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Abstract

In this paper, we propose a hybrid method coupling a Schrödinger solver and a
Gaussian beam method for the numerical simulation of quantum tunneling through
potential barriers or surface hopping across electronic potential energy surfaces. The
idea is to use a Schrödinger solver near potantial barriers or zones where potential en-
ergy surfaces cross, and a Gaussian beam method�which is much more e�cient than
a direct Schrödinger solver�elsewhere. Bu�er zones are used to convert data between
the Schrödinger solver and the Gaussian beam solver. Numerical examples show that
this method indeed captures quantum tunneling and surface hopping accurately, with
a computational cost much lower than a direct quantum solver in the entire domain.

Keyword:�Gaussian beam, Time-splitting spectral method, Surface hopping, quan-
tum tunneling

1 Introduction

The fundamental equation in quantum mechanics is the Schrödinger equation,

iεψ (x, t)t = −ε
2

2
4ψ (x, t) + V (x)ψ (x, t) , (1.1)

ψ (x, 0) = ψ0 (x) ,

where ψ (x, t) is the wave function, V (x) the potential, and ε is a small parameter,
which is typically considered as the reduced Planck constant.

It is well known that computation at the quantum level is prohibitively expensive,
even for the one-body Schödinger equation, due to the existence of the small parameter ε
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which characterizes the quantum wave length. The solution to the Schrödinger equation
is oscillatory with wave lengths of order O (ε). One needs O(ε) mesh sizes to represent
the wave. The time step should also be O(ε) if the wave function is to be computed
accurately, even with the best spectral method. See [2]. When the potential is singular,
one is subject to more severe mesh size and time constraints. See [13].

The Gaussian beam methods (GB) [6, 9, 10, 28, 30] are asymptotic methods to solve
the Schrödinger equation, allowing a computational mesh of size O(

√
ε), which is much

less expensive than a direct Schrödinger solver. Although more expensive than the
geometric optics approach based on classical mechanics, the GB methods o�er accurate
solution of density at caustics, as well as phase information. It has drawn many recent
activities, see for examples [17, 23, 24, 25, 36]. The GB method can also be extended
to handle interface/barriers, see [42, 39, 43, 41]. For a recent comprehensive survey of
semiclassical methods for the Schrödinger equation, see [12].

In this paper, we are interested in computing two quantum tunneling phenomena:
1) tunneling through a potential barrier; and 2) surface hopping between electronic
potetial energy surfaces. We are interested in a general method that can be applied
to di�erent barriers or potential energy surfaces. For problem 1) there have been
semiclassical methods developed using quantum scattering information, see [4, 13, 14,
15]. In the latter case, the surface hopping method, poineered by Tully, [32], has seen
�ourishing development [33, 40, 31, 7, 20, 21, 22, 11, 16]. The Landau-Zener formula [19,
45] that provides the transition probability between potential energy surfaces is often
used in a surface hopping method. The hybrid method proposed in this paper, that
hybridizes a Schrödinger solver near the barriers or hopping zones with a GB elsewhere,
allows one to treat general barriers or hopping surfaces, and capture accurately phase
information both inside and outside the barriers or hopping surfaces.

In a relevant work, a hybrid method combining the �nite di�erence method and GB
for high frequency wave propagation was developed in [38]. In this method, the whole
space is divided into areas according to whether the wave speed changes fast or not.
The wave equation is �rst written into a hyperbolic system. In the area where the wave
speed varies slowly, the system is diagonalized and GB is used for the decoupled system.
In the area where the wave speed changes fast, GB is not proper. The Gaussian beams
are then converted into a wave function on a local mesh and evolved using a local �nite
di�erence method. When the wave �nally leaves the fast speed changing area, the wave
function is turned back into Gaussian beams using the method developed in [37]. This
hybrid method reduces the computational cost for this multi-scale problem.

We adopt the same framework here, with several distinct features and di�erent
applications. First, we use a �xed mesh, rather than a local moving mesh as in [38], to
solve the Schrödiger equation (using the time-splitting spectral method [2]). We then
use two bu�er zones on each side of the barriers or hopping surfaces to convert the
data from Schrödinger to GB, and vice versa. This is important since the conversion
goes only one way (namely once, say the Schrödinger data is converted into GB, it will
not be converted back to Schrödinger in the same bu�er zone). It is to the best of our
knowledge that this is the �rst hybrid method for the surface hopping problem.

The paper is organized as follows. In Section 2, we present a system of Schrödinger
equation for surface hopping that arises in the Born-Oppenheimer approximation [3]. In
Section 3, we propose our hybrid algorithm for the Schrödinger equations with singular
potentials in 1d and 2d. In Section 4, we propose the algorithm for the Schrödinger
systems describing the surface hopping phenomenon in 1d and 2d. The numerical
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experiments are given in Section 5. The paper is concluded in Section 6.

2 A system of Schrödinger equations arising from

Born-Oppenheimer approximation

When considering the transition of the wave functions between di�erent potential en-
ergy levels, a system of coupled Schrödinger equations arise in the Born-Oppenheimer
approximation [3]. If we only consider the transition between two energy levels, the
so-called diabatic representation of the system is of the form [1]

iε

(
ϕ1 (x, t)
ϕ2 (x, t)

)
t

= −ε
2

2
4
(
ϕ1 (x, t)
ϕ2 (x, t)

)
+

(
V11 (x) V12 (x)
V21 (x) V22 (x)

)(
ϕ1 (x, t)
ϕ2 (x, t)

)
,

(2.1)(
ϕ1 (x, 0)
ϕ2 (x, 0)

)
=

(
ϕ1,0 (x)
ϕ2,0 (x)

)
,

where ϕ1,2 (x, t) are the wave functions, V (x) = (Vij (x)), i, j = 1, 2, is the symmetric
potential matrix, and ε, considered as a small parameter, is the square root of the ratio
of the mass of the electrons to that of the nuclei. To obtain the wave functions corre-
sponding to the energy levels, one needs to diagonalize the potential matrix. Suppose
U is the unitary matrix such that(

E1 (x) 0
0 E2 (x)

)
= U−1 (x)

(
V11 (x) V12 (x)
V21 (x) V22 (x)

)
U (x) .

Here E1 (x) and E2 (x) are the two potential energies corresponding to two energy
levels.

Using the transformation(
ϕ1 (x, t)
ϕ2 (x, t)

)
= U (x)

(
ψ1 (x, t)
ψ2 (x, t)

)
,

(2.1) can be turned into

iε

(
ψ1 (x, t)
ψ2 (x, t)

)
t

= −ε
2

2
4
(
ψ1 (x, t)
ψ2 (x, t)

)
+

(
E1 (x) 0

0 E2 (x)

)(
ψ1 (x, t)
ψ2 (x, t)

)
+D,

(2.2)
where D is given by

D = −ε
2

2
U−1 (x)∇U (x) · ∇

(
ψ1 (x, t)
ψ2 (x, t)

)
− ε2

2
U−1 (x)4U (x)

(
ψ1 (x, t)
ψ2 (x, t)

)
.

Note that ϕ1,2 (x, t) do not correspond to wave functions on each of the energy
levels E1,2 (x), but ψ1,2 (x, t) do. We generally assume U, U−1, ψ1,2 = O (1), and
∇ψ1,2 = O (1/ε). SoD is negligible as long as∇U (x) = o (1/ε) and4U (x) = o

(
1/ε2

)
.

This is considered to be true as long as E1,2 (x) are not close to each other. Suppose
U (x) = (u1 (x) , u2 (x)), where u1 (x) and u2 (x) are the two orthonormal eigenvectors
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of V (x). One way to estimate ∇U (x) is to estimate the change of u1 (x) and u2 (x)
with respect to a small change of x [27]. An easy way to see that U−1 (x)∇U (x) is
bounded for smooth V (x), or well separated potential surfaces Ej(x), is to notice that

U−1 (x) = (u1 (x) , u2 (x))T and ([5])

uTk (x)∇uj (x) =
uTk (x)∇V (x)uj (x)

Ej (x)− Ek (x)
, j, k = 1, 2, j 6= k.

In the case where D is negligible, one can obtain two decoupled Schrödinger equations
and the semiclassical limits can be taken [8]. However, when the values of E1,2 (x) are
close, ∇U (x) may become large and so does D. In that case, there can be transitions
between ψ1 and ψ2. This is the so-called non-adiabatic process. For special potential
surfaces, the Landau-Zener formula [19, 45] can be used to determine the transition
probability, which is the basis of many surface hopping methods. If Vij , i, j = 1, 2, is
discontinuous, then∇U (x) and4U (x) become in�nities and again transition generally
happens at the discontinuities of Vij , i, j = 1, 2, corresponding to quantum tunneling
through potential barriers.

In (2.2), when D is negligible, one can use GB for the decoupled Schrödinger equa-
tions. However, as we analyzed previously, D can be large in some situations. Then
one has to go back to (2.1). Notice that GB can not be used for (2.1), since the non-
diagonal terms in the potential matrix will prevent the Gaussian beams from keeping
their shapes. Therefore, it is nature to seek a hybrid method consisting of the Gaussian
beam method and a method solving (2.1) directly.

3 The algorithm for the 1d/2d Schrödinger equa-

tion with singular potentials

In this section, we will propose our algorithm for the Schrödinger equation with singular
potentials in the 1d and 2d cases. Notice that our method can be naturally generated to
higher dimensional problems. In Subsection 3.1, we will �rst review The time-splitting
spectral method (TSSP) and GB. In Subsection 3.2, we will propose our hybrid method.

3.1 The Time-splitting spectral method and the Gaussian

beam method

3.1.1 The time-splitting spectral method

To solve the Schrödinger equation (1.1), we use the time-splitting spectral method. The
algorithm is as follows.

For (1.1), an operator splitting method is used to obtain two equations

iεψ (x, t)t = −ε
2

2
4ψ (x, t) , (3.1)

iεψ (x, t)t = V (x)ψ (x, t) , (3.2)

which will be solved alternatively at every time step. For (3.1), the spectral method
is used spatially and exact time integration is used; for (3.2), the ODE can be solved
exactly. More details are referred to [2]. If the Strang splitting is used, the error caused
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by the splitting in time is O
(
∆t2

TSSP

)
, where ∆tTSSP is the time step for TSSP. TSSP

has the spectral accuracy in space. In practice, one needs to set ∆tTSSP and 4x to be
of order O (ε).

Notice that TSSP is just one of the numerical methods for the Schrödinger equation.
Other numerical methods can also be used here as alternatives.

3.1.2 The Gaussian beam method

An more e�cient asymptotic method to solve the Schrödinger equation (1.1) is GB,
which decomposes ψ (x, t) into Gaussian beams, i.e.

ψ (x, t) =
∑

Gk (x, t) , (3.3)

where
Gk (x, t) = Ake

i
ε(pk·(x−yk)+

1
2
(x−yk)

TMk(x−yk)). (3.4)

Here yk and pk are real vectors representing the center and the momentum of the
Gaussian beam. Ak is a complex number. Mk is a complex symmetric matrix whose
imaginary part is positive de�nite. The parameters of each Gk (x, t) evolve according
to the ODE system [6, 9, 10, 28, 30]

dyk

dt
= pk,

dpk

dt
= −∇xV (yk) ,

dMk

dt
= −M2

k −∇2
xV (yk) , (3.5)

dSk
dt

=
1

2
|pk|2 − V (yk) ,

dAk

dt
= −1

2
(Tr (Mk))Ak.

We are going to use GB in the Lagrangian formulation, namely, solving (3.5) for
each k and then superimpose all the beams according to (3.3). The time step ∆tGB is
set to be O (1).

3.2 The hybrid method

3.2.1 Main algorithm

We suppose that in (1.1) the potential V (x) only has isolated singularities in the
domain. Without loss of generality, assume there is one singularity at the origin in
domain C0. For the 1d case, we assume C0 is [d1, d2] and for the 2d case [d1, d2] ×
[d1, d2]. Around C0, we solve the Schrödinger equation by TSSP. When the wave goes
out of that area, we turn it into Gaussian beams.

Decompose the solution ψ (x, t) into two parts

ψ (x, t) = F (x, t) +G (x, t) + tol, (3.6)

where 'tol' is the numerical tolerance.
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Figure 3.1: Illustration of the hybrid method in 1d.
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Figure 3.2: Illustration of the hybrid method in 2d.

In (3.6), F (x, t) is the part of ψ (x, t) that will be computed by TSSP on the
support set [a1, a2] in 1d or [a1, a2] × [a1, a2] in 2d, which will be referred to as the
domain of the Schrödinger solver (DSch).

G (x, t) =
∑
Gk (x, t) is the part of ψ (x, t) that will be computed by GB. Gk (x, t)

are Gaussian beams, which are of the form (3.4). The arguments of the Gaussian beams
are Arg (Gk (x, t)) = [yk, pk, Ak, Sk, Mk].

G (x, t) has the support set (−∞, d1]∪[d2, +∞) or Ω\ [d1, d2]×[d1, d2] in 2d, which
will be referred to as the domain of the Gaussian beam method (DGB). Rigorously
speaking, every Gaussian beam has the support on the whole space. Here we abuse the
term and mean the set where 1−O (ε) of the total wave energy is in. For example, for
the 1d case, when ε = 0.0025, using the standard normal table one can calculate that

1 − ε of the L2-norm of the wave function is within
[
yk − 2

√
ε/Mk, yk − 2

√
ε/Mk

]
.

For the 2d case, one needs to diagnolize the covariance matrix �rst and then uses the
standard normal table to �nd the support.
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'tol' is the di�erence between ψ (x, t) and F (x, t) + G (x, t), which is de�ned at
the beginning of the computation and does not depend on the small parameter ε.

We use a mesh to solve the Schrödinger equation on DSch, i.e., xj = j∆x (1d) or
xjk = (j, k) ·∆x (2d). For GB, we use the Lagrangian formulation so there is no
mesh on DGB. We illustrate the hybridization in Figure 3.1 (1d) and Figure 3.2 (2d).

The Gaussian beams with centers in Bu�er I will be turned into wave functions with
pointwise-values on the mesh and added to F (x, t). The part of F (x, t) that enters
Bu�er II will be turned into Gaussian beams.

We discretize the time as tn = n∆t. Notice ∆t is the time step between two steps of
conversions in Bu�er II (Sch2GB). It is di�erent from ∆tTSSP and ∆tGB, the time step
for TSSP and that for solving the ODEs in GB introduced previously. ∆t is larger
than ∆tTSSP and ∆tGB. The restriction on ∆t is that it should be small enough that
no wave from the inner part of DSch will travel through Bu�er II during ∆t without
being converted to Gaussina beams. Namely

∆t ≤ min
1≤i≤2

max
x

|bi − ai|
|u (x)|

, (3.7)

while the velocity u (x) is de�ned as

u (x) =
Im (ψ ∗ ∇ψ)

2|ψ|2
, (3.8)

where ψ∗ is the complex conjugate of ψ.

The main algorithm:

1. Evolution. In each time period [tn, tn+1], we compute the evolutions of F (x, t)
on DSch by TSSP, and G (x, t) by GB on DGB, i.e., we obtain F (xi, tn+1) and
Arg (Gk (tn+1)).

2. Schrödinger to GB: In Bu�er II, apply Alg. Sch2GB.

3. GB to Schrödinger: In Bu�er I, apply Alg. GB2Sch.

4. GB checking: The imaginary part of Mk's in the Gaussian beams should be
positive de�nite.

The algorithms Alg. Sch2GB and Alg. GB2Sch standing for the conversions between
F (x, t) and G (x, t), will be explained in the next subsections.

Remark 1. The separation of Bu�er I and Bu�er II is necessary. If we do not do so
and, instead, have only one bu�er zone to convert the wave from one form to the other,
then at every time step, right after F (x, t) is partially turned to G (x, t) at step 2, and
that part of G (x, t) will be added back into F (x, t) at step 3. At the next time step,
this wasteful process will repeat. However, by separating Bu�er I from Bu�er II, after
every conversion, the wave will not be immediately turned back into its previous form.

Remark 2. The time step ∆t here determines how fast the program converts between
F (x, t) and G (x, t). It has little to do with the time steps used by TSSP and GB,
which are generally much smaller.
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3.2.2 Algorithm GB2Sch

The algorithm GB2Sch is applied to all Gk (x, t)'s.

Algorithm GB2Sch

• Find the Gaussian beams to be converted. For each of the Gaussians, Gk (x, t),
check its parameter yk and pk. Select the Gaussian beams whose yk are in Bu�er
I and yk · pk < 0 (going towards the origin).

• Check the support of the selected Gaussian beams in the �rst step. If the support
of Gk (x, t) is contained in [b1, b2] (1d) or [b1, b2] × [b1, b2] (2d), add Gk (x, t)
to F (x, t). If not, we need to decompose Gk (x, t) into smaller Gaussian beams
and only add those whose supports are in [b1, b2] (1d) or [b1, b2]× [b1, b2] (2d) to
F (x, t). There are di�erent ways for the decomposition, e.g. [10, ?, 36, 37, 38, 44].

Remark 3. In the �rst step, if we do not assume the center of C0 is the origin, but any
point xc, we should change the condition to (yk − xc) · pk < 0.

Remark 4. For the second step, we check the support of the Gaussian bemas Gk (x, t)
the same way as we de�ne the support of them in Subsection 3.2.1.

3.2.3 Algorithm Sch2GB

We apply Alg. Sch2GB in Bu�er II, i.e., [a1, b1] and [b2, a2], (1d) or rectangles, i.e.,
[b2, a2]× [a1, a2], [a1, b1]× [a1, a2], [a1, a2]× [b2, a2] and [a1, a2]× [a1, b1], (2d). For
the sake of simplicity, in the following we will describe the algorithm on [b2, a2] or
[b2, a2]× [a1, a2].

The following constants are de�ned at the beginning. They will be used in the
algorithm.

xcheck: b2 < xcheck < a2.
Vthrhd: A threshold for the energy norm de�ned at the beginning of the program.
Ethrhd: A threshold for the energy norm de�ned at the beginning of the program, a

small number.
η: A small percentage number.

Algorithm Sch2GB:

1. Determine whether to start the conversion.

• In the 1d case, on [b2, a2] check if |F (xcheck, t)|2 > Vthrhd. Or in the 2d case,

on [b2, a2]× [a1, a2] check if max
x2

{
|F ((xcheck, x2) , t)|2

}
> Vthrhd.

� If it is not true, then this algorithm ends and go back to the main algo-
rithm.

� If it is true, then continue to step 2.

2. Localize the function in Bu�er II and obtain the function to be converted.

• FL (x, t) = F (x, t) ·L (x), where L (x) is a smooth damping function with a
support set on [b2, a2] or [b2, a2]× [a1, a2].

• Frest (x, t) = F (x, t)− FL (x, t) ;

3. Extract Gaussian beams from FL (x, t).

• Tot = |FL (x, t)|2;
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• k = 0;

• While the energy norm of |FL (x, t)|2 > Ethrhd and |FL (x, t)|2 > η · Tot
� k = k + 1;

� Invoke Alg. GBR to extract a Gaussian Gk (x, t) from FL (x, t).

� Ftemp (x, t) = F1 (x, t)−Gk (x, t) ;

� FL (x, t) = Ftemp (x, t) · L (x) ; (Localizing)

� Frest (x, t) = Frest (x, t) + Ftemp (x, t)− FL (x, t) ;

• end of while.

4. Add the remaining function back.

• F (x, t) = F (x, t) + Frest (x, t)

In the above, Alg. GBR is the algorithm to turn pointwise-valued wave functions into
Gaussian beams. It will be explained in the next subsection.

Remark 5. Step 1 is necessary for improving the performance, since Alg. GBR is costly
and we do not want to use it for every time step. We use it only when the wave
amplitude reaches the threshold Vthrhd at xcheck. A too large Vthrhd may lead to an error
since waves with small amplitudes may not trigger the program. However, too small
Vthrhd will cause the program to be invoked for unnecessarily too many times and too
many Gaussian beams to be produced.

Remark 6. The use of the smooth damping function L (x) in steps 3 and 4 is important.
Because if one, instead, uses FL (x, t) = F (x, t)χBII

(x), where χBII
(x) = 1 in Bu�er

II and χBII
(x) = 0 elsewhere, the amplitude of FL (x, t) becomes discontinuous at the

inner boundary of Bu�er II. (There is no discontinuity at the outer boundary of Bu�er
II, since the wave is coming from C0 and it is always zero at the outer boundary.) As
a consequence, Alg. GBR, explained below, will produce many Gaussian beams, thus
become very ine�cient. The 1d localizing function D (x) on [a, b] is de�ned as

L (x) = L̂

(
x− (a+ b) /2

b− a

)
, a < x < b,

where

L̂ (x) =

(
tanh (20 (x− q)) + 1

2

)(
tanh (−20 (x− (1− q))) + 1

2

)
, 0 < x < 1, (3.9)

with 0 < q < 0.5.
For the 2d case, we use a similar one on [a, b]× [c, d]

L (x1, x2) = L̂

(
x1 − (a+ b) /2

b− a
,
x2 − (c+ d) /2

d− c

)
, (x1, x2) ∈ [a, b]× [c, d] ,

where

L̂ (x1, x2) =
∏

k=1,2

(
tanh (20 (xk − q)) + 1

2

)(
tanh (−20 (xk − (1− q))) + 1

2

)
,

0 < x1,2 < 1. (3.10)

Remark 7. At Step 3, we check |FL (x, t)|2 > Ethrhd and |FL (x, t)|2 > η · Tot so that
the program stops if the part of wave that has not been turned into Gaussian beams is
relatively and absolutely small.
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3.2.4 Algorithm GBR

Alg. GBR, standing for Gaussian beam recovering, extracts the parameters of Gaussian
beams from an oscillatory function, F (x), on a discrete mesh. We use the one in [39]
with minor modi�cations. We brie�y review the algorithm we use here. This is the
version for both 1d and 2d problems.

De�ne

‖u (x)‖2E = (V (x)− Vmin) |u (x)|2 +
1

2
|∇u (x)|2 ,

where Vmin = min
x
{V (x)} and

〈F (x) , G (x)〉E = (V (x)− Vmin)F (x) ·G (x)∗ +
1

2
∇F (x) · ∇G (x)∗ .

Algorithm GBR:

1. Estimate Gaussian beam parameters

• Estimate the Gaussian beam center

� Let ỹ = arg max
y

{‖u (y)‖E} .

• Estimate the propagation direction

� Let G (x) = e−
1
2
k|x−y|2

� Let p̃ = arg max {|F [u (x)G (x)] (p)|} with the restriction
√
ε ≤ |p̃| ≤√

1/ε, where F is the Fourier transform.

• Estimate ImM

� Let
[
ImM̃, ã

]
= arg max

ImM,a

∥∥∥ae− 1
2ε
ImM |x−ỹ|2/2 − |u (x)|

∥∥∥
E
with |mboxImM =

I, the identity matrix, and a = |u (x)| as the initial parameters and with
the restrictions:

∗ ImM̃ is symmetric and positive de�nite

∗
∣∣∣ImM̃ ∣∣∣ ≤ 1/

√
ε

• Estimate ReM

� ReM̃ = arg max
ReM

∥∥∥∥u− 〈u,G̃〉E‖G̃‖2
E

G̃

∥∥∥∥
E

with ReM = I as the initial parameter

and with the restriction that ReM̃ is symmetric

2. Minimize the di�erence between the Gaussian beam and u (x) in the energy norm
using ỹ, p̃, and M̃ as the initial Gaussian beam parameters.

• Let G̃(x, t) = e
i
ε(p̃·(x−ỹ)+ 1

2
(x−ỹ)T M̃(x−ỹ))

• Let [y, p, M ] = arg max
y,p,M

∥∥∥∥u− 〈u,G̃〉E‖G̃‖2
E

G̃

∥∥∥∥
E

with restrictions:

� ImM̃ is symmetric and positive de�nite

�
∣∣∣ImM̃ ∣∣∣ ≤ 1/

√
ε

• Let G(x, t) = e
i
ε(p·(x−y)+ 1

2
(x−y)T M̃(x−y))

• Let A =
〈u,G〉E
‖G‖2E
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Remark 8. Comparing to the original algorithm in [39], we have two more steps in step
1, which are to estimate the imaginary and real parts ofM . In [39], they use ImM = Id
and ReM = 0 as the initial guesses for the next nonlinear minimization step.

Notice that ImM and |A| determine the pro�le of the Gaussian beam. The ad-
ditional step for ImM will give a better initial guess of ImM for the later nonlinear
minimization. In practice, we �nd the step to estimate ReM also helpful to reduce
the number of Gaussian beams. They are both nonlinear minimizations for fewer pa-
rameters, so they converge faster. More details about the nonlinear minimization with
constraints are discussed in [39].

We only use the additional steps for the 2d case, since in the 1d case, the original
algorithm in [39] is already very good. A simple comparison of the numbers of the
Gaussian beams produced by the two versions of the algorithm is in Section 5.1.

4 The algorithm for 1d/2d system of Schrödinger

equations for surface hopping

For the system of the Schrödinger equations (2.1), we can not directly use GB, since
the coupling terms will prevent the Gaussian beams from maintaining their Gaussian
shapes.

In (2.2), when D is small, one can ignore it, then the remaining part of (2.2) is
a decoupled system of equations, which can be used to approximate (2.1). (This is
the essence of the Born-Oppenheimer approximation [3].) We then apply the Gaussian
beam method for ψ1,2, respectively.

We will assume that D is large only around the origin, namely in C0. Then one can
use the algorithm in the previous section with some modi�cations.

We write the solutions to the systems (2.1) and (2.2) into

ϕ1 (x, t) = F1 (x, t) + G̃1 (x, t) + tol1,

ϕ2 (x, t) = F2 (x, t) + G̃2 (x, t) + tol2,

and

ψ1 (x, t) = F̃1 (x, t) +G1 (x, t) + tol3,

ψ2 (x, t) = F̃2 (x, t) +G2 (x, t) + tol4,

where

(
F1 (x, t)
F2 (x, t)

)
= U

(
F̃1 (x, t)

F̃2 (x, t)

)
,

and (
G̃1 (x, t)

G̃2 (x, t)

)
= U

(
G1 (x, t)
G2 (x, t)

)
.

We will calculate F1,2 using TSSP on DSch, and G1,2 using GB on DGB. In Bu�er

I, we need to add one step, i.e., turn {G1,k, G2,k} into
{
G̃1,k, G̃2,k

}
and then add
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the latter ones to F1,2 using an algorithm similar to Alg. GB2Sch. Correspondingly,
in Bu�er II, we do the checking (Alg. Sch2GB step 1) for {F1, F2}. If one of them

triggers the process, then we turn them into
{
F̃1, F̃2

}
and extract Gaussian beams

from
{
F̃1, F̃2

}
.

Remark 9. One might extend the method in [38] to surface hopping problems. One can
see that there is no essential di�erence in transforming the systems of equations from
one to the other and dividing the whole space according to whether the diagonalized
system is a good approximation to the original one. The main di�erence between our
method and theirs is that we use a �xed mesh around the hopping area of the system
instead of local meshes moving with the wave. The advantage of their method using
a moving mesh is that, when the wave is away from the hopping area, it evolves as
Gaussian beams and the computational cost is cheap.

However, there are two obvious situations when their method does not perform
well. First, when many Gaussian beams are entering the hopping area, one needs to
make local meshes for each of the Gaussian beams and evolve each of them separately.
Usually, for an initial wave of width O (1), one needs to decompose it into O (1/

√
ε)

(1d) or O (1/ε) (2d) Gaussian beams. Then one may need to solve O (1/
√
ε) or O (1/ε)

systems of equations later. Even if at the beginning there is only one Gaussian beam,
it may split into many after passing through the hopping area. Second, it is relatively
hard to estimate the time when the wave in the hopping area will go out, especially
when the potential in the hopping area is complicated. Third, because one converts
all the wave from the local mesh to Gaussian beams simultaneously, one needs to wait
until all the waves go out of the hopping area. In some situations, the domain of the
local mesh can be very large, e.g., part of the wave stays in the hopping area for a long
time while other parts go away very soon at a fast speed.

Our method with a �xed mesh does not have the previous drawbacks. For the �rst
issue, when the wave in the form of the Gaussian beams enters the hopping area, they
automatically merge and we only need to use TSSP on one mesh. One does not worry
about the second and the third issues either, since the wave will turn from one form to
the other automatically at the boundary of the hopping area.

Unlike the method in [38], our method uses TSSP in the hopping area all the time
even when there is no wave in that area. Nevertheless, the computational cost of our
method is �xed. For example, for the surface hopping problems where the eigenvalues
of the potential matrix are close to each other at one point, we use a rectangle with
width of O (

√
ε) to enclose it. This will result in O

(
ε−d/2

)
grid points, which is of

the same order of the number of the Gaussian beams obtained after the initial value
decomposition for waves with width O (1). The time step for TSSP is O (ε) and it
is O (1) for GB. Finally, our method is cheaper than solely using TSSP on the whole
domain, yet able to capture the hopping phenomena while the original GB can not.

5 Numerical experiments

5.1 Comparison of the two versions of Algorithm GBR

In Section 3.2.3 we proposed our modi�ed Alg. GBR. In a 2d example for comparison
with the original Alg. GBR by [39] (denoted by TET), we set domain to be [−2, 2]×
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[−2, 2], and ∆x1 = ∆x2 = 1/75.
We test the algorithms for three di�erent functions to be turned into Gaussian

beams. We denote the Gaussian beams with [yk, pk, Ak, Sk, Mk] as parameters by
Gk, and set y1 = [−0.6, 0.1], y2 = [−0.4, 0.1], y3 = [−0.8, 0.1], pk = [1.5, 1], Ak = i,

S = 0, and Mk =

(
1 + 2i 0

0 i

)
, k = 1, 2, 3.

In case 1, u (x) = G1 (x); in case 2, u (x) = G1 (x) + G2 (x); in case 3, u (x) =
G1 (x) +G2 (x) +G3 (x).

We use �fminsearch()� in Matlab for the nonlinear minimization where we set the
maximum number of iteration as 100. The program stops when 99% of the energy norm
of u (x) is turned into Gaussian beams.

The comparison of the two algorithms in terms of the time cost and the number of
Gaussian beams produced is in Table 5.1. From the table one can see that our modi�ed
algorithm generates less Gaussians while the time costs are comparable to TET in
those cases. However, since it is hard to analyze any nonlinear minimization process
and there are many other factors involved, we can not conclude which algorithm is
de�nitely better than the other in general.

time cost numbers of GBs
TET modi�ed TET modi�ed

case 1 37s 23s 4 1
case 2 113s 103s 11 5
case 3 109s 130s 12 7

Table 5.1: Comparison of the original and modi�ed algorithms.

5.2 Example 1: The Schrödinger equation with a discon-

tinuous quadratic potential

The �rst example to test our hybrid method is to solve (1.1) with a discontinuous
potential

V (x) =

{
x2, x < 0,

x2 + 1, x > 0,

with the initial value ψ0 (x) = A0e
i
ε(S0+p0(x−y0)+ 1

2
M0x2), where [y0, p0, A0, S0, M0] =

[−0.2, 0.8, 1, 0, 10i].
We set ε = 1/200. For the hybrid method, DSch is set to be [−0.8, 0.8], ∆t = 0.01,

∆tTSSP = 1/10000, and ∆x = 1/5120. ∆tGB is chosen by �ode45()� in Matlab. We use
the result by TSSP with ∆tTSSP = 1/10000 and ∆x = 1/5120 for the whole domain
[−1.6, 1.6] as the reference. The small time and space steps are due to the discontinuity
in the potential. We set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−0.8, −0.4, −0.3, −0.1, 0.1, 0.3, 0.4, 0.8]

and xcheck = 0.5. q in (3.9) is set to be 0.2.
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The results using the hybrid method and TSSP are shown in Fig. 5.1. The �rst
picture is the initial wave which will move to the right. The second picture shows
when the wave reaches the discontinuous point of the potential, part of it transmits
and the other part is re�ected. The third picture is drawn at t = 0.67, when the wave
is at the boundary of DSch and it is being turned into Gaussian beams. However, the
summation of F (x, t) and G (x, t) is always a good approximation of ψ (x, t). In the
fourth picture, the waves that were going out return because they can not go over the
quadratic potential. Part of the Gaussian beams are turned into the pointwise-valued
form and added to F (x, t). In the last two pictures, the two waves go back to the
discontinuity of the potential at the same time and then separate and move outward.
Part of the wave on the left side in the last picture is being turned into Gaussian beams.

De�ne the relative error as

error(t) =
‖ψ (x, t)− (F (x, t) +G (x, t))‖2

‖ψ (x, 0)‖2
.

To demonstrate how the factors, Vthrhd, Ethrhd, and η, in Alg. Sch2GB a�ect the
performance of the computation, we choose three di�erent sets of numbers (Table 5.2)
and compare the relative errors and the numbers of Gaussian beams generated.

Vthrhd Ethrhd η

case 1 0.1 0.01 0.01
case 2 0.075 0.0075 0.0075
case 3 0.05 0.005 0.005

Table 5.2: Di�erent control parameters, Vthrhd, Ethrhd, and η for comparison.

Fig. 5.2 is the relative error of the results by the hybrid method with di�erent
Vthrhd, Ethrhd, and η . The number of Gaussian beams in the hybrid method is shown
in Fig. 5.3. Notice that around t = 2.5, when almost all the Gaussian beams have
entered Bu�er I, the total number of Gaussian beams is very small. We can see the
trend from Fig. 5.2 and Fig. 5.3 that smaller values of Vthrhd, Ethrhd, and η generally
result in smaller error and larger number of Gaussian beams. In practice, we need to
�nd a good balance of them.

5.3 Example 2: The Schrödinger system - 1d surface hop-

ping problem 1

We now solve the system (2.1) with

V (x) =

(
|x| δ
δ − |x|

)
,

where δ = 0.05. The initial value is(
ϕ1,0 (x)
ϕ2,0 (x)

)
= U (x)

(
ψ1,0 (x)
ψ2,0 (x)

)
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with ψ1,0 (x) = A0e
i
ε(S0+p0(x−y0)+ 1

2
M0x2), where

[y0, p0, A0, S0, M0] = [−1, 0.8, 0.3, 0, 4i] ,

and ψ2,0 (x) = 0.
We set ε = 1/100. For the hybrid method, DSch is set to be [−1.4, 1.4], ∆t = 0.01,

∆tTSSP = 0.001, and ∆x = 1/2048. ∆tGB is chosen by �ode45()� in Matlab. We use the
result by TSSP with ∆tTSSP = 0.001 and ∆x = 1/2048 for the whole domain [−2, 2] as
the reference, and set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−1.4, −1, −0.8, −0.6, 0.6, 0.8, 1, 1.4] ,

xcheck = 1.2, Vthrhd = 0.01, Ethrhd = 0.01, and η = 0.01. q in (3.9) is set to be 0.2.
The results are shown in Fig.5.4. Now there are two sets of curves for ϕ1,2, respec-

tively. The �rst picture is the initial wave which will move to the right. The second
picture in the �rst row shows that after the wave passes the hopping area, where the
energy gap is smallest, part of it hops to the other energy level. The third and fourth
pictures show that the waves on the two energy levels are turned into Gaussian beams
and after that the upper one is turned back into the pointwise-valued function since it
is re�ected. The second hopping phenomenon can be seen in the last two pictures and
our hybrid method obtains a good approximation to the reference solution.

The relative errors are de�ned by

error1,2(t) =

∥∥∥ψ1,2 (x, t)−
(
F̃1,2 (x, t) +G1,2 (x, t)

)∥∥∥
2

‖ψ1 (x, 0)‖2 + ‖ψ2 (x, 0)‖2
(5.1)

are shown in Fig. 5.5.
Since the potential has no discontinuity and the solutions on the two levels are very

close to Gaussian beams, one can see in Fig.5.5 that the numbers of Gaussian beams
produced are small.

5.4 Example 3: Schrödinger equation system - 1d surface

hopping problem 2

We now solve the system (2.1) with

V (x) =

(
x2 δ
δ −x2

)
,

where δ = 0.05.
The initial value is (

ϕ1,0 (x)
ϕ2,0 (x)

)
= U (x)

(
ψ1,0 (x)
ψ2,0 (x)

)
with ψ1,0 (x) = A0e

i
ε(S0+p0(x−y0)+ 1

2
M0x2), where

[y0, p0, A0, S0, M0] = [−1, 0.8, 0.3, 0, 4i] ,

and ψ2,0 (x) = 0. We set ε = 1/100. For the hybrid method, DSch is set to be
[−1.4, 1.4], ∆t = 0.01, ∆tTSSP = 0.001, and ∆x = 1/1024. ∆tGB is chosen by �ode45()�
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in Matlab. We use the result by TSSP with ∆tTSSP = 0.001 and ∆x = 1/1024 for the
whole domain [−2, 2] as the reference, and set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−1.4, −1, −0.8, −0.6, 0.6, 0.8, 1, 1.4] ,

xcheck = 1.2, Vthrhd = 0.01, Ethrhd = 0.01, and η = 0.01. q in (3.9) is set to be 0.2.
The results are shown in Fig. 5.6. The scenario is very similar to the last numerical

example. One can see two hoppings in the pictures.
The relative errors, de�ned the same way as in (5.1), and the numbers of Gaussian

beams produced are shown in Fig. 5.7.

5.5 Example 4: Schrödinger equation system - 2d surface

hopping problem

We now solve the system (2.1) in 2d with

V(x) =

(
x2 + y2 δ

δ −
(
x2 + y2

) ) , x = (x, y) ∈ R2, (5.2)

where δ = 0.05.
The initial value is (

ϕ1,0 (x)
ϕ2,0 (x)

)
= U (x, t)

(
ψ1,0 (x)
ψ2,0 (x)

)
with ψ1,0 (x) = A0e

i
ε(S0+p0·(x−y0)+

1
2
(x−y0)

TM(x−y0)), where y0 = [−0.5, 0.08], p0 =

[1.5, 0], A0 = i, S0 = 0, and M0 =

(
i 0
0 i

)
, ε = 1/50, DSch [−1.4, 1.4]× [−1.4, 1.4],

∆t = 0.01 and ∆x = [1/75, 1/75]. We use the result by TSSP with ∆tTSSP = 0.001 and
∆x = [1/75, 1/75] for the whole domain [−2, 2] as the reference. We set

[a1, b1, c1, d1, d2, c2, b2, a2] = [−2, −1.4, −1, −0.6, 0.6, 1, 1.4, 2] ,

xcheck = 1.25, Vthrhd = 0.005, Ethrhd = 0.02, and η = 0.02. q in (3.10) is set to be 0.2.
The results are shown in Fig. 5.6. The scenario is very similar to the 1d numerical

examples. There are two hoppings.
The relative errors, de�ned the same way as in (5.1), and the numbers of Gaussian

beams produced are shown in Fig. 5.11.

6 Conclusion

In this paper, we developed a hybrid method that couples a Schrödinger solver with a
Gaussian beam method for quantum tunnelings through potential barriers or electronic
potential energy surfaces. The idea is to use GB as much as possible and then solve
the Schrödinge equation near potential barriers or hopping surfaces. Bu�er zones are
used to convert the data between the Schrödinger and the Gaussian beam solutions.
Several numerical examples in both one and two space dimensions are given to show
that the hybrid method captures the quantum tunneling with quantum simulation only
locally around the barriers or hopping zones, thus is much more e�cient than a direct
quantum solver in the entire domain.
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Figure 5.1: Example 1: The results using the hybrid method and TSSP. For each function,
we only draw its real part. The imaginary part looks similar. In each picture, the upper
most one is the result by TSSP on DSch, i.e. F (x, t). The second one is G (x, t). The next
is F (x, t) + G (x, t). The fourth is the solution by TSSP. We consider it as the reference
solution, ψ (x, t). The �fth is the di�erence between ψ (x, t) and (F (x, t) +G (x, t)). The
curve on the bottom shows the shape of the potential.
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Figure 5.2: Example 1: The relative errors of the hybrid method for di�erent control pa-
rameters in Table 5.2.
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Figure 5.3: Example 1: The total numbers of Gaussian beams, {Gk (x, t)}, for di�erent
control parameters in Table 5.2.
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Figure 5.4: Example 2: The results using the hybrid method and TSSP. For each function,
we only draw its real part. The imaginary part looks similar. In every picture, there are
two solutions ψ1,2 represented by two sets of curves with ψ1 on the upper half and ψ2 on the
lower half. In each half of the domain, the upper most one is by TSSP on DSch, i.e. F (x, t).
The next is G̃ (x, t). Then F (x, t) + G̃ (x, t). The fourth one is the solution by TSSP. We
consider it as the reference solution, ψ1,2 (x, t). The �fth is the di�erence between ψ1,2 (x, t)

and
(
F (x, t) + G̃ (x, t)

)
. The dashed curves on the background demonstrate the shape of

the potential.
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Figure 5.5: Example 2: The relative errors (left) and the numbers of Gaussian Beams (right)
of the hybrid method.
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Figure 5.6: Example 3: The results using the hybrid method and TSSP. For each function,
we only draw its real part. The imaginary part looks similar. In every picture, there are
two solutions ψ1,2 represented by two sets of curves with ψ1 on the upper half and ψ2 on the
lower half. In each half of the domain, the upper most one is by TSSP on DSch, i.e. F (x, t).
The next is G̃ (x, t). Then F (x, t) + G̃ (x, t). The fourth one is the solution by TSSP. We
consider it as the reference solution, ψ1,2 (x, t). The �fth is the di�erence between ψ1,2 (x, t)

and
(
F (x, t) + G̃ (x, t)

)
. The dashed curves on the background demonstrate the shape of

the potential.
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Figure 5.7: Example 3: The relative errors (left) and the numbers of Gaussian Beams (right)
of the hybrid method.
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Figure 5.8: Example 4: The initial data at t = 0. For each function, we only draw its
modulus. The upper one in each picture is for ψ1 (x, t) and the lower one ψ2 (x, t). In the
�rst picture, they are the waves on DSch , i.e., F̃1,2 (x, t). In the second picture, they are
G1,2 (x, t). In the third picture, they are the summation of the previous two, i.e. F̃1,2 (x, t)+
G1,2 (x, t). In the fourth picture, they are the reference solutions ψ1,2 (x, t). The last picture

is the error between ψ1,2 (x, t) and
(
F̃1,2 (x, t) +G1,2 (x, t)

)
.
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Figure 5.9: Example 4: The results using the hybrid method and TSSP at t = 0.75. For
each function, we only draw its modulus. The upper one in each picture is for ψ1 (x, t) and
the lower one ψ2 (x, t). In the �rst picture, they are the solutions on DSch using TSSP,
i.e., F̃1,2 (x, t). In the second picture, they are G1,2 (x, t). In the third picture, they are
the summation of the previous two, i.e. F̃1,2 (x, t) + G1,2 (x, t), In the fourth picture, they
are the reference solutions ψ1,2 (x, t). The last picture is the error between ψ1,2 (x, t) and(
F̃1,2 (x, t) +G1,2 (x, t)

)
.
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Figure 5.10: Example 4: The results using the hybrid method and TSSP at t = 2.2. For
each function, we only draw its modulus. The upper one in each picture is for ψ1 (x, t) and
the lower one ψ2 (x, t). In the �rst picture, they are the solutions on DSch using TSSP,
i.e., F̃1,2 (x, t). In the second picture, they are G1,2 (x, t). In the third picture, they are
the summation of the previous two, i.e. F̃1,2 (x, t) + G1,2 (x, t), In the fourth picture, they
are the reference solutions ψ1,2 (x, t). The last picture is the error between ψ1,2 (x, t) and(
F̃1,2 (x, t) +G1,2 (x, t)

)
.
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Figure 5.11: Example 4: The relative errors (left) and the numbers of Gaussian Beams
(right) of the hybrid method.
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