)

where we have used Em�1;l;q(f0) � Em;l;q(f0); Pm�1;l(Em�1;l;q(f0)) � Pm�1;l(Em;l;q(f0)):
Multiplying a large constant C� (146)+ (116) to absorb

R t
0

P
j�j=m jj@�f jj2�

in (116); we obtain:

Em;l;q(f) +
Z t

0

Dm;l;q(f) . Cl;m[1 + Pm�1;l(Em;l;q(f0))][Em;l;q(f0) + Pm�1;l(Em;l;q(f0))]

+Cl;m

Z t

0

Dm�1;l;q(f)Em;l;q(f):

We use Gronwall Lemma 4 with
R t
0
Dm�1;l;q(f)ds . Pm�1;l(Em�1;l;q(f0)) to get

Em;l;q(f) +
Z t

0

Dm;l;q(f)

. Cl;me
Cl;mPm�1(Em;l;q(f0))[1 + Pm�1;l(Em;l;q(f0))][Em;l;q(f0) + Pm�1;l(Em;l;q(f0))]

� Pm;l(Em;l;q(f0)):

This concludes the theorem for f0 2 C1c : For a general datum f0 2 Em;l;q we
can use a sequence of smooth approximation fk0 as in (114) and take a limit:
Acknowledgement: The author thanks the support of Beijing Interna-

tional Mathematical Center, where this work was �rst initiated in 2010. The
research is supported in part by NSF and FRG as well as a Chinese NSF grant.

51



5 References

[AB] Arsen�ev, A. A., Buryak, O.E.: On the connection between a solution of
the Boltzmann equation and a solution of the Landau-Fokker-Planck equation.
Math. USSR. Sbornik 69 (2), 465-478 (1991).
[AV] Alexandre, R.; Villani, C. On the Landau approximation in plasma

physics. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 1, 61�95.
[CDH] Chen, Y.; Desvillettes, L.; He, L.: Smoothing e¤ects for classical

solutions of the full Landau equation. Arch. Ration. Mech. Anal. 193 (2009),
no. 1, 21�55,
[DL] Degond, P., Lemou, M.: Dispersion relations for the linearized Fokker-

Planck equation. Arch. Rational Mech. Anal. 138 (2), 137-167 (1997).
[DV] Desvillettes, L.; Villani, C.: On the trend to global equilibrium for spa-

tially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math.
159 (2005), no. 2, 245�316.
[G1] Guo, Y.: The Landau equation in a periodic box. Commun. Math.

Phys., 231 (2002) 3, 391-434.
[G2] Guo, Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians.

Comm. Pure Appl. Math., Vol. LV, (2002)1104-1135.
[G3] Guo, Y.: Boltzmann di¤usive limit beyond the Navier-Stokes approx-

imation. Comm. Pure Appl. Math. 59 (2006), no. 5, 626�687. (Erratum) 60
(2007), no. 2, 291�293.
[G4] Guo, Y.: Classical solutions to the Boltzmann equation for molecules

with an angular cuto¤. Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305�353.
[G5] Guo, Y. The Vlasov-Maxwell-Boltzmann system near Maxwellians. In-

vent. Math. 153 (2003), no. 3, 593�630.
[GH] Guo, Y., Hadzic, M.: Stability of Stefan problem with surface tension

(I). Comm. PDE, 1532-4133, 35, 2, (2010), 201 �244.
[GL] Glassey, R.:The Cauchy Problems in Kinetic Theory, SIAM, 1996.
[GT] Guo, Y., Tice, I.:Decay of viscous surface waves without surface tension.

arXiv:1011.5179.
[GS] Guo, Y.; Strain, R.M.: Momentum Regularity and Stability of the

Relativistic Vlasov-Maxwell-Boltzmann System. arXiv:1012.1158
[GrS1] Gressman, T. P., Strain, R. S.: Global Classical solutions of the

Boltzmann equation without angular cut-o¤. arXiv:1011.5441v1.
[GrS2] Gressman, T. P., Strain, R. S.: Global Classical solutions of the

Boltzmann equation with Long-Range interactions. Proc. Nat. Acad. Sci. U.
S. A. March 30, 2010; 107 (13), 5744-5749.
[H] Hilton, F.: Collisional transport in plasma. Handbook of Plasma Physics.

(1) Amsterdam: North-Holland, 1983.
[Ha] Hadzic, M.: Orthogonality conditions and asymptotic stability in the

Stefan problem with surface tension. arXiv:1101.5177
[HY] Hsiao, L.; Yu, H.: On the Cauchy problem of the Boltzmann and

Landau equations with soft potentials. Quart. Appl. Math. 65 (2007), no. 2,
281�315.

52



[L] Lions, P-L., On Boltzmann and Landau equations. Phil Trans. R. Soc.
Lond. A 346, 191-204 (1994).
[SG1] Strain, R. M.; Guo, Y.: Almost exponential decay near Maxwellian.

Comm. Partial Di¤erential Equations 31 (2006), no. 1-3, 417�429.
[SG2] Strain, R. M.; Guo, Y.:Exponential decay for soft potentials near

Maxwellian. Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287�339.
[SG3] Strain, R. M.; Guo, Y.: Stability of the relativistic Maxwellian in a

collisional plasma. Comm. Math. Phys. 251 (2004), no. 2, 263�320.
[V] Villani, C.: On the Landau equation: Weak stability, global existence.

Adv. Di¤. Eq. 1 (5), 793-816.
[Z1] Zhan, M.-Q.: Local existence of solutions to the Landau-Maxwell sys-

tem. Math. Methods Appl. Sci. 17 (1994), no. 8, 613�641.
[Z2] Zhan, M.-Q.: Local existence of classical solutions to the Landau equa-

tions. Transport Theory Statist. Phys. 23 (1994), no. 4, 479�499.

53


