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Abstract

We present a domain decomposition method on a semilinear hyperbolic system
with multiple relaxation times. In the region where the relaxation time is small, an
asymptotic equilibrium equation can be used for computational efficiency. An interface
condition is provided to couple the two systems in a domain decomposition setting. A
rigorous analysis, based on the Laplace Transform, on the L2 error estimate is presented
for the linear case, which shows how the error of the domain decomposition method
depends on the smaller relaxation time, and the boundary and interface layer effects.
The given convergence rate is optimal. We present a numerical implementation of this
domain decomposition method, and present some numerical results in order to study
the performance of this method.

1 Introduction

Consider the hyperbolic system
uε

t + vε
x = 0, (1.1a)

vε
t + uε

x = − 1

ε(x)
(vε − f(uε)), (1.1b)

where ε(x) is the relaxation time and f(x) satisfies the sub-characteristic condition:

|f ′(x)| < 1. (1.2)

The problem is posed for x ∈ [−L, L] and t > 0 with initial data

uε(x, 0) = u0(x), vε(x, 0) = v0(x) (1.3)
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and the order of the relaxation time varies considerably over the domain [−L, L]. In this
paper, we consider the case when ε(x) is given by:

ε(x) = 1, x ∈ [−L, 0); ε(x) = ε, x ∈ (0, L], (1.4)

where ε � 1 is a small parameter. For the boundary condition, we simply choose the
Dirichlet condition for u, i.e:

uε(xL, t) = bL(t), uε(xR, t) = bR(t). (1.5)

More general boundary conditions can also be analyzed by the methods of the present
paper. The initial data and boundary data are required to be compatible, i.e: b1(0) =
u0(xL), b2(0) = u0(xR). Since the relaxation time is small in the region (0, L], numerical
computation of this system becomes very costly. On the other hand, in (0, L], the solution
is, to leading order in ε, governed by the equilibrium equation

ut + f(u)x = 0 , (1.6)

which can be more efficiently solved numerically. Thus a domain decomposition method,
which couples the relaxation system (1.1) for x ∈ [−L, 0), where ε(x) = O(1), with the
equilibrium equation (1.6) for x ∈ (0, L], is computationally competitive. Interface conditions
at x = 0 must be provided for this coupling.

System (1.1) was first proposed by Jin-Xin [14] for numerical purpose, which supplies
a new and powerful approximation to equilibrium conservation law (1.6). There have been
many works concerning the asymptotic convergence of the relaxation systems (1.1) to the
corresponding conservation laws (1.6) as the relaxation time tends to zero. Most of the
results dealt with the Cauchy problem. In particular, Natalini [22] gave a rigorous proof
that the solution to Cauchy problem (1.1) with initial condition (1.3) converges strongly in
C([0,∞), L1

Loc(R)) to the unique entropy solution of (1.6) when ε → 0. See also [23] for a
review in this direction, and results for larger systems [2] and on more general hyperbolic
systems with relaxations [7].

In the presence of physical boundary conditions, Kriess and some others first gave the
suitability of boundary conditions for linear hyperbolic systems when the source term is not
stiff, see, for examples [15], [13], [21], [25]. Wang and Xin [29] later gave a similar result of
the system (1.1) (1.3) with boundary condition (1.5). They proved that when the initial and
boundary data satisfy a strict version of the subcharacteristic condition (1.2), the solution
of the relaxation system converges as ε → 0 to a unique week solution of the conservation
law (1.6) which satisfies the boundary-entropy condition. [32] and [31] then gave an explicit
necessary and sufficient condition (the so-called ”Stiff Kriess Condition”) on the boundary
that guarantees the uniform well-posedness of the IBVP, and also revealed the boundary
layer structures. [31] dealt with the linear cases while [32] considered the nonlinear one.

Domain decomposition methods connecting kinetic equation and its hydrodynamic or
diffusion limit have received a lot of attention in the past 20 years. Our paper is strongly
motivated by [12], others can refer to [1], [27], [3], [11], [34], [16], [17], [8], [10]. A thorough
study on the problem of this paper provides a better understanding of the more general
coupling problem of kinetic and hydrodynamic equations, since indeed the Jin-Xin relaxation
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system (1.1) can be viewed as a discrete-velocity kinetic model, while (1.6) resembles some
important features of hydrodynamic (compressible Euler) equations.

Relaxation systems themselves are important in many physical situations, such as kinet-
ics theories [5], gases not in thermodynamic equilibrium [28], phase transitions with small
transition time [19], river flows, traffic flows and more general waves [30].

Denote

U ε =

(
uε

vε

)
, A =

(
0 1
1 0

)
, S =

(
0 0
λ −1

)
.

For the linear case, when f(u) = λu, with |λ| < 1, we have the following main theorems.

For stiff well-posedness, we have:

Theorem 1. If u0(x), v0(x), bL(t), bR(t) ∈ L2, and U0(±L) = 0, bL(0) = bR(0) = 0, then the
solution to the original system (1.1), with variable ε(x) given in (1.4), is stiffly well-posed
in the sense:∫ T

0

∫ L

−L

|U ε(x, t)|2dxdt +

∫ T

0

|U ε(−L, t)|2dt +

∫ T

0

|U ε(L, t)|2dt

≤ KT

∫ T

0

|bL(t)|2dt + KT

∫ T

0

|bR(t)|2dt + KT

∫ L

−L

|U0(x)|2dx,

where KT is a positive constant independent of ε. Moreover, if u0(x), v0(x), bL(t) and bR(t)
are continuous, then the solution U ε is continuous in x.

For the asymptotic convergence, we have:

Theorem 2. Let U ε be the solution of the original system (1.1). Assume bL(t), bR(t) ∈
L2(R+), U0(x) ∈ H1([−L, L]), with the compatibility condition bL(0) = b′L(0) = bR(0) =
b′R(0) = 0, U0(±L) = U ′

0(±L) = 0, then there exists a unique solution U = (u, v) of the
domain decomposition system (3.2)-(3.1) or (3.3)-(3.4) such that∫ L

−L

∫ ∞

0

|U ε − U |2e−2αtdtdx → 0

as ε → 0 for any α > 0. Moreover, if we assume bL(t), bR(t)∈H2(R+), U0(x)∈C∞([−L, L]),
then ∫ L

−L

∫ ∞

0

|U ε − U |2e−2αt dtdx

≤ O(1)ε||bL||2L2 + O(1)ε||bR||2L2 + O(1)ε2||bL||2H2

+O(1)ε2||bR||2H2 + O(1)ε||v0−λu0||2L2[0,L]

+

{
O(1)ε2||U0||2H2(1 + o(ε)), for λ > 0,
O(1)ε||U0||2L2+O(1)ε2||U0||2H2(1 + o(ε)), for λ < 0.

Here the term o(ε) will depend on the norm ‖(u0)
(2k)‖L2 , (k ≥ 2).
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Remark 3. (1) In the λ < 0 case, there is an interface layer near x = 0+, while in the λ > 0
case, there is a boundary layer near x = L−, so in both cases, the optimal convergence rate
due to the boundary data is O(1)ε, which is where the terms O(1)ε||bL(t)||2L2 +O(1)ε||bR(t)||2L2

come from.

(2) The lower convergence rate in the case of λ < 0 is due to the presence of an interface
layer near x = 0+ generated by the initial data.

(3) O(1)ε||v0−λu0||2L2[0,L] comes from the initial layer in v.

The paper is organized as follows. In Section 2 we show the formal expansion of the initial
boundary value problem (1.1) in the upper half plane {x > 0, t > 0} in which the boundary
layer may exist. We also refer to the theorems in [32] which validate this expansion. Section
3 is devoted to give the domain decomposition method, and the interface condition is given.
We then prove the stiff well-posedness and asymptotic convergence for the linear case. The
theorems are proved in two parts: one for homogeneous initial data (Section 4) and the other
the inhomogeneous one (Section 5). For the homogeneous one, we simply use the Laplace
transform to represent the solution, while for the inhomogeneous case, we construct several
auxiliary systems to decompose the solution into two parts, one generated by the initial
data, and the other by the interface condition. With this decomposition, we are able to use
some existent result for the Cauchy problem to avoid the difficulties raised by the Laplace
transform. Finally in Section 6, we present the corresponding numerical algorithms and give
some numerical examples to validate the theoretical analysis.

2 The local equilibrium limit

In this section, we recall the asymptotic analysis proposed in [32]. Here we only consider the
boundary layer effect, and let

v0(x) = f(u0(x))

in order to avoid the initial layer effect. When x ∈ [0, L] where ε is small, one can use the
hyperbolic conservation law (1.6) to approximate the relaxation system. Away from x = 0
and t = 0, use the expansion

uε(x, t) ∼ u0(x, t) + εu1(x, t) + ε2u2(x, t) + . . . ,

vε(x, t) ∼ v0(x, t) + εv1(x, t) + ε2v2(x, t) + . . . ,

then matching the orders of ε, one obtains:

v0 = f(u0),

∂tu
0 + ∂xv

0 = 0,

∂tv
0 + ∂xu

0 = −(v1 − f ′(u0)u1).

...

Thus the leading order of the expansion gives

∂tu
0 + ∂xf(u0) = 0, v0 = f(u0), (2.1)
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which is the equilibrium limit (the zero relaxation limit) (1.6).

Near x = 0, introduce the stretched variable ζ = x/ε,

uε(x, t) ∼ u(x, t) + εu1(x, t) + . . . + Γ0
u(ζ, t) + εΓ1

u(ζ, t) + . . . ,

vε(x, t) ∼ v(x, t) + εv1(x, t) + . . . + Γ0
v(ζ, t) + εΓ1

v(ζ, t) + . . . ,

so the boundary layer equations to the leading order is:

∂ζΓ
0
v = 0, (2.2)

∂ζΓ
0
u + Γ0

v + f(u(0, t)) = f(Γ0
u + u(0, t)). (2.3)

(2.2) implies Γ0
v ≡ 0 because the boundary layer Γ0

v(ξ, 0) should decay as ζ → 0. Also, (2.3)
can be written as

(Γ0
u)ζ = −(v0 − f(u0 + Γ0

u)) ' f ′(u0(0, t))Γ0
u(ζ, t),

thus one gets the behavior of the boundary layer in u:

Γ0
u(ζ, t) = exp(f ′(u0(0, t))ζ)Γ0

u(0, t). (2.4)

Since the boundary layer has to decay exponentially fast, one needs f ′(u0(0, t)) < 0. In
other words, if f ′(u0(0, t)) < 0, there will be a boundary layer, otherwise there will not be a
boundary layer.

The above analysis was rigorously validated in [32].

3 A domain decomposition method

In section 2, one sees that when ε goes to 0, the hyperbolic system can be approximated
by the equilibrium equation that does not have any stiff term. But the interface condition
that connects the two regions should be provided. In this section, we will give the detailed
algorithm that approximates the solution of the two-scale problem. We will consider the
case with f ′(u) < 0 and f ′(u) > 0 separately.

3.1 f ′(u) < 0

In this case, there will be an interface layer in u near the interface x = 0, so one can not
simply use u obtained from (0, L] to solve (1.6) in domain [−L, 0). Instead we can use the
information of v at x = 0 directly from the equation in (0, L] since there is no O(1) interface
layer in v. Here is the the coupling algorithm.

• Step 1. For x ∈ (0, L], solve
u0

t + f(u0)x = 0, (3.1a)

u0(x, 0) = u0(x), (3.1b)

u0(L, t) = bR(t), (3.1c)

v0(x, t) = f(u0(x, t)). (3.1d)

Note in this case one can solve (3.1) first to get v0(0, t), and then solve (3.2).
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• Step 2. For x ∈ [−L, 0), solve

ut + vx = 0, (3.2a)

vt + ux = − 1

c1

(v − f(u), (3.2b)

u(x, 0) = u0(x), v(x, 0) = v0(x), (3.2c)

u(−L, t) = bL(t), (3.2d)

v(0, t) = v0(0, t); (3.2e)

where v0(0, t) is obtained from Step 1.

3.2 f ′(u) > 0

In this case, at the interface x = 0 there is no O(1) interface layer in u and v. In other words,
u and v are in local equilibrium v = f(u), and we can just this as the interface condition.
We give the following algorithm.

• Step 1. For x ∈ [−L, 0), solve



ut + vx = 0, (3.3a)

vt + ux = − 1

c1

(v − f(u)), (3.3b)

u(x, 0) = u0(x), v(x, 0) = v0(x), (3.3c)

u(−L, t) = b1(t), (3.3d)

f(u(0, t)) = v(0, t); (3.3e)

• Step 2. For x ∈ (0, L], solve
u0

t + f(u0)x = 0, (3.4a)

u0(x, 0) = u0(x), (3.4b)

v0(x, t) = f(u0(x, t)), (3.4c)

u0(0, t) = u(0, t) , (3.4d)

where u(0, t) is obtained from Step 1.

Remark 4. In this case there will be a boundary layer in u near x = L−, which is why in
Theorem 2 that the convergence rate is O(ε).

In both cases, we define the solution to the domain decomposition system as follows:{
u(x, t) = u(x, t), v(x, t) = v(x, t), (x, t) ∈ [−L, 0)× [0, T ], (3.5a)

u(x, t) = u0(x, t), v(x, t) = v0(x, t), (x, t) ∈ (0, L]× [0, T ]. (3.5b)

The detailed numerical implementation of this domain decomposition method is given in
section 6.
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4 Error estimate for the domain decomposition method

for the linear case: the Homogeneous initial data

In this and the next section, we will give a rigorous justification of the domain decomposition
system. The main results are given in Theorems 1 and 2. Here the basic idea is to represent
the exact solution by the Laplace transform, then the stiff wellposedness and asymptotic
convergence are followed by direct calculations.

Here we consider system (1.1) with zero initial data (1.3), i.e., u0(x) = 0, v0(x) = 0 and
nonzero boundary data (1.5). In this case one can focus on the boundary layer effects and
avoid the interactions between the initial and boundary layers.

4.1 Solution by the Laplace transform

Let

Ũ ε(x, ξ) = L(U ε) =

∫ ∞

0

e−ξtU ε(x, t)dt, Re(ξ) > 0.

Here ξ = α + iβ, then L(∂tU
ε) = ξŨ ε − U ε(x, 0) = ξŨ ε(x, ξ). With the homogeneous initial

condition, system (1.1)-(1.5) becomes

∂xŨ ε =
1

ε(x)
A−1(S − ε(x)ξI)Ũ ε =

1

ε(x)
M(ε(x)ξ)Ũ ε, (4.1)

ũε(−L, ξ) = b̃L(ξ), ũε(L, ξ) = b̃R(ξ), (4.2)

where matrix M(ξ) has two eigenvalues

µ±(ξ) =
λ±

√
λ2 + 4ξ(1 + ξ)

2
, (4.3)

and two corresponding eigenvectors(
1

µ∓(ξ)
1+ξ

)
=

(
1

g∓(ξ)

)
. (4.4)

Thus the solution of (4.1) (4.2) can be written as:
For x < 0, ε(x) = 1,

Ũ ε(x, ξ) = c1e
µ−(ξ)x

(
1

g+(ξ)

)
+ c2e

µ+(ξ)x

(
1

g−(ξ)

)
, (4.5)

for x > 0, ε(x) = ε,

Ũ ε(x, ξ) = c3e
µ−(εξ)x

ε

(
1

g+(εξ)

)
+ c4e

µ+(εξ)x
ε

(
1

g−(εξ)

)
, (4.6)

where the coefficient c1, c2, c3, c4 are determined by the boundary conditions:

c1e
−µ−(ξ)L + c2e

−µ+(ξ)L = b̃L(ξ), (4.7)

c3e
µ−(ξε)L

ε + c4e
µ+(ξε)L

ε = b̃R(ξ). (4.8)
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By continuity at the interface, one has

c1 + c2 = c3 + c4, (4.9)

c1g+(ξ) + c2g−(ξ) = c3g+(εξ) + c4g−(εξ). (4.10)

From (4.7)–(4.10), one sees that c1, · · · , c4 are uniquely determined. Denote

c3 = Ec1 + Fc2, (4.11)

c4 = Gc1 + Hc2, (4.12)

where

E =
g+(ξ)− g−(εξ)

g+(εξ)− g−(εξ)
, F =

g−(ξ)− g−(εξ)

g+(εξ)− g−(εξ)
, G =

g+(ξ)− g+(εξ)

g−(εξ)− g+(εξ)
, H =

g−(ξ)− g+(εξ)

g−(εξ)− g+(εξ)
.

Plugging (4.11) (4.12) into (4.7) (4.8), gives

c1 =
b̃R(ξ)e−µ+(ξ)L − b̃L(ξ)(Feµ−(εξ)L

ε + Heµ+(εξ)L
ε )

(Eeµ−(εξ)L
ε + Geµ+(εξ)L

ε )e−µ+(ξ)L − (Feµ−(εξ)L
ε + Heµ+(εξ)L

ε )e−µ−(ξ)L
, (4.13)

c2 =
b̃R(ξ)e−µ−(ξ)L − b̃L(ξ)(Eeµ−(εξ)L

ε + Geµ+(εξ)L
ε )

(Feµ−(εξ)L
ε + Heµ+(εξ)L

ε )e−µ−(ξ)L − (Eeµ−(εξ)L
ε + Geµ+(εξ)L

ε )e−µ+(ξ)L
. (4.14)

4.2 Stiff well-posedness

Before detailed calculations, we summarize some properties of the important functions in
the expression of the solutions in the following lemma, which will be used many times later.

Lemma 5. Under the subcharacteristic condition |λ| < 1, one has

(1) |λ|(1 + 2α) ≤ Re
√

λ2 + 4ξ(1 + ξ) ≤ 1 + 2α, for Re (ξ) = α ≥ 0; (4.15)

(2) Re µ+(ξ) > 0, Re µ−(ξ) < 0; (4.16)

(3) when λ < 0, 2Re µ−(εξ) ≤ −2|λ|, 2Re µ+(εξ) ≥ −2ελα; (4.17)

when λ > 0, 2Re µ−(εξ) ≤ −2ελα, 2Re µ+(εξ) ≥ 2λ. (4.18)

For the proof of the lemma, please refer to [31].

Lemma 6. Under the subcharacteristic condition |λ < 1, one has
(1) For λ > 0, g−(εξ) = O(1)εξ, and 0 < C1 ≤ |g+(εξ)| ≤ C2, here C1 and C2 are two
positive constants, and g+(εξ)− λ = O(1)εξ;
(2) For λ < 0, g+(εξ) = O(1)εξ, and 0 < C3 ≤ |g−(εξ)| ≤ C4, here C3 and C4 are two
positive constants, and g−(εξ)− λ = O(1)εξ;
(3)g±(ξ)− g±(εξ), g+(ξ)− g−(εξ), g+(εξ)− g−(ξ) are uniformly bounded with respect to both
ε and ξ, and they are bounded away from zero for Reξ = α > 0.
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Proof. (1). When λ > 0, from the definition (4.4), one sees

g−(εξ) =
λ−

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
=

−2εξ

λ +
√

λ2 + 4εξ(1 + εξ)
= O(1)εξ,

and

g+(εξ) =
λ +

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
.

In order to prove that g+(εξ) is uniformly bounded with respect to εξ, and the denominator
is nonzero, one just needs to check what happens when |εξ| goes to 0 or ∞. Let εξ = reiθ,
one sees that when |εξ| → 0, i.e., when r → 0, |g+(εξ)| → λ; when |εξ| → ∞, i.e., when
|r| → ∞, one has

|g+(εξ)| → |
√

λ2 + 4reiθ(1 + reiθ)

2(1 + reiθ)
| → (cos2 2θ + sin4 θ)

1
4 ,

which is bounded and nonzero. Moreover,

g+(εξ)− λ =
2(1− λ2)εξ√

λ2 + 4εξ(1 + εξ) + λ(1 + 2εξ)
= O(1)εξ.

(2). When λ < 0, similarly one has

g+(εξ) =
λ +

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
=

−2εξ

λ−
√

λ2 + 4εξ(1 + εξ)
= O(1)εξ,

and

g−(εξ) =
λ−

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
.

In the same way as in (1), one can prove g−(εξ) is uniformly bounded in εξ.
(3). Note

g+(ξ)−g−(εξ)=
λξ(ε− 1) + (1 + εξ)

√
λ2 + 4ξ(1 + ξ) + (1 + ξ)

√
λ2 + 4εξ(1 + εξ)

(1 + ξ)(1 + εξ)
.

Let ξ = reθ, then when ε → 0, and |r| → 0, one has |g+(ξ)−g−(εξ)| → 2|λ|. When ε → 0,
|r| → ∞, and ε|r| → 0, one has

|g+(ξ)−g−(εξ)| → |
λ +

√
λ2 + 4ξ(1 + ξ)

1 + ξ
| → 1

2
(cos2 2θ + sin4 θ)

1
4 ,

which is bounded and nonzero. When ε → 0, |r| → ∞, and ε|r| → ∞, one can still
prove |g+(ξ)−g−(εξ)| is uniformly bounded away from 0, but the detailed calculation will be
omitted. Similarly, one can prove the same result for g+(εξ)−g−(ξ). As for g+(ξ)− g+(εξ),
notice

g+(ξ)−g+(εξ) =
λξ(ε− 1) + (1 + εξ)

√
λ2 + 4ξ(1 + ξ)− (1 + ξ)

√
λ2 + 4εξ(1 + εξ)

(1 + ξ)(1 + εξ)
,
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then following the same procedure as above, it is not hard to check that it is uniformly
bounded as ε → 0, and |ξ| → ∞. Moreover, when ε → 0, |ξ| → α,

|g+(ξ)− g+(εξ)| → |
−λα +

√
λ2 + 4α(1 + α)− (1 + α)λ

1 + α
|,

which is nonzero, one can arrive at the same conclusion for g−(ξ)− g−(εξ).

Remark 7. (1) We will fix Re ξ = α > 0 from now on.
(2) From the definition (4.6), one sees that, when λ > 0, by (4.18), there is a boundary layer
near x = L, and on the other hand, when λ < 0, by (4.17), there is an interface layer near
x = 0. This observation will play an important role in the following proof.

Now we go back to the proof of Theorem 1. Consider the integral:∫ L

−L

dx

∫ ∞

−∞
|Ũ ε(x, ξ)|2dβ =

∫ 0

−L

e2Reµ−(ξ)xdx

∫ ∞

−∞
|c1|2(1 + |g+(ξ)|2)dβ

+

∫ 0

−L

e2Reµ+(ξ)xdx

∫ ∞

−∞
|c2|2(1 + |g−(ξ)|2)dβ

+

∫ L

0

e2Reµ−(εξ)x
ε dx

∫ ∞

−∞
|c3|2(1 + |g+(εξ)|2)dβ

+

∫ L

0

dx

∫ ∞

−∞
|c4e

µ+(εξ)x
ε |2(1 + |g−(εξ)|2)dβ.

By Lemma 4 one sees E, F , G, and H in (4.11) (4.12) are uniformly bounded away from 0.
And from (4.13) (4.14) (4.11) and (4.12) one gets

c1, c2, c3, c4 = O(1)(b̃L(ξ) + b̃R(ξ)),

and moreover, from (4.8),

eµ+(εξ)L
ε c4 = (b̃R(ξ)− c3e

µ−(εξ)L
ε ), (4.19)

so eµ+(εξ)L
ε c4 =O(1)eµ−(εξ)L

ε b̃L(ξ) + O(1)b̃R(ξ). Therefore∫ L

−L

dx

∫ ∞

−∞
|Ũ ε(x, ξ)|2dβ ≤ O(1)

∫ ∞

−∞
(|b̃L(ξ)|2 + |b̃R(ξ)|2)dβ. (4.20)

Then by Parseval’s identity:∫ ∞

0

e−2αt|U ε(x, t)|2dt =
1

2π

∫ ∞

−∞
|Ũ ε(x, α + iβ)|2dβ, (4.21)

the stiff well-posedness, as stated in Theorem 1, now follows.
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4.3 Asymptotic convergence

Next we turn to the proof of the asymptotic convergence. Still we compare the analytical
solution with the help of the Laplace transform. Consider the case λ < 0 first. Compare
system (1.1) with (3.2)-(3.1). The solution of (3.1) is

u0(x, t) =

{
0, x− L ≤ λt,
bR(t + 1

λ
(L− x)), x− L ≥ λt, 0 ≤ x ≤ L.

After the Laplace transform, it becomes

ũ0(x, ξ) = b̃R(ξ)e
ξ
λ
(L−x), for x > 0. (4.22)

The solution of (3.2) is

Ũ(x, ξ) = d1e
µ−(ξ)x

(
1

g+(ξ)

)
+ d2e

µ+(ξ)x

(
1

g−(ξ)

)
, (4.23)

where d1 and d2 are determined by

d1e
−µ−(ξ)L + d2e

−µ+(ξ)L = b̃L(ξ), (4.24)

d1g+(ξ) + d2g−(ξ) = λb̃R(ξ)e
ξ
λ

L. (4.25)

Now compare (4.5) with (4.23), (4.6) with (4.22) respectively. For x ∈ [0, L], using (4.6) and
(4.22), one gets∫ L

0

dx

∫ ∞

−∞
|ũ− ũε|2dβ =

∫ L

0

dx

∫ ∞

−∞
|c3e

µ−(εξ)x
ε + c4e

µ+(εξ)x
ε − b̃Re

ξ
λ
(L−x)|2dβ

≤
∫ L

0

dx

∫ ∞

−∞
|c3(e

µ−(εξ)x
ε −eµ+(εξ)x−L

ε eµ−(εξ)L
ε )|2dβ+

∫ L

0

dx

∫ ∞

−∞
|b̃R(ξ)|2|eµ+(εξ)x−L

ε − e
ξ
λ
(L−x)|2dβ

= I1 + I2.

Here the first inequality was derived by substituting c4 in (4.19). For I1, it is easy to see:

I1 ≤ O(1)

∫ ∞

−∞
|c3(ξ)|2dβ(

∫ L

0

e2Reµ−(εξ)x
ε dx + e2Reµ−(εξ)L

ε

∫ L

0

e2Reµ+(εξ)x−L
ε dx).

Then by (4.17) one gets the estimate for I1 as:

I1 ≤ O(1)ε

∫ ∞

−∞
|c3(ξ)|2dβ

= O(1)ε

∫ ∞

−∞
(|b̃L|2 + |b̃R|2)dβ ≤ O(1)ε(||bL||2L2 + ||bR||2L2). (4.26)

Note here in I1, the term that contains eµ−(εξ)x
ε is the result of interface layer, which drops

the L2 convergence rate down to ε
1
2 .

For I2, one has

I2 ≤
∫ ∞

−∞
O(1)|µ+(εξ)

ε
+

ξ

λ
|2|b̃R(ξ)|2dβ = O(1)ε2

∫ ∞

−∞
|ξ|4|b̃R(ξ)|2dβ

≤ O(1)ε2||bR||2H2 . (4.27)

11



Here we use the fact

µ+(εξ)

ε
+

ξ

λ
=

2εξ2(1− λ2)

λ(λ2 + 2εξ − λ
√

λ2 + 4εξ(1 + εξ))
= O(1)εξ2, (4.28)

and also we assume that bR(t) ∈ H2(R+) and bR(t) satisfies the compatibility condition
bR(0) = b′R(0) = 0. Adding I and II yields we have∫ L

0

dx

∫ ∞

−∞
|ũ− ũε|2dβ ≤ O(1)ε(‖bL‖2

L2 + ‖bR‖2
L2) + O(1)ε2 ‖bR‖2

H2 . (4.29)

When x ∈ [−L, 0] the difference between (4.5) and (4.23) is the difference between the
coefficients, i.e.∫ 0

−L

dx

∫ ∞

−∞
|Ũ − Ũ ε|2dβ = O(1)

∫ ∞

−∞
(|d1 − c1|2 + |d2 − c2|2)dβ.

Compare (4.7)–(4.10) with (4.24)(4.25), one finds

|c1 − d1| = O(1)εξ(b̃L + b̃R), |c2 − d2| = O(1)εξ(b̃L + b̃R),

after using Lemma 4 and some basic calculations. The details are omitted.
Therefore,∫ 0

−L

dx

∫ ∞

−∞
|Ũ − Ũ ε|2dβ ≤ O(1)ε2

∫ ∞

−∞
(|ξb̃L(ξ)|2 + |ξb̃R(ξ)|2)dξ

≤ O(1)ε2(||bL||2H1 + ||bR||2H1). (4.30)

Here we used the assumption that bL(t) ∈ H1(R+), and bL(t) satisfies bL(0) = 0. Now we
are done with the λ < 0 case.

For λ > 0, the proof is similar. First the solution to (3.3) is

Ũ(x, ξ) = k1e
µ−(ξ)x

(
1

g+(ξ)

)
+ k2e

µ+(ξ)x

(
1

g−(ξ)

)
, −L ≤ x ≤ 0, (4.31)

where k1 and k2 are determined by

k1e
−µ−(ξ)L + k2e

−µ+(ξ)L = b̃L(ξ), (4.32)

k1(λ− g+(ξ)) + k2(λ− g−(ξ)) = 0. (4.33)

When 0 ≤ x ≤ L, the solution to (3.4) is

u0(x, t) =

{
0, λt ≤ x ≤ L,
u(0, t− x

λ
), 0 ≤ x ≤ λt, 0 ≤ x ≤ L.

So after Laplace transform, one gets:

ũ0(x, ξ) = e−ξ x
λ ˜̄u(0−, ξ) = e−ξ x

λ (k1 + k2). (4.34)
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Now compare (4.31) with (4.5), and (4.34) with (4.6). The difference between (4.31) and
(4.5) is again the difference between the coefficients. Thus∫ 0

−L

dx

∫ ∞

−∞
|Ũ − Ũ ε|2dβ = O(1)

∫ ∞

−∞
(|k1 − c1|2 + |k2 − c2|2)dβ.

Compare (4.7)–(4.10) with (4.32) (4.33), one finds

|c1 − k1| = O(1)εξb̃L, |c2 − k2| = O(1)εξb̃L.

Therefore,∫ 0

−L

dx

∫ ∞

−∞
|Ũ − Ũ ε|2dβ ≤ O(1)ε2

∫ ∞

−∞
|ξb̃L(ξ)|2dξ

≤ O(1)ε2||bL||2H1 . (4.35)

The difference between (4.34) and (4.6) is estimated as follows:∫ L

0

dx

∫ ∞

−∞
|ũ0 − ũε|2dβ

=

∫ L

0

dx

∫ ∞

−∞
|c3e

µ−(εξ)x
ε + c4e

µ+(εξ)x
ε − (k1 + k2)e

−ξ x
λ |2dβ

=

∫ L

0

dx

∫ ∞

−∞
|c3(e

µ−(εξ)x
ε −eµ+(εξ)x−L

ε eµ−(εξ)L
ε) + b̃Reµ+(εξ)x−L

ε −(k1 + k2)e
−ξ x

λ|2dβ

≤ J1 + J2 + J3.

To get the second equality, we again use (4.19). First,

J1 =

∫ ∞

−∞
|b̃R(ξ)|2dβ

∫ L

0

e2Reµ+(εξ)x−L
ε dx

≤ O(1)ε||bR(t)||2L2 , (4.36)

where the inequalities (4.16), (4.17) and (4.18) were used. For J2, one has:

J2 =

∫ L

0

dx

∫ ∞

−∞
|[c3 − (k1 + k2)]e

µ−(εξ)x
ε − c3e

µ+(εξ)x−L
ε eµ−(εξ)L

ε |2

≤
∫ L

0

dx

∫ ∞

−∞
|c3−k1−k2|2e2Reµ−(εξ)x

ε dβ + O(1)ε

∫ ∞

−∞
|c3|2dβ.

Since c3 + c4 = c1 + c2 = k1 + k2 + O(1)εξb̃L(ξ), c4 = e−µ+(εξ)L
ε (b̃R(ξ) − c3e

µ−(εξ)L
ε ), one has

|c3−k1−k2|2 = O(1)ε2|ξb̃L(ξ)|2. Therefore,

J2 ≤ O(1)ε2||bL||2H1 + O(1)ε||bL||2L2 . (4.37)
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Note here the convergence rate is ε, which is caused by the boundary layer effect of eµ+(εξ)x−L
ε

in J1 and J2. The remaining part J3 is

J3 =

∫ L

0

dx

∫ ∞

−∞
|(k1+k2)e

µ−(εξ)x
ε − (k1+k2)e

−ξ x
λ |2dβ

≤ O(1)

∫ ∞

0

|eµ−(εξ)x
ε − e−ξ x

λ |2dx

∫ ∞

−∞
|k1+k2|2dβ

≤ O(1)ε2||bL||2H2 . (4.38)

The calculation here is similar to (4.27). In total, one gets∫ L

0

dx

∫ ∞

−∞
|ũ0 − ũε|2dβ ≤ O(1)ε(‖bL‖2

L2 + ‖bR‖2
L2) + O(1)ε ‖bL‖2

H2 . (4.39)

To this end, we have proved Theorem 2 with zero initial data.

5 Error estimate for the domain decomposition method

for the linear case: the Inhomogeneous initial data

The case with inhomogeneous initial data is much more complicated. To clarify the idea in
the proof, we consider instead the Cauchy problem here, that is, x ∈ (−∞,∞) instead of
[−L, L]. A new idea here is to construct some related initial value problem and make use
of the existent results of them to overcome the difficulties arisen in the Laplace transform.
With these two results, the problem with both boundary and initial data is straightforward,
and details will be omitted.

5.1 Solution by the Laplace transform

Again, we solve system (1.1) by the Laplace transform. Then (1.1) (1.3) becomes:

∂xŨ ε =
1

ε(x)
M(ε(x)ξ)Ũ ε + A−1U0(x), (5.1)

where M is the same as before. Then the general solution is:
For x < 0, ε(x) = 1,

Ũ ε(x, ξ) = eM(ξ)x(ŨL +

∫ x

0

e−M(ξ)yA−1U0(y)dy); (5.2)

For x > 0, ε(x) = ε,

Ũ ε(x, ξ) = eM(εξ)x
ε (ŨR +

∫ x

0

e−M(εξ) y
ε A−1U0(y)dy), (5.3)

where one can denote eM(ξ)x by

eM(ξ)x = eµ+(ξ)xΦ+(ξ) + eµ−(ξ)xΦ−(ξ). (5.4)
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Here Φ± are defined by:

Φ+(ξ) =
1

g+(ξ)− g−(ξ)

(
1

g−(ξ)

)
(g+(ξ) −1), (5.5)

Φ−(ξ) =
1

g+(ξ)− g−(ξ)

(
1

g+(ξ)

)
(−g−(ξ) 1). (5.6)

Then (5.2) (5.3) can be rewritten as:
For x < 0, ε(x) = 1,

Ũ ε(x, ξ) = eµ+(ξ)xΦ+(ξ)(ŨL(ξ) +

∫ x

0

e−µ+(ξ)yA−1U0(y)dy)

+eµ−(ξ)xΦ−(ξ)(ŨL(ξ) +

∫ x

0

e−µ−(ξ)yA−1U0(y)dy); (5.7)

For x > 0, ε(x) = ε,

Ũ ε(x, ξ) = eµ+(εξ)x
ε Φ+(εξ)(ŨR(ξ) +

∫ x

0

e−µ+(εξ) y
ε A−1U0(y)dy)

+eµ−(εξ)x
ε Φ−(εξ)(ŨR(ξ) +

∫ x

0

e−µ−(εξ) y
ε A−1U0(y)dy). (5.8)

Here ŨL(ξ) =

(
ũL(ξ)
ṽL(ξ)

)
and ŨR(ξ) =

(
ũR(ξ)
ṽR(ξ)

)
, to be defined later, are two vectors

independent of x.
First, when x →∞, Ũ ε(x, ξ) → 0, one gets

(g+(εξ) −1)

(
ũR(ξ)
ṽR(ξ)

)
+

∫ ∞

0

e−µ+(εξ) y
ε (g+(εξ) −1)

(
v0

u0

)
(y)dy = 0,

that is,

g+(εξ)ũR(ξ)− ṽR(ξ) +

∫ ∞

0

e−µ+(εξ) y
ε (v0(y)g+(εξ)− u0(y))dy = 0. (5.9)

When x → −∞, Ũ ε(x, ξ) → 0, thus

(−g−(ξ) 1)

(
ũL(ξ)
ṽL(ξ)

)
+

∫ −∞

0

e−µ−(ξ)y(−g−(ξ) 1)

(
v0

u0

)
(y)dy = 0,

that is,

−g−(ξ)ũL(ξ) + ṽL(ξ) +

∫ −∞

0

e−µ−(ξ)y(−v0(y)g−(ξ) + u0(y))dy = 0. (5.10)

Then by continuity, Φ+(ξ)UL + Φ−(ξ)UL = Φ+(εξ)UR + Φ−(εξ)UR, it is easy to get:

ũL = ũR, ṽL = ṽR. (5.11)
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Plugging (5.9)–(5.11) into (5.8), one ends up with a simplified version of (5.8):

Ũ ε(x, ξ) =
1

g+(εξ)− g−(εξ)

{(
1

g−(εξ)

) ∫ ∞

x

eµ+(εξ)x−y
ε (u0(y)− v0(y)g+(εξ))dy

+

(
1

g+(εξ)

) ∫ x

0

eµ−(εξ)x−y
ε (u0(y)− v0(y)g−(εξ))dy

+

(
1

g+(εξ)

)
eµ−(εξ)x

ε (ṽR(ξ)− ũR(ξ)g−(εξ))

}
, for x > 0, (5.12)

Similarly, (5.7) can be simplified to:

Ũ ε(x, ξ) =
1

g+(ξ)− g−(ξ)

{(
1

g+(ξ)

) ∫ x

−∞
eµ−(ξ)(x−y)(u0(y)− v0(y)g−(ξ))dy

+

(
1

g−(ξ)

) ∫ 0

x

eµ+(ξ)(x−y)(u0(y)− v0(y)g+(ξ))dy

+

(
1

g−(ξ)

)
eµ+(ξ)x(−ṽL(ξ) + ũL(ξ)g+(ξ))

}
, for x < 0. (5.13)

5.2 The Stiff well-posedness

Due to the nonzero initial data, it is hard to estimate the L2 norm of the solution from the
expression (5.12) (5.13). So we take a detour to look at the initial value problem with initial
data supported in the right (or left) half plane. Then for this initial value problem, one can
solve it by the Fourier transform, thus avoid the difficulties caused by the Laplace transform.
Without loss of generality, we consider x > 0 here. The x < 0 case is the same. First we
have the following lemma.

Lemma 8. Assume U ε
IV P =

(
uε

IV P

vε
IV P

)
is the solution to


uε

t + vε
x = 0, (5.14a)

vε
t + uε

x = −1

ε
(vε − λuε), (5.14b)

uε(x, 0) = u0(x), vε(x, 0) = v0(x), (5.14c)

here u0 and v0 are supported in [0,∞). Then the solution is

Ũ ε
IV P (x, ξ) =

1

g+(εξ)−g−(εξ)
{
(

1
g−(εξ)

) ∫ ∞

x

eµ+(εξ)x−y
ε (u0(y)−v0(y)g+(εξ))dy

+

(
1

g+(εξ)

) ∫ x

0

eµ−(εξ)x−y
ε (u0(y)−v0(y)g−(εξ))dy}, (5.15)

and the following inequality holds:∫ ∞

−∞

∫ ∞

−∞
|Ũ ε

IV P (x, ξ)|2dxdβ ≤ O(1)

∫ ∞

0

|U0(x)|2dx. (5.16)
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Proof. First the solution (5.15) is obtained in the same way as (5.12), so we will omit the
details. Then if Fourier transform w.r.t x is used instead of the Laplace transform w.r.t t in
this case, one gets [31]∫ ∞

−∞
|U ε

IV P (x, t)|2dx ≤ O(1)

∫ ∞

0

|U0(x)|2dx, ∀t > 0. (5.17)

Integrating with respect to t gives∫ ∞

0

dt

∫ ∞

−∞
e−2αt|U ε

IV P (x, t)|2dx ≤ O(1)

∫ ∞

0

|U0(x)|2dx.

Then by Parseval’s identity (4.21), one can prove the inequality. For more details, see
[31].

One also needs to estimate
∫∞

0
e−µ+(εξ) y

ε (u0(y)− v0(y)g+(εξ))dy and
∫ −∞

0
e−µ−(ξ)y

(u0(y)− v0(y)g−(ξ))dy which appear in (5.9) and (5.10). The estimate of these two integrals
are similar by using the energy estimate. So we only estimate the first integral here.

Lemma 9. Let

w̃IBVP (εξ) =

∫ ∞

0

e−µ+(εξ) y
ε (u0(y)− v0(y)g+(εξ))dy, (5.18)

then ∫ ∞

−∞
|w̃IBVP (εξ)|2dβ ≤ O(1)

∫ ∞

0

|U0(x)|2dx. (5.19)

Proof. The idea of the proof followes that in [31]. We construct the following initial boundary
value problem on the right half plane x > 0. Later one can see that w̃IBVP (εξ) can be
expressed by the Laplace transform of the boundary value of the following problem, thus
can be bounded by the initial data. This is the key motivation of constructing the following
system:

uε
t + vε

x = 0, (5.20a)

vε
t + uε

x = −1

ε
(vε − λuε), (5.20b)

uε(x, 0) = u0(x), vε(x, 0) = v0(x), (5.20c)

Buu
ε(0, t) + Bvv

ε(0, t) = 0. (5.20d)

Here Bu and Bv are two constants that satisfy the so-called Stiff Kreiss Condition (SKC)

[31]: Bu

Bv
/∈ [−1, λ+|λ|

2
]. The solution to this system can be written as:

ŨIBV P (x, ξ) = eµ+(εξ)x
ε Φ+(εξ)(ŨIBV P (0, ξ) +

∫ x

0

e−µ+(εξ) y
ε A−1U0(y)dy)

+eµ−(εξ)x
ε Φ−(εξ)(ŨIBV P (0, ξ)+

∫ x

0

e−µ−(εξ) y
ε A−1U0(y)dy), (5.21)
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where ŨIBVP (0, ξ) =

(
ũIBVP

ṽIBVP

)
satisfies

BuũIBVP (0, ξ) + BvṽIBVP (0, ξ) = 0, (5.22a)

Φ+(εξ)(ŨIBVP (0, ξ) +

∫ ∞

0

e−µ+(εξ) y
ε A−1U0(y)dy) = 0. (5.22b)

From definition (5.18), the second condition (5.22b) can be written as

g+(εξ)ũIBVP (0, ξ)− ṽIBVP (0, ξ) = w̃IBVP (εξ),

thus

ŨIBVP (0, ξ) =
w̃IBVP (εξ)

Bu + Bvg+(εξ)

(
Bv

−Bu

)
. (5.23)

Now the energy estimate can be used to get the upper bound of
∫ T

0
|UIBVP (0, t)|2dt. Let

H =

(
1 −λ
−λ 1

)
, multiply (5.20) by e−2αtUT H, and integrate over [0, T ]× [0,∞), one has

(here we omit the subscription for a while)

1

2

∫ ∞

0

(U,HU)(x, T )e−2αT dx + α

∫ T

0

∫ ∞

0

(U,HU)(x, t)e−2αtdxdt

+
1

ε

∫ T

0

∫ ∞

0

(v − λu)2e−2αtdxdt +
1

2

∫ T

0

(λu2 − 2uv + λv2)(0, t)e−2αtdt

=
1

2

∫ ∞

0

(U0(x), HU0(x))dx.

One needs to choose the boundary condition such that λu(0, t)2−2u(0, t)v(0, t)+λv(0, t)2 ≥
c|U(0, t)|2, where c is a bounded constant. Later we will show that this kind of boundary
condition exits and it is a subclass of SKC. Then one can get∫ T

0

|UIBVP (0, t)|2e−2αtdt ≤ O(1)

∫ ∞

0

|U0(x)|2dx. (5.24)

Let T →∞, then∫ ∞

0

|UIBVP (0, t)|2e−2αtdt ≤ O(1)

∫ ∞

0

|U0(x)|2dx. (5.25)

By Parseval’s identity and (5.23) (5.25), one obtains (5.19). As for the boundary condition,
there are plenty of choices. Any Bu and Bv that satisfy

Bu

Bv

> −1

λ
(1−

√
1− λ2) or

Bu

Bv

< −1

λ
(1 +

√
1− λ2), for λ > 0,

−1

λ
(1−

√
1− λ2) <

Bu

Bv

< −1

λ
(1 +

√
1− λ2), for λ < 0,

Bu

Bv

> 0, for λ = 0,

will work, and it is not hard to see it is a subclass of the SKC.
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Similarly, we have the following corollary.

Corollary 10. Let

w̃IBV P2(ξ) =

∫ −∞

0

e−µ−(ξ)y(u0(y)− v0(y)g−(ξ))dy, (5.26)

then ∫ ∞

−∞
|w̃IBV P2(ξ)|2dβ ≤ O(1)

∫ 0

−∞
|U0(x)|2dx. (5.27)

By looking back to the solution (5.12) for x > 0, one gets∫ ∞

0

dx

∫ ∞

−∞
|Ũ ε(x, ξ)|2dβ ≤

∫ ∞

0

dx

∫ ∞

−∞
|Ũ ε

IV P |2dβ

+

∫ ∞

0

dx

∫ ∞

−∞

∣∣∣∣( 1
g+(εξ)

)
eµ−(εξ)x

ε (vR − g−(εξ)uR)

∣∣∣∣2 1

|g+(εξ)− g−(εξ)|2
dβ

= I1 + I2. (5.28)

By (5.16) I1 can be estimated as:

I1 ≤ O(1)

∫ ∞

0

|U0(x)|2dx. (5.29)

As for I2, since 1
|g+(εξ)−g−(εξ)| is uniformly bounded, one has

I2 ≤ O(1)

∫ ∞

0

dx

∫ ∞

−∞
e2Reµ−(εξ)x

ε [|vR|2 + O(1)|uR|2]dβ.

Then by (5.9) (5.10) (5.18) and (5.26), one obtains:

g+(εξ)uR − vR = w̃IBV P ,

−g−(ξ)uR − vR = w̃IBV P2.

Thus uR = O(1)w̃IBV P (εξ)+O(1)w̃IBV P2(ξ), vR = O(1)w̃IBV P (εξ)+O(1)w̃IBV P2(ξ). Finally
by Lemma 7 and Corollary 9,

I2 ≤ −O(1)
ε

2Reµ−(εξ)

∫ ∞

−∞
|U0(x)|2dx. (5.30)

Then by (4.17) (4.18), one sees that
∫∞

0
dx

∫∞
−∞ |Ũ

ε(x, ξ)|2dβ is uniformly bounded. In the
same way, one can prove∫ 0

−∞
dx

∫ ∞

−∞
|Ũ ε(x, ξ)|2dβ ≤ O(1)

∫ ∞

−∞
|U0(x)|2dx. (5.31)

Till now we have proved the stiff well-posedness of the original system.

19



5.3 The Asymptotic convergence

Next we will prove the asymptotic convergence. The first step is also using the Laplace
transform to represent the exact solution. We will consider the case λ < 0 first. Consider the
domain decomposition system (3.2)–(3.1). When x > 0, the solution is u0(x, t) = u0(x−λt).
After the Laplace transform, one gets:

ũ0(x, ξ) = −1

λ

∫ ∞

x

u0(y)e−
ξ
λ
(x−y)dy, (5.32)

ṽ0 = λũ0. (5.33)

For x < 0, the solution to (3.2) can be represented as

Ũ(x, ξ) = eµ+(ξ)xΦ+(ξ)(D̃(ξ) +

∫ x

0

e−µ+(ξ)yA−1U0(y)dy)

+eµ−(ξ)xΦ−(ξ)(D̃(ξ) +

∫ x

0

e−µ−(ξ)yA−1U0(y)dy). (5.34)

Here D̃(ξ) =

(
D̃u(ξ)

D̃v(ξ)

)
is determined by:

(−g−(ξ) 1)

(
D̃u(ξ)

D̃v(ξ)

)
+

∫ −∞

0

e−µ−(ξ)y(−g−(ξ) 1)

(
u0

v0

)
(y)dy = 0, (5.35)

1

g+(ξ)−g−(ξ)
[(D̃u(ξ)g+(ξ)−D̃v(ξ))g−(ξ)+(D̃v(ξ)−D̃u(ξ)g−(ξ))g+(ξ)]=−

∫ ∞

0

u0(y)e
ξ
λ

ydy,

where the second equation is simplified as

D̃v(ξ) = −
∫ ∞

0

u0(y)e
ξ
λ

ydy. (5.36)

Now one needs to compare (5.32) with (5.8), and (5.34) with (5.7). Still, in order to
avoid the difficulties caused by Laplace transform, we turn to the help of the initial value
problem (5.14) with its reduced system:{

u0
t + λu0

x = 0, (5.37a)

u0(x, 0) = u0(x). (5.37b)

Here we assume u0(x) is supported on [0,∞).

Lemma 11. Let U ε
IV P and U0

IV P be the solution of (5.14) and (5.37) respectively, then∫ ∞

0

dx

∫ ∞

−∞
|Ũ ε

IV P − Ũ0
IV P |2dβ ≤ O(1)ε2||U0||2H2 + O(1)ε||v0 − λu0||2L2[0,∞). (5.38)

Proof. The proof is based on the Fourier transform, and one can refer to [31] for details.
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Go back to the difference of (5.32) and (5.12), since the solution to (5.37) is (5.32), and
part of (5.12) is (5.15), one has∫ ∞

0

dx

∫ ∞

−∞
|ũε − ũ|2dβ ≤

∫ ∞

0

dx

∫ ∞

−∞
|ũε

IV P − ũ0
IV P |2dβ

+

∫ ∞

0

dx

∫ ∞

−∞

∣∣∣∣ 1

g+(εξ)− g−(εξ)

∣∣∣∣2 (1 + |g+(εξ)|2)|eµ−(εξ)x
ε (ṽR(ξ)− g−(εξ)ũR(ξ))|2dβ

= I1 + I2,

I1 ≤ O(1)ε2||U0||2H2 + O(1)ε||v0 − λu0||2L2[0,∞), (5.39)

I2 ≤ O(1)

∫ ∞

0

e2Reµ−(εξ)x
ε dx

∫ ∞

−∞
|ṽ(ξ)R − g−(εξ)ũR(ξ)|2dβ

≤ O(1)ε||U0||2L2 . (5.40)

The calculation of the last inequality is the same as (5.30). Notice here that the term that
contains e2Reµ−(εξ)x

ε is due to the interface layer, as we expected here that the initial data
can induce an interface layer at the interface in this case.

Now compare (5.34) with (5.7). The difference comes from the difference in coefficients,
thus ∫ 0

−∞
dx

∫ ∞

−∞
|Ũ − Ũ ε|2dβ

≤ O(1)

∫ 0

−∞
dx

∫ ∞

−∞
|eµ+(ξ)x|2(1 + |g−(ξ)|2)[g+(ξ)(D̃u − ũL)− (D̃v − ṽL)]2dβ

+

∫ 0

−∞
dx

∫ ∞

−∞
|eµ−(ξ)x|2(1 + |g+(ξ)|2)[−g−(ξ)(D̃u − ũL) + (D̃v − ṽL)]2dβ.

By boundary conditions (5.10) and (5.35), the second term vanishes, so∫ 0

−∞
dx

∫ ∞

−∞
|Ũ − Ũ ε|2dβ ≤ O(1)

∫ 0

−∞
dx

∫ ∞

−∞
e2Reµ+(ξ)x(|D̃u − ũL|2 + |D̃v − ṽL|2)dβ.
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Next compare (5.9)–(5.11) with (5.35) (5.36), one gets∫ 0

−∞
dx

∫ ∞

−∞
|Ũ−Ũ ε|2dβ = O(1)

∫ ∞

−∞
(|D̃u − ũL|2 + |D̃v − ṽL|2)dβ

= O(1)

∫ ∞

−∞
|D̃v − ṽL|2dβ

= O(1)

∫ ∞

−∞

∣∣∣∣∣−
∫ ∞

0

e
ξ
λ

yu0(y)dy −
−w̃IBVP + g+(εξ)

g−(ξ)
w̃IBVP2

1− g+(εξ)
g−(ξ)

∣∣∣∣∣
2

dβ

≤ O(1)

∫ ∞

−∞

∣∣∣∣∫ ∞

0

(u0(y)−v0(y)g+(εξ))e−µ+(εξ) y
ε dy−

∫ ∞

0

u0(y)e
ε
λ

ydy

∣∣∣∣2 dβ

+O(1)

∫ ∞

−∞

∣∣∣∣g+(εξ)

∫ −∞

0

(u0(y)− v0(y)g−(ξ))e−µ−(ξ)ydy

∣∣∣∣2 dβ

+O(1)

∫ ∞

−∞

∣∣∣∣g+(εξ)

∫ ∞

0

u0(y)e
ξ
λ

ydy

∣∣∣∣2 dβ

= J1 + J2 + J3.

We begin with the simplest part J3 first. Since when λ < 0, g+(εξ) = O(1)εξ, thus

J3 ≤ O(1)ε2

∫ ∞

−∞

∣∣∣∣ξ ∫ ∞

0

u0(y)e
ξ
λ

ydy

∣∣∣∣2 dβ.

If the compatibility condition on u0(y) is assumed such that u0(0) = 0,
∫∞

0
ξu0(y)e

ξ
λ

ydy can
be considered as the Laplace transform to u′0(y), so

J3 ≤ O(1)ε2

∫ ∞

−∞
|L(u′0(y))(ξ)|2dβ ≤ O(1)ε2

∫ ∞

0

|u′0(y)|2dy. (5.41)

Next we look at J2. Similar to J3, one will first get

J2 ≤ O(1)ε2

∫ ∞

−∞

∣∣∣∣ξ ∫ −∞

0

(u0(y)− v0(y)g−(ξ))e−µ+(ξ)ydy

∣∣∣∣2 dβ.

Recall (5.26) and integration by parts, one gets

w̃IBVP2 = − 1

µ−(ξ)

∫ ∞

0

e−µ−(ξ)y(−u′0 + g−(ξ)v′0)dy, (5.42)

where the compatibility condition u0(0) = 0 and v0(0) = 0 are used. Since −µ−(ξ) =
µ+(ξ)− 2λ, one has

(µ+(ξ)− 2λ)w̃IBVP2 =

∫ ∞

0

e−µ−(ξ)y(−u′0 + g−(ξ)v′0)dy.

Notice when λ < 0, µ+(ξ) = − ξ
g−(ξ)

, thus

ξw̃IBV P2 = 2λg−(ξ)w̃IBV P2 + g−(ξ)

∫ ∞

0

(−u′0(y) + g−(ξ)v′0(y))dy.
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Therefore, the following estimate holds:∫ ∞

−∞
|ξw̃IBV P2|2dβ ≤ O(1)

∫ ∞

−∞

∣∣∣∣∫ −∞

0

e−µ−(ξ)y(u′0−g−(ξ)v′0)(y)dy

∣∣∣∣2 dβ+O(1)

∫ ∞

−∞
|w̃IBV P2(ξ)|2dβ.

(5.43)

The integral with respect to y on the right hand side is similar to w̃IBV P2 in (5.26), except
to change u0 and v0 to u′0 and v′0. So one has∫ ∞

−∞
|ξw̃IBV P2|2dβ ≤ O(1)

∫ ∞

0

|U ′
0(x)|2dx + O(1)

∫ ∞

0

|U0(x)|2dx. (5.44)

Therefore,

J2 ≤ O(1)ε2

∫ ∞

0

|U ′
0(x)|2dx. (5.45)

Now we turn to J1. First using g+(εξ) ∼ O(1)εξ gives

J1 ≤
∫ ∞

−∞
ε2

∣∣∣∣ξ ∫ ∞

0

v0e
−µ+(εξ) y

ε dy

∣∣∣∣2 dβ +

∫ ∞

−∞

∣∣∣∣∫ ∞

0

u0(e
−µ+(εξ) y

ε − e
ξ
λ

y)(y)dy

∣∣∣∣2 dβ. (5.46)

Notice in (5.18) if one exchanges u0 and v0 and let u0 ≡ 0, then use (5.18) (5.43), and similar
to (5.44), one will get:∫ ∞

−∞

∣∣∣∣ξ ∫ ∞

0

v0e
−µ+(εξ) y

ε dy

∣∣∣∣2 dβ ≤ O(1)

∫ ∞

0

|v′0(x)|2dx. (5.47)

On the other hand,∫ ∞

−∞

∣∣∣∣∫ ∞

0

u0(e
−µ+(εξ) y

ε − e
ξ
λ

y)(y)dy

∣∣∣∣2 dβ

=

∫ ∞

−∞

∣∣∣∣∫ ∞

0

u0(y)e
ξ
λ

y(e−µ+(εξ) y
ε
− ξ

λ
y − 1)dy

∣∣∣∣2 dβ.

Since for λ < 0, similar to (4.28), one has −µ+(εξ)
ε

− ξ
λ

= a(εξ, λ)εξ2, here a(εξ, λ) is a O(1)
function. Denote the upper bound of a as c, i.e., |a| < c. Therefore,∫ ∞

−∞

∣∣∣∣∫ ∞

0

u0(y)e
ξ
λ

y(e−µ+(εξ) y
ε
− ξ

λ
y − 1)dy

∣∣∣∣2 dβ

=

∫ ∞

−∞

∣∣∣∣∫ ∞

0

u0(y)e
ξ
λ

y(eaεξ2y − 1)dy

∣∣∣∣2 dβ

=

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

0

u0(y)e
ξ
λ

y

∞∑
k=1

(aεξ2y)k 1

k!
dy

∣∣∣∣∣
2

dβ

≤ 2

∫ ∞

−∞

∞∑
k=1

(
1

k!
)2|a|2kε2k|ξ2|2k

∣∣∣∣∫ ∞

0

u0(y)e
ξ
y ykdy

∣∣∣∣2 dβ

= 2
∞∑

k=1

(
1

k!
)2

∫ ∞

−∞
|aε|2k

∣∣∣∣∫ ∞

0

ξ2kyku0(y)e
ξ
λ

ydy

∣∣∣∣2 dβ.

23



Let ε be small enough such that |εc| < 1, and observe that
∫∞

0
ξ2ku0(y)e

ξ
λ

ydy can be considered
the Laplace transform of the 2k-th derivative of u0(y), so if one further assumes u0 ∈ C∞,
and u0 has compact support, then use the same trick as we prove (5.47), one will get:

∞∑
k=1

(
1

k!
)2

∫ ∞

−∞
|aε|2k

∣∣∣∣∫ ∞

0

ξ2kyku0(y)e
ξ
λ

ydy

∣∣∣∣2 dβ

≤ O(1)
∞∑

k=1

|εc|2k ‖u0(y)(2k) ‖2
L2≤ O(1)ε2 ‖u0(y)‖2

H2 (1 + o(ε)).

Here the term o(ε) will depend on the norm ‖(u0)
(2k)‖L2 (k ≥ 2), but our assumption on

u0 will guarantee that this term is a higher order term w.r.t ε. Therefore, one arrives at the
estimate for J3:

J3 ≤ O(1)ε2||u0(y)||2H2(1 + o(ε)) + O(1)ε2||v0||2H1 . (5.48)

In summary,∫ ∞

−∞
dx

∫ ∞

−∞
|Ũ ε−Ũ |2dβ ≤ O(1)ε||v0−λu0||2L2+O(1)ε||U0||2L2[0,∞)+O(1)ε2||U0||2H2(1+o(ε)). (5.49)

The case with λ > 0 is rather similar, but there is no interface layer at x = 0, so one will
find the term that contains ||U0||2L2 will have a convergence rate O(1)ε2 instead of O(1)ε.

6 Domain-decomposition based numerical schemes and

numerical experiments

We use ∆t and ∆x to represent the time step and mesh size respectively, un
j denotes the

value at time n∆t and space j∆x. Let M = T/∆t, and N = 2L/∆x. We use the upwind
scheme to the Riemann invariants u± v to solve the left part and use the Godunov scheme
to solve the equilibrium equation.

6.1 The numerical scheme

Case I: f ′(u) < 0

• Step 1. For j = N/2 + 1, ...N , n = 0, 1, ...M , solve

ũn+1
j − ũn

j

∆t
+

F n
j+ 1

2

− F n
j− 1

2

∆x
= 0, (6.1)

ũ0
j = u0(xj), ṽ0

j = v0(xj), (6.2)

ũn
N = bR(tn), (6.3)
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where F n
j+ 1

2

= f(R(0, ũn
j , ũ

n
j+1)), F n

j− 1
2

= f(R(0, ũn
j−1, ũ

n
j )), and R(0, ζ, η), the Riemann

solver, is defined as:

R(0, ζ, η) =


ζ, if f ′(ζ), f ′(η) ≤ 0,
η, if f ′(ζ), f ′(η) ≥ 0,
ζ, if f ′(ζ) > 0 > f ′(η), s > 0,
η, if f ′(ζ) > 0 > f ′(η), s < 0,
f ′−1(0), otherwise

where s = f(ζ)−f(η)
ζ−η

is the shock speed.

• Step 2. For j = 0, 1, ...N/2, n = 0, 1, ...M , let the Riemann invariants P
n

j = un
j +

vn
j , Q

n

j = un
j − vn

j , and solve

P
n+1

j − P
n

j

∆t
+

P
n

j − P
n

j−1

∆x
= − 1

c1

(vn
j − f(un

j )), (6.4)

Q
n+1

j −Q
n

j

∆t
−

Q
n

j+1 −Q
n

j

∆x
=

1

c1

(vn
j − f(un

j )), (6.5)

P
0

j = u0(xj) + v0(xj), Q
0

j = u0(xj)− v0(xj), (6.6)

un+1
0 = bL(tn+1), vn+1

N
2

= ṽn+1
N
2

; (6.7)

where ṽn+1
N
2

was obtained from Step 1.

Case II: f ′(u) > 0

• Step 1. For j = 0, 1, ...N/2, n = 0, 1, ...M , let the Riemann invariants P
n

j = un
j +

vn
j , Q

n

j = un
j − vn

j , then solve

P
n+1

j − P
n

j

∆t
+

P
n

j − P
n

j−1

∆x
= −1

ε
(vn

j − f(un
j )), (6.8)

Q
n+1

j −Q
n

j

∆t
−

Q
n

j+1 −Q
n

j

∆x
=

1

ε
(vn

j − f(un
j )) (6.9)

P
0

j = u0(xj) + v0(xj), Q
0

j = u0(xj)− v0(xj), (6.10)

un+1
0 = b1(t

n+1), (6.11)

P
n+1
N
2

= un+1
N
2

+ f(un+1
N
2

); (6.12)
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• Step 2. For j = N/2 + 1, ...N , n = 0, 1, ...M , solve

ũn+1
j − ũn

j

∆t
+

F n
j+ 1

2

− F n
j− 1

2

∆x
= 0, (6.13)

ũ0
j = u0(xj), ṽ0

j = v0(xj), (6.14)

ũn+1
N
2

= un+1
N
2

, (6.15)

where F n
j+ 1

2

and F n
j− 1

2

are defined as in Case I. To solve for un+1
N
2

, since (6.8) is an

explicit scheme for P
n+1

, we first use it to get P
n+1
N
2

, and then use Newton iteration

for (6.12) to get un+1
N
2

.

Finally, the numerical solution is obtained by piecing together solutions in the two do-
mains:

un
j = un

j , vn
j = vn

j , j = 0, ...
N

2
, n = 0, ...M, (6.16a)

un
j = ũn

j , vn
j = f(ũn

j ) , j =
N

2
+ 1, ...N, n = 0, ...M. (6.16b)

6.2 Numerical examples

The first two examples are given to validate our domain decomposition system numerically.
Therefore we focus on the behavior of L1 error with a changing ε (we only change ε for x > 0,
for x < 0, let ε = 1). Here we use ∆x = 10−3, ∆t = 2.5 × 10−4, and run the algorithm to
T=0.2. We change ε from 0.05 to 0.0025, then calculate the error

UL1 = max
0≤n≤M

N∑
j=0

|(uε)n
j − un

j |∆x, VL1 = max
0≤n≤M

N∑
j=0

|(vε)n
j − vn

j |∆x.

Here (uε)n
j and (vε)n

j are obtained by directly solving the original system (1.1)–(1.5) (hereafter
called the relaxation method).

Example 1. Let f(uε) = 1
4
(e−uε − 1) in (1.1), with initial condition uε(x, 0) = sin(πx)3,

and boundary condition u(−1, t) = u(1, t) = 0. In this case, f ′(u) < 0, so there will be an
interface layer at the interface x = 0. Figure fig:error1 gives the log(error) versus log(ε) and
one can see that the convergence rate is O(ε).

Example 2. Now we consider the case f ′(u) > 0. Let f(uε) = 1
4
(euε−1), initial condition

uε(x, 0) = sin(πx)3, and boundary condition u(−1, t) = u(1, t) = 0. Still one sees that the
convergence rate is O(ε), as shown in Figure fig:error2.

Next we will compare our domain decomposition method with the relaxation method.
Thus in the following examples we will use underresolved mesh, and let ε = 0.002 be fixed for
x > 0. We use the relaxation method with resolved mesh to serve as the analytical solution
to (1.1)–(1.5).
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Figure 1: convergence rate for Example 1 Figure 2: convergence rate for Example 2

Example 3. The set up is the same as Example 1, and here fix ε to be 0.002 for x > 0.
The solutions are plotted at T=0.5. In this case, there is an interface layer in u atx = 0, as
one can see from Figures 3 and 4. In comparison, one can see that the relaxation method
with a relatively large mesh size gives poor results at the interface which results in larger
numerical errors away from the interface. The error becomes smaller if the mesh size is
reduced (yet still underresolved). On the other hand, the domain decomposition method
gives good approximation even when the mesh size is large (∆x >> ε).

Figure 3: Example 3, ∆x = 0.04, ∆t = 0.02. Figure 4: Example 3, ∆x = 0.01, ∆t = 0.005.

Example 4. The set up is the same as Example 2. The results at T = 0.6 are plotted
in Figure 5 and Figure 6. Similar to Example 3, one can find that the relaxation method
behaves much better with the decreasing of the mesh size, while the domain decomposition
method gives good approximation even with the large mesh size compared to ε.

Example 5. Let f(uε) be the same as in Example 2, but consider the Riemann initial
data:

uε(x, 0) =

{
−1, if −1 ≤ x ≤ −0.2,
1, if −0.2 < x ≤ 1.
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Figure 5: Example 4, ∆x = 0.04, ∆t = 0.02. Figure 6: Example 4, ∆x = 0.01, ∆t = 0.005.

In this case a contact discontinuity formed at the left hand side will propagate across the
interface to the right. Let ∆x = 0.02, ∆t = 0.01. From Figure 7, one will see that, before
the contact discontinuity passes through the interface, there is not much difference between
the relaxation method and the domain decomposition method, but after that the domain
decomposition method has an obvious advantage in producing more accurate results. The
results are given at different times to show the dynamics of the solution.

Figure 7: Example 5, a contact discontinuity passing through the interface.

Example 6. Let f(uε) be the same as in Example 1, and consider the following Riemann
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initial data:

uε(x, 0) =

{
1, if −1 ≤ x ≤ 0.2,
−1, if 0.2 < x ≤ 1.

Here we use ∆x = 0.02 and ∆t = 0.01. In this case, a shock forms at the right region and
propagates to the left region. From Figure 8, one can see that, when the shock crosses the
interface, the domain decomposition method gives spurious solution at the interface. This
is because our interface layer analysis assumes that the solution is smooth, yet here the
interaction between the interface layer and shock complicates the problem, thus our domain
decomposition system may not be valid here.

Figure 8: Example 6, a shock from the right region passing through the interface.

Example 7. Let f(uε) be the same as in Example 1, and consider the following Riemann
initial data:

uε(x, 0) =

{
−1, if −1 ≤ x ≤ 0.2,
1, if 0.2 < x ≤ 1.

With this initial data, a rarefaction wave forms in the right region, and propagates across
the interface to the left. We still let ∆x = 0.02 and ∆t = 0.01, and the solutions are plotted
at different times in Figure 9. One can see that, unlike a shock, the domain decomposition
method gives a good approximation when the rarefaction wave crosses the interface.

7 Conclusion

In this paper, a domain decomposition method is presented and analyzed on a semilinear
hyperbolic system with multiple relaxation times. In the region where the relaxation time
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Figure 9: Example 7, rarefaction wave

is small, an asymptotic equilibrium equation is used for computational efficiency which is
coupled with the original relaxation system on the other part of the region through an
interface condition. A rigorous analysis established the well-posedness and error estimate in
terms of the relaxation time on this domain decomposition method, and numerical results
are presented to study the performance of this method.

This is a prototype model for the more general coupling of kinetic and hydrodynamic
equations which are competitive multiscale computational methods using multi-physics, thus
a deep mathematical understanding of this simpler model problem will shed light on the more
general physical problems.

There are still remaining problems to be studied. Among them we mention the problem of
shock passing through the interface, transonic solutions in the equilibrium domain, nonlinear
hyperbolic systems with relaxation, and the error estimate on the numerical schemes based
on such a domain decomposition method.

References

[1] G. Bal, Y. Maday, Coupling of transport and diffusion models in linear transport theory,
Math. Model. Numer. Anal. 36, no. 1, 69 - 86, 2002.

[2] S. Bianchini, Hyperbolic limit of the Jin-Xin relaxation model, Comm. Pure Applied
Math. 59, 688-753, 2006.

30



[3] J. F. Bourgat, P. Le Tallec, B. Perthame, Y. Qiu, Coupling Boltzmann and Euler equa-
tions without overlapping, in domain decomposition methods in science and engineering
(Como, 1992), Contemp. Math. 157, Amer. Math. Soc. Providencde, RI, 377 - 398, 1994.

[4] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy
Problem, Oxford University Press, 2003.

[5] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York,
1988.

[6] A. Chalabi, D. Seghir, Convergence of relaxation schemes for initial boundary value
problems for conservation laws, Computers and Mathematics with Applications 43, no. 8
- 9, 1079 - 1093, 2002.

[7] G.Q. Chen, C.D. Levermore and T.P. Liu, Hyperbolic conservation laws with stiff relax-
ation terms and entropy, Comm. Pure Appl. Math. 47, 787-830, 1994.

[8] P. Degond, S. Jin, A smooth transition model between kinetic and diffusion equations,
SIAM J. Num. Anal. 42, 2671 - 2687, 2005

[9] P. Degond, S. Jin and L. Mieussens, A Smooth Transition Model Between Kinetic and
Hydrodynamic Equations, J. Comp. Phys. 209, 665-694, 2005.

[10] P. Degond, J.-G. Liu and L. Mieussens, Macroscopic fluid modes with localized kinetic
upscaling effects Multiscale Model. Simul. 5, 695–1043, 2006.

[11] P. Degond, C. Schmeiser, Kinetic boundary layers and fluid-kinetic coupling in semi-
conductors, Transport Theory Statist. Phys. 28, no. 1, 31 - 55, 1999.

[12] F. Golse, S. Jin, C.D. Levermore, A domain decomposition analysis for a two-scale
linear transport problem, Math. Model Num. Anal. 37, no. 6, 869 - 892, 2003.

[13] R. L. Higdon, Initial-boundary value problems for linear hyperbolic systems, SIAM Re-
view, vol 28, no. 2, 177 - 217, 1986.

[14] S. Jin, Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary
space dimensions, Comm. Pure Appl. Math. 48, no.3, 235 - 276, 1995.

[15] H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl.
Math. 23, 277 - 298, 1970.

[16] A. Klar, Convergence of alternating domain decomposition schemes for kinetic and aero-
dynamic equations, Math. Methods Appl. Sci.18, no. 8, 649 - 670, 1995.

[17] A. Klar, H. Neunzert, J. Struckmeier, Transition from kinetic theory to macroscopic
fluid equations: a problem for domain decomposition and a source for new algorithm,
Transp. Theory and Stat. Phys. 29, 93 - 106, 2000.

[18] S. N. Kruzkov, First order quasilinear equations with several independent variables, Mat.
Sb. (N.S.) 81(123), 228 - 255, 1970.

31



[19] L. D. Landau, E. M. Lifschitz, Statistical Physics, Elsevier (Singapore) Pte Ltd, 1980.

[20] C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys. 83,
no. 5 - 6, 1021 - 1065, 1996.

[21] A. Majda, S. Osher, Initial-boundary value problems for hyperbolic equations with uni-
formly characteristic boundary, Comm. Pure Appl. Math. 28, no. 7 - 8, pp. 607 - 675,
1975.

[22] R. Natalini, Convergence to equilibrium for the relaxation approximation of conservation
laws, Comm. Pure Appl. Math. 49, no. 8, 795 - 823, 1996.

[23] R. Natalini, Recent mathematical results on hyperbolic relaxation problems, Analysis of
Systems of Conservation Laws (Aachen 1997), Chapman Hall/CRC, Boca Raton, 128 -
198, 1999.

[24] R. Natalini, B. Hanouzet, Weakly coupled system of quasilinear hyperbolic equations,
Differential Integral Equations 9, no. 6, 1279 - 1292, 1996.

[25] J. V. Ralston, Note on a paper of Kreiss, Comm. Pure Appl. Math. 24, pp. 759 - 762,
1971.

[26] Z. H. Teng, First-order L1 convergence for relaxation approximations to conservation
laws, Comm. Pure Appl. Math., Vol. LI, 0875 - 0895, 1998.

[27] M. Tidriri, New models for the solution of intermediate regimes in transport theory and
radiative transfer: existence theory, positivity, asymptotic analysis, and approximations,
J. Stat. Phys. 104, 291 - 325, 2001.

[28] W.G. Vincenti, C.H. Kruger, Introduction to Physical Gas Dynamics, Wiley, New York,
1965.

[29] W. C. Wang, Z. P. Xin, Asymptotic limit of initial boundary value problems for conser-
vation laws with relaxational extensions, Comm. Pure Appl. Math., Vol. LI, 0505 - 0535,
1998.

[30] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

[31] Z. P. Xin, W. Q. Xu, Stiff well-posedness and asymptotic convergence for a class of
linear relaxation systems in a quarter plane, Journal of Differential Equations 167, 388 -
437, 2000.

[32] Z. P. Xin, W. Q. Xu, Initial-boundary value problem to systems of conservation laws
with relaxation, Quarterly of applied mathematics 60, no.2, 251 - 281, 2002.

[33] W. Q. Xu, Boundary Conditions for Multi-dimensional Hyperbolic Relaxation Problems,
Discrete Contin. Dyn. Syst., 916 - 925, 2003.

[34] X. Yang, F. Golse, Z. Y. Huang, S. Jin, Numerical study of a domain decomposition
method for a two-scale linear transport equation, Netw. Heterog. Media 1, no. 1, 143 - 166,
2006.

32


