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schemes for three dimensional elastodynamics
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Abstract

We consider a variational scheme developed in [10] that approximates the equa-~
tions describing the dynamics of three dimensional motions for isotropic elastic
materials; these form a system of conservation laws. We establish the conver-
gence of the time-continuous interpolates constructed in the scheme to a smooth
solution of the elastodynamics system by adapting the relative entropy method
to the subject of time-discretized approximations and employing the method in
an environment with LP-theory bounds.
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1 Introduction

The equations of nonlinear elasticity are the system
Y = div S(Vy) (1)

where y : QxRT — R3 stands for the displacement and S for the Piola-Kirchhoff
stress tensor. (1) can be expressed as a system of conservation laws,

8t’Ui = 6aS,a(F)

_ (2)

8tFia — 8avi;
for the velocity v; = 0yy and the deformation gradient F' = Vy. The property
of F being a gradient is equivalent to the differential constraints

95F i — 0aFip = 0. (3)
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Such constraints (3) are involutions (see [7]) and propagate from holding at
t = 0 to holding at later times.

The Piola-Kirchhoff stress S is expressed as the gradient of the stored energy

oW

S(F) = S

(the corresponding constitutive theory is often referred to as hyperelasticity)
where the stored-energy function W (F) : Mixg — [0,00) is assumed to be in-
variant under rotations, reflecting the requirement of frame-indifference. Con-
vexity of the stored energy is too restrictive as an assumption and has been
replaced by various weaker conditions familiar from the theory of elastostatics
(see [1, 2] and [3] for a recent survey). A commonly employed assumption is
that of polyconvexity, postulating that

W (F) =G o ®(F)

where ®(F) := (F,cof F,det F') is the vector of null-Lagrangians and G =
G(F,Z,w) = G(E) is a convex function of = € R'Y; this encompasses certain
physically realistic models (e.g. [5, Sec 4.9, 4.10].

Substantial progress was achieved in handling the lack of convexity in elas-
tostatics starting with the work of J.Ball [1]. The analysis is less developed
in elastodynamics. We refer to [9] for local existence of smooth solutions, and
to Dafermos [6, 8] for a discussion of uniqueness when convexity of the stored
energy is lacking. The existence of global weak solutions is an open problem,
except in one-space dimension, see DiPerna [12]. Construction of entropic mea-~
sure valued solutions has been achieved in Demoulini-Stuart-Tzavaras [10] using
a variational approximation method associated with a time-discretized scheme.

The variational approximation scheme in [10] is developed for the equations
of polyconvex elastodynamics, it dissipates the mechanical energy and it estab-
lishes a certain link between the theory of elastostatics and the equations of
elastodynamics. The analysis is based on the observation of T. Qin[14] that
for three-dimensional elastodynamics null-Lagrangians ®4(F), A = 1,...,19
satisfy nonlinear transport identities

OPA(F) =0, ( g?: (F)vi>

which allow to view the equations of elasticity (2) as constrained evolution of
an enlarged system

oG _ ovA
01 i = 0a (=7 (E) E(F))

8,54 = aa(g(F) v)

The extension has the following property: if F'(-,0) is a gradient and Z(-,0) =
®(F(-,0)), then F(-,t) remains a gradient and Z(-,t) = ®(F(+,t)),Vt and (v, F)

—
W
=



solves (2). The extension admits entropy pair

) ( +G(E) = 00 (1 52 001 () =0 (5)

(1]

ZA 8Fia
and is thus symmetrizable.

In [10] the authors work with periodic solutions on the torus Q := T3 and
develop a variational approximation method based on the time-discretization
of (4): given time-step h > 0 and initial data (v°,Z°) the scheme provides the
sequence of iterates (v?,Z7), j > 1 such that

vl — vl oG _.. 004 4
h :8“<05A(“]) OF (£ )>

E =20y (9 ey

0GR, (P ).

Moreover, the iterates (v/,Z7) induce time-continues approximate solutions
0 = (VM =) which, in turn, generate a measure-valued solution of the
equations of polyconvex elastodynamics.

in D'(Q) (6)

The objective of this article is to prove that approximate solutions @)
constructed in [10] converge to a solution of (4) with a certain rate as long as
the limit solution © = (V,Z) defined on [0, 7] x 2 is smooth. This is effected
by controlling

Wy(t) := /Q ((1 + |[FWPp=2 | PP~ F®M — F12 4 |0®) — (2)|2) d.

Specifically, we prove that there exists constant C' = C(T,0) > 0, which is
independent of h, such that

Uy(7) < c(q/d(()) + h), e [0, 7).

Moreover, if initial data U%(0) — 0 as h | 0, then SUPc(o,7] |Wh(t)| — 0, as
h | 0. In particular, if initial data for approximates and the limit solution
coincide, then
sup |0 — O] L2(ps) = O(h'/?).
te[0,T]

For the convergence proof we will employ the relative entropy method intro-
duced by Dafermos [6] and DiPerna [11], which allows to estimate the difference
between two solutions by monitoring the evolution the relative entropy n” de-
fined by

[1

1 — _ = = (= =
W =5V = VR4 (GED) - GE) + VEEEY - 8)

with relative flux




It turns out that " satisfies the identity (51) for the evolution of the relative
energy. Analyzing this identity allows to estimate the time-growth of " and
draw conclusions to prove convergence to classical solutions. There are two
novelties in the present work: (a) In adapting the relative entropy method to
the subject of time-discretized approximations. (b) In employing the method in
an environment where LP-theory is used for that bounds. This is accomplished
by using an equivalent semi-metric for the relative entropy, see section 4.1.

Our approach is motivated by [13] where convergence of zero-viscosity limits,

ae (00
OEF = 0, ( I (F)vl)

OG(Z¢) 004
OEA OF,

8,51)? = 3(, ( (F)) + saaﬁavi y

to classical solutions of polyconvex elasticity is proved. There is, however, a
significant difference between the analysis in [13] and the analysis required in
the case of time-discrete approximations (6). The extended system in the case of
viscosity approximations has the property (see [13, p. 475]) that if the constraint
Ef = ®(F*®) is satisfied initially then it is satisfied for all times. By contrast,
the time-discretized equations (6) do not achieve this property, namely,

(1

M (,0)=dFM(,0) == E®( 1) =dFM( 1), t>0.

This presents various new technical difficulties. For instance, control of the term
|E — Z| does not necessarily imply the control of

[VO(F) = VO(F)| ~ (1+ |F* + |F|*)|F - F|,

(as is the case in [13]) a term that appears in the relative entropy identity and
has to be estimated. To resolve this issue we decompose G into two parts

G(E) = H(F) + R(Z)

where H, R are strictly convex functions satisfying hypothesis (H1)-(H6).

The paper is organized as follows. In Section 2 we state Lemmas 1 and 2 from
[10] that establish the existence and properties of the iterates (v7,=7), define the
time-continuous and time-constant interpolates and state the main convergence
Theorem. In Section 3 we discuss the null-Lagrangian properties, the product
rule for divergence in general functional settings and derive the relative entropy
identity. Finally, in Section 4, we discuss the equivalence between ¥, and 0"
and carry out the detailed and cumbersome estimations in order to prove the
main theorem.



2 Time discrete variational scheme and state-
ment of Main Theorem

We assume that the number of dimensions is n = 3 and that the stored energy
W : M3*3 — R is polyconvez, that is

W(F) =G o ®(F) (7)

where G = G(Z) : M3*3 x M33 x R — R is some convez function of = =
(F, Z,w) € M>*3 x M33 x R~ R and

O(F) = (F,cof F,det F). (8)
We view = as a vector in R'® with the convention that
Ea=F,., A=3i-1)4«a, da=1,...,3

Ea=2yy, A=3Ek+2)+~v, k~y=1,...,3 (9)
Ei=w, A=19.

We next define for i, =1,2,3

_ o~ 0G . 094
9ia(E, F) =2=5 () 57— (F)
0= OF;q (10)
oG oG - A 0G
= S = imk Co Fm ftF), — (2
an ( )+8Zk:'y( )6 k€ By B—|—(CO )zaaw( )
and set the corresponding fields g; : R x R? — R? as follows
9i(E, F) = (9i1, 912, 9:3) (5, F). (11)
Assumptions
We will work with periodic boundary conditions, ¢.e. the spatial domain is
taken to be the three dimensional torus 2 := T3. The indices i, o, ... generally
run over 1,...,3 while A, B,... run over 1,...,19. Also, we use the notation

LP = LP(Q) and WP = WP(Q). Finally, we impose the following convexity
and growth assumptions on G:

(H1) G € C3(M3*3 x M3*3 x R;[0,00)) has the following form
G(2) = H(F) + R(Z) (12)

with H € C3(M?3*3;]0,00)) and R € C3(M3*3x M3*3 xR; [0, 00)) strictly
convex that satisfy

KIFP72)2? < 2TV2H(F)z < &|FP22%, vz e R°
and vI < V2R < +'I for some fixed 7,v', k, s’ > 0 and p € (6,00).
(H2) G(Z) = c1|F]P + 2| Z]? + c3|w]? — c4.



(H3) G(Z) < c5(|FIP +|Z)? + |w|® + 1).

(H4) |Gp|7T +|Gz|72 + |G| 73 < 6 ([FIP + |2 + [w]? +1).

(H5) |52 < erl FIP™2 and | g2t | < sl FIP,
(H6) m&%\ < co.
In addition, to simplify notation, we write
CalE) = n (@, Ra(E)= (@),
Hia@® = @), ad(r)= (),

2.1 Time-discrete variational scheme

The equations of elastodynamics (1) for the case of polyconvex stored-energy
(7) can be expressed as a system of conservation laws,

aG 024
6,5 V; = 8@4(@((1)(F)) 8Fio¢ (F)) (].3)

8t Fia = 80/01'

which is equivalent to (1) subject to differential constrains
0gFia — 8(1Fi[5 =0 (14)

that are involutions [7]: if they are satisfied for ¢t = 0 then (13)5 propagates (14)
to satisfy for all times. Therefore systems (1) and (13) are equivalent when (14)
is satisfied for initial data.

The components of ®4 in (8), for A = 1,...,19, are null-Lagrangians and
satisfy
0P
o [ =0, R3 1
) (8Fm(w)) 0, ze (15)

for any smooth function u(x) : R* — R3. Thus, if smooth (v, F) satisfies
compatibility condition (13)z, then [14]

0P

9,9 (F) = 0, (M(F)vi) ., VF with 0Fjq = 0aFis. (16)

The transport identities (16) allow to embed (13) into the system of conservation
laws [10]

oG . 904 ‘
o =00 (pzx () G- (F)).  i=1.23

8(1).4 N (17)
atEA:BQ(aT(F)vi), A=1...19.



The extension has the following properties:
(i) If F(-,0) is a gradient then F(-,t) remains a gradient V¢.
(ii) If F'(-,0) is a gradient and Z(-,0) = ®(F(-,0)), then F(-,t) remains a gra-
dient and E(-,t) = ®(F(-,t)), Vt. In other words, the system of polyconvex
elastodynamics can be viewed as a constrained evolution of (17).

(iii) The enlarged system is equipped with entropy-entropy flux pair

9, <"’22 + G(E)> _ o, (w %’4( ) 2?2 (F)) —0 (18)

and thus is symmetrizable along the solutions that are gradients.

(1]

The variational scheme, developed by S. Demoulini, D. Stuart, and A.
Tzavaras [10], is based upon time-discretization of the extended system (17):
given initial data

0% := (v2,2% = (v°, F°, 2% w°) € L? x LP x L* x L? (19)
and fixed h > 0 the scheme provides the sequence of iterates
0 =, B = (I, F, 27w e > x P x 1> x L*, j>1 (20)

that satisfy

. -1

094

v —v] oG _; 4
(@@ o, PY)
(5 — =) apA in D'(Q). (21)
= = A _ j—1\ ,J
h —6@(8Fla (}'—"7 )Ul)

Concerning the existence and properties of the iterates (v7,=7), it was proved :

Lemma 1 ([10], p. 333). Given (v°, F°,Z% w%) € L? x LP x L? x L? there
exists
(v, F,Z,w) € L* x LP x L* x L*

which minimizes the functional

1
J(, F,Z w) z/ §|v — 2+ G(F, Z,w) dx
Q

on the weakly closed affine subspace C defined by the weak form of equations
(21)o, ie. the set C C L? x LP x L? x L? of (v, F,Z,w) such that for all
p € C(T3):

1
/@E(F, — F2)dx = —/ 1,00 dx
1
/ goE(Z,W — Z,gn/)da: = —/ simksamFSIﬁvi Oup dx

/ @%(w —w’)dx = — / (cof F°);0v; Onp dx



The minimizer satisfies the Euler-Lagrange equation (21)1 in the sense of dis-
tributions, i.e.

/ go%(vi —v)dx = —/ Gia (2, FO) 0 da
for all smooth ¢. Furthermore the constraints
0aiZ =0
08Fiq — 0o Fig =0
are preserved by the map
Sp o (00, FO 2% W) — (v, F, Z,w),

the solution operator induced by the lemma. In fact if FO is a gradient then so
is F, and thus we can assert the existence of a WP function y : T3 — R3 such
that 8ayi = Fia~

Corollary 1 (Regularity). The iterates ©7 = (vI,Z7), j > 1, in Lemma 1
satisfy the additional smoothness v/ € WP,

Next, define 1 : R??> — R by

_ P

5 +G((E), (v E)eR? (22)

n(v, 5)
The iterates satisfy the following uniform estimates:

Lemma 2 ([10], p. 335). Let O = (%, F° Z° w®) and © = (v, F, Z,w) be
as in Lemma 1. Then if G is strictly convex function, i.e. 3y > 0 such that
V2G > v, there exists ¢ > 0 such that

/Q(”(@) telo - @0|2>da: < /Q 17(0°) da.

Corollary 2 ([10], p. 335). The iterates © = (v, FI Z7 w?), satisfy the
energy dissipation inequality, for j > 1
1 . . o .
= (107 = n(©7™) = da(gia(E, F 1 )0d) <0

in the sense of distributions. There exists a number Eqy, determined by the initial
data, such that

sup 7], + [ G(=)d)
720 v Q

oo
F 2 =g+ IE ) < o
]:



Following [10], we construct the time-space version of the approximates: the
time-continuous, piecewise linear interpolates @) := (VM) =) defined by

V(h) (z,t) ZXJ ( %(W 71}]‘71))

=) (g, ¢ ):( (h) AORRONE (24)

Sw(ert s e ),

and the piecewise constant interpolates #(") := (v(h), f(h)) and f(h) given by

t) = i X7 (t)o
j=1
¢® (2,t) = (f(h), z(h),w(h))(t) = i = (25)
F® (2, 1) ZXJ It

where X7 is the characteristic function of the interval I; := [(j — 1)h, jh). Also,
we denote by I? := ((j — 1)h,jh) and I; := [(j — 1)h,jh], the interior and
closure of I;. In addition, we note that (") is the time-shifted version of f)
and it will be used later on in defining a relative entropy flux as well as in the
time-continuous equations (28).

The main objective of this article is to prove convergence of the time-
continuous approximates @) = (V") =2 (hl) to a solution of the enlarged system
(17) as long as the limit solution © = (V, Z) is smooth, by controlling

Wy(t) = / (@ + | F®P2 4 |[Fp=2) PO — F2 4 [0® - 6]2) dx
Q

We now state:

Main Theorem. Let W be given by (7) where G satisfies (H1)-(H6). Let
O = (v =) g = (M) ¢M)) and f(M) be the time interpolates defined
n (24)-(25) and induced by spatial iterates

0 =, Z) =, F, 29 w) e L* x IP x L* x L*, § >0, (26)

where O° is the given initial data and ©7, j > 1, generated by Lemma 1 satisfy
(21). Let © = (V,E) = (V,F,Z,w) be a smooth solution of (17) defined on
Q x [0,T] and emanating from smooth data ©° = (V°, F° Z° @°); we assume
that FO, FC are initially gradients. Then:



(a) The relative entropy n" = n"(0,0) defined in (43) satisfies the identity
(51) and there exist constants p, ;' > 0 such that

u\Ifd(t)g/ 0 (@) dz < @Ua(t), ¢ [0,T]
Q

(b) There exists € > 0 and C = C(T, Eo,v,7, ki, k', i, X, ,0,) > 0 such
that for all h € (0,¢)

y(r) < C(Wal0) + 1), T €[0T].
Moreover, if the data satisfy W(0) — 0 as h | 0, then
sup / (\@W QPR 4 |FM (14 |FW P2 \F\P—Q)) dz — 0
te[0,T] JQ
as h | 0.

Remark. If the initial data for the approximates ©™ and the limit solution

© coincide, then -
sup [0 — O] L2(1a) = O(h'/?)
t€[0,T]

which provides a rate of convergence in L>°([0, T}, L?).

For the remainder of the paper, we drop the dependence on h in order to
simplify the notations.

3 Relative entropy identity
We now take h > 0 and fix T > 0. For the rest of the article, c.f. Main Theorem,
we assume the following:

(a) © = (V,2),0 = (v,£), f denote the time approximates defined in (24)-(25)
with the properties as described in the statement of Main Theorem.

(b) © = (V,2) = (V,F,Z,w) is a smooth solution of (17) defined in Qx [0, T
with the property that F° := F(-,0) is a gradient.

We next observe that for each t € I7, for j > 1,

J i1 .
WV (-, t) = v-v o = 1503
h h
i (27)
(1) = === Ly
p=( 3 0=
Hence, formula (21) together with (27) implies for a.e. t € [0, 00)
oG 094
0 Vi(-,t) = 804(85714(5) E( ))

. (9). (28)
02a(0) = 0u( Gp(P) )

10



Next, for the smooth ©, we rewrite extended system (17) and entropy-
entropy flux identity (18) in the short notation by using (10)
atv; = le(gl(E, F))

824 = B4 (cp;‘}a(ﬁ) v)
and

3.1 Null-Lagrangians

Let us investigate the properties of ® defined in (8)
VFl, Fs e M3*%3

First, we note that
0, A=1,...,9
|4, (F1) — @4, (F2)| < 4 |F1 - Fal,

A=10,...,18
3(1F1] + | Bo])|[Fy — Py
and

A =19,
|04, ()| <1+ |R|+|R? A=1...19

. (32)
We now recall that components of ® are null-Lagrangians. Then extending
property (15) we claim: if u € W7

oI (;R3) with ¢ € [2,00), then
(I)A
aa(a

(31)

- — 1 /
. (Vu)) =0 in D'(Q). (33)
The proof of (33) follows from (32) and the density argument.
Lemma 3. Let u € VVi’f(Q;RS) with ¢ € (2,00) and z € VVI{)CT(Q) with r €
[¢*, 00) where ¢* = q/(q — 2). Then
0p4 oA , ,
aa(aTm(vu)z) = o5 (Vu)daz in D'(Q). (34)
Proof. Observe that (32) implies gl}LA(Vu) e LY?
%(Vu)z and %(VU) Opz In L

loc *
1

Hence we must have both
loc- Then for ¢ € C§°(2) we have
P4
(Vu) 2 ) 0pp dx
| G 9m2)

i A
- /Q(g}? (V1)) Dz ) do - /Q (3@

aT(Vu) 3az)<pda: =1 — I.
Since zp € Wy N VVllof*7
that Iy = 0 and hence

by (33) together with the density argument we obtain
/ (8<I>A
Q aFia

(Vu) z)@ago dr = -1 = / (Z?A (Vu) 5‘az)<pdz.
Q 1ot

11



Lemma 4. Let g € (1,00) and ¢’ = . Assume

fewhi(Q), he Lq’(Q;R3) and z = divh € LY (Q).
Then fh € L*(S;R?), div (fh) € LY(Q) and
div (fh) = fdivh + Vfh. (35)

Proof. Clearly h € LY (:;R3), f € LYQ) = fh € L'(R3). Now, take
arbitrary ¢ € C§° (). Then, since f € W4(Q), we get

f/Q fhaaacpdx:f/g hoéc‘)a(fgo)dﬂwr/Q (haOaf) pdz.

Further, we notice that fo € W, %(Q) and we obtain

,/Qhaaa(fcp)da::/QZ(fsﬁ)dfﬂ

where we used the density argument and the assumption z = divh € Lq/(Q).
Hence

7/ fhaﬁagodx:/ (zf + haOuof) pdx
Q Q

and this proves (35). Finally, since 2f, ho0a f € L'(), we clearly have div (fh) €
LY(Q). O

3.2 Derivation of the relative entropy identity

At this point we are ready to establish identities for entropy-entropy flux pair
similar to formula (30) corresponding to smooth solutions of (29). In this chap-
ter, we fix an arbitrary j > 1 and derive identities for the interval ¢ € I;.

In the sequel, we will perform a series of calculations that hold for smooth
functions. A technical difficulty arises, since the iterates (v7,=7) obtained in
Lemma 1 are, in general, not smooth. To bypass this we first recall that by
assumption initial F© and F© are gradients. Therefore by (24)-(25), Lemma 1
and the properties of extension (17) we must have

F,f,f,F are gradients Vt > 0. (36)
Further, we observe that (10) and (H4) imply for p’ = £ with p € (6, 00)
gia(Z° 13
S22 0G5 22 | 0G| v
e k~y (37)
P P P _
|F|p T ‘ p—1 oG p—2 % p—3
8Fm 8Zk7 ow

C_;’ (IF|P + |FoPP +|Z°1 + |w®2 +1), VE° eRY, FeR"

12



Finally, with the help of (36), (37) and Corollary 1, we use Lemmas 3 and 4
which provide the null-Lagrangian property and the product rule in the smooth-
ness class appropriate for the time approximates f, § and © induced, via (24)-
(25), by solutions of the variational approximation scheme (v’,Z7) which, by
assumption of Main Theorem, satisfy (19)-(21), (see also Lemma 1).

Thus, using (10), (36) and Lemma 3, we rewrite (28) as follows
aVi(t) = div(gi(¢. f)

HEa(t) = 04, (f) Oavs. (38)
Next, by Corollary 1, Lemmas 3 and 4, (29) and (36)-(38), we obtain
le(’Ulgz( f)) = vzatV + V'Uzgl(f f)
div(V;g;(¢ f)) VidiVi + VVigi (€, f)
- A r3 —_ - (39)
div(vigi(E, f)) = vi®5a(f) 0a(G A()) + Vvigi(E,
div(Vigi(2, ) = Vi®3a(f) 0a(G.a(2)) + VVigi(Z, ]).

Hence (38)-(39); imply the following important identity
9 (n(©)) = V;oyV; + G 4(E)0Ea
= (Vi =0;)0:Vi + (G a(E) — G a(£))0:=a
+ (00 Vi + Vi gi(€, 1)) (40)
= (V(©) ~ Vn(#) " + div (vigi (€. ).
Similarly, by (29), (39)2 and (41) we obtain
0, (Vi(Vi = V) = (VideVi + VVigi(€, f))
— (ViouVi + VVigs(E, F))
~ V(g6 D - g EP) +OGVi-T)
=div(Végi(£ f)=Vigi(E, F )
-V (gi(ﬁvf) - gi(E,F)) + 9 Vi(Vi = Vi).
Next, by (29)2, (38)2 and (39)3 we have
)04 = div(Vigi(E, F)) — Vid (F)a (G.A(E))

K 1eY

G a(
G a(

[ [1h

)0:Za = div(vigi(E, f)) — v @4 (f)0a (G, 4(E))
and hence

0:(G.A(E)(E — E)a) = div(vigi(E, f) — Vigs(E, F))



Then, denoting the relative entropy by

" =n"(0,0) =n(8) —n(0) - Vi(6)(® - ) (43)
and using identities (30), (40)-(42), we establish

9 (n"(©,0)) = div(vigi(&, )= Vagi&, f) —vigi(E, )+ Va(E, F))
507 (44)

+ (Vn(©) = Vi(0) —— +J

where

J —W( 6.1) = 92 P)
o(G.a é)( 4.0 = Vioda(F))
(Vi = Vi) = 0(G.a(E)(E - B

Now we rearrange the term J. The aim is to decompose its parts into
several separate groups. One that contains the error of interpolation, that is
terms © and 6, and the other that contains the difference between © and ©.
This rearrangement is exploited later on to make use of Gronwall’s inequality.

— 0,V

First, by (29) and null Lagrangian properties (33) we get
J = 3a‘7i(9m(€’ f) - gia(éa F))
+ 0a(G.A(2)) (i@ (/) = @2 (F)V: = @24 (F)(Vi — Vi)
— G, ap(E)(E-2)a2%,(F) 6(1‘71'

_ - 45
= 00610 () (0L, () — L, (F)V,) o
+ aa‘/z(gza(f7f) gia(é F) - CTV,AB(E)(E - E’)B(I):;‘a(p))
= J1+ Jo
where we used G ap = G gpa. We next rearrange J; as follows
1= 0a(Gia(®) (004 (F) — 04 (F)V;)
= A (F AV (v — T
Oa <~>>(<1> () = @4 (F)) (i = Vi) o

By (39)3,4 we get

0aVi(9:0(E. 1) = 9ia (5 F) ) = div(Vigi(E, /)~ Viga(E, F))



and this allows us to write Js as follows

Combining (46) and (47) we obtain

J=J1+ Jo
= 02(G.4(®) (24l = ¥4 (F)) (v, = V)
+0a(G.A(E) L (F)(v; ~ V)

Finally, we decompose
(@4.(F) = 04a() (0 = Vi)

= (224(1) = @%(F)) (i = Vi) + (@4, () = @4 (F)) (Vi = T2)

+(04a(F) = 04,(F)) (0 = Vi) + (24 (F) = @24 (F)) (Vi — Vi),

and

(G.a(6) = G.a(®) (04 () - 2 (P))
+(G.a(6) = G.a(@) (@4 (F) - 0L (F))
+(G.a(E) ~ Ga@) (@4 () - 01a(F))
+(G,4(E) ~ G.a(@) (@4 (F) — 04 (F))

(48)

(49)

In summary, by (44) together with (48)-(50), we obtain the relative entropy

identity
1.
on" —divq" = —ED] +S+Q, vtel;
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where ¢" is the relative entropy-flux defined by
45(0,0, f) :== (v; = Vi) (G.a (&) — G a(8)) @5, (f), (52)
the term D7 is given by
D7 = (Vn(0) — Vn(©))s6’ (53)
and will turn out to be dissipative, the term S, given by
S 1= 0a(GA(2)) ©u (F) (v; — Vi)
+0a(G.A(2)) (@A- () = ©4a(F)) (v = V3)

+0a(G.a(2)) (@4 () <F>)(v;—1>
=)(e4, fal) (v = V)
0V, (F >( A - <E>) o
+0aVi (G A(€) — G a(2) (%(f) ~ @4,(F))
+0aVi (G4 () — G,a(D)) (90 (F) — @7 (F))

+0aVi (G.a(E) ~ G.a(@) (24a(F) - @4a(F)),
contains mostly error terms, and finally the term Q,
Q 1= 0(G.a(2)) (¥4 (F) — @4, (F)) (Vi ~ Th)
+0.V:(G.A(E) = Ga(®) (04(F) = 04(F)) (55)
+0aVi(G A(E) = GAE) ~ Ga(E)(E ~ 2)p ) O Lul(F),

holds the information regarding the difference between © and © and can be
estimated from above by the relative entropy 1" (0, ©).

4 Proof of Main Theorem

The identity (51) is central to our paper. In this section, we will estimate each
of the terms described above and then via Gronwall’s inequality complete the
proof.

4.1 An equivalent semi-metric d(-,-) for the relative en-
tropy

The goal of this section is to show that the relative entropy " can be equivalently
represented via a specific function d(-,-) defined via power functions.

First, let us prove two lemmas that we use in our further computations.

16



Lemma 5. For every u,v € R

1
1
[ s ro =l > ol ). (56)
Proof. First, we consider the scalar case u,v € R. Then, for u,v > 0, u+7(v—
u)=u(l—7)+vr = 0and

/0 lu+7(v—u)|ldr =u+ %(v —u) = %(|u| + |v]).

The same is true when u,v < 0. Now consider the case when uv < 0 and
assume that u > 0 and v < 0. Setting v = —% = lul_ ¢ (0,1) we obtain

u—v ~ |ul|+]|v|

1
/ lu+ 7(v—u)ldr
0

- /Ov(uw(v—u))dT—Al<“+T(“_“))dT (57)

— (= 0) (72 =7+ 5) = 5l + oD (2 + (=)
1
> Z(|u| + |v]).

Consider next the case u,v € R", n > 1. Clearly, ﬁ izl < 2] <
(> |zi]) s V2 € R™ where |2 is the Euclidean norm of a vector z. Then by

(57)
1 1 1 n
/0 lu+7(v—u)|dr > \/ﬁ/o <;Uz‘+7(”i“i)|> dr

1 — 1
Zz — i i) = .
a2 (l 1w > gl + 1)

3

Lemma 6. Let q € [1,00). Then Yu,v € R" and each 3 € [0, 1]

B rl
/0 /0 Q=B lu+71=p) (v —u)'drdB > B (Jul? +[v|?),  (58)

where
;0 _ 1
c=c (n?q) - 2q+2(q+ 2)(4\/ﬁ)q (59)

17



Proof. Let 3 € [0,1] and set ¢ = ﬁ. By applying Jensen’s inequality and then
using estimate (56) we get

//1— )u+7(1—=B)(v—u)|"drds
Z/O (1-p </ |u+7(16)v+ﬂuu)|d7>q

5 q
> / (1= B)(Jul + (1 = BYv + Bul) "dB
0

> Ol + Jol?) / "0 sy as

Notice, if 0 < 0 < %, we have

] B
[a-omas > [Capras= 2

0

On the other hand, if % < B <1, then

s

’ +1 2 +1
[a=pmias s [Ta-pras >

Combining the last three inequalities we obtain (58). O

Definition. Let ©; = (V1,Z1), 0, = (V2,Z5) € R?2. We set

d(©1,02) = (1+|F[P72 + |B[P~2) |[FL — Fof* + 101 — (60)
where (Fy, Z1,w1) = Z1, (Fy, Za,w3) = 29 € R,
Before we proceed, we notice that hypotheses (H1) and (H5), imply
|RA(Z1) — Ra(E2)| <C|E) —Es|, VE|,E;eRY (61)
and
|H ia(F1) — H ;o (F2)]
103
_ /0 l;;l (%(sﬂ + (1= 8)F)(F) — Fy) i ds )

1
< C|Fy — F2|/ |sFy + (1 — 8)Fo|P~%ds, VI, Fy € M3,
0

This together with Lemma 6 will help us to establish the relation between the
relative entropy function " and the semi-metric d(-, ).

18



Lemma 7. There exist constants p, ' > 0 such that
1d(01,02) < 7"(01,0;) < 1'd(61,0;) (63)
(Fi, Zj,w;) e RY?, 1=1,2.

for all®, = (V,5)) € € R? with &, =
Proof. Consider

n"(©1,02)
n(O2) — Vn(©2)(01 — O2)

=n(01) —
1
= || 5 (581 + (1= 5)0) ds — Vo(©s)(©1 — 0
/0 (Vn(sO1 + (1= 5)02) = V11(62)) (61 — ©2) ds (64)
/ </ —VT) (B2 + 75(01 — O2)) dT> (01 —0O3)ds
/ / (01— 02)T(V?1(0)) (01 — ©y) dsdr.
where
O(r,s) = (V(r,s) 2(r 5)) =02+ 75(01 — 03), 7,s€0,1].
Observe that (12) implies
V=G =[VeH 0 0" +V=R (65)
and therefore by (22) we have
- 63)
+ (51— E2)"VR(E)(E1 — Eo) (66)
- ).

(01— 02)"(V?1(0)) (61

=Vi—-Va]* +
E)TV2H(F)(Fy

+ (F1 —

Thus (H1), (64) and (66) imply
1
Vi —Vol? + 2 |21 — Z2* + 5 |Fy — F2|2/ / s|F|P~2ds dr
o Jo
(67)

< 1"(01,02) <
1
Vi — Vol +*|~1—~2|2+“/|F1—F2|2/ / s|F[P~2ds dr
o Jo

1
2
At this point we estimate those terms of (67) which contain integrals. First, we
consider
11 1,1
/ / s|F|p_2dsdT:/ / s|TsFy + (1 — 7s) B[P “dsdr
0 0o Jo
/ / [P+ [P P?) 20 Pdsdr < 2070 ([P P2 + [ Bof)
o Jo
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Next, by Lemma 6, after the appropriate substitution (s =1— 8, § = 1), we
obtain

11
/ / s|F[P~2ds dr
0o Jo

1,1
:/ / 5|F2+TS(F1—F2)\1)_2 dsdr > c'(|F1|p—2+|F2|p—2).
0 0

Then combining the two last inequalities with the estimate (67) and the fact
that |27 — Z5]2 + | F1 — F»|? < 2|21 — Z»/? we conclude

1d(©1,02) < n"(01,0) < 1d(©1,0:)

where 1 = min (%, T Ii2p73) and p/ = max (%,

%’, /{’2”’3). O
Observe now that smoothness of © implies that 3M = M(T) > 0 such that
M > |O|+|V.0| +|06]|, (z,t) € Qx][0,T). (68)
We next prove:
Lemma 8. d(0,0), n"(0,0) € L>=([0,T}; L") and

pq(t) < /Q n" (O(xz,t),0(x,t)) de < W'Wq(t), Vte[0,T] (69)

where
() ;:Ad(@(x,t)7é(x,t)) de, telo,T] (70)

Proof. Take t € [0,T]. Then t € I; for some j > 1. Hence (24), (60), (68) and
(H2) imply for p € (6, 00)

A(O(-1),0(,1) < C((1+ |FF=2)(1+ |F[?) + (1 +]0]))
< C(l P 4|22 + o) + |V|2) (71)
<C(1+GE)+GE) + [/ + o)

where C = C(M) > 0 is a constant independent of h, j and ¢t. Since t is
arbitrary, by (23) and (71), we conclude that 3C’" = C’(M) > 0 such that

/d(@(-,t),(:)(-,t))dx <C'(1+Ey), Vte[0,T]. (72)
Q

Then (63) and (72) imply the lemma. O
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4.2 Estimate for term Q on ¢ € [0,7]
) > 0 such that

We next prove:
Lemma 9. Let Q be defined in (55). Then I\ = \(
Q1) <2d(©,8), (5,) Qx0T  (73)
Proof. Let C' = C(M) > 0 be a generic constant. Then (31)3 and (68) imply
|24, (F) — @1, (F)| < C(1+|F|)|F - F| A=1...19. (74)
Since G 4 is smooth, (68) implies |G_4(Z)| < C and hence by (74) we get
[02(GL4(2)) (2750 (F) = 5 (F) (Vi = Vi)
A @
C (U +IFP)IF - FP+ |V - V)
We next set for each A=1,...,19
3 — — —
Z Vi (GLA(E) — G A(E)) (24,(F) — @4,(F)) . (76)
By (31), we have [4 =0, A=1 9. Also, by (61) and (65) we get
|G A(E) —GA(E)| =|RA(E)—RA(E)<CIE-E|, A=10...19. (77)
Thus, by (68), (74) and (76)-(77), we conclude
19 B
S lal< C(E=ZP+ (1 +|FP)IF - FP). (78)
=1
Next, following computations in (64), for each A ., 19 we have
Jg = GyA(E) - G7A(E) - G7AB(E) (E. - E)B
1 pl B R _ 79
- / s(E—2)"(V2G a(2))(E - E)dsdr 79)
o Jo
)=Z+71s(E-Z2), T,5€]0,1].
o F)+R_4(Z) where,

where R o
=(s,7):=(F,Z,w)(t,s
First, take A € {1,...,9}. Then (65) implies G 4(E) = H;

A = 3(i—1) + « for some unique i, « € {1,2,3} and therefore

according to (9)1,
VQF(H,ioe) 0 0
V(G 4) = 0 0 0 |+VE(Ra).
0 0 0
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Hence

(80)

(81)

Take next A € {10,...,19}. Then (65) implies G 4(Z) = R _4(Z) and hence by
A=10,...,19.

=

(H1)
(E-5)T(V2G A=

)E-3) <ClE-EZP,

Thus (68) and (79)-(81) imply
|06 Vi 4, (F) Ja|
< (-2 +|F - FP / [F 4 7s(F — F)Pdsdr)
0 0
=2+ |F = FI2(1+ [FI?)).

(82)

< C’(|: —=
Then by (60), (75), (78) and (82) we conclude for p € (6, c0)
Q.0 < C(IV = V2 +[E=ZP + 1+ [F? + [FI"*)|F - F?)
< Cd(©,0).

C(lo =6 + (L +|FIP=?)|F - F[?)

4.3 Estimates for terms D’ and S on t € I} C [0,T]

For the rest of the section, we fix 7 > 1 such that
I =1 [0,7] =[G — Dh,jh) () [0,T]

is not empty and consider all estimations only for ¢t € I J’
Observe that the definitions of the time approximates (24)-(25) imply

V(,t) —v(-t) = <t_hhj)5vj
£t) - €0 = (5 )o= (33)
F(8) = (1) = (W)m
(84)

Then, using (83), we get
(v—V)év’ = (h]h_t> 607 |?
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and

- /1(5 —2)TV2R(E) 6= ds (85)

0

_ (h) /0 52TV R(E) (557) ds

(VH(f) — VH(F))3F? :/0 i(VH(sf+(1 — 5)F) (SFj) ds
t

i (86)
- (") / (BF) T2 H(E) (5FY) ds
where
Z(s,t) = (F, Z,0)(s,t) := s&(-,t) + (1 — 8)2(-,1), tel;, sel0,1].
We next observe that (22), (53) and (65) imply
= (Vn(0) — Vn(©))s6’
=(v—V)&v’ + (VG(&) — VG(E)) =7
(87)
=(v—=V)&’ + (VH(f) F))6F7
+ (VR(¢) — VG(E))55 .
Hence (H1), (84)-(87), and the fact that }”T_t € [0,1] imply
. . . . 1 A
D7, 6)] < (16072 44/ 6Z 2 + /|6 F | / |F(s, )P "2ds).  (89)
0
By (H2) and (24)-(25) we estimate for p € (6, 00)
12 ! ” 2 /12 ! 2
SF7 F(s,t)|P~%ds = |6 F7 —(1—s)FP~2d
R [ IR pas = 6P [ Jsf = (- 9pp-2as
<OFIR(f|+ )" (89)
<C (|Fj—1|p =+ |Fj|:0)
<CA+GEH+GE))

and, similarly,

027 % = |6F7 > 4 |6 27 + |sw? |?
224 [FI7 WP+ | FIP +|Z77 2 + |27 + w2+ wl]) (90)
C1+GENH+GE))

where C' > 0 is a generic constant independent of h, j and ¢. Then (88)-(90)
imply that there exists constant v’ > 0 independent of h, j, ¢ such that

|DI (1) <V (L4 WP+ P+ GETY + GEY)), te I (91)

<
<
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Then, by (23) and (91), we obtain
/Q | DY (,t)|do < 20/ (1 + Ey), Vtel]. (92)

and therefore 4
D7 e L>(I}; LY(Q)) L' (I} x Q). (93)

We next show that D7 > 0 estimating it from below. Once again, using
(H1), (84)-(87) and the fact that % € [0,1], we obtain

, hi—t . . . T
Di(-1) > (‘7h> <|5vj|2 +|0Z 2 + ff|6Ff\2/ |F(s,t)|”_2ds)
’ (94)
hj —t Y P A 5
> v () (|5@J| +|0F| / |F(s, )P~ ds) >0
h 0
where v = min(1,~, k) > 0.
We now fix arbitrary 7 € I} := I; (1 [0,7] and set
t—h(j—1 _
a:=a(r) where a(t):= +) €0,1], telj. (95)

Observe next that
F(s,t) =sf(t)+ (1 —s)F(t)=F + (1 —s)(1—a(t))(F~' - F).

Then (95) and Lemma 6, after the appropriate substitution (8 = a, § = a,
s=1—7), imply

T —_— ] . 1 ~
/ ((’fhhj) |5FJ\2/ |F(s,t)|p_2ds> dt
(G=1)h 0

a 1
- h|6Fj\2/ / (1= a)|F7 + (1 — s)(1 — a)(FI~! — F9)P~2ds da
0 0
> hac (|[F77HP=2 + |FI[P=2)|6F7 2,

Similarly, using (95), we get

/ ((hj _t>|5@f2) dt = <h/ (1—a) da> 6072 > @w@jﬁ.
(i—Dh h 0 2

Therefore, using the two last estimates together with (93)-(94) and the fact that
2|60712 > |§F7|? + |6©7]2, by Fubini’s theorem we conclude

/ /<1DJ’) dx dt
G—nhJa \h

> Cp a/ 16072 + (1 + |FI=Y P2 4 |FI|P=2)|6F 2 da
Q

(96)
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where Cp = min(vc’,v/2) > 0 is independent of h, j and 7.
We next consider term S defined in (54). As before, we let C' > 0 be a
generic constant that, in general, will depend on M defined in (68). We now
(97)

observe that Bt t—h(j—1)
J — — g = /
W N €[0,1], tel;.
Then, by (24)-(25), (31), (83)3 and (97), we find
CA+|fl+|F))F-Ff
(1411 + F)IF = ] o8

@50 () = @4a(F)]
C(1+|F7 Y+ |F7|)|6F7|.

<
<

Hence (83)1, (97) and (98) imply
10a(G.4(2))(254a(f) = B4 () (vi = Vi)
<C((1+ P71+ [P P)5F7 2 + 507 2).
(100)

Similarly, by (98), we get
|06 (G A(2) (P50 (f) = B0 (F) (Vi = Vi)
< C((1 [ FITYR  [FIR)SFI R 4 |V — VP).

By (74), (83)1 and (97), we get
- V)|
(101)

|aa(G,A(E))((I):?a(F) - (I)j?a(F))(’Ul
< o((1 +|F?)|F - FP+ \W’P).

Next, for each A =1,...,19 we set
3 — ~
Ka:= ) 0.Vi(G.al€) = Ga(E)) (®4a(f) — 27u(F)) (102)
i,a=1

By (31); we have I, =0, A=1,...,9. By (61), (65), (83)2 and (97) we get
|G A(€) — G A(E)| = |R.A(&) — RA(E)| < C|0=7|, A=10,...,19. (103)

Thus (98), (102) and (103) imply
(104)

19
3Kl < c(|55j\2 + (14 [FIY)2 4 [FI2)[6FY| )
A=1

Similarly, (31)y, (74) and (103) imply
[0aVi (G a(6) = G 4(8)) (250 (F) — ®1a(F))]

<C <|6Ej\2 +(1+|FPR)|F - F|2).
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Also, by (31)1, (77) and (98), we find that
10aV; (G,A(E) — G A(2)) (R4.(f) — 24, (F))] (106)
=- ~|2 (1 + [ [P 6 F 2.

Consider remaining linear terms. By (83); and (97) we have
= A = : h 19 19
|0a(G A(2)) 05, (F) (v; = Vi)| < Clov| < C —+ 510V (107)

where € > 0 which will be chosen later.

We next take A € {1,...,9}. Then A = 3(i — 1) + « for some unique
i,a € {1,2,3} according to (9);. Hence by (61)-(62), (65), (83)2 and (97) we
obtain for A=1,...,9

G.a(§) = Ga(B)| =[Hia(f) — Hia(F) + R.a(§) — R a(E)]

1
(i = [ st + (1= 9)Fp-2ds+1e-2l)  (108)
0
C16F|(|F7=1 P2 4 |F|=2) 4 6= ).
Observe now that (H1) implies for p € (6, 00)

(9722 + P2 o)

h . e S .
<SP R + E(IFJ P FPBER (g9)
< OL(1+GET) +GE)) + S (F P2+ [FIP)oF

and, similarly,
. h e )
07| < = + —|6=9)2. 110
627] < 2 + 262 (110)

Hence, by (103) and (108)-(110), we obtain the following estimate

|0, Vi @4, (F) (G a(€) — G.a(2))|
< C?(HG(EHHG(EJ)) (111)

+0+ (QF= =2 4 | P20 92 + 627 ).
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Thus (54), (99)-(101), (104)-(107) and (111) imply for p € (6, c0)

1S| < < 1+ )(|w|2 + 6577 + (JF7|P~2 + |Fj*1|p*2)|6Fj|2>
h .
+ g(l +GEH+GEF))
VTR RSP (1t |F|2>|FF|2) (112)

< Cs <<1+ )<|5@J\2 (1+IFj‘ll”‘2+IFj\p‘2)|5Fjl2)
+ 2(1 +GET)+G(E)) +de, é))

for some constant C's > 0 independent of h, j and ¢.
Before we proceed, notice that, (H1) and (90) imply

160712 + (14 |[FI~HP=2 4 |FIP=2)|0F7

. . . , 113
CA+ [ P+ WP +GETY+GE)) (113)

with C' > 0 independent of j. Then (23), (71) and (113) imply that the right
hand side of (112) is in L>°(I}; L") and hence

SeL>(I;LY(Q) c L'(I] x Q). (114)

We next integrate (112) and, by using (23), conclude

/ / S| dar it
G- Ja

<05<(h+s)a/ (19072 4 (1 [P/ =12 o [P 3)|0F [2)de - (115)

2
+ﬂ1+2E0 / / @G)dx)
(7—1)h

Set ¢ := Cp/(4Cs). Then —Cp + Cg(h +¢€) < 0 for Vh € (0,¢). Hence, by
(96) and (115), we get

/ / —7D7+|S|>dxdt
(J=Dh

Cs(ah (14 2E)) / / d@@)dmdt), h e (0,¢)
(G—1h

where we remind the reader that 7 € I} and a = a(7) = % €[0,1].

(116)
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4.4 Conclusion of the proof via Gronwall’s inequality

Observe that (51), (73), (93), (114) and Lemma 8 imply
(at 7" — div qr> e £=([0, 7], LX) < L*([0,T] x ). (117)

Then, by (51), (73) and (116), we conclude for i € (0,¢) and 7 € I

/ / on" —divg") dxdt
(i=1h
g/ / —ij+\S|+|Q\)dxdt (118)
G-nhJas h

< C’1<(T—h(j—1))h+/(;_1)h/ﬂ d(@,@)dxdt)

where Cf := max(Cs(l +2Ey)/e,Cs + )\) > 0 is independent of A, j and 7.

Take now h € (0,¢) and 7 € (0,T]. Then 7 € ((n — 1)h,nh], for some n > 1,
and we can write

/ / (8t n" — div q”) dx dt
0

jh T
/ / (Bt n" — div q") dx dt + / / (615 n" —div q") dx dt.
(G=1h (n—1)h JQ

By using (118), we estimate each term on the right hand side of the identity
above and conclude

/ /((‘%nr—divqr) dxdt<01(7h+/ /d(@,(:))d:cdt). (119)
0 Q 0 Q

We next observe that Corollary 1, (36)-(39) and (52) and imply
divg” € L>=([0,T); L") c L'([0,T] x Q). (120)

Moreover, due to periodic boundary conditions, (using the density argument)
we have [,(div¢"(z,s)) dz =0 for a.e. s € [0,T]. Hence

/ / div¢" dx dt = 0. (121)
0o Ja
Finally, by Lemma 8, (117), (120) and the time-continuity of © and ©, we obtain
/ / Ocn"dxdt = / 0" (z,7) dor — / n"(x,0) dz. (122)
0o Jo Q Q

Then (119), (121)-(122) and Lemma 8 imply for h € (0,¢)

Uy(r) < c(qfd(o) + / v dt+h> (123)

0
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for some constant C' = C(T, Eo, 7,7, K, &', pi, ', A, €,0,) > 0 independent of
7 and h. Since 7 € (0,7] is arbitrary, by (123) and Gronwall’s inequality we
conclude

Uy(1) < C(Tg(0) +h) e, 1€[0,T).

Thus if ¥(0) — 0 as h | 0, then sup,¢jo 77 [Wa(7)| — 0, as h | 0.
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