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Abstract

We are interested in an Eulerian–Lagrangian model describing particulate flows. The model
under study consists of the Euler system and a Vlasov-Fokker-Planck equation coupled through
momentum and energy exchanges. This problem contains asymptotic regimes that make the cou-
pling terms stiff, and lead to a limiting model of purely hydrodynamic type. We design a numerical
scheme which is able to capture this asymptotic behavior, without requiring prohibitive stability
conditions. The construction of this Asymptotic Preserving scheme relies on an implicit discretiza-
tion of the stiff terms which can be treated by efficient inversion methods. This method is a natural
coupling of a kinetic solver for the particles with a kinetic scheme for the hydrodynamic Euler equa-
tions. Numerical experiments are conducted to study the performance of this scheme in various
asymptotic regimes.

Key words. Fluid–particles flows. Hydrodynamic regimes. Asymptotic Preserving schemes.
Kinetic schemes.
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1 Introduction

This paper is devoted to the numerical simulation of certain two-phase flows, where a disperse phase,
which is a large set of “particles” that could be bubbles, droplets, dusts..., interacts with a dense
phase, the surrounding fluid. There are many possible models for such flows. The microscopic
models are based on fluid equations defined on disjoint domains and coupled by time-varying
interface boundary conditions. The macroscopic (or “Eulerian–Eulerian”) models are based on
coupled fluid equations describing both phases and defined on a common domain, and these models
involve volume fraction and non-conservative terms [30]. The mesoscopic models consist of coupled
fluid and kinetic equations. We refer for instance to the overview [19] for a presentation of the
different approaches. In what follows we are concerned with the so-called “Eulerian-Lagrangian”
framework, or “mesoscopic” description where we adopt a statistical viewpoint for the disperse
phase. It means that the set of particles is described through a particle distribution function in
phase space f(t, x, v): the integral

∫

Ω

f(t, x, v) dv dx
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represents the number of particles occupying at time t the volume Ω ⊂ R
N × R

N of the phase
space, x being the position variable and v the velocity variable. The particle distribution function
can be assocaited with the macroscopic quantities– those observable by experiments–by taking the
moments:

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
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

















the macroscopic density: n(t, x) =

∫

RN

f(t, x, v) dv,

the momentum: nV (t, x) =

∫

RN

v f(t, x, v) dv,

the total energy: EP = 1
2n|V |2(t, x) + 1

2NnΘP =

∫

RN

1

2
|v|2 f(t, x, v) dv,

the heat flux: q(t, x) =

∫

RN

v
|v|2
2

f(t, x, v) dv.

Here V is the averaged particle velocity, and ΘP the temperature of particles. The fluid is described
by its density ρ(t, x) ≥ 0, its velocity u(t, x) ∈ R

N and its total energy E(t, x) ≥ 0. For further
purposes, we introduce the internal energy e, the pressure p, the temperature Θ defined by the
relations

e =
p

(γ − 1)ρ
≥ 0, p = ρΘ, E = e +

u2

2

where 1 < γ ≤ (N + 2)/N is the adiabatic constant.

According to the hierarchy introduced by O’Rourke [40], we are interested in the so–called
“Thin Sprays” where the two phases interact through momentum and energy exchanges, but the
effect due to the volume fraction of the particles is neglected. The leading effect that couples the
evolution of the disperse and dense phases is due to drag forces. In the system of PDEs we need
to introduce a few more physical quantities:

• ρP > 0 and ρF > 0 stand for the typical densities of the particles and of the fluid, respectively.

• Both phases are subject to an external potential Φ which deviates the trajectories of the
particles. The (real–valued) coefficients ηF and ηP account for the fact that the external
potential can act differently, both in orientation and amplitude, on the two phases. A typical
example is given by gravity/buoyancy forces. In this case ∇xΦ = gez, with ez the unit
downward vector, g is the gravitational acceleration, and we set ηF = 1, ηP = (1 − ρF /ρP ).
Other relevant examples are given by centrifugal forces or electric forces when considering
charged particles immersed in a neutral fluid.

• The Stokes number ε > 0 is the ratio of the Stokes settling time (that is 2ρP a2

9µ , with µ the

dynamic viscosity of the fluid and a the typical radius of the particles) over a certain time unit
of observation. It characterizes the strength of the drag exerted by the fluid on the particles.

We refer to [5, 7, 12, 13, 36] for thorough discussions on the modeling issues. In dimensionless form
the equations which govern the system read as follows: the evolution of the density f is determined
by Fokker-Planck equation

∂tf + v · ∇xf =
1

ε
Lu,Θf + ηP∇xΦ · ∇vf (1)

where the Fokker-Planck operator

Lu,Θf = divv

(

(v − u)f + Θ∇vf
)

, (2)

while the evolution of the fluid obeys the Euler system


















∂tρ + divx(ρu) = 0,

∂t(ρu) + Divx(ρu ⊗ u) + ∇xp =
1

ε

ρP

ρF
F − ηF ρ∇xΦ,

∂t(ρE) + divx

(

(ρE + p)u
)

=
1

ε

ρP

ρF
E − ηF ρu · ∇xΦ.

(3)
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The Fokker-Planck operator Lu,Θ in (2) describes the following physical effects the particles are
subject to due to their environment:

• The drag force exerted by the surrounding fluid is supposed to be proportional to the relative
velocity (v − u),

• Diffusion with respect to the velocity variable arises due to the Brownian motion, which
involves the temperature Θ of the fluid, [20, 21].

Many additional effects are simply disregarded, such as the added mass effect, the interparticles
collisions, or size variations due to coagulation and fragmentation phenomena. Note that the
viscosity of the fluid enters in the definition of the parameter ε while viscous effects are neglected
on the evolution of the fluid. This can be justified, at least formally, by suitable scaling arguments.
The disperse phase influences the dense phase through the coupling terms F and E . They are
defined by

Momentum Exchanges: F = −
∫

RN

v Lu,Θf dv =

∫

RN

(v − u)f dv = n(V − u),

Energy Exchanges: E = −
∫

RN

v2

2
Lu,Θf dv =

∫

RN

(v(v − u) − NΘ)f dv

= n(V − u) · u + Nn(ΘP − Θ) + n|V − u|2
= n(V − u) · V + Nn(ΘP − Θ).

(4)

The definition of the coupling terms F and E induces conservation properties. Let us write the
system satisfied by the moments of f , that is

∂tn + divx(nV ) = 0,

∂t(nV ) + DivxP + ηP n∇xΦ = −1

ε
n(V − u)

∂tΥ + divxq + ηP nV · ∇xΦ = −1

ε

(

n(V − u) · V + Nn(ΘP − Θ)
)

= −1

ε

(

2Υ − nV · u − NnΘ
)

,

with Υ = (nV 2 + NnΘP )/2 and P =
∫

RN v ⊗ vf dv. Combined with the fluid equations, it leads to
the following conservation laws

∂t

(

ρu +
ρP

ρF
nV
)

+ Div
(

ρu ⊗ u + p +
ρP

ρF
P

)

+
(

ηF ρ + ηP
ρP

ρF
n
)

∇xΦ = 0,

∂t

(

ρE +
ρP

ρF
Υ
)

+ div
(

(ρE + p)u +
ρP

ρF
q
)

+
(

ηF ρu + ηP
ρP

ρF
nV
)

· ∇xΦ = 0.
(5)

The total momentum and the total energy are conserved.

Besides the conservation of total momentum and energy, another key feature of the model is
the dissipation properties that we describe now. To this end, set the “local Maxwellian”

Mu,Θ(v) = (2πΘ)−N/2 exp
(

− |v − u|2
2Θ

)

.

The crucial observation consists in rewriting

Lu,Θf = Θ divv

(

Mu,Θ∇v

( f

Mu,Θ

))

.

We consider the fluid–entropy S(t, x) defined by the relation

S = − 1

γ − 1
ln
(

pρ−γ
)

= − 1

γ − 1
ln
( Θ

ργ−1

)

.
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Then, as already remarked in [5], the total energy is conserved and the total entropy is dissipated
since

d

dt

(

ρF

∫

RN

ρE dx + ρP

∫

RN

∫

RN

v2

2
f dv dx + ηP ρP

∫

RN

∫

RN

fΦ dv dx + ηF ρF

∫

RN

ρΦ dx
)

= 0,

(6)
and

d

dt

(

ρF

∫

RN

ρS dx + ρP

∫

RN

∫

RN

f ln(f) dv dx
)

= −ρP

ε

(∫

RN

∫

RN

∣

∣

∣

√
Θ
∇vf√

f
+

v − V√
Θ

√

f
∣

∣

∣

2

dv dx +

∫

RN

∫

RN

f
|V − u|2

Θ
dv dx

)

≤ 0.
(7)

Here the problem is defined in the whole space, but similar manipulations hold when considering
standard reflection laws for the particles and boundary conditions for the fluid, see [12]. Note that
the dissipation terms in (7) vanish when

u = V and f(t, x, v) =
n(t, x)

(

2πΘ(t, x)
)N/2

exp
(

− |v − V (t, x)|2
2Θ(t, x)

)

.

For such an equilibrium, the temperatures of the two phases equilibrate Θ = ΘP and they have a
common macroscopic velocity.

We are interested in the situation where the parameter ε can become small. In this regime,
the conservation and dissipation properties detailed above are the basis to describe the asymptotic
behavior of the model. In the next Section we shall describe on formal grounds the asymptotic
behavior of the solutions for ε << 1. In this regime, the operator Lu,Θ and the coupling terms are
stiff, and one can expect the relaxation effect that prescribes the form of the particles distribution
function, and as a consequence, one arrives at a set of macroscopic equations to describe the
particles–fluid mixture. In Section 3 we design a numerical scheme able to treat the stiffness of
the problem efficiently. This scheme belongs to the class of the so-called Asymptotic-Preserving
(AP) schemes because it is able to capture the correct asymptotic behavior without suffering the
prohibitive scaling-parameter-dependent numerical constraints, see [31] and for a recent overview
[24]. In order to define a scheme for the coupled system we find it convenient to discretize the
Euler equations by using the Kinetic Schemes [15, 16, 17, 42, 43, 44]. We finally conduct numerical
simulations in Section 4, and numercially study some relevant variations of the model.

2 The Hydrodynamic Regimes

For equation (1), as ε → 0, the Fokker-Planck operator vanishes, which yields

f(t, x, v) ≃ n(t, x)

(2πΘ)N/2
exp

(

− |v − u(t, x)|2
2Θ(t, x)

)

. (8)

This ansatz is in agreement with the dissipation estimate (7). One can now find the limiting
equations satisfied by ρ, u, Θ, and n. To this end we go back to the conservation laws (5). The
ansatz (8) yields nV ≃ nu, ΘP ≃ Θ, P ≃ nu ⊗ u + nΘI, and q ≃ (nu2 + (N + 2)nΘ)/2. Therefore
one arrives at the following limit system

∂tρ + divx(ρu) = 0,
∂tn + divx(nu) = 0,

∂t

((

ρ +
ρP

ρF
n
)

u
)

+ Divx

((

ρ +
ρP

ρF
n
)

u ⊗ u + p +
ρP

ρF
nΘ
)

+
(

ηF ρ + ηP
ρP

ρF
n
)

∇xΦ = 0,

∂t

((

ρ +
ρP

ρF
n
)u2

2
+

ρΘ

γ − 1
+

ρP

ρF

N

2
nΘ
)

+divx

([(

ρ +
ρP

ρF
n
)u2

2
+

γ

γ − 1
ρΘ +

ρP

ρF

N + 2

2
nΘ
]

u
)

+
(

ηF ρ + ηP
ρP

ρF
n
)

u · ∇xΦ = 0.

(9)
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The system can be seen as the Euler system for the composite density ρ + ρP

ρF
n, the composite

pressure
(

γ
γ−1ρ + N+2

2
ρP

ρF
n
)

Θ and the common velocity u and temperature Θ, plus an additional

mass conservation equation for ρ (or n).

The mathematical analysis of such fluid–kinetic systems is highly challenging. The difficulty lies
on the nonlinear coupling of PDEs of different nature. Different models for the fluid (compressible
or incompressible, viscous or inviscid...) introduce different levels of difficulty. A first attempt
was to prove the local existence of smooth solutions, see [3, 36] for the analysis of the Euler-
Vlasov systems. Another approach concerning classical solutions restricts to solutions close to the
equilibrium, by using perturbation techniques and energy estimates [28, 11]. The global existence
of weak solutions has been investigated, mainly considering viscous flows, by using fixed point
and/or compactness arguments. A crucial step of these proofs relies on the construction of suitable
approximations preserving the dissipation properties of the system [29, 37, 38, 6]. Identification
of relevant scaling and discussion of asymptotic problems appeared in [10, 26, 27, 38, 12, 5, 36],
see also [14] for the analysis of fine properties of the limit hydrodynamic systems. These problems
are motivated by combustion theory [40, 49] with applications for the design of performing engines
[22] or rocket propulsors [35]. The equations also arise in the modeling of atmospheric pollution
[46, 48], sedimentation processes [4, 8], rain formation [23] or dispersion of volcanic columns [41].
It is also worth mentioning the applications in the description of biomedical sprays [2, 39]. In what
follows, we are concerned with the design of an efficient numerical scheme, specifically suitable for
the asymptotic regime of small ε’s in (1)–(3).

3 An AP Scheme for the Flowing Regime

A standard numerical scheme for the system (1)–(3) faces some difficulties, and becomes inefficient
in the regime 0 < ε ≪ 1. The main numerical issues include:

a) The presence of stiff terms lead to the increase of computational cost due to numerical stability
constraints;

b) The scheme is required to recover as ε goes to the 0 the behavior of the solutions of the limit
equations (9) with ε-independent mesh sizes and time steps;

c) The system couples a kinetic and a hydrodynamic equations;

c) The system has remarkable conservation and dissipation properties that, ideally, should be
preserved at the discrete level.

These questions are already addressed in [13], for isentropic flows, where splitting methods are
introduced: the kinetic equation is solved first, the hydrodynamic fields being fixed during this
time step; then, (ρ, u, Θ) are updated by using an anti-diffusive scheme for the Euler system, see
[18, 33, 34], with source terms defined with the new values of the particles distribution function.
This strategy is very efficient when dealing with another scaling – the so-called “Bubbling Regime”
—- of the equation which yields a diffusion equation for the particles density, see also [7] for the
discussion of energy exchanges. In [13] the splitting method has been adapted to the present
scaling. Here we propose a different approach to treat the Flowing regime: the method we propose
combines the AP approach and kinetic schemes for the hydrodynamic equations. It contains a
very efficient implementation of the implicit stiff terms, and with the desired AP properties in the
flowing regimes.

3.1 The Time Discretization

First, the stiff source terms will be discretized implicitly in order to allow ε-independent time steps.
Let ∆t > 0 be the time step, and Uk denotes the numerical approximation of a general quantity
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U(tk) where tk = k∆t. The first step of the algorithm consists in updating the macroscopic
unknowns n, ρ, u, V, Θ, Υ. We start with the uncoupled relations

1

∆t
(nk+1 − nk) = −

∫

RN

v · ∇xfk dv = −∇x · (nkV k),

1

∆t
(ρk+1 − ρk) = −∇x · (ρkuk),

which determines the densities nk+1 and ρk+1. Then, the velocities uk+1 and V k+1 are obtained
by solving the system

1

∆t
(nk+1V k+1 − nkV k) = −

∫

RN

v v · ∇xfk dv − ηP nk∇xΦ +
nk+1

ε
(V k+1 − uk+1),

1

∆t
(ρk+1uk+1 − ρkuk) = −Divx(ρkuk ⊗ uk + ρkΘk) − ηF ρk∇xΦ − ρP

ρF

nk+1

ε
(V k+1 − uk+1).

Note that nk+1 has already been determined, and this step reduces to invert N 2×2 linear systems
for each component of V k+1 and uk+1, which can be inverted analytically. Finally, the temperature
Θ and the energy Υ are updated with the system

1

∆t
(Υk+1 − Υk) = −

∫

v2

2
v · ∇xfk dv − ηP nkV k · ∇xΦ

−1

ε
(2Υk+1 − nk+1V k+1 · uk+1 − Nnk+1Θk+1),

1

∆t

(ρk+1|uk+1|2 − ρk|uk|2
2

+
ρk+1Θk+1 − ρkΘk

γ − 1

)

= −divx

((ρk|uk|2
2

+
γ

γ − 1
ρkΘk

)

uk
)

− ηF ρkuk · ∇xΦ

+
1

ε

ρP

ρF
(2Υk+1 − nk+1V k+1 · uk+1 − Nnk+1Θk+1).

Since nk+1, uk+1, V k+1 are already known, this step reduces to invert a 2×2 linear system for Υk+1

and Θk+1, which can be done again analytically. Having at hand these quantities, one can update
the Maxwellian Mk+1(v) = Muk+1,Θk+1(v). The second step updates the particle distribution
function by

1

∆t
(fk+1 − fk) = −(v · ∇xfk − ηP∇xΦ · ∇vfk) +

Θk+1

ε
divv

(

Mk+1∇v

( fk+1

Mk+1

))

.

Let us postpone for a while the question of inverting the Fokker–Planck operator, and start with
some discussion on space and velocity discretizations.

3.2 Space and Velocity Discretizations

The convection terms can be treated as in [13], by coupling the upwind scheme in space and the
center difference in velocity discretizations respectively for the kinetic equation with an anti-diffusive
scheme of Finite Volume type [18, 33, 34] for the Euler system. However, we find it convenient to
approximation the fluid equations by kinetic schemes which arise naturally from the fluid limit of
the discretization of the kinetic equations, see [15, 16, 17, 42, 43, 44]. It is particularly well-suited
to our model since the approximation of the microscopic and macroscopic equations will be based
on the same discretization. Consequently, we will obtain naturally for ε = 0 a kinetic scheme for
the system (9).

The idea consists in interpreting U = (ρ, ρu, ρE) as the zeroth, first and second order moments
of a particle distribution function G(t, x, v), subject to a strong relaxation. For the monoatomic
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case, that is for γ = (N + 2)/N and thus ρE = ρ(|u|2 + NΘ)/2, the Euler system

∂tU + ∇x





ρu
ρu2 + ρΘ
ρ
(

|u|2 + (N + 2)Θ
)

u/2



 = F̄ − ηF





0
ρ
ρu



 ∂xΦ (10)

with a force field F̄ =
∫

RN F dv can be derived from the limit for λ ≫ 1 of the following BGK
equation:

(∂t + v∇x − ηF ∂xΦ∇v)G = F + λ(M [G] − G)

with

M [G] =
ρG

(2πΘG)N/2
exp

(

− |v − uG|2
2ΘG

)

,




ρG

ρGuG

ρG|uG|2 + NρGΘG



 =

∫

RN





1
v
v2



Gdv =

∫

RN





1
v
v2



M [G] dv.

We refer for instance to [9, 45] for results and comments on the analysis of this small mean free
path regime. It leads to the following construction for solving (10), based on a time splitting of the
BGK equation

• Define G⋆ from the transport equation

1

∆t
(G⋆ − Gk) + v · ∇xGk − ηF∇xΦ · ∇vGk = F

k+1.

• Project the solution to the equilibrium state

Gk+1 = M [G⋆].

For describing a more general state law, one needs a coupled system of kinetic equations defined
as follows:

(∂t + v · ∇x − ηF∇xΦ · ∇v)G1 = F + λ(M − G1),
∂tG2 + v · ∇xG2 = λ(N − G2),

and still with λ ≫ 1. A possible definition of M and N that generalizes the Maxwellian distribution
is

M (v) =
ρ

(2πΘ)N/2
exp

(

− |v − u|2
2Θ

)

,

N (v) =
2 − N(γ − 1)

2(γ − 1)

ρΘ

(2πΘ)N/2
exp

(

− |v − u|2
2Θ

)

,

where the macroscopic quantities are given by









ρ
ρu
ρ|u|2

2
+

ρΘ

(γ − 1)









=

∫

RN







G1

vG1

v2

2
G1 + G2






dv =

∫

RN







M

vM

v2

2
M + N






dv.

The scheme for the polytropic Euler system is now constructed as follows:

• Define G⋆
1 from the transport equation

1

∆t
(G⋆

1 − Gk
1) + v · ∇xGk

1 − ηF∇xΦ · ∇vGk
1 = F

k+1

and G⋆
2 from

1

∆t
(G⋆

2 − Gk
2) + v · ∇xGk

2 = 0.
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• Project the solution to the equilibrium state

Gk+1
1 = M , Gk+1

2 = N ,

with macroscopic quantities defined by moments of G⋆
1 and G⋆

2.

Of course this construction is fictitious since in the implementation of the kinetic schemes one only
uses the macroscopic variables defined in physical space, which are obtained by taking moments
on the above procedures, rather than the variable v or the microscopic quantities Gj . We refer to
[15, 42], [43, Sections 1.7–1.10 & Section 8] or [25, Chapter III–Section 7] for a detailed introduction
to kinetic schemes. The choice of equilibrium states based on the Maxwellian might look natural
in view of the derivation of the Euler system from kinetic equations in the small mean free path
regime, [9, 45]. In particular for the monoatomic case it leads to an elegant formula in the scheme
for the coupled fluid/particles limit system, see (15) below. However, for numerical purposes other
definitions of M and N are possible. In particular, dealing with compactly supported functions
make stability issues clear [42, Theorem 3], [25, Proposition 7.3 & Theorem 7.2] and [43, Sections
1.7–1.10 & Section 8, sp. Theorem 8.3.1]. For instance, for the monoatomic case γ = (N + 2)/N
(δ = 0) one can use the follwoing compactly-supported function

M [G] =
1

meas(BN )

ρ
(

(N + 2)Θ)
)N/2

1|v−u|≤
√

(N+2)Θ

(remark that in dimension one, the monoatomic case corresponds to γ = 3). The numerical fluxes
obtained this way coincides with Van Leer’s fluxes, [25, Example 7.2].

Let us restrict the presentation of the space and velocity discretizations to the one-dimension
framework. We consider a meshing of the domain, say (−L, L), with J points separated by the
step ∆x. The velocity is truncated to the domain (−VMax, +VMax), discretized with a symmetric
set of velocities (v1, ..., v2M ), with step ∆v. We denote by fk

j,m the numerical approximation of a
microscopic quantity f(k∆t, xj , vm) and set

〈

f
〉k

j
=

∆v

2

(

fk
j,1 + fk

j,2M + 2
2M−1
∑

m=2

fk
j,m

)

the approximation of the velocity average by the trapezoidal rule. This formula is chosen to ensure
that the even moments of the odd functions with respect to v vanish, see [13]. For the sake of
simplicity, we consider the simplest upwind discretization of the advection operator v∂x:

v∂x(k∆t, xj , vm) is approximated by

vDx[f ]kj,m =
1

2∆x

(

(vm + |vm|)(fk
j,m − fk

j−1,m) + (vm − |vm|)(fk
j+1,m − fk

j,m)
)

.

More elaborate version of the kinetic scheme can be used that reach second order accuracy and
incorporate slope limiter to supress numerical oscillations across shocks, see [25, Section 7.3.4] and
[42, Sections 2.2 & 4.2]. For the external force term, we can adopt a centered approximation of the
v−derivative which yields, see [13]

∂xΦ∂vf(k∆t, xj , vm) is approximated by

vDx[Φ]kj,m
1

vm
Dv[f ]kj,m = vDx[Φ]kj,m

1

vm

fk
j,m+1 − fk

j,m−1

2∆v
.

When the amplitude of the potential remains moderate compared to 1/ε it does not affect the
stability of the scheme since the velocity diffusion term is treated implicitly in the Fokker–Planck
operator. When the external force becomes large, upwinding has to be preferred; for instance

∂xΦ∂vf(k∆t, xj , vm) is approximated by
1

2∆v

(

(∂xΦj − |∂xΦj |)(fk
j,m − fk

j,m−1) + (∂xΦj + |∂xΦj |)(fk
j,m+1 − fk

j,m)
)

.

8



Remark 3.1 In numerical simulation we are applying the following second order finite volume
scheme on the external force term. (In fact the x derivative term is solved by the same scheme.)

∂xΦ∂vf(k∆t, xj , vm) is approximated by
1

2∆v

(

(∂xΦj − |∂xΦj |)(F+
j,m+1/2 − F+

j,m−1/2) + (∂xΦj + |∂xΦj |)(F−
j,m+1/2 − F−

j,m−1/2)
)

,

with

F+
j,m+1/2 = fj,m + σj,m

fj,m+1 − fj,m

2

F−
j,m+1/2 = fj,m+1 − σj,m+1

fj,m+1 − fj,m

2

and

σj,m = φ

(

fj,m − fj,m−1

fj,m+1 − fj,m

)

where the limiter function φ(θ) is, for example, the van Leer limiter

φ(θ) =
θ + |θ|
1 + |θ|

or the minmod limiter

φ(θ) = max{0, min{1, θ}}.

This discretization is stable as long as |∂xΦ|∆t
∆v ≤ 1

2 .

Finally, given discrete density, velocity and temperature (ρk
j , uk

j , Θk
j ), denote

Mk
j,m =

1
√

2πΘk
j

exp
(

−
|vm − uk

j |2
2Θk

j

)

,

M k
j,m =

ρk
j

√

2πΘk
j

exp
(

−
|vm − uk

j |2
2Θk

j

)

, N
k

j,m =
2 − (γ − 1)

2(γ − 1)

ρk
j Θk

j
√

2πΘk
j

exp
(

−
|vm − uk

j |2
2Θk

j

)

,

and L fk
j,m the corresponding approximation of Lu,Θf at (k∆t, xj , vm). The precise form of this

approximation will be detailed in the next section. Then the fully discretized form of the algorithm
reads as follows

• Step 1. Updating the macroscopic quantities: Find (ρk+1
j , nk+1

j , uk+1, V k+1
j , Θk+1

j , Υk+1
j )

9



which are solution of

1

∆t
(nk+1

j − nk
j ) = −

〈

vDx[f ]
〉k

j
,

1

∆t
(ρk+1

j − ρk
j ) = −

〈

vDx[M ]
〉k

j
,

1

∆t
(nk+1

j V k+1
j − nk

j V k
j ) = −

〈

v vDx[f ]
〉k

j
+ ηP

〈

vDx[Φ] Dv[f ]
〉k

j
+

nk+1
j

ε
(V k+1

j − uk+1
j ),

1

∆t
(ρk+1

j uk+1
j − ρk

j uk
j ) = −

〈

v vDx[M ]
〉k

j
+ ηF

〈

vDx[Φ] Dv[M ]
〉k

j
− ρP

ρF

nk+1
j

ε
(V k+1

j − uk+1
j ),

1

∆t
(Υk+1

j − Υk
j ) = −

〈v2

2
vDx[f ]

〉k

j
+ ηP

〈

vDx[Φ]
v

2
Dv[f ]

〉k

j

−1

ε
(2Υk+1

j − nk+1
j V k+1

j · uk+1
j − nk+1

j Θk+1
j ),

1

∆t

(ρk+1
j |uk+1

j |2 − ρk
j |uk

j |2
2

+
ρk+1

j Θk+1
j − ρk

j Θk
j

γ − 1

)

= −
〈v2

2
vDx[M ]

〉k

j
−
〈

vDx[N ]
〉k

j
+ ηF

〈

vDx[Φ]
v

2
Dv[M ]

〉k

j

+
1

ε

ρP

ρF
(2Υk+1

j − nk+1
j V k+1

j · uk+1
j − nk+1

j Θk+1
j ).

(11)

• Step 2. Updating the particle distribution function. The first step allows to define Mk+1
j,m .

Then, we define fn+1
j,m as the solution of

1

∆t
(fk+1

j,m − fk
j,m) = −vDx[f ]kj,m + ηP vDx[Φ]kj,m

1

v
Dv[f ]kj,m +

1

ε
L fk+1

j,m . (12)

It requires the inversion of the operator (1−∆t
ε L ) that will be discussed in the next subsection.

We finish the time step by setting

nk+1
j =

〈

f
〉k+1

j
, nk+1

j V k+1
j =

〈

vf
〉k+1

j
, Υk+1

j =
1

2

〈

v2f
〉k+1

j
.

Remark 3.2 For the boundary condition, we apply the specular reflection law for the particles.
For the discrete unknown, it casts as

fk
0,2M+1−m = fk

1,m, fk
J+1,m = fk

J,2M+1−m.

For the hydrodynamic unknowns, we use the so-called “wall boundary condition” which are imposed
through ghost cells

(

ρk
0 , u

k
0 , Θk

0

)

=
(

ρk
1 ,−uk

1, Θ
k
1

)

,
(

ρk
J+1, u

k
J+1, Θ

k
J+1

)

=
(

ρk
J ,−uk

J , Θk
J

)

.

We refer for instance to [1] for discussion of numerical boundary conditions for kinetic schemes.

Remark 3.3 In many situation ∂xΦ = Ψ has a simple expression. For instance it is merely
constant for gravity–driven flows. Then, the external force terms in (11) is replaced by ηP nk

j Ψj,

ηP nk
j V k

j Ψj, ηF ρk
j Ψj, ηF ρk

j uk
j Ψj.

3.3 Treatment of the Fokker-Planck operator

We follow the method introduced in [32]. Given u and Θ, it is convenient to write

Lu,Θf = Θ
√

Mu,Θ L̃u,Θh

10



with

h =
f

√

Mu,Θ

, L̃u,Θh =
1

√

Mu,Θ

divv

(

Mu,Θ∇v

( h√
Mu,Θ

))

.

The advantage of this change of unknown lies on the symmetry property
∫

RN

L̃u,Θh g dv =

∫

RN

h L̃u,Θg dv.

Accordingly, we set

hj,m =
fk+1

j,m
√

Mk+1
j,m

, L fk+1
j,m = Θk+1

j

√

Mk+1
j,m L̃ hj,m,

where the discrete operator L̃ will be symmetric which allows the inversion of the implicit term
by the effective the Conjugate Gradient algorithm. Therefore, Step 2 of the alorithm can be recast
as follows:

• Solve the linear system

(

1 − ∆t

ε
Θk+1

j L̃
)

hj,m =
fk

j,m
√

Mk+1
j,m

− ∆t
√

Mk+1
j,m

(

vDx[f ]kj,m − ηP vDx[Φ]kj,m
1

v
Dv[f ]k

)

.

• Set fk+1
j,m = hj,m

√

Mk+1
j,m .

In the one–dimension setting, the discrete operator L̃ is defined as follows, see [32]

L̃ hj,m =
1

∆v2

(

hj,m+1 −

√

Mk+1
j,m+1 +

√

Mk+1
j,m−1

√

Mk+1
j,m

hj,m + hj,m−1

)

(13)

which indeed leads to a symmetric matrix. Observe that L̃
(
√

Mk+1
)

j,m
= 0.

Lemma 3.4 Consider the discrete operator (13) with the Neumann-like conditions
√

Mj,1(hj,0 − hj,2) + hj,1(
√

Mj,2 −
√

Mj,0) = 0,
√

Mj,2M (hj,2M−1 − hj,2M+1) + hj,2M (
√

Mj,2M+1 −
√

Mj,2M−1) = 0.
(14)

Then, the operator is mass–conserving in the sense that
〈
√

ML̃ h
〉

= 0,

and entropy–decaying in the sense that
〈
√

ML̃ h ln
(

h/
√

M
)〉

≤ 0.

Remark 3.5 Note that the definition of the ghost points with respect to the velocity variable depends
on the discrete integration rule: if the rectangle rule is used then one should replaces(14) by

hj,0√
Mj,0

=

hj,1√
Mj,1

and
hj,2M+1√
Mj,2M+1

=
hj,2M√
Mj,2M

. The definition looks like an approximation of the Neumann–like

boundary condition M∂v(
h√
M

) = 0 = M∂v(f/M).

Proof. The key argument relies on the observation

√
Mm

(

hm+1 −
√

Mm+1 +
√

Mm−1√
Mm

hm + hm−1

)

=
√

Mm+1Mm

(

hm+1
√

Mm+1

− hm√
Mm

)

−
√

MmMm−1

(

hm√
Mm

− hm−1
√

Mm−1

)

.

It allows to conclude by summation by parts.
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3.4 Properties of the scheme

Asymptotic Preserving
We can study the limit of the scheme as ε goes to 0. First, Step 2 enforces fk+1

j,m to coincide with the

discrete Maxwellian nk+1
j Mk+1

j,m . Then, adding the two momentum equations and the two energy
equations and replacing f by the Maxwellian in (11), we obtain

1

∆t
(nk+1

j − nk
j ) = −

〈

vDx[nM ]
〉k

j
,

1

∆t
(ρk+1

j − ρk
j ) = −

〈

vDx[M ]
〉k

j
,

1

∆t

((

ρk+1
j +

ρP

ρF
nk+1

j

)

uk+1
j −

(

ρk
j +

ρP

ρF
nk

j

)

uk
j

)

= −
〈

v vDx

[

M +
ρP

ρF
nM

]〉k

j
+ ηP

〈

vDx[Φ]
1

v
Dv

[

(ηF M + ηP
ρP

ρF
nM

]〉k

j

1

2∆t

(

(

ρk+1
j +

ρP

ρF
nk+1

j

)

|uk+1
j |2 −

(

ρk
j +

ρP

ρF
nk

j

)

|uk
j |2

2
+

ρk+1
j Θk+1

j − ρk
j Θk

j

γ − 1
+

ρP

ρF

nk+1
j Θk+1

j − nk
j Θk

j

2

)

= −
〈v2

2
vDx

[

(M +
ρP

ρF
nM

]〉k

j
+
〈

vDx[N ]
〉k

j
+
〈

vDx[Φ]
v

2
Dv

[

(ηF M + ηF
ρP

ρF
nM

]〉k

j
.

(15)
This is exactly a kinetic scheme for the limit system (9). Note that this expression simplifies in the
monoatomic case when we use the Maxwellian ρk

j Mk
j.m as distribution M k

j,m.

Well-Balance
It turns out that stationary solutions are defined by

fS(x, v) = ZP exp
(

− v2

2Θ
− ηP Φ(x)

Θ

)

,

ρS(x) = ZF exp
(

− ηF Φ(x)

Θ

)

, u(x) = 0, Θ > 0 (constant),

with ZF and ZP normalizing constants. For instance one can set

ZP =
MP

ρP (2πΘ)N/2

(

∫

e−ηP Φ(x)/Θ dx
)−1

, ZF =
MF

ρF

(

∫

e−ηF Φ(x)/Θ dx
)−1

where MP and MF correspond to the masses of the disperse and the dense phases respectively. The
stationary solutions can be expected to be natural candidates for describing the large time behavior
of the solutions, with the parameters MF , MP and Θ determined by the conservation relations

MP = ρP

∫

f(0, x, v) dv dx, MF = ρF

∫

ρ(0, x) dx,

together with

ρP

∫

(v2

2
+ ηP Φ(x)

)

fS(x, v) dv dx + ρF

∫

( Θ

γ − 1
+ ηF Φ(x)

)

ρS(x) dx = E0

where E0 stands for the total energy given by

E0 = ρP

∫

(v2

2
+ ηP Φ(x)

)

f(0, x, v) d dx + ρF

∫

( |u(0, x)|2
2

+
Θ(0, x)

γ − 1
+ ηF Φ(x)

)

ρ(0, x) dx.

It can be recast as

MP

(

NΘ + PP (Θ)
)

+ MF

( Θ

γ − 1
+ PF (Θ)

)

= E0 (16)
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where PP and PF depend on the potential Φ:

PP =

∫

ηP Φ(x)e−ηP Φ(x)/Θ dx
∫

e−ηP Φ(x)/Θ dx

, PF =

∫

ηF Φ(x)e−ηF Φ(x)/Θ dx
∫

e−ηF Φ(x)/Θ dx

.

Observe that

d

dΘ
P(Θ) =

1
(

Θ

∫

e−ηP Φ(x)/Θ dx
)2

×
(∫

∣

∣ηP Φ(x)
∣

∣

2
e−ηP Φ(x)/Θ dx

∫

e−ηP Φ(x)/Θ dx −
(

∫

ηP Φ(x)e−ηP Φ(x)/Θ dx
)2
)

is non–negative as a consequence of the Cauchy-Schwarz inequality. Therefore (16) uniquely defines
Θ ≥ 0 for any E0 ≥ 0. Modulus O(∆x) and O(∆v) errors the stationary solutions are preserved by
the scheme. If the center difference is used for the external force term, the velocity error becomes
of order O(∆v2) and furthermore it only involves odd terms with respect to v, so that its velocity
average vanishes [13].

4 Numerical simulations

We perform numerical simulation in the one dimension framework, bearing in mind the example
of gravity driven flows. The spacial domain is the slab [0, 1], where x is thought of as a “vertical”
variable (with x = 0 corresponding to the bottom and x = 1 to the top). The velocity variable
lies in the truncated domain v ∈ [−VMax, VMax], and for the simulation we set VMax = 6. In our
numerical experiments, the units are chosen such that the gravity constant is g = 1 for the sake of
simplicity. The initial particle distribution function has the form

f(0, x, v) =
n(0, x)

√

2πΘP (0, x)
exp

(

−|v − V (0, x)|2
2ΘP (0, x)

)

. (17)

Notice that this distribution is not at equilibrium as far as V (0, x) 6= u(0, x), or ΘP (0, x) 6= Θ(0, x)
with u(0, x) and Θ(0, x) the initial velocity and temperature fields of the fluid, respectively. Finally,
the numerical parameters are ∆t = 0.4 ∆x

VMax
. This choice guarantees the stability of the simulation.

4.1 Energy conservation and entropy dissipation

To start with, we check the ability of the scheme in preserving mass, energy and in dissipating en-
tropy, according to (6) and (7). For the simulation we present, we consider initially an homogeneous
fluid at rest:

ρ(0, x) = 1, u(0, x) = 0, Θ(0, x) = 1. (18)

The distribution of particles is given by (17) with

n(0, x) = 0.5 + exp(−160(x− 0.5)2), V (0, x) = 0, ΘP (0, x) = 1. (19)

We set ε = 0.1, and ρP /ρF = 5 while the adiabatic constant is γ = 1.4. The results to be discussed
do not significantly change when these parameters vary. Although will not be shown by a figure
here, owing to the treatment of the boundary condition, the total mass of both phases is exactly
conserved numerically. Figure 1(a) shows the time evolution up to the final time T = 20 of the
total energy, which is a discrete version of (6). The discrete energy is not exactly conserved, but
by varying the mesh size one can observe that the error remains of order O(∆x). This discrepancy

13



can be explained by the influence of the boundary terms that remain when performing the discrete
integration by parts in the energy balance.

Next we study the evolution of the entropy. The discretized entropy at time tn is defined by

Hn = ρF

∫

R

ρnSn dx + ρP

∫

R

∫

R

fn ln(fn) dv dx

where the numerical integration is done by the trapezoidal rule for v and the rectangle rule for x.

In Figure 1(b) we compare the discrete time derivative Hn+1−Hn

∆t (blue line) and the dissipation
term which is a discrete analog of the right hand side of (7) (dotted red line). More exactly, the
discretized dissipation term is computed based on the equivalent form

d

dt
H = −ρP

ε

(∫

RN

∫

RN

Θ

f

∣

∣

∣MV,Θ∇v
f

MV,Θ

∣

∣

∣

2

dv dx +

∫

RN

∫

RN

f
|V − u|2

Θ
dv dx

)

. (20)

They are not identical but their evolutions have the same qualitative features. In particular it

is remarkable that Hn+1−Hn

∆t remains negative, establishing a numerical evidence of the decay of
entropy.

Finally we consider the evolution of the (macroscopic) kinetic energy of the two phases

Kf = ρF

∫

R

ρu2 dx, Kp = ρP

∫

R

nV 2 dx.

The numerical simulation shows that both quantities are decaying, with oscillations presenting a
very similar shape, which suggests that the solutions are approaching some stationary state. This is
confirmed by Figure 2 where we compare the solution at time T = 20 with the stationary solution
having the same mass and energy. We take ρP /ρF = 5 and ρP /ρF = 0.5, which give different
monotonicities in the density profile of particles in stationary solution. The agreement is quite
good, with discrepancies that can be explained either by a final time not large enough or by the
defect in the energy conservation.

4.2 Effects of the density ratio ρP /ρF

Now we study the influence of the external force. We remind that for the case of gravity–driven
flows, we have ηF = 1 and ηP = 1 − ρF /ρP . Therefore the sign of ηP determines whether the
movement of particles is gravity dominated (corresponding to the “+” sign), or buoyancy dominated
(corresponding to the “−” sign).

At first, we investigate the standard model where ρP and ρF are constants, corresponding to
the mass density of the particles and a typical mass density of the fluid, respectively. We vary the
ratio ρP /ρF . The simulation is performed with the uniform initial data (18) for the fluid, while the
particles are initially at rest, concentrated at the center of the domain

n(0, x) = 1[0.3,0.7](x), V (0, x) = 0, ΘP (0, x) = 1.

The numerical profiles of the hydrodynamic unknowns at final time T = 0.4 are shown in Figure
3, with different values of ρP /ρF . We take ε = 1, γ = 1.4, on the grid Nx = 50, Nv = 32.

Since the fluid is only subject to gravity, the fluid always moves downwards and its density
near the bottom (x = 0) is always higher. By contrast, the particle’s repartition depends on the
relative value of ρP /ρF compared to 1. The movement of particles is dominated by buoyancy when
ρP /ρF < 1: Figure 3(a) shows that particles concentrate near the top. When ρP /ρF tends to 1,
the gravity balances the buoyancy and the particles moves freely. But due to the interaction with
the fluid, the downward direction is more favored in the movement of particles, as shown in Figure
3(b).

When we consider heavy particles, i.e. ρP /ρF > 1, both phases are dominated by gravity, as
in Figure 3(c)(d) and the two densities are higher at the bottom as time becomes large. It is also
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Figure 1: Time evolution of the total energy, total entropy and the kinetic energy of the two phases.
Here γ = 1.4, ε = 0.1, ρP /ρF = 5, Nx = 1000, Nv = 32.

worth remarking that particles act like a wall for the fluid, resulting in a clear separation of the
domain; this is particularly sensible at the beginning of the simulation when a large amount of
particles is located at the center of the domain. We also point out that the scheme is able to handle

15



0 0.5 1

0.8

1

1.2

1.4

1.6

x

ρ

0 0.5 1

−0.2

−0.1

0

0.1

0.2

0.3

x

u

0 0.5 1
0.9

1

1.1

1.2

1.3

1.4

x

Θ

 

 

0 0.5 1
0.4

0.6

0.8

1

x

n

0 0.5 1

−0.2

−0.1

0

0.1

0.2

0.3

x

V

0 0.5 1
0.9

1

1.1

1.2

1.3

1.4

x

Θ
p

stationary solution
numerical solution

(a) ρP /ρF = 5.

0 0.5 1

0.8

1

1.2

1.4

1.6

x

ρ

0 0.5 1

−0.2

−0.1

0

0.1

0.2

0.3

x

u

0 0.5 1
0.8

0.9

1

1.1

1.2

1.3

x

Θ

0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

x

n

0 0.5 1

−0.2

−0.1

0

0.1

0.2

0.3

x

V

0 0.5 1
0.8

0.9

1

1.1

1.2

1.3

x

Θ
p

 

 

stationary solution
numerical solution

(b) ρP /ρF = 0.5.

Figure 2: Comparison of the solution (blue dashed lines) at final time T = 20 to the stationary
solution (red solid lines) having the same mass and energy, with different ρP /ρF . Here γ = 1.4,
ε = 0.1, Nx = 1000, Nv = 32.
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Figure 3: Macroscopic profiles for the fluid (up) and the particles (down) at T = 0.4, with different
ρP /ρF . Here γ = 1.4, ε = 1.

cases with high density ratio, with particles much heavier than the fluid.

It might be questionable to consider a constant reference fluid density in the expression of the
buoyancy force because the model makes the fluid density vary and might create zones of low (resp.
high.) density. Therefore we perform a couple of simulations by changing ρF to ρF × ρ(t, x) in
the definition of the buoyancy force. Note however that such a model induces severe technical
issues; in particular in this case the force acting on the particles cannot be derived from a potential
and the energy balance becomes unclear. Nevertheless the simulation brings out some interesting
phenomena. We set the initial density of the fluid to be a piecewise constant, so that the motion
of particles are gravity driven in some domains and buoyancy driven in the others:

ρ(0, x) = 1
4 + 3

21x<1/2, u(0, x) = 0, Θ(0, x) = 1 ,
n(0, x) = 1, V (0, x) = 0, ΘP (0, x) = 1 .

We take ε = 1, γ = 1.4 on the grid Nx = 50, Nv = 32. The profiles of the macroscopic quantities
at T = 0.2 are shown in Figure 4, which compares the standard model with a constant reference
fluid density (see Figure 4(a)) and the case that takes density variation into account (see Figure
4(b)). The motion of the fluid does not change too much, but the particles move differently, with
a clear tendency towards the interface x = 1

2 .
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(a) constant ρF , with ρP /ρF = 0.9.
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(b) x-dependent ρF , given by the density of fluid

Figure 4: Macroscopic profiles for the fluid (up) and the particles (down) at T = 0.2: comparison of
the model with constant and variable coefficients in the buoyancy force. Here γ = 1.4, ε = 1.

4.3 Asymptotic Preserving properties: vanishing Stokes number

In this section we investigate the behavior of the numerical solution as the parameter ε goes to 0.
We take γ = 1.4, ρP

ρF
= 2. The initial data is defined as in (18) and (17) with

n(0, x) = 0.5 + exp(−160(x− 0.5)2), V (0, x) = exp(−160(x − 0.5)2), ΘP (0, x) = 1.18



We perform simulations with different Stokes number ε, on the same grid Nx = 50, Nv = 32.
The results at T = 0.3 are displayed in Figure 5. As ε gets smaller, the effects of friction between
the two different phases become more and more prominent. The buoyancy effect is dominated by
the friction in the case ε = 10−4. We observe the (fast) equilibration of the velocities u = V ,
and temperatures Θ = ΘP , as expected from the entropy dissipation and the formal derivation. In
order to evaluate in a quantitative way this effect, we introduce the ℓ1 distance between the particle
distribution f and the equilibrium nMu,Θ,

dist(t) = ‖f(t, x, v) − nMu,Θ(t, x, v)||1. (21)

The time evolution of dist(t) for different values of ε is shown in Figure 6. As ε → 0, it shows a
numerical evidence that fk −nkMuk,Θk = O(ε), for k ≥ 1, which confirms the relaxation effects we
conjectured on the formal grounds and the AP ability of the scheme. In particular, the scheme does
not encounter stability difficulties for small ε’s; it still works perfectly under stability conditions
determined only by the convection terms.

4.4 Temperature dependent viscosity

It makes sense to consider the case where the viscosity µ depends on the temperature of the flows.
In particular, Sutherland [47] proposed the following formula

µ = µ0

(

Θ

Θ0

)3/2
Θ0 + S

Θ + S

where µ0 is a reference viscosity, Θ0 is a reference temperature, and S is an effective temperature,
called the Sutherland constant, which is characteristic of the considered fluid. Accordingly, the

Fokker–Planck term 1
εLu,Θf is replaced by µ(Θ)

ε Lu,Θf . For the sake of simplicity we take µ0 = 1,
T0 = 1, and S = 0.5. If the stiff term is treated fully implicitly, one is led to a nonlinear system
involving µ(Θn+1) for determining the hydrodynamic quantities in the first step of the algorithm.
A Newton’s algorithm is needed, which can impact the performances of the code. We avoid this
difficulty by using a semi-implicit formulae where the viscosity is set to µ(Θn) instead.

We work with the following initial data

ρ(0, x) = 1, u(0, x) = 0, Θ(0, x) = 0.2 + 91[0.5,0.6] ,
n(0, x) = 1, V (0, x) = 0, ΘP (0, x) = 1 ,

with ε = 1, γ = 1.4, ρP /ρF = 5, on the grid Nx = 50, Nv = 32. Figure 7 shows the profiles of
the macroscopic variables at time T = 0.2. The red dots show the results derived by using the
Sutherland viscosity, while the blue lines correspond to the constant viscosity case. The effect of
this modification is sensible on the evolution of the temperatures: it seems that the energy exchange
is stronger with Sutherland’s viscosity. The particles get more energy from the fluid.

4.5 Effects of the state law and different kinetic approximations

We finally check the ability of the scheme in dealing with general γ−state laws. As detailed above
it modifies the expression of the numerical fluxes for hydrodynamics, as defined by the kinetic
scheme. We take ρP /ρF = 5, ε = 0.1. The initial data are taken as in (18) and (19). The results
at t = 20 are shown in Figure 8. The qualitative behavior of the solutions is not significantly
changed. Note in particular we do not observe the variety of shapes for large time asymptotics as
it occurs in the isentropic case, see [12, 13]: all solutions seem to have the same stationary solution
as asymptotic profile. On the same token, we mention that the choice of the equilibrium to be used
in the definition of the kinetic scheme does not influence the simulation, at least in the situations
we have tried.
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Figure 5: Macroscopic profiles for the fluid (up) and the particles (down) at T = 0.3, with different ε.
Here γ = 1.4, ρP

ρF
= 2.

Conclusion

We have introduced a new numerical scheme for simulating a system coupling the Vlasov–Fokker–
Planck equation to the Euler system through drag force, momentum and energy exchanges. In
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Figure 7: Macroscopic profiles for the fluid (up) and the particles (down) at T = 0.2, with constant
viscosity (blue lines) and Sutherland’s viscosity (red dots). Here γ = 1.4, ε = 1, ρP /ρF = 5.

particular the scheme is Asymptotic Preserving in the regime of small Stokes numbers which drives
the system towards a set of purely hydrodynamic equations. The method is based on the implicit
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Figure 8: Macroscopic profiles for the fluid (up) and the particles (down) at T = 20, with different γ.
Here ε = 0.1, ρP

ρF
= 5, Nx = 1000, Nv = 32.

treatment of the potentially stiff terms and relies on the possibility of updating the macroscopic un-
knowns by solving simple linear systems. The use of a kinetic scheme for solving the hydrodynamic

22



equations turns out to be very appropriate because the scheme for the complete problem becomes
naturally an extended kinetic scheme for the limit system as the scaling parameter becomes small.
Based on numerical evidence, the scheme also exhibits mass conservation, entropy dissipation, and
up to mesh dependent error terms, energy conservation and well-balanced property. Furthermore
the scheme can easily incorporate relevant generalizations of the basic model like considering general
state law, or temperature–dependent viscosities.
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