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Abstract

We present a domain decomposition technical for computing the
quantum transport phenomena in complex nano-structures. In regular
sub-domains, the subband decomposition method is applied, while the
finite difference method is used on small irregular sub-domains where
the subband decomposition is not applicable. This new approach pre-
serves the efficiency of the original subband decomposition method,
with a minor increase of the computational cost. Results of numerical
experiments demonstrate the efficiency and accuracy of this method.

Key words. Schrödinger equation, domain decomposition, subband
decomposition, confined boundary condition, semiclassical regime.

1 Introduction

The main purpose of this paper is to extend the efficient subband decompo-
sition method for the 2D Schrödinger equation on the complicated compu-
tational domain Ω ⊂ R2:

−1

2
ε2 (∂xx + ∂yy)φ+ V φ = Eφ, (x, y) ∈ Ω, (1.1)

with specific boundary conditions, where ε is the re-scaled Planck constant,
E is the specified energy, φ = φ(x, y) denotes the wave function, and V =
V (x, y) is the smooth external potential.

A typical complicated computational domain Ω is shown in Figure 1.
This is a 2D simplified model of the full dimensional quantum directional
coupler [18, 19, 20]. The boundary conditions are given as
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Figure 1: The computational domain and the graphic interpretation of the
domain decomposition method.

• On (x, y) ∈ Γc = ∪8
p=1Γ

p
c , the confined boundary conditions are used,

φ(x, y)|(x,y)∈Γc
= 0,

which prevent electrons from leaving out of the computational domain.
For practical semiconductor devices, they are usually made up of in-
sulators. Therefore, electrons are located inside the device. Here we
have

Γ1
c =

{
(x, 0)

∣∣0 ≤ x ≤ 2l1 + l2
}
, Γ2

c =
{
(x, 2h1 + h2)

∣∣0 ≤ x ≤ 2l1 + l2
}
,

Γ3
c =

{
(x, h1)

∣∣0 ≤ x ≤ l1
}
, Γ4

c =
{
(x, h1 + h2)

∣∣0 ≤ x ≤ l1
}
,

Γ5
c =

{
(x, h1)

∣∣l1 + l2 ≤ x ≤ 2l1 + l2
}
, Γ6

c =
{
(x, h1 + h2)

∣∣l1 + l2 ≤ x ≤ 2l1 + l2
}
,

Γ7
c =

{
(l1, y)

∣∣h1 ≤ y ≤ h1 + h2
}
, Γ8

c =
{
(l1 + l2, y)

∣∣h1 ≤ y ≤ h1 + h2
}
.

• On (x, y) ∈ Γt = ∪4
p=1Γ

p
t , the transparent boundary conditions are

used1, which allow electrons move in and out of the computational do-
main. In practical semiconductor devices, they are usually connected
to highly conducting reservoirs. Therefore, electrons can be exchanged
with the external electrical circuit. Here we have

Γ1
t =

{
(0, y)

∣∣0 ≤ y ≤ h1
}
, Γ2

t =
{
(0, y)

∣∣h1 + h2 ≤ y ≤ 2h1 + h2
}
,

Γ3
t =

{
(2l1 + l2, y)

∣∣0 ≤ y ≤ h1
}
, Γ4

t =
{
(2l1 + l2, y)

∣∣h1 + h2 ≤ y ≤ 2h1 + h2
}
.

The quantum directional couplers were firstly proposed by Alamo and Eu-
gster [4, 11]. Such devices are designed to construct new electron transport
modes, because the transport properties are significantly determined by the

1We will present the formulas in the later sections.
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devices’ geometry. Based on this principle, different structures, e.g., T-stub
[7, 23], Y-branch [17], rings [8] and crosses [22] have been proposed. For
these devices, the computational domains are complicated in the numerical
simulations.

In these devices, quantum effect is important since the length scale is
very small. Therefore, the oscillatory properties of the wave functions induce
serious numerical difficulties for direct methods [14]. The o(ε) mesh size is
required for the finite difference method [25, 26]. The spectral type method
[5, 6] could relax the mesh size requirement to be O(ε). But this method, to
the author’s knowledge, cannot be easily applied when the simulations are
performed on complicated computational domain.

The subband decomposition method [2, 18, 19] is an alternative numeri-
cal method. In view of the strong confinement of electrons in the devices, we
can split a higher dimensional Schrödinger equation into one lower dimen-
sional Schrödinger equation in the confined direction and the other lower
dimensional Schrödinger equation in the transport direction. This idea may
fail here, because the link mode for different subbands at x = l1 or x = l1+l2
in Figure 1 is not clearly known.

In this paper, we develop a domain decomposition approach to deal with
the aforementioned difficulty. The general idea of domain decomposition is
to split the original problem into coupled problems on small sub-domains.
There are three levels of domain decomposition, which are the continuous
level [9, 10, 12, 15], the discretization level [3, 13, 21] and the algebraic level
[24, 27, 28]. They are also categorized into the overlapping decomposition
[3, 9, 10, 13, 27] and the non-overlapping decomposition [12, 15, 21, 28].

We will concern the non-overlapping decomposition on the discretization
level. In regular sub-domains, the subband decomposition method will be
applied to reduce the computational cost. And the finite difference method
will be used in irregular sub-domains. The two sub-domains are coupled by
proper interface conditions. Compare to the original subband decomposition
method, the increasing of algorithm complexity is minor because irregular
sub-domains are small.

This paper is organized as follows. In Section 2, the domain decom-
position based subband decomposition and the finite difference method is
designed. The two kinds of discrete interface conditions are proposed in Sub-
section 2.2 and Subsection 2.3 respectively. Numerical examples are given
in Section 3 to test the efficiency and accuracy. We make some conclusive
remarks in Section 4.

2 The domain decomposition approach

To compute the wave function φ(x, y) for the stationary Schrödinger equa-
tion (1.1) with specific boundary conditions numerically, we firstly decom-
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pose the computational domain Ω into the finite difference domain Ωd and
the subband decomposition domain Ωs:

• The finite difference domain, which corresponds to the red part in
Figure 1, is made up of six sub-domains

Ωd = ∪6
p=1Ω

p
d,

where

Ω1
d =

{
(x, y)

∣∣l1 − δ ≤ x ≤ l1, 0 ≤ y ≤ h1
}
,

Ω2
d =

{
(x, y)

∣∣l1 − δ ≤ x ≤ l1, h1 + h2 ≤ y ≤ 2h1 + h2
}
,

Ω3
d =

{
(x, y)

∣∣l1 ≤ x ≤ l1 + δ, 0 ≤ y ≤ 2h1 + h2
}
,

Ω4
d =

{
(x, y)

∣∣l1 + l2 − δ ≤ x ≤ l1 + l2, 0 ≤ y ≤ 2h1 + h2
}
,

Ω5
d =

{
(x, y)

∣∣l1 + l2 ≤ x ≤ l1 + l2 + δ, 0 ≤ y ≤ h1
}
,

Ω6
d =

{
(x, y)

∣∣l1 + l2 ≤ x ≤ l1 + l2 + δ, h1 + h2 ≤ y ≤ 2h1 + h2
}
.

Here δ is the small positive interval length.

• The subband decomposition domain, which corresponds to the blue
part in Figure 1, is made up of five sub-domains

Ωs = ∪5
p=1Ω

p
s,

where

Ω1
s = L1

x × L1
y, L1

x = [0, l1 − δ], L1
y = [0, h1],

Ω2
s = L2

x × L2
y, L2

x = L1
x, L

2
y = [h1 + h2, 2h1 + h2],

Ω3
s = L3

x × L3
y, L3

x = [l1 + l2 + δ, 2l1 + l2], L
3
y = L1

y,

Ω4
s = L4

x × L4
y, L4

x = L3
x, L

4
y = L2

y,

Ω5
s = L5

x × L5
y, L5

x = [l1 + δ, l1 + l2 − δ], L5
y = [0, 2h1 + h2].

In the finite difference domain Ωd, the central difference approximation
can be used for (1.1):

− ε2

2h2
(
φi−1,j + φi+1,j + φi,j−1 + φi,j+1 − 4φi,j

)
+ V i,jφi,j = Eφi,j , (2.1)

with φi,j = φ(xi, yj), (xi, yj) denotes the grid point, and ∆x = ∆y = h gives
the mesh size.

In the subband decomposition domain Ωs, the wave function φ(x, y) is
expanded into series of multi-mode bases χp

n(x, y):

φ(x, y) =
∞∑
n=1

ϕp
n(x)χ

p
n(x, y) ≈

Np∑
n=1

ϕp
n(x)χ

p
n(x, y), ∀(x, y) ∈ Ωp

s, (2.2)
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with

ϕp
n(x) =

∫
Lp
y

φ(x, y)χp
n(x, y)dy.

Here (Ep
n(x), χ

p
n(x, y)) are solutions of the eigenvalue problem{

−1
2ε

2∂yyχ
p
n(x, y) + V (x, y)χp

n(x, y) = Ep
n(x)χ

p
n(x, y),∫

Lp
y
χp
n(x, y)χ

p
m(x, y)dy = δn,m, χp

n(x, y)|y∈∂Lp
y
= 0.

(2.3)

Then we have the coupled Schrödinger system for ϕp
n(x)

−∂xxϕ
p
n − 2

Np∑
m=1

cp1nm∂xϕ
p
m −

Np∑
m=1

cp2nmϕp
m =

2

ε2
(E − Ep

n)ϕ
p
n, (2.4)

where

cp1nm(x) =

∫
Lp
y

χp
n(x, y)∂xχ

p
m(x, y)dy,

cp2nm(x) =

∫
Lp
y

χp
n(x, y)∂xxχ

p
m(x, y)dy.

It is easy to check that

cp1nn(x) = cp2nn(x) = 0.

The equations (2.4) can be discretized in the central difference form

− ϕp,i+1
n − 2ϕp,i

n + ϕp,i−1
n

h2
−

Np∑
m=1

cp1,inm

ϕp,i+1
m − ϕp,i−1

m

h
−

Np∑
m=1

cp2,inmϕp,i
m

=
2

ε2
(
E − Ep,i

n

)
ϕp,i
n , (2.5)

with ϕp,i
n = ϕp

n(xi) and cp,s,inm = cpsnm(xi).

Remark 2.1 In (2.2), Np denotes the number of subbands used for approx-
imating φ(x, y) in sub-domain Ωp

s. Let Mp be the number of y-direction grid
points in the same sub-domain. If Np ≪ Mp, which is true in practical sim-
ulations, the subband decomposition method can save a lot of computational
resources compare with the finite difference method

Remark 2.2 In practical simulations, we can use the r-coupling modes
model to reduce the number of non-zero elements in the matrix form of
(2.5), i.e., cp1nm(x) and cp2nm(x) are set to zero for |m− n| > r. This r-
coupling modes may give convergent numerical results when r ≥ 2. The
detailed discussions can be found in [19].
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2.1 The transparent boundary condition

In this subsection, we remind the transparent boundary condition for Γt.
The detailed derivations can be found in [1, 16]. For p = 1, 2, the boundary
conditions on Γp

t are

ε∂xφ(0, y) =
∑

E>Ep
n

i
√

2(E − Ep
n) (2a

p
n − ϕp

n(0))χ
p
n(0, y)

+
∑

E≤Ep
n

√
2(Ep

n − E)ϕp
n(0)χ

p
n(0, y), ∀(0, y) ∈ Γp

t . (2.6)

For p = 3, 4, the boundary conditions on Γp
t are

ε∂xφ(2l1 + l2, y) =
∑

E>Ep
n

i
√

2(E −Ep
n) (ϕ

p
n(2l1 + l2)− 2apn)χ

p
n(2l1 + l2, y)

−
∑

E≤Ep
n

√
2(Ep

n − E)ϕp
n(2l1 + l2)χ

p
n(2l1 + l2, y), ∀(0, 2l1 + l2) ∈ Γp

t . (2.7)

Here apn are the coefficients of incoming waves. Writing (2.6)-(2.7) into
discrete form, we have

ε

h

(
−3

2
ϕp,1
n + 2ϕp,2

n − 1

2
ϕp,3
n

)
={

i
√

2(E − Ep
n)
(
2apn − ϕp,1

n

)
, E > Ep

n,√
2(Ep

n − E)ϕp,1
n , E ≤ Ep

n,
(2.8)

and

ε

h

(
3

2
ϕp,I
n − 2ϕp,I−1

n +
1

2
ϕp,I−2
n

)
={

i
√

2(E − Ep
n)
(
ϕp,I
n − 2apn

)
, E > Ep

n,

−
√

2(Ep
n − E)ϕp,I

n , E ≤ Ep
n.

(2.9)

2.2 The discrete interface conditions A

Now we derive the discrete interface conditions that connect the finite dif-
ference method and the subband decomposition method. Without loss of
generality, we only consider the interface

Γ1
i =

{
(l1 − δ, y)

∣∣0 ≤ y ≤ h1
}
.

Let
xL1 = l1 − δ, y1 = 0, yJ1 = h1,
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then the stationary Schrödinger equation (1.1) can be discretized as

−
N1∑
n=1

ϕ1,L1−1
n χ1,L1−1,j

n − φL1+1,j − φL1,j−1 − φL1,j+1

+

(
4− 2h2

ε2
(
E − V L1,j

))
φL1,j = 0. (2.10)

with
χp,i,j
n = χp

n(xi, yj).

On the other hand, the coupled stationary Schrödinger equation system (2.4)
can be discretized as

−h

J1∑
j=1

φL1,jχ1,L1,j
n +2ϕ1,L1−1

n −ϕ1,L1−2
n −h

N1∑
m=1

c1,1,L1−1
nm

h

J1∑
j=1

φL1,jχ1,L1,j
m − ϕ1,L1−2

m


− h2

N1∑
m=1

c1,2,L1−1
nm ϕ1,L1−1

m =
2h2

ε2
(
E − E1,L1−1

n

)
ϕ1,L1−1
n ,

which can be reformulated by

− h

J1∑
j=1

(
χ1,L1,j
n + d1,L1,j

n

)
φL1,j +

((
2− 2h2

ε2
E

)
+

2h2

ε2
E1,L1−1

n

)
ϕ1,L1−1
n

− h2
N1∑
m=1

c1,2,L1−1
nm ϕ1,L1−1

m − ϕ1,L1−2
n + h

N1∑
m=1

c1,1,L1−1
nm ϕ1,L1−2

m = 0. (2.11)

with

dp,i,jn = h

N1∑
m=1

cp,1,i−1
nm χp,i,j

m .

Writing them into matrix form, we get

(
−IN1 + hC1,1

L1−1 M1
L1−1 − h2C1,2

L1−1 −h
(
D1

L1
+
(
X1

L1

)∗)
−X1

L1−1 PL1 −IJ1

)
ϕ̂1
L1−2

ϕ̂1
L1−1

φ̂L1

φ̂L1+1

 = 0,

where

ϕ̂p
i =

(
ϕp,i
1 , ϕp,i

2 , · · · , ϕp,i
N1

)
, φ̂i =

(
φi
1, φ

i
2, · · · , φi

J1

)
,

Cp,s
i =

(
cp,s,inm

)
N1×N1

, Dp
i =

(
dp,i,jn

)
N1×J1

, Xp
i =

(
χp,i,j
n

)
J1×N1
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In is the n× n identity matrix,

Mp
i =

(
2− 2h2

ε2
E

)
+

2h2

ε2


Ep,i

1

Ep,i
2

. . .

Ep,i
N1


N1×N1

,

Pi = −2h2

ε2
E +


4 + 2h2

ε2
V i,1 −1

−1 4 + 2h2

ε2
V i,2 . . .

. . .
. . . −1

−1 4 + 2h2

ε2
V i,J1


J1×J1

.

2.3 The discrete interface conditions B

Similar to Subsection 2.2, we only consider the interface Γ1
i . We use the fact

that the function and its first order normal derivative are continuous, i.e.

[φ](x,y) = [φx](x,y) = 0, (x, y) ∈ Γ1
i , (2.12)

where [·](x,y) represents the jump in a quantity at the point (x, y)

[φ](x,y) = φ+(x, y)− φ−(x, y).

We use superscripts + or − to denote the limiting values of a function
from one side (in Ω1

d) or the other (in Ω1
s). Then we have the second order

discretization of (2.12),

ϕ1,L1
n =

J1∑
j=1

φL1,jχ1,L1,j
n h, (2.13)

and

−3φL1,j + 4φL1+1,j − φL1+2,j

2h
=

N1∑
n

(
3ϕ1,L1

n − 4ϕ1,L1−1
n + ϕ1,L1−2

n

2h
χ1,L1,j
n + ϕ1,L1

n ζ1,L1,j
n

)
, (2.14)

with
ζp,i,jn = ∂xχ

p
n(xi, yj).

Writing them into matrix form, we get

(
IN1 −h

(
X1

L1

)∗
1
2X

1
L1

−2X1
L1

3
2X

1
L1

+ hY 1
L1

3
2IJ1 −2IJ1

1
2IJ1

)


ϕ̂1
L1−2

ϕ̂1
L1−1

ϕ̂1
L1

φ̂L1

φ̂L1+1

φ̂L1+2


= 0,
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where
Y p
i =

(
ζp,i,jn

)
J1×N1

.

3 Numerical examples

In this section, we present several numerical examples to show the accuracy
and the efficiency of the numerical scheme. The reference Schrödinger solu-
tions are computed by using the finite difference approximation with a very
fine mesh and a very small time step.

Example 1. We consider the two dimensional Schrödinger equation with
the following parameters

l1 = h1 = 0.2, l2 = h2 = 0.6, E = 0.6, ε = 0.05,

V (x, y) = 0, (x, y) ∈ Ω,

apn =

{
1, n = p = 1,
0, else.

It is easy to see that

Ep
n =

{
25
2 n

2π2ε2, p = 1, 2, 3, 4,
1
2n

2π2ε2, p = 5.

Therefore, we can believe that

Np = 16 (p = 1, 2, 3, 4), N5 = 40,

is accurate enough for the subband decomposition method.
For both discrete interface conditions, we output the l1 errors of wave

functions for different mesh sizes h in Table 1. The convergence rate of the
errors in h for both discrete interface conditions are about second order. In
Figure 2, the contour of the wave amplitude |φ(x, y)| is plotted.

We compare the computational time and the l1 error for the finite differ-
ence method and the domain and subband decomposition method in Table 2.
From the table, we can see the domain and subband decomposition method
is more efficient.

As demonstrated in Figure 3, the error is reduced with increasing the
interval length δ. It is because the function is not smooth near x = l1 and
x = l1 + l2, which results a low accuracy of the subband decomposition. On
the other hand, the computational cost would increase with larger δ. In this
example, we suggest δ = 1/80 as the optimal interval length.

Example 2. We consider the two dimensional Schrödinger equation with
the following parameters

l1 = h1 = 0.2, l2 = h2 = 0.6, E = 1.4, ε = 0.05,

V (x, y) = 0, (x, y) ∈ Ω,
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h 1
100

1
200

1
400

1
800

Type A 5.59× 10−2 1.29× 10−2 2.85× 10−3 5.94× 10−4

ratio −−− 4.33 4.53 4.80
Type B 4.39× 10−2 1.06× 10−2 2.87× 10−3 5.66× 10−4

ratio −−− 4.14 3.69 5.07

Table 1: Example 1, the l1 errors of wave functions for different mesh sizes
and discrete interface conditions.

h = 1
400 h = 1

800
CPU time l1 error CPU time l1 error

Type A 0.69s 2.85× 10−3 1.61s 5.94× 10−4

Type B 0.93s 2.87× 10−3 2.66s 5.66× 10−4

Finite difference 4.48s 2.44× 10−3 26.05s 5.02× 10−4

Table 2: Example 1, comparisons of the domain and subband decomposition
method and the finite difference method.

Figure 2: Example 1, the contour of the wave amplitude |φ(x, y)|.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
2

3

4

5

6

7

8
x 10

−3

δ

l1  e
rro

r

 

 
Type A
Type B

Figure 3: Example 1, the error reducing factor as a function of δ. Here
h = 1/400.
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h 1
100

1
200

1
400

1
800

Type A 3.51× 10−1 7.16× 10−2 1.54× 10−2 2.98× 10−3

ratio −−− 4.90 4.65 5.17
Type B 3.14× 10−1 5.95× 10−2 1.32× 10−2 3.39× 10−3

ratio −−− 5.28 4.51 3.89

Table 3: Example 2, the l1 errors of wave functions for different mesh sizes
and discrete interface conditions. The fourth group of coefficients is used.

h = 1
400 h = 1

800
CPU time l1 error CPU time l1 error

Type A 0.72s 1.54× 10−2 1.95s 2.98× 10−3

Type B 0.91s 1.32× 10−2 2.13s 3.39× 10−3

Finite difference 4.71s 1.97× 10−2 28.52s 4.02× 10−3

Table 4: Example 2, comparisons of the domain and subband decomposition
method and the finite difference method. The fourth group of coefficients is
used.

The simulation is done under

Np = 16 (p = 1, 2, 3, 4), N5 = 40, and δ = 1/80.

In Figure 4, we plot the contour of the wave amplitude |φ(x, y)| with various
coefficients of incoming waves in (2.6)-(2.7):

(1) a12 = 1, apn = 0(others),

(2) a12 = a21 = 1, apn = 0(others),

(3) a12 = a21 = a31 = 1, apn = 0(others),

(4) a12 = a21 = a31 = a41 = 1, apn = 0(others).

From the figure, we can see different interference phenomenon.
We output the l1 errors of wave functions for different mesh sizes h and

different discrete interface conditions in Table 3. In Table 4, the computa-
tional time and the l1 error for the finite difference method and the domain
and subband decomposition method are also compared. From all these ta-
bles, we can draw the same conclusion as in Example 1.

Example 3. We consider the two dimensional Schrödinger equation with
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Figure 4: Example 2, the contour of the wave amplitude |φ(x, y)| with
various coefficients of incoming waves.

the following parameters

l1 = h1 = 0.2, l2 = h2 = 0.6, E = 0.6, ε = 0.05,

V (x, y) = e−100(x−0.5)2−36(y−0.5)2 , (x, y) ∈ Ω,

apn =

{
1, n = p = 1,
0, else.

The simulation is done under

Np = 16 (p = 1, 2, 3, 4), N5 = 40, and δ = 1/80.

In this example, the external potential varies in horizontal direction. Thus
the coefficients cp1nm(x) and cp2nm(x) is non-zero for n ̸= m.

In Figure 5, the contour of the external potential V (x, y) and the wave
amplitude |φ(x, y)| are plotted. We output the l1 errors of wave functions
for different mesh sizes h and different discrete interface conditions in Table
5. In Table 6, the computational time and the l1 error for the finite differ-
ence method and the domain and subband decomposition method are also
compared. From all these tables, we can draw the same conclusion as in
Example 1.
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h 1
100

1
200

1
400

1
800

Type A 1.53× 10−1 1.52× 10−2 2.66× 10−3 6.11× 10−4

ratio −−− 10.1 5.71 4.35
Type B 1.12× 10−1 2.03× 10−2 3.01× 10−3 5.89× 10−4

ratio −−− 5.52 6.74 5.11

Table 5: Example 3, the l1 errors of wave functions for different mesh sizes
and discrete interface conditions.

h = 1
400 h = 1

800
CPU time l1 error CPU time l1 error

Type A 0.61s 2.66× 10−3 2.67s 6.11× 10−4

Type B 0.82s 3.01× 10−3 3.20s 5.89× 10−4

Finite difference 4.71s 2.30× 10−3 27.36s 5.48× 10−4

Table 6: Example 3, comparisons of the domain and subband decomposition
method and the finite difference method.

Figure 5: Example 3. Left: the contour of the external potential V (x, y);
right: the contour of the wave amplitude φ(x, y).

13



4 Conclusion

Since the direct subband decomposition method is not applicable to the 2D
Schrödinger equation on complicated geometrical domain, we propose a do-
main decomposition technical. The finite difference method is used in small
irregular sub-domains, instead of the subband decomposition method. The
interface conditions are given to connect two numerical methods. Through
several numerical examples, we show the efficiency and accuracy of this
method.

It will be of interest to study the method in the full three space di-
mensions and for the dynamic problems, which will be the subject of our
future study. The other interesting topic is to analyze the stability and the
convergence rate of the numerical scheme. It is still under investigation.
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