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Abstract

The Vlasov-Poisson-Fokker-Planck system under the high field scaling describes the Brow-
nian motion of a large system of particles in a surrounding bath where both collision and field
effects (electrical or gravitational) are dominant. Numerically solving this system becomes chal-
lenging due to the stiff collision term and stiff nonlinear transport term with respect to the high
field. We present a class of Asymptotic-Preserving scheme which is efficient in the high field
regime, namely, large time steps and coarse meshes can be used, yet the high field limit is still
captured. The idea is to combine the two stiff terms and treat them implicitly. Thanks to the
linearity of the collision term, using the discretization described in [18], we only need to invert
a symmetric matrix. This method can be easily extend to high dimensions. The method is
shown to be positive, stable, mass and asymptotic preserving. Numerical experiments validate
its efficiency in both kinetic and high field regimes including mixing regimes.

1 Introduction

The Vlasov-Poisson-Fokker-Planck (VPFP) system is the kinetic description of the Brownian mo-
tion of a large system of particles in a surrounding bath. For example, in electrostatic plasma, when
the interactions between the electrons and a surrounding bath through Coulomb force are taken into
account, the time evolution of the electron distribution function f : (t, x, v) ∈ R+×RN×RN → R+

solves the VPFP system, under the action of a self-consistent potential φ:
∂tf + v · ∇xf − q

me
∇xφ · ∇vf =

1
τe
LFP(f), (1.1a)

−4x φ =
q

ε0
(ρ− h(x)), (1.1b)

where ε0 is the vacuum permittivity, q and me are elementary charge and mass of the electrons,
and τe is the relaxation time due to the collisions of the particles with the surrounding bath.

∗This research was partially supported by NSF grant No. DMS-0608720, and NSF FRG grant DMS-0757285. SJ
was also supported by a Van Vleck Distinguished Research Prize and a Vilas Associate Award from University of
Wisconsin-Madison.

†Department of Mathematics, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 20040,
China, and Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI 53706,
USA ( jin@math.wisc.edu)

‡Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI 53706, USA (
wangli@math.wisc.edu)

1



The function h(x) is a given positive background charge, and one can assume the global neutrality
relation ∫

RN

∫
RN

f0(x, v)dxdv =
∫

RN
h(x)dx. (1.2)

ρ(t, x) is the density of electrons given by

ρ(t, x) =
∫

RN
f(t, x, v)dv.

LFP(f) is the Fokker-Planck operator

LFP(f) = ∇v · (vf + µe∇vf),

where
√

µe =
√

kBTth
me

is the thermal velocity, kB is the Planck constant, and Tth is the temperature
of the bath. Two important physical quantities that characterize the particle system are the
mean free path le =

√
µeτe, which is the average distance traveled by a particle between two

successive collisions, and the Debye length Λ =
√

ε0kBTth
q2N , which is the typical distance over which

significant charge separation can occur. Here N is the typical value for the concentration of the
particles. Another application of the VPFP system is in galaxies where massive particles interacting
through gravitational force. The main difference is that the force is attractive, so in (1.1b) we have
4xφ = q

ε0
(ρ− h(x)) instead, and the physical meanings of the constants are different.

The existence and uniqueness of the weak and classical solutions of the VPFP and related systems
have been well studied. Degond [7] first showed the existence of a global-in-time smooth solution for
the Vlasov-Fokker-Planck equation in one and two space dimensions in electrostatic case, and also
proved the convergence of the solution to that of the Vlasov-Poisson equations when the diffusion
coefficient goes to zero. Later on, Bouchut [1] [2] extended the result to three dimensions when the
electric field was coupled through a Poisson equation, and the results were given in both electrostatic
and gravitational cases. Zheng and Majda [28] gave the existence of a global weak solution of the
VPFP system from a new prospect, where by allowing the initial data to be measure-valued, it
includes some physically interesting case such as electron sheets. For more results, one can refer to
[3], [4], [25].

If the mean free path of the electrons is much smaller than the Debye length, then system (1.1)
can be written in the dimensionless form as ∂tf + v · ∇xf − 1

ε
∇xφ · ∇vf =

1
ε
Pnon(f), (1.3a)

−4x φ = ρ− h, (1.3b)

where ε =
(

le
Λ

)2
, the ratio between the mean free path and the Debye length, and Pnon is the

nondimensionalized Fokker-Planck operator:

Pnon = ∇v · (vfε +∇vfε).

Under this scaling, the limiting process ε → 0 is the so-called high-field limit which is different from
the low-field limit (or named as parabolic limit), in which the diffusion dominates the behavior, see
[23] for example. The high field limit was first introduced in [22] in which it gave a fluid approx-
imation to the semiconductor Boltzmann equation for high electric fields. Later some numerical
simulations of this kinetic model and high-field model were performed in [5].
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Now one can formally derive the limit equation. First integrating (1.3a) over RN , one gets

∂tρ +∇x · j = 0, (1.4)

where j =
∫

RN vf(t, x, v)dv. Then multiplying (1.3a) by v and integrating over Rv to get

ε(∂tj +∇x · q) + ρ∇xφ + j = 0, (1.5)

where q =
∫

RN v ⊗ vf(t, x, v)dv. Let ε → 0 in (1.5), one obtains

j = −ρ∇xφ. (1.6)

Then plugging it into (1.4) to get the high field limit equation{
∂tρ−∇x · (ρ∇xφ) = 0, (1.7a)
−4x φ = ρ− h(x). (1.7b)

This formal analysis can be made rigorous. In [21], it was first proved that in one dimension (for
both space and velocity) the solution of (1.1) converges to (1.7) when ε → 0. It was also shown
that the limit system has a smooth global-in-time solution in electrostatic case and a local-in-time
solution in gravitational case. The results were extended to multidimension in the electrostatic
case in [10].

Efforts have been devoted to numerically solving the VPFP system, see for instance, [14], [15],
[26], [27]. All these schemes use a particle method, random or deterministic, to treat the convective
part and deal with the Fokker-Planck operator by reconstructing the distribution function via the
field-free Fokker-Planck kernel. These methods are efficient but only have first order accuracy. An-
other approach was given in [24] using a finite difference method, with implicit time discretization.
Although this method is free of the constrain 4t ∼ 4v2, it has to invert a nonsymmetric matrix
which is the main difficulty in higher dimension.

Unlike the previous works which intend to capture the behavior of the Vlasov-Poisson system
such as Landau damping when the diffusion effect is rather weak, our goal is to develop a scheme
that is efficient in the high field regime. The numerical difficulties arise in two ways. The first one is
the stiff coefficient in the forcing term containing the electric potential. An explicit method would
require that4t ∼ min(4x, ε4v) which becomes too expensive when ε is small. The other one is the
diffusive nature of the Fokker-Planck operator, which poses the constrain 4t ∼ O(ε4 v2). Instead
of treating the forcing term and Fokker-Planck operator separately, our idea is to combine both
stiff terms and propose a time implicit method to overcome these two difficulties simultaneously.
The combined term still has the form of a Fokker-Planck operator, with a Maxwellian that depends
on ∇xφ, and it is treated implicitly in the same way as [18] so that only a symmetric tri-diagonal
matrix has to be inverted. This induces an Asymptotic Preserving(AP) method, as characterized
by Jin in [16]. See [17] for a review. It allows large time steps and coarse meshes in the regime
ε � 1. This method can be extended to higher dimension directly.

The rest of the paper is organized as follows. In section 2 we give the first order scheme and
prove some properties of it such as positivity, stability, mass and asymptotic preservation. A second
order scheme is given at the end of this section. Section 3 is devoted to numerically validate the
properties of the scheme. By comparing with the explicit scheme on a resolved mesh, we show that
our scheme is efficient in capturing the high field limit. At last, some concluding remarks are given
in section 4.
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2 An AP scheme for the VPFP system

A standard explicit scheme for the VPFP system requires time step 4t ∼ min(ε4 v2,4x) due to
the stiffness of the forcing term and collision term contained 1

ε and diffusive nature of the Fokker-
Planck operator. In order to avoid this constraint, we propose the following scheme which is based
on an implicit treatment of the combined stiff terms.

We first combine the two stiff terms in (1.3a), 1
ε∇xφε · ∇vf and 1

εPnon. In this way, we will not
change the property of Fokker-Planck operator, but can treat the two stiff terms simultaneously.

An equivalent form of the VPFP system reads ∂tf + v · ∇xf =
1
ε
P(f), (2.1a)

−4x φ = ρ− h, (2.1b)

where

P(f) = ∇v ·
[
e−

|v+∇xφ|2
2 ∇v

(
e
|v+∇xφ|2

2 f

)]
. (2.2)

In this form, one can introduce

M = e−
|v+∇xφ|2

2 , (2.3)

and one will see that formally f goes to

feq =
ρ

(2π)
N
2

M =
ρ

(2π)
N
2

e−
|v+∇xφ|2

2

when pushing ε to 0. This is the so-called ”local Maxwellian”, and it is easy to check that the limit
ρ indeed solves the high field limit equation (1.7), see for example [10].

2.1 The first order scheme

The time discretization of the first order scheme reads

fn+1 − fn

4t
+ v · ∇xfn =

1
ε
P (fn+1), (2.4)

where the operator P is the discrete version of operator P, and it is treated in the same way as
[18]. In fact, there are several methods about how to discretize the Fokker-Planck operator, such
as [6], [8], and [19]. Here we choose the method of [18] because it gives a symmetric matrix which
is not only easy to invert, but also has some good properties such as negative definiteness. From
now on, denote f(xi, vj , t

n) by fn
i,j , where 0 ≤ i ≤ Nx, 0 ≤ j ≤ Nv, and Nx and Nv are the number

of mesh points in x and v directions respectively. We briefly state the discretization as follows. Let

P̃ (g) =
1√
M
∇v ·

(
M∇x

(
g√
M

))
, (2.5)

then it relates to P as

P (f) =
√

MP̃

(
f√
M

)
. (2.6)
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The discretization of P̃ is straightforward, and the one dimensional version takes the form

(P̃ g)j =
1

4v2
√

Mj

(√
MjMj+1

[(
g√
M

)
j+1

−
(

g√
M

)
j

]
−
√

MjMj−1

[(
g√
M

)
j

−
(

g√
M

)
j−1

])

=
1
4v2

(
gj+1 −

√
Mj+1 +

√
Mj−1√

Mj

gj + gj−1

)
. (2.7)

Similarly, one can extend it to higher dimension with no extra efforts. Therefore (2.4) becomes

fn+1 − fn

4t
+ v · ∇xfn =

1
ε

√
Mn+1P̃

(
fn+1

√
Mn+1

)
. (2.8)

Now we can summarize the algorithm for the first order method. Given fn, ρn and φn at time tn.

• Step 1. Approximate the transport term v · ∇xfn in (2.8) by a first order upwind method
or second order high resolution method.

• Step 2. Sum (2.8) over discrete v, note that the right hand side will be zero (see(2.9)), so
ρn+1 can be obtained explicitly in this step.

• Step 3. Solve (1.3b) by any Poisson solver, say, fast Fourier transform for periodic case, to
get φn+1. Then calculate Mn+1 via (2.3).

• Step 4. Plug Mn+1 into (2.8), one ends up with a linear system for fn+1, invert the system
by the conjugate gradient method to get fn+1.

2.2 Some properties of the scheme

In this section, we show that in one space dimension, the first order scheme has some good prop-
erties under the hyperbolic CFL condition, which is not restrictive at all.

Mass conservation
The original system preserves mass, so it is desirable to have this property numerically. Observe

that ∑
j

√
MjP̃

(
f√
M

)
j

=
1
4v2

∑
j

√
MjMj+1

[(
f

M

)
j+1

−
(

f

M

)
j

]
−
∑

j

√
Mj−1Mj

[(
f

M

)
j−1

−
(

f

M

)
j

]
= 0, (2.9)

the conservation of mass follows if a conservative scheme is used for the convection term v∂xf .

Positivity preservation
Plugging (2.7) into (2.8) and with the upwind discretization on ∂xf , the first order scheme reads

fn+1
i,j − fn

i,j

∆t
+ max(vj , 0)

fn
i,j − fn

i−1,j

4x
+ min(vj , 0)

fn
i+1,j − fn

i,j

4x

=

√
Mn+1

i,j

ε4 v2

(√
Mn+1

i,j+1

[(
f

M

)n+1

i,j+1

−
(

f

M

)n+1

i,j

]
+
√

Mn+1
i,j−1

[(
f

M

)n+1

i,j−1

−
(

f

M

)n+1

i,j

])
.(2.10)

5



We use the maximum principle argument. If at time tn, fn
i,j is positive for all 0 ≤ i ≤ Nx,

0 ≤ j ≤ Nv, and assume
(

f
M

)n+1

k,l
= mini,j

(
f
M

)n+1

i,j
where 0 ≤ k ≤ Nx, 0 ≤ l ≤ Nv. Then from

(2.10), one has

fn+1
k,l = fn

k,l

(
1− v+

l

4t

4x
+ v−l

4t

4x

)
+ v+

l

4t

4x
fn

k−1,l − v−l
4t

4x
fn

k+1,l

+

√
Mn+1

k,l

ε4 v2

(√
Mn+1

k,l+1

[(
f

M

)n+1

k,l+1

−
(

f

M

)n+1

k,l

]
+
√

Mn+1
k,l−1

[(
f

M

)n+1

k,l−1

−
(

f

M

)n+1

k,l

])
,

where v+
l = max(vl, 0) ≤ 0, v−l = min(vl, 0) ≤ 0. Under the CFL condition maxj |vj |4t

4x ≤ 1, it is
easy to see that the right hand side of the above expression is positive. Note that M is always posi-

tive, so mini,j

(
f
M

)n+1

i,j
is positive, which implies that fn+1

i,j is positive for all 0 ≤ i ≤ Nx, 0 ≤ j ≤ Nv.

Stability
Having the properties of positivity and mass conservation, stability directly follows. Consider l1

norm ‖fn ‖l1=
∑

i,j |fn
i,j |, then one has

‖fn+1 ‖l1=
∑
i,j

|fn+1
i,j | =

∑
i,j

fn+1
i,j =

∑
i,j

fn
i,j =‖fn ‖l1 , (2.11)

where the second equality comes from positivity, and the third equality is a consequence of the
mass conservation.

Asymptotic preservation
Following the idea in [11], define the discrete entropy

Hn
i,j =

∑
j

fi,j log
(

f

M

)n

i,j

, (2.12)

where Hi,j = H(xi, vj), and for the time being we will omit the subscript i and superscript n
without any ambiguity. Then it is not hard to show the following inequality:∑

j

P (fj) log
(

f

M

)
j

=
∑

j

√
MjP̃

(
fj√
Mj

)
log
(

f

M

)
j

=
1
4v2

∑
j

√
MjMj+1

[(
f

M

)
j+1

−
(

f

M

)
j

]
log
(

f

M

)
j

− 1
4v2

∑
j

√
MjMj−1

[(
f

M

)
j

−
(

f

M

)
j−1

]
log
(

f

M

)
j

=
1
4v2

∑
j

√
MjMj+1

[(
f

M

)
j+1

−
(

f

M

)
j

][
log
(

f

M

)
j

− log
(

f

M

)
j+1

] (2.13)

≤ 0.
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And from the last equality, every term in the summation is no greater than 0, so∑
j

P (fj) log
(

f

M

)
j

= 0 ⇒
(

f

M

)
j

is independent of j,

or fj = CMj , ∀j, where C is a function independent of j (or v). And by mass conservation,
C = ρ

(2π)
N
2

. Then from (2.4), one has

ε

∑
j

(
fn+1

j − fn
j

4t
+ v∂xfn

j

)
log
(

f

M

)n+1

j

 =
∑

j

P (fn+1
j ) log

(
f

M

)n+1

j

, (2.14)

so ε → 0 implies
∑

j P (fn+1
j ) log

(
f
M

)n+1

j
→ 0, thus fn+1

j → ρn+1

(2π)
N
2

Mn+1
j , ∀j.

Now go back to the scheme (2.8), summation over j gives

ρn+1 − ρn

4t
+
∑

j

vj · ∂xfn
j = 0. (2.15)

The above argument says fn converges to ρn

(2π)
N
2

Mn as ε → 0, so

∑
j

vj∂xfn
j = ∂x

∑
j

(vj + ∂xφn − ∂xφn)e−
|vj+∂xφn|2

2
ρn

(2π)
N
2


= −∂x

∑
j

∂xφne−
|vj+∂xφn|2

2
ρn

(2π)
N
2


= −∂x(ρn∂xφn)

∑
j

1

(2π)
N
2

e−
|vj+∂xφn|2

2 , (2.16)

and one can see that
∑

j
1

(2π)
N
2

e−
|vj+∂xφn|2

2 approximates 1 with a second order accuracy in v,

plugging (2.16) into (2.15) one gets a time consistent semidiscretized form of the limit equation
(1.7), thus justifying the correct high field limit in the time discrete case.

Remark 1. In fact, for the space homogeneous case (∂xf = 0), one can show that the entropy
decays from the inequality (2.13). Note that in this case M does not change with time. Multiply

(2.4) with log
(

fn+1
j

Mj

)
and summing over j, and by (2.13) one has

∑
j

fn+1
j log

(
fn+1

j

Mj

)
−
∑

j

fn
j log

(
fn+1

j

Mj

)
=

1
ε

∑
j

P (fn+1
j ) log(

fn+1
j

Mj
) ≤ 0,

or equivalently,

∑
j

fn+1
j log

(
fn+1

j

Mj

)
−
∑

j

fn
j log

(
fn

j

Mj

)
+
∑

j

fn
j

[
log
(

fn
j

Mj

)
− log

(
fn+1

j

Mj

)]
≤ 0
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Thus

∑
j

fn+1
j log

(
fn+1

j

Mj

)
−
∑

j

fn
j log

(
fn

j

Mj

)
=

∑
j

fn
j log

(
fn+1

j

fn
j

− 1 + 1

)

≤
∑

j

fn
j

(
fn+1

j

fn
j

− 1

)
=
∑

j

(fn+1
j − fn

j ) = 0,

where the inequality comes from the inequality log(1 + x) ≤ x, and the last equality is the result
of mass conservation.

2.3 A second order scheme

Using backward difference formula for time discretization [12], the second order scheme in one space
dimension is given by

3fn+1 − 4fn + fn−1

24 t
+ 2v∂xfn − v∂xfn−1 =

1
ε

√
Mn+1P̃ (

fn+1

√
Mn+1

). (2.17)

For space discretization, we use the MUSCL scheme, i.e.,

vj · ∂xf = vj

fi+ 1
2
,j − fi− 1

2
,j

4x
, (2.18)

and fi+ 1
2
,j takes the form

vj > 0, fi+ 1
2
,j = fi,j +

1
2
φ(θi+ 1

2
)(fi+1,j − fi,j); (2.19)

vj < 0, fi+ 1
2
,j = fi+1,j +

1
2
φ(θi+ 1

2
)(fi+1,j − fi,j), (2.20)

where θi+ 1
2

is the smooth indicator, and φ is the slope limiter function, say, the minmod limiter
[20]

φ(θ) = max{0, min{1, θ}}. (2.21)

3 Numerical Examples

In order to avoid some difficulties that might be introduced by boundaries, we will consider periodic
boundary condition in x-direction. Most of our simulations will be for the electrostatic case, for
which a global-in-time smooth solution exists. For the gravitational case where the solution only
exists locally in time, we will give one example in the end.

3.1 The order of convergence

This section is devoted to check the order of accuracy of the schemes (2.8) and (2.17). Consider
the VPFP system in 1dx × 1dv. Take the equilibrium initial data

ρ0(x) =
√

2π

2
(2 + cos(2πx)), f0(x, v) =

ρ0(x)√
2π

e−
|v+φ0

x|
2

2 , (3.1)
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where x ∈ [0, 1], v ∈ [−6, 6]. φ0 is the solution to (1.3b) with

h(x) =
√

2π

1.2661
ecos(2πx), (3.2)

and satisfies the periodic boundary condition φ(0) = φ(1).
We take Nv = 64 as the number of grid points in v−direction, and take space grid points Nx =

32, 64, 128, 256, 512 respectively. Choose time step 4t = 4x/8 to satisfy the CFL condition
4t ≤ 4x/maxj |vj | in transport part. The output time is Tmax = 0.125. Check the relative error
in l1 norm

e4x = max
t∈(0,Tmax)

‖ f4x(t)− f24x(t) ‖1

‖ f0 ‖1
,

where f4x is the numerical solution calculated from a grid of size 4x. If e4x ≤ C4xk for all
0 < 4x � 1, then the scheme is said to be k-th order accurate.

Figure 1: The l1 errors of the first order scheme (left) and second order scheme (right)

The l1 error of the first order and second order methods are presented in Figure 1. The order of
accuracy is shown to be first and second in space and time uniformly with respect to ε. (The error
in v is spectrally small, see [18], so it will not contribute much to the errors.)

3.2 The asymptotic preserving property

In this section, we want to show that no matter whether the initial data is in equilibrium, the first
order method (2.8) and second order method (2.17) will push f towards the local Maxwellian in
one step, and this is exactly the strong AP property defined in [9].

For the equilibrium initial data, we take the same one as in previous section (3.1) . For nonequi-
librium initial data we take the following ”double peak” function

ρ0(x) =
√

2π

2
(2 + cos(2πx)), f0(x, v) =

ρ0(x)√
2π

(
e−

|v+1.5|2
2 + e−

|v−1.5|2
2

)
, (3.3)

and let h(x) = 5.0132
1.2661ecos(2πx) which satisfies the neutrality condition. We show the time evolution
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of the ”distance” between f and equilibrium M eq = ρ√
2π

e−
|v+φx|2

2 with respect to different ε.

‖f −M eq ‖1=
∑
i,j

|fi,j −M eq
i,j | 4 x4 v.

Figure 2: The time evolution of ‖f −M eq ‖1 for different ε with equilibrium initial data (left) and
nonequilibrium initial data (right) using the first order scheme. The mesh sizes are Nv = 64, Nx

= 64, 4t = 4x/8.

Figure 2 gives the time evolution of ‖f −M eq ‖1 for different ε, which shows that fn− (M eq)n =
O(ε) for all n ≥ 1 whether the initial condition is in equilibrium or not. This validates that the
first order scheme is indeed AP.

For the second order scheme, we have similar results, see Figure 3.

Figure 3: The time evolution of ‖f −M eq ‖1 for different ε with equilibrium initial data (left) and
nonequilibrium initial data (right) using the second order scheme. The mesh size are Nv = 64, Nx

= 64, 4t = 4x/15.
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3.3 Mixing regimes

Now we test our scheme in mixing regimes, where ε varies in space by several orders of magnitude.
For example, take ε to be

ε(x) =
{

ε0 + 1
2(tanh(5− 10x) + tanh(5 + 10x)) x ≤ 0.3;

ε0 x > 0.3,

where ε0 = 0.001, so that it contains both the kinetic and high field regimes. The initial data is
given by

ρ0(x) =
√

2π

6
(2 + sin(2πx)), f0(x, v) =

ρ(x)√
2π

e−
|v+φ0

x|
2

2 , (3.4)

where x ∈ [−1, 1] and φ0 is the solution to (1.3b) with

h(x) =
1.6711
1.2661

ecos(2πx), (3.5)

and satisfies the periodic boundary condition φ(−1) = φ(1).
In this test we compare the second order scheme (2.17) with the explicit scheme which uses the

second order Runge-Kutta discretization in time and MUSCL scheme for space discretization. In
our scheme, we take Nx = 100 and 4t = 4x/15 = 0.00125, while in explicit scheme, we take
Nx = 2000 and 4t = min{ 4x

max |v| , ε0∆x, ε0∆v2}/5 = 7.0313 e− 6. The shape of ρ at three different
times are presented in Figure 4, and one can see that our new second order scheme gives a good
approximation to the ”reference” solution obtained by the explicit method with much smaller mesh
size and time step.

3.4 A Riemann problem

Now we apply our second order method to the 1−D Riemann problem:
(ρl, hl) = (1/8, 1/2), 0 ≤ x < 1/4; (3.6a)
(ρm, hm) = (1/2, 1/8), 1/4 ≤ x < 3/4; (3.6b)
(ρr, hr) = (1/8, 1/2), 3/4 ≤ x ≤ 1. (3.6c)

Let φ initially be the solution to −4x φ = ρ−h, and f = ρ√
2π

e−
|x+∇xφ|2

2 . Again periodic boundary
condition in x direction is applied.

For our second order scheme, we take Nx = 100 and 4t = 4x/15 = 0.00125. In comparison, we
use the second order Runge-Kutta scheme with MUSCL scheme in space, and take Nx = 2000 and
4t = min{ 4x

max |v| , ε04x, ε04 v2}/5 = 7.0313 e− 6. We compute the macroscopic variable ρ, φ and
flux j(t, x) =

∫
R vf(t, x, v)dv. Figure 5 shows that the results obtained by our second order scheme

agrees very well with the ”reference” solution obtained by the explicit scheme with refined mesh.

3.5 The Gravitational case

As already proved in [21], the limit equation of the VPFP system with gravitational force only has
a unique weak solution locally in time. In this section, we give an example of this case, and one
will see a different behavior from the electrostatic case. Consider the same initial data as in (3.3),
but here φ0 is the solution to

4xφ0 = ρ0(x)− h(x).
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Figure 4: The mixing regime problem. The solid line is computed by an explicit method with
refined mesh and serves as the ”reference” solution. The dots are obtained by the new second order
scheme.

Figure 5: The comparison of density, flux and potential for a Riemann problem at time t = 0.2
between the under-resolved solution by the second order scheme (dots) and resolved solution by
the explicit second order Runge-Kutta scheme (solid line).

Then we use the first order scheme (2.8) to check the limit behavior of f when pushing ε to 0. The
distance between f and the local Maxwellian ‖f −M eq ‖1 is given in Figure 6. As it can be seen,
at the first few steps when solutions remain smooth, fn − (M eq)n = O(ε), however, things become
worse later on, this is because solutions are tempting to blow up.

4 Conclusion

An asymptotic-preserving scheme for the Vlasov-Poisson-Fokker-Planck system in the high field
regime has been introduced in this paper. The main idea is to combine the two stiff terms, 1

ε∇xφε ·
∇vfε and 1

εPnon together into a modified form of the Fokker-Planck operator, which contains

12



Figure 6: The gravitational case. The time evolution of ‖f −M ‖1 for different ε with equilibrium
initial data using the first order scheme. The mesh size are Nv = 64, Nx = 64, 4t = 4x/8.

the information of the potential. Then we can use the method developed in [18] to discretize
this modified collision operator, and resulting in an implicit scheme that only needs to invert a
symmetric system, which can be solved by the conjugate gradient method. This scheme shares
some good properties: it conserves mass, preserves positivity, is stable and asymptotic preserving.
A uniformly second order scheme is also available here. Some numerical experiments are carried
out to test the performance of the scheme.
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