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We consider time-dependent (linear and nonlinear) Schrödinger equations in
a semiclassical scaling. These equations form a canonical class of (nonlinear)
dispersive models whose solutions exhibit high frequency oscillations. The
design of efficient numerical methods which produce an accurate approxi-
mation of the solutions, or, at least, of the associated physical observables,
is a formidable mathematical challenge. In this article we shall review the
basic analytical methods for dealing with such equations, including WKB-
asymptotics, Wigner measures techniques and Gaussian beams. Moreover,
we shall give an overview of the current state-of-the-art of numerical meth-
ods (most of which are based on the described analytical techniques) for the
Schrödinger equation in the semiclassical regime.
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1. Introduction

This goal of this article is to give an overview of the currently available
numerical methods used in the study of highly oscillatory partial differen-
tial equations (PDEs) of Schrödinger type. This type of equations form a
canonical class of (nonlinear) dispersive PDEs, i.e. equations in which waves
of different frequency travel with different speed. The accurate and efficient
numerical computation of such equations usually requires a lot of analytical
insight and in particular this applies to the regime of high frequencies.

The following equation can be seen as a paradigm for the PDEs under
consideration:

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε; uε(0, x) = uε

in(x), (1.1)

for (t, x) ∈ R×Rd, with d ∈ N denoting the spatial dimension. In addition,
ε ∈ (0, 1] denotes the small semiclassical parameter (the scaled Planck’s
constant), describing the microscopic/macroscopic scale ratio. Here, we
already rescaled all physical parameters, such that only one dimensionless
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parameter ε � 1 remains. The unknown uε = uε(t, x) ∈ C is the quantum
mechanical wave function whose dynamics is governed by a static potential
function V = V (x) ∈ R (time-dependent potentials V (t, x) usually can
also be taken into account without requiring too much extra work, but
for the sake of simplicity we shall not do so here). In this article, several
different classes of potentials, e.g., smooth, discontinuous, periodic, random,
will be discussed, each of which requires a different numerical strategy. In
addition, possible nonlinear effects can be taken into account (as we shall
do in Section 15) by considering nonlinear potentials V = f(|uε|2).

In the absence of V (x) a particular solution to the Schrödinger equation
is given by a single plane wave

uε(t, x) = exp
(

i
ε

(
ξ · x− t

2
|ξ|2
))

,

for any given wave vector ξ ∈ Rd. We see that uε features oscillations
with frequency 1/ε in space and time, which inhibit strong convergence of
the wave function in the classical limit ε → 0+. In addition, these os-
cillations pose a huge challenge in numerical computations of (2.1), par-
ticularly they strain computationally resources when run-off-the-mill nu-
merical techniques are applied in order to numerically solve (1.1) in the
semiclassical regime ε � 1. For the linear Schrödinger equation classi-
cal numerical analysis methods (like the stability-consistency concept) are
sufficient to derive meshing strategies for discretizations (say, of finite dif-
ference, finite element or even time splitting spectral type) which guarantee
(locally) strong convergence of the discrete wave functions when the semi-
classical parameter ε is fixed (cf. (Chan, Lee and Shen 1986), (Chan and
Shen 1987), (Wu 1996), (Dörfler 1998), extensions to nonlinear Schrödinger
equations can be found in, e.g., (Delfour, Fortin and Payre 1981), (Taha
and Ablowitz 1984), (Pathria and Morris 1990)). However, the classical
numerical analysis strategies cannot be employed to investigate uniform in
ε properties of discretization schemes in the semiclassical limit regime. As
we shall detail in Section 4, even seemingly reasonable, i.e. stable and con-
sistent, discretization schemes, which are heavily used in many practical
application areas of Schrödinger-type equations, require huge computational
resources in order to give accurate physical observables for ε � 1. The sit-
uation gets even worse when an accurate resolution of uε itself is required.
To this end, we remark that time-splitting spectral methods tend to behave
better than finite difference/finite element methods, as we shall see in more
detail in Section 5.

In summary, there is clearly a big risk in using classical discretization
techniques for Schrödinger calculations in the semiclassical regime. Certain
schemes produce completely wrong observables under seemingly reasonable
meshing strategies i.e. an asymptotic resolution of the oscillation is not
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always enough. Even worse, in these cases there is no warning from the
scheme (like destabilization) that something went wrong in the computation
(since local error control is computationally not feasible in the semiclassical
regime). The only safety anchor here lies in asymptotic mathematical analy-
sis, such as WKB analysis, and/or a physical insight on the problem. They
typically yield a (rigorous) asymptotic description of uε for small ε � 1
which consequently can be implemented on a numerical level, providing an
asymptotic numerical scheme for the problem at hand. In this work, we
shall discuss several asymptotic schemes, depending on the particular type
of potentials V considered.

While one can not expect to be able to pass to the classical limit directly
in the solution uε of (1.1), one should note that densities of physical observ-
ables, which are the quantities most interesting in practical applications, are
typically better behaved as ε→ 0, since they are quadratic in the wave func-
tion (see Section 2.1 below). However, weak convergence of uε as ε → 0 is
not sufficient for passing to the limit in the observable densities (since weak
convergence does not commute with nonlinear operations). This makes the
analysis of the semiclassical limit a mathematically highly complex issue.
Recently, much progress has been made in this area, particularly by us-
ing tools from micro-local analysis, such as H-measures (Tartar 1990) and
Wigner measures (Lions and Paul 1993), (Markowich and Mauser 1993),
(Gérard, Markowich, Mauser and Poupaud 1997). These techniques go far
beyond classical WKB-methods, since the latter suffers from the appearance
of caustics (see, e.g. (Sparber, Markowich and Mauser 2003) for a recent
comparison of the two methods). In contrast to that, Wigner measure tech-
niques reveal a kinetic equation on phase space, whose solution, the so-called
Wigner measure associated to uε, does not exhibit caustics (see Section 3
for more details).

A word of caution is in order: First, a reconstruction of the asymptotic
description for uε itself (for ε � 1) is in general not straightforward, since,
typically, some phase information is lost when passing to the Wigner picture.
Second, phase space techniques have proved to be very powerful in the linear
case and in certain weakly nonlinear regimes, but they have not shown
too much strength yet when applied to nonlinear Schrödinger equations in
regime of supercritical geometric optics (see Section 15.2). There, classical
WKB analysis (and in some special cases techniques for fully integrable
systems) still prevails. The main mathematical reason for this is that the
initial value problem for the linear Schrödinger equation propagates only
one ε-scale of oscillations, provided the initial datum in itself is ε-oscillatory
(as it is always assumed in WKB analysis). New (spatial) frequencies ξ may
be generated during the time-evolution (typically, at caustics) but no new
scales of oscillations will arise in the linear case. For nonlinear Schrödinger
problems this is different, as new oscillation scales may be generated through
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the nonlinear interaction of the solution with itself. Further, one should note
that this important analytical distinction, i.e. no generation of new scales,
but possible generation of new frequencies (in the linear case), may not be
relevant on the numerically level, since, say, 100ε is analytically just a new
frequency but numerically indeed a new scale.

Aside from semiclassical situations, modern research in the numerical so-
lution of Schrödinger-type equations goes in a variety of directions, most
importantly:

(i) Stationary problems stemming from, e.g, material science. We men-
tion band diagram computations (to be touched upon below in Sec-
tions 12 and 13) and density functional theory for approximating the
full microscopic Hamiltonian (not to be discussed in this paper). The
main difference between stationary and time-dependent semiclassical
problems is given by the fact that in the former situation the spatial
frequency is fixed, whereas in the latter (as already mentioned before)
new frequencies may arise during the cause of time.

(ii) Large spatial dimensions d � 1, arising for example when the num-
ber of particles N � 1, since the quantum mechanical Hilbert space
for N indistinguishable particles (without spin) is given by L2(R3N ).
This is extremely important in quantum chemistry simulations of atom-
istic/molecular applications. Totally different analytical and numerical
techniques need to be used and we shall not elaborate on these issues
in this paper. We only remark that in case some of the particles are
very heavy and can thus be treated classically (invoking the so-called
Born-Oppenheimer approximation, cf. Section 11), a combination of
numerical methods for both d� 1 and ε� 1 has to be used.

2. WKB analysis for semiclassical Schrödinger equations

2.1. Basic existence results and physical observables

We recall the basic existence theory for linear Schrödinger equations of the
form

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε; uε(0, x) = uε

in(x). (2.1)

For the sake of simplicity we assume the (real-valued) potential V = V (x)
to be continuous and bounded, i.e.

V ∈ C(Rd; R) : |V (x)| ≤ K .

The Kato-Rellich theorem than ensures that the Hamiltonian operator

Hε := −ε
2

2
∆ + V (x), (2.2)
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is essentially self-adjoint on D(−∆) = C∞0 ⊂ L2(Rd; C) and bounded from
below by −K, see e.g. (Reed and Simon 1975). Its unique self-adjoint
extension (to be denoted by the same symbol) therefore generates a strongly
continuous semi-group U ε(t) = e− itHε/ε on L2(Rd), which ensures the global
existence of a unique (mild) solution uε(t) = U ε(t)uin of the Schrödinger
equation (2.1). Moreover, since U ε(t) is unitary, it holds

‖uε(t, ·)‖2
L2 = ‖uε

in‖2
L2 , ∀ t ∈ R.

In quantum mechanics this is interpreted as conservation of mass. In addi-
tion, we also have conservation of the total energy

E[uε(t)] =
ε2

2

∫
Rd

|∇uε(t, x)|2 dx+
∫

Rd

V (x)|uε(t, x)|2 dx, (2.3)

which is the sum of the kinetic and the potential energies.
In general, expectation values of physical observables are computed via

quadratic functionals of uε. To this end, denote by aW (x, εDx) the operator
corresponding to a classical (phase space) observable a ∈ C∞b (Rd × Rd),
obtained via Weyl-quantization

aW (x, εDx)f(x) :=
1

(2π)m

∫∫
Rd×Rd

a
(x+ y

2
, εξ
)
f(y)e i(x−y)·ξ dξ dy, (2.4)

where εDx := − iε∂x. Then, the expectation value of a in the state uε at
time t ∈ R is given by

a[uε(t)] = 〈uε(t), aW (x, εDx)uε(t)〉L2 . (2.5)

where 〈·, ·〉L2 denotes the usual scalar product on L2(Rd; C).

Remark 2.1. The convenience in the Weyl-calculus lies in the fact that an
(essentially) selfadjoint Weyl-operator aW (x, εDx) has a real-valued symbol
a(x, ξ), cf. (Hörmander 1985).

The quantum mechanical wave function uε can therefore be considered only
an auxiliary quantity, whereas (real-valued) quadratic quantities of uε yield
probability densities for the respective physical observables. The most basic
quadratic quantities are the particle density

ρε(t, x) := |uε(t, x)|2, (2.6)

and the current density

jε(t, x) := ε Im
(
uε(t, x)∇uε(t, x)

)
. (2.7)

It is easily seen that if uε solves (2.1), then the following conservation law
holds

∂tρ
ε + div jε = 0. (2.8)
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In view of (2.3) we can also define the energy density

eε(t, x) :=
1
2
|ε∇uε(t, x)|2 + V (x)ρε(t, x). (2.9)

As will be seen (cf. Section 5), computing these observable densities numer-
ically is usually less cumbersome than computing the actual wave function
uε accurately. From the analytical point of view, however, we are facing
the problem that the classical limit ε → 0 can only be regarded as a weak
limit (in a suitable topology), due to the oscillatory nature of uε. Quadratic
operations defining densities of physical observables in general do not com-
mute with weak limits and hence, it remains a challenging task to identify
the (weak) limits of certain physical observables, or densities, respectively.

2.2. Asymptotic description of high frequencies

In order to gain a better understanding of the oscillatory structure of uε

we invoke the following WKB approximation, cf. (Carles 2008) and the
references given therein:

uε(t, x) ε→0∼ aε(t, x)e iS(t,x)/ε, (2.10)

with real-valued phase S and (possibly) complex-valued amplitude aε, sat-
isfying the asymptotic expansion

aε ε→0∼ a+ εa1 + ε2a2 + . . . (2.11)

Plugging the ansatz (2.10) into (2.1), one can determine an approximate
solution to (2.1), by subsequently solving the equations obtained in each
order of ε.

In leading order, i.e. terms of order O(1), one obtains a Hamilton-Jacobi
equation for the phase function S:

∂tS +
1
2
|∇S|2 + V (x) = 0; S(0, x) = Sin(x). (2.12)

This equation can be solved by the method of characteristics, provided V (x)
is sufficiently smooth, say V ∈ C2(Rd). The characteristic flow is given by
the following Hamiltonian system of ordinary differential equations{

ẋ(t, y) = ξ(t, y); x(0, x) = y,

ξ̇(t, y) = −∇xV (x(t, y)); ξ(0, y) = ∇Sin(y).
(2.13)

Remark 2.2. The characteristic trajectories y 7→ x(t, y) obtained via
(2.13) are usually interpreted as the rays of geometric optics. The WKB
approximation considered here is therefore also regarded as the geometric
optics limit of the wave field uε.
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By the Cauchy-Lipschitz theorem, this system of ordinary differential equa-
tions can be solved at least locally in-time and consequently yields the phase
function

S(t, x) = S(0, x)−
∫ t

0

1
2
|∇S(τ, y(τ, x))|2 + V (y(τ, x)) dτ.

where y(τ, x) denotes the inversion of the characteristic flowXt : y 7→ x(t, y).
This yields a smooth phase function S ∈ C∞([−T, T ]×Rd) up to some time
T > 0 but possibly very small. The latter is due to the fact that in general
characteristics will cross at some finite time |T | <∞, in which case the flow
map Xt : Rd → Rd is no longer one-to-one. The set of points at which Xt

ceases to be a diffeomorphism is usually called caustic set. See Fig. 2.1
(taken from (Gosse, Jin and Li 2003)) for examples of caustic formulation.
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Figure 2.1. Caustics generated from initial data
∂xSin(x) = − sin(πx)| sin(πx)|p−1. Left: p = 1, and the solution becomes
triple valued. Right: p = 2, and we exhibit single-, triple- and
quintuple-valued solutions.

Ignoring the problem of caustics for a moment one can proceed with our
asymptotic expansion and obtain at orderO(ε) the following transport equa-
tion for the leading order amplitude

∂ta+∇S · ∇a+
a

2
∆S = 0; a(0, x) = ain(x). (2.14)

In terms of the leading order particle density ρ := |a|2, this reads

∂tρ+ div(ρ∇S) = 0 , (2.15)

which is reminiscent of the conservation law (2.8).
The transport equation (2.14) is again solved by the methods of charac-

teristics (as long as S is smooth, i.e. before caustics) and yields

a(t, x) =
ain(y(t, x))√
Jt(y(t, x))

, |t| ≤ T. (2.16)
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where Jt(y) := det∇yx(t, u) denotes the Jacobi determinant of the Hamil-
tonian flow. All higher order amplitudes an are then found to be solutions
of inhomogeneous transport equations of the form

∂tan +∇S · ∇an +
an

2
∆S = ∆an−1. (2.17)

These equations are consequently solved by the method of characteristics.
At least locally in-time (before caustics) this yields an approximate solution
of WKB type

uε
app(t, x) = e iS(t,x)/ε

(
a(t, x) + εa1(t, x) + ε2a2(t, x) + . . .

)
including amplitudes (an)N

n=1 up to some order N ∈ N. It is then strightfor-
ward to prove the following stability result:

Theorem 2.3. Assume that the initial data of (2.1) is given in WKB form

uε
in(x) = ain(x)e iSin(x)/ε (2.18)

with Sin ∈ C∞(Rd) and let ain ∈ S(Rd), i.e. smooth and rapidly decaying.
Then for any closed time-interval I ⊂ T , before caustic onset, there exists a
C > 0, independent of ε ∈ (0, 1] such that

sup
t∈I

‖uε(t)− uε
app(t)‖L2∩L∞ ≤ CεN .

The first rigorous result of this type goes back to (Lax 1957). Its main
drawback is the fact that the WKB solution breaks down at caustics, where
S develops singularities. In addition, the leading order amplitude a blows
up in L∞(Rd), in view of (2.16) and the fact that limt→T Jt(y) = 0. Of
course, these problems are not present in the exact solution uε but are
merely an artifact of the WKB ansatz (2.10). Caustics therefore indicate
the appearance of new ε-oscillatory scales within uε, which are not captured
by the simple oscillatory ansatz (2.10).

2.3. Beyond caustics

At least locally away from caustics, though, the solution can always be
described by a superposition of WKB waves. This can be seen rather easily
in the case of free dynamics where V (x) = 0. The corresponding solution
of the Schrödinger equation (2.1) with WKB initial data is then explicitly
given by

uε(t, x) =
1

(2πε)d

∫∫
Rd×Rd

ain(y)e iϕ(x,y,ξ,t)/ε dy dξ, (2.19)

with phase function

ϕ(x, y, ξ, t) := (x− y) · ξ +
t

2
|ξ|2 + Sin(y). (2.20)
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The representation formula (2.19) comprises an oscillatory integral, whose
main contributions stem from stationary phase points at which ∂y,ξϕ(x, t) =
0. In view of (2.20) this yields

ξ = ∇S, y = x− tξ,

The corresponding map y 7→ x(t, y) is the characteristic flow of the free
Hamilton Jacobi equation

∂tS +
1
2
|∇S|2 = 0; S(0, x) = Sin(x)

Reverting the relation y 7→ x(t, y) yields the required stationary phase points
{yj(t, x)}j∈N ∈ Rd for the integral (2.19). Assuming for simplicity that there
are only finitely many such points, then

uε(t, x) =
1

(2πε)d

∫∫
Rd×Rd

ain(y)eiϕ(x,y,ξ,t)/ε dy dξ

ε→0∼
J∑

j=1

ain(yj(t, x))√
Jt(yj(t, x))

e iS(yj(t,x))/ε+iπmj/4,

(2.21)

with constant phase shifts mj ∈ N (usually referred to as the Keller-Maslov
index). The right hand side of this expression is usually referred to as multi-
phase WKB approximation. The latter can be interpreted as an asymptotic
description of interfering wave trains in uε.

Remark 2.4. The case of non-vanishing V (x), although similar in spirit,
is much more involved in general. In order to determine asymptotic de-
scription of uε beyond caustics, one needs to invoke the theory of Fourier
integral operators, see e.g. (Duistermaat 1996). In particular it is in general
very hard to determine the precise form and number of caustics appearing
throughout the time-evolution of S(t, x), which is why there is an exten-
sive amount of papers on numerical schemes for ‘capturing caustics’, see e.g.
(Benamou and Solliec 2000), or (Benamou, Lafitte, Sentis and Solliec 2003)
and the references therein.

3. Wigner transforms and Wigner measures

3.1. The Wigner transformed picture of quantum mechanics

Whereas WKB type methods aim for approximate solutions of uε, the goal
of this section is to directly identify the weak limits of physical observable
densities as ε→ 0. To this end, one defines the so-called Wigner transform
of uε, as given in (Wigner 1932):

wε[uε](x, ξ) :=
1

(2π)d

∫
Rd

uε
(
x+

ε

2
η
)
uε
(
x− ε

2
η
)

eiξ·η dη. (3.1)
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Plancherel’s theorem together with a simple change of variables yields

‖wε‖L2(R2d) = ε−d(2π)−d/2‖uε‖2
L2(Rd).

The real-valued Wigner transform wε ∈ L2(Rd
x × Rd

ξ) can be interpreted as
a phase-space description of the quantum state uε. In contrast to classical
phase-space distributions, wε in general also takes negative values (except
for Gaussian wave-functions).

Applying this transformation to the Schrödinger equation (2.1), the time-
dependent Wigner function wε(t, x, ξ) ≡ wε[uε(t)](x, ξ) is easily seen to sat-
isfy

∂tw
ε + ξ · ∇xw

ε −Θε[V ]wε = 0; wε(0, x, ξ) = wε
in(x, ξ), (3.2)

where Θε[V ] is a pseudo-differential operator, taking into account the influ-
ence of V (x). Explicitly it is given by

Θε[V ]f(x, ξ) :=
i

(2π)d

∫∫
Rd×Rd

δV ε(x, y)f(x, ξ′)eiη(ξ−ξ′) dη dξ′ , (3.3)

where the symbol δV ε reads

δV ε :=
1
ε

(
V
(
x− ε

2
y
)
− V

(
x+

ε

2
y
))

.

Note that in the free case where V (x) = 0, the Wigner equation becomes the
free transport equation of classical kinetic theory. Moreover, if V ∈ C1(Rd)
we obviously have that

δV ε ε→0−→ y · ∇xV,

in which case the ε→ 0 limit of (3.2) formally becomes the classical Liouville
equation on phase space, see (3.7) below.

The most important feature of the Wigner transform is that it allows for
a simple computation of quantum mechanical expectation values of physical
observables. Namely,

〈uε(t), aW (x, εD)uε(t)〉L2 =
∫∫

Rd×Rd

a(x, ξ)wε(t, x, ξ) dxdξ, (3.4)

where a(x, ξ) is the classical symbol of the operator aW (x, εDx). In addition,
at least formally (since wε 6∈ L1(Rd × Rd) in general), the particle density
(2.6) can be computed via

ρε(t, x) =
∫

Rd

wε(t, x, ξ) dξ,

and the current density (2.7) is given by

jε(t, x) =
∫

Rd

ξwε(t, x, ξ) dξ.
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Similarly, the energy density (2.9) is

eε(t, x) =
∫

Rd

H(x, ξ)wε(t, x, ξ) dξ,

where the classical (phase space) Hamiltonian function is denoted by

H(x, ξ) =
1
2
|ξ|2 + V (x). (3.5)

Remark 3.1. It can be proved that the Fourier transform of wε w.r.t. ξ
satisfies ŵε ∈ C0(Rd

y;L
1(Rd

x)) and likewise for the Fourier transformation of
wε w.r.t. x ∈ Rd. This allows to define the integrals of wε via a limiting
process after convolving wε with Gaussians, see (Lions and Paul 1993) for
more details.

3.2. Classical limit of Wigner transforms

The main point in the formulae given above is that the right hand side of
(3.4) involves only linear operations of wε which is compatible with weak
limits. To this end, we recall the main result proved in (Lions and Paul 1993)
and (Gérard et al. 1997):

Theorem 3.2. Let uε(t) be uniformly bounded in L2(Rd) w.r.t. ε, that is

sup
0<ε≤1

‖uε(t)‖L2 < +∞, ∀ t ∈ R.

Then, the set of Wigner functions {wε(t)}0<ε≤1 ⊂ S ′(Rd
x × Rd

ξ) is weak−∗
compact and thus, up to extraction of subsequences

wε[uε] ε→0−→ w0 ≡ w in L∞([0, T ];S ′(Rd
x × Rd

ξ))w − ∗,

where the limit w(t) ∈ M+(Rd
x × Rd

ξ) is called the Wigner measure. If, in
addition ∀ t : (ε∇u(t)) ∈ L2(Rd) uniformly w.r.t. ε, then we also have

ρε(t, x) ε→0−→ ρ(t, x) =
∫

Rd

w(t, x, dξ),

jε(t, x) ε→0−→ j(t, x) =
∫

Rd

ξw(t, x, dξ).

Note that although wε(t) in general also takes negative values its weak
limit w(t) is indeed a non-negative measure on phase space.

Remark 3.3. The limiting phase space measures w(t) ∈ M+(Rd
x × Rd

p)
are also often referred to as semiclassical measures and are closely related
to the so-called H-measures used in homogenization theory (Tartar 1990).
The fact that their weak limits are non-negative can be seen by considering
the corresponding Husimi transformation, i.e.

wε
H[uε] := wε[uε] ∗x G

ε ∗ξ G
ε,
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where we denote

Gε( · ) := (πε)−d/4e−| · |
2/ε.

The Husimi transform wε
H is non-negative a.e. and has the same limit points

as the Wigner function wε, cf. (Markowich and Mauser 1993).

This result allows to exchange limit and integration on the limit on the right
hand side of (3.4) to obtain

〈uε, aW (x, εDx)uε〉L2
ε→0−→

∫∫
Rd×Rd

a(x, ξ)w(t, x, ξ) dxdξ.

The Wigner transformation and its associated Wigner measure therefore
are highly useful tools to compute the classical limit of the expectation
values of physical observables. In addition it is proved in (Lions and Paul
1993) (Gérard et al. 1997), that w(t, x, ξ) is the push-forward under the flow
corresponding to the classical Hamiltonian H(x, ξ), i.e.

w(t, x, ξ) = win(F−t(x, ξ)),

where win is the initial Wigner measure and Ft : R2d → R2d is the phase
space flow given by{

ẋ = ∇ξH(x, ξ), x(0, y, ζ) = y,

ξ̇ = −∇xH(x, ξ), ξ(0, y, ζ) = ζ.
(3.6)

In other words w(t, x, ξ) is a distributional solution of the classical Liouville
equation on phase space, i.e.

∂tw + {H,w} = 0, (3.7)

where

{a, b} := ∇ξa · ∇xb−∇xa · ∇ξb

denotes the Poisson bracket. Note that in the case where H(x, ξ) is given
by (3.5), this yields

∂tw + ξ · ∇ξw −∇xV (x) · ∇ξw = 0, (3.8)

with characteristic equations given by the Newton trajectories:

ẋ = ξ, ξ̇ = −∇xV (x).

Strictly speaking we require V ∈ C1
b(Rd), in order to define w as a distribu-

tional solution of (3.8). Note however, in contrast to WKB techniques, the
equation for the limiting Wigner measure (3.8) is globally well posed, i.e.
one does not experience problems of caustics. This is due to the fact that
the Wigner measure w(t, x, ξ) lives on phase space.
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3.3. Connection between Wigner measures and WKB analysis

A particularly interesting situation occurs for uε
in given in WKB form (2.18).

The corresponding Wigner measure is found to be

wε[uε
in]

ε→0−→ win = |ain(x)|2δ(ξ −∇Sin(x)), (3.9)

i.e. a mono-kinetic measure concentrated on the initial velocity v = ∇Sin.
In this case the phase space flow Ft is projected onto physical space Rd,
yielding Xt, the characteristic flow of the Hamilton-Jacobi equation (2.12).
More precisely, the following result has been proved in (Sparber et al. 2003):

Theorem 3.4. Let w(t, x, ξ) be the Wigner measure of the exact solution
uε to (2.1) with WKB initial data. Then

w(t, x, ξ) = |a(t, x)|2δ(ξ −∇S(t, x))

if and only if ρ = |a|2 and v = ∇S are smooth solutions of the leading order
WKB system given by (2.12) and (2.15).

This theorem links the theory of Wigner measures with the WKB approx-
imation before caustics. After caustics, the Wigner measure in general is no
longer mono-kinetic. However, it can be shown, cf. (Sparber et al. 2003),
(Jin and Li 2003) that for generic initial data uε

in and locally away from
caustics, the Wigner measure can be decomposed as

w(t, x, ξ) =
J∑

j=1

|aj(t, x)|2δ(ξ − vj(t, x)), (3.10)

which is consistent with the multi-phase WKB approximation given in (2.21).

4. Finite difference methods for semiclassical Schrödinger
equations

4.1. Basic setting

A basic numerical scheme for solving linear partial differential equations is
the well-known finite difference method (FD), to be discussed in this section
(see e.g. (Strikwerda 1989) for a general introduction). In the following, we
shall be mainly interested in its performance as ε→ 0. To this end, we shall
allow for more general Schrödinger type PDEs in the form (Markowich and
Poupaud 1999)

iε∂tu
ε = HW (x, εDx)uε; uε(0, x) = uε

in(x) , (4.1)

where HW denotes the Weyl-quantization of a classical real-valued phase
space Hamiltonian H(x, ξ) ∈ C∞(Rd × Rd), which is supposed to grow at
most quadratically in x and ξ. For the following we assume that the symbol
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is a polynomial of order K ∈ N in ξ with C∞-coefficients Hk(x), i.e.

H(x, ξ) =
∑
|k|≤K

Hk(x)ξk ,

where k = (k1, . . . , kd) ∈ Nd denotes a multi-index with |k| := k1 + · · ·+ kd.
The differential operator H(x, εDx)W can now be written as

H(x, εDx)Wϕ(x) =
∑
|k|≤K

ε|k|Dk
y

(
Hk

(x+ y

2

)
ϕ(y)

)∣∣∣∣
y=x

. (4.2)

In addition, assume the following:

H(x, εDx)W is essentially self-adjoint on L2(Rd), (A1)

and, for simplicity:

∀ k, α ∈ Nd with |k| ≤ K ∃Ck,α > 0 : |∂α
xHk(x)| ≤ Ck,α ∀x ∈ Rd. (A2)

Under these conditions H(x, εDx)W can be shown (Kitada 1980) to generate
a unitary (strongly continuous) semi-group of operators U ε(t) = e−itHW /ε,
which provides a unique global-in-time solution uε = uε(t) ∈ L2(Rd). Next,
let

Γ :=
{
γ = `1r1 + · · ·+ `mrm | `j ∈ Z for 1 ≤ j ≤ d

}
⊆ Rd

be the lattice generated by the linearly independent vectors r1, . . . , rd ∈ Rd.
For a multi-index k ∈ Nd we construct a discretization of order N of the
operator ∂k

x as follows:

∂k
xϕ(x) ≈ 1

h|k|

∑
γ∈Γk

aγ,kϕ(x+ hγ). (4.3)

Here ∆x = h ∈ (0, h0] is the mesh-size, Γk ⊆ Γ is the finite set of discretiza-
tion points and aγ,k ∈ R are coefficients satisfying∑

γ∈Γk

aγ,kγ
` = k!δ`,k, 0 ≤ |`| ≤ N + |k| − 1 (B1)

where δ`,k = 1, if ` = k, and zero otherwise. It is an easy exercise to show
that the local discretization error of (4.3) is O(hN ) for all smooth functions if
(B1) holds. For a detailed discussion of the linear problem (B1) (i.e. possible
choices of the coefficients aγ,k) we refer to (Markowich and Poupaud 1999).

4.2. Spatial discretization

We shall now define the corresponding finite difference discretization of
H(x, εDx)W by applying (4.3) directly to (4.2). To this end, we denote
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Hh,ε(x, ξ) =
∑
|k|≤K

%|k|(− i)|k|
∑
γ∈Γk

aγ,kHk(x)e iγ·ξ/% (4.4)

with % = ε
h , the ratio between the small semiclassical parameter ε and the

mesh size h. Then we obtain the finite difference discretization of (4.2) in
the form

H(x, εDx)Wϕ(x) ≈ Hh,ε(x, εDx)Wϕ(x) =

=
∑
|k|≤K

%|k|(− i)|k|
∑
γ∈Γk

aγ,kHk

(
x+

hγ

2

)
ϕ(x+ hγ).

In view of (4.4), the discretization Hh,ε(x, εDx)W is seen to be a bounded
operator on L2(Rd) and self-adjoint if

i|k|
∑
γ∈Γk

aγ,ke iγ·ξ is real-valued for 0 ≤ |k| ≤ K. (B2)

We shall now collect several properties of such finite difference approxima-
tions, proved in (Markowich, Pietra and Pohl 1999). We start with a spatial
consistency result.

Lemma 4.1. Let (A1), (B1), (B2) hold and ϕ ∈ S(Rd
x × Rd

ξ). Then, for

% = ε
h

ε,h→0−→ ∞

Hh,εϕ
ε,h→0−→ Hϕ in S(Rd

x × Rd
ξ). (4.5)

For a given ε > 0, choosing h such that % = ε
h →∞ corresponds to asymp-

totically resolving the oscillations of wavelength O(ε) in the solution uε(t, x)
to the Schrödinger type equation (4.1). In the case % = const, i.e. putting a
fixed number of grid-points per oscillation, the symbol Hh,ε(x, ξ) ≡ H%(x, ξ)
is independent of h and ε, i.e.

H%(x, ξ) =
∑
|k|≤K

%|k|
∑
γ∈Γk

aγ,k(− i)|k|Hk(x)e iγ·ξ/%. (4.6)

In the case %
ε,h→0−→ 0, which corresponds to a scheme ignoring the ε-oscillations,

we find

Hh,ε
h,ε→0∼

∑
γ∈Γ0

aγ,0 cos
(γ · ξ

%

)
H0(x),

and hence Hh,ε(x, εDx)W does not approximate H(x, εDx)W . We thus can-
not expect reasonable numerical results in this case (which will not be in-
vestigated further).
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4.3. Temporal discretization and violation of gauge invariance

For the temporal discretization one can employ the Crank-Nicolson scheme
with time-step ∆t > 0. This is a widely used time-discretization scheme for
the Schrödinger equation, featuring some desirable properties (see below).
We shall comment on the temporal discretizations below. The scheme reads

ε
uσ

n+1 − uσ
n

∆t
+ iHh,ε(x, εDx)W

(
1
2
uσ

n+1 +
1
2
uσ

n

)
= 0, n = 0, 1, 2, . . . (4.7)

subject to initial data uσ
in = uε

in(x), where from now on, we shall denote the
vector of small parameters by σ = (ε, h,∆t). Note that the self-adjointness
of Hh,ε(x, εDx)W implies that the operator

1 + isHh,ε(x, εDx)W

is invertible on L2(Rd) for all s ∈ R. Therefore the scheme (4.7) gives well-
defined approximations uσ

n for n = 1, 2, . . . if uε
in ∈ L2(Rd). Moreover we

remark that it is sufficient to evaluate (4.7) at x ∈ hΓ in order to obtain
discrete equations for uσ

n(hγ), γ ∈ Γ.

Remark 4.2. For practical computations, one needs to impose artificial
‘far-field’ boundary conditions. Their impact, however, will not be taken
into account in the subsequent analysis.

By taking the L2 scalar product of (4.7) with
(

1
2u

σ
n+1+

1
2u

σ
n

)
, one can directly

infer the following stability result:

Lemma 4.3. The solution of (4.7) satisfies

‖uσ
n‖L2 = ‖uε

in‖L2 , n = 0, 1, 2, . . .

In other words, the physically important property of mass-conservation also
holds on the discrete level.

On the other hand, the scheme can be seen to violate the gauge invariance
of (4.1). More precisely, one should note that expectation values of physical
observables, as defined in (2.5), are invariant under the substitution (gauge
transformation)

vε(t, x) = uε(t, x)e iωt/ε, ω ∈ R.

In other words, the average value of the observable in the state uε is equal
to its average value in the state vε.

Remark 4.4. Note that in view of (3.1) the Wigner-function is seen to be
also invariant under this substitution, i.e.

∀ω ∈ R : wε[uε(t)] = wε[uε(t)e iωt/ε] ≡ wε[vε(t)].
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On the other hand, using this gauge-transformation the Schrödinger equa-
tion (4.1) transforms to

iε∂tv
ε =

(
H(x, εDx)W + ω

)
vε; vε(0, x) = uε

in(x), (4.8)

which implies that the zeroth order term H0(x) in (4.2) is replaced by
H0(x) + ω while the other coefficients Hk(x), k 6= 0, remain unchanged.
In physical terms, H0(x) corresponds to a scalar (static) potential V (x).
The corresponding force field obtained via F (x) = ∇H0(x) = ∇(H0(x)+ω)
is unchanged by the gauge transformation and thus (4.8) can be considered
(physically) equivalent to (4.1). The described situation, however, is com-
pletely different for the difference scheme outlined above: Indeed, a simple
calculation shows that the discrete gauge transformation

vσ
n = uσ

n e iωtn/ε

does not commute with the discretization (4.7), up to adding a real constant
to the potential. Thus, the discrete approximations of average values of
observables depend on the gauging of the potential. In other words, the
discretization method is not time-transverse invariant.

4.4. Stability-consistency analysis for (FD) in the semiclassical limit

The consistency-stability concept of classical numerical analysis provides a
framework for the convergence analysis of finite difference discretizations
of linear partial differential equations. Thus, for ε > 0 fixed it is easy to
prove that the scheme (4.7) is convergent of order N in space and order 2 in
time if the exact solution uε(t, x) is sufficiently smooth. Therefore, again for
fixed ε > 0, we conclude convergence of the same order for average-values
of physical observables provided a(x, ξ) is smooth.

However, due to the oscillatory nature solutions to (4.1) the local dis-
cretization error of the finite difference schemes and, consequently, also the
global discretization error, in general tend to infinity as ε → 0. Thus, the
classical consistency-stability theory does not provide uniform results in the
classical limit. Indeed, under the reasonable assumption that, for all multi-
indices j1 and j2 ∈ Nd:

∂|j1|+|j2|

∂tj1∂xj2
uε(t, x) ε→0∼ ε−|j1|−j2 in L2(Rd),

locally uniformly in t ∈ R, the classical stability-consistency analysis gives
the following bound for the global L2-discretization error:

O
(

(∆t)2

ε3

)
+O

(
hN

εN+1

)
.

The situation is further complicated by the fact that for any fixed t ∈ R,
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the solution uε(t, ·) of (4.1) and its discrete counterpart uσ
n, in general con-

verge only weakly in L2(Rd) as ε → 0, respectively, σ → 0. Thus, the limit
processes ε → 0, σ → 0 do not commute with the quadratically nonlin-
ear operation (2.5), needed to compute the expectation value of physical
observables a[uε(t)].

In practice, one is therefore interested in finding conditions on the mesh
size h and the time-step ∆t, depending on ε in such a way, that the expec-
tation values of physical observables in discrete form approximate a[uε(t)]
uniformly as ε→ 0. To this end, let tn = n∆t, n ∈ N, and denote

aσ(tn) := 〈a(·, εDx)Wuσ
n, u

σ
n〉.

The function aσ(t), t ∈ R, is consequently defined by piecewise linear inter-
polation of the values aσ(tn). We seek conditions on h, k such that, for all
a ∈ S(Rm

x × Rm
ξ ),

lim
h,∆t→0

(aσ(t)− a[uε(t)]) = 0 uniformly in ε ∈ (0, ε0], (4.9)

and locally uniformly in t ∈ R. A rigorous study of this problem will be
given by using the theory of Wigner measures applied in a discrete setting.
Denoting the Wigner-transformation (on the scale ε) of the finite difference
solution uσ

n by
wσ(tn) := wε[uσ

n]

and defining, as before, wσ(t), for any t ∈ R, by the piecewise linear inter-
polation of wσ(tn), we conclude that (4.9) is equivalent to proving, locally
uniformly in t:

lim
h,∆t→0

(wσ(t)−wε(t)) = 0 in S ′(Rd
x ×Rd

ξ),uniformly in ε ∈ (0, ε0], (4.10)

where wε(t) is the Wigner-transform of the solution uε(t) of (4.1). We shall
now compute the accumulation points of the sequence {wσ(t)}σ as σ → 0.
We shall see that for any given sub-sequence {σn}n∈N, the set of Wigner-
measures of the difference schemes

µ(t) := lim
n→∞

wσn(t),

depends decisively on the relative sizes of ε, h and ∆t. Clearly, in those cases
in which µ = w, where w denotes the Wigner measure of the exact solution
uε(t), the desired property (4.10) follows. On the other hand (4.10) does
not hold if the measures µ and w are different. Such a Wigner measure-
based study of finite difference schemes has been conducted in (Markowich
et al. 1999), (Markowich and Poupaud 1999). The main result given in there
is as follows:

Theorem 4.5. Fix a scale ε > 0 and denote by µ, the Wigner measure of
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the discretization (4.7) as σ → 0. Then it holds:
Case 1. If h/ε→ 0 (or, equivalently, %→∞) and if, either:

(i) ∆t/ε→ 0, then µ satisfies:

∂tµ+ {H,µ} = 0; µ(0, x, ξ) = win(x, ξ)

(ii) ∆t/ε→ ω ∈ R+, then µ solves

∂

∂t
µ+

{ 2
ω

arctan
(ω

2
H
)
, µ
}

= 0; µ(0, x, ξ) = win(x, ξ)

(iii) ∆t/ε→∞ and if in addition there exists C > 0 such that |H(x, ξ)| ≥
C, ∀x, ξ ∈ Rd, then µ is constant in time, i.e.

µ(t, x, ξ) ≡ µin(x, ξ), ∀ t ∈ R.

Case 2. If h/ε→ 1/% ∈ R+, then the assertions (i)-(iii) hold true, with H
replaced by H% defined in (4.6).

The proof of this result proceeds similarly to the derivation of the phase
space Liouville equation (3.7), in the continuous setting. Note that Theorem
4.5 implies that, as ε→ 0, expectation values for physical observables in the
state uε(t), computed via the Crank-Nicolson finite difference scheme, are
asymptotically correct only if both spatial and temporal oscillations of wave-
length ε are accurately resolved.

Remark 4.6. Time-irreversible finite difference schemes, such as the ex-
plicit (or implicit) Euler scheme, behave even worse, as they require ∆t =
o(ε2) in order to guarantee asymptotically correct numerically computed
observables, cf. (Markowich et al. 1999).

5. Time-splitting spectral methods for semiclassical
Schrödinger equations

5.1. Basic setting, first and second order splittings

As have been discussed before, finite difference methods do now perform
well in computing the solution to semiclassical Schrödinger equations. An
alternative is given by time-splitting trigonometric spectral methods which
shall be discussed in this sub-section (see also (McLachlan and Quispel 2002)
for a broad introduction on splitting methods). For the sake of notation, we
shall introduce the method only in the case of one space dimension d = 1.
Generalizations to d > 1 are straightforward for tensor product grids and
the results remain valid without modifications.

In the following, we shall therefore study the one-dimensional version of
equation (2.1), i.e.

iε∂tu
ε = −ε

2

2
∂xxu

ε + V (x)uε; uε(0, x) = uε
in(x), (5.1)



Methods for semiclassical Schrödinger equations 21

for x ∈ [a, b], 0 < a < b < +∞, equipped with periodic boundary conditions

uε(t, a) = uε(t, b), ∂xu
ε(t, a) = ∂xu

ε(t, b), ∀ t ∈ R.

We choose the spatial mesh size ∆x = h > 0 with h = (b − a)/M for some
M ∈ 2N, and a ε-independent time-step ∆t ≡ k > 0. The spatio-temporal
grid-points are then given by

xj := a+ jh, j = 1, . . . ,M, tn := nk, n ∈ N.

In the following, let uε,n
j be the numerical approximation of uε(xj , tn) and

uε,n be the vector with components uε,n
j , for j = 1, . . . ,M .

First-order time-splitting spectral method (SP1)
The Schrödinger equation (5.1) is solved by a splitting method, based on
the following two-steps:

Step 1. From time t = tn to time t = tn+1 first solve the free Schrödinger
equation

iε∂tu
ε +

ε2

2
∂xxu

ε = 0. (5.2)

Step 2. On the same-time interval, i.e. t ∈ [tn, tn+1], solve the ordinary
differential equation (ODE)

iε∂tu
ε − V (x)uε = 0, (5.3)

with the solution obtained from Step 1 as initial data for Step 2. (5.3) can
be solved exactly since |u(t, x)| is left invariant under (5.3),

u(t, x) = |u(0, x)|e iV (x)t.

In Step 1, the linear equation (5.2) will be discretized in space by a (pseudo-
)spectral method (see e.g. (Fornberg 1996) for a general introduction) and
consequently integrated in time exactly. More precisely, one obtains at time
t = tn+1:

u(tn+1, x) ≈ uε,n+1
j = e iV (xj)k/ε uε,∗

j , j = 0, 1, 2, . . . ,M.

with initial value uε,0
j = uε

in(xj), and

uε,∗
j =

1
M

M/2−1∑
`=−M/2

e iεkγ2
` /2 ûε,n

` e iγ`(xj−a),

where γ` = 2πl
b−a and ûε,n

` denoting the Fourier coefficients of uε,n, i.e.

ûε,n
` =

M∑
j=1

uε,n
j e−iγ`(xj−a), ` = −M

2
, . . . ,

M

2
− 1 .
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Note that the only time discretization error of this method is the splitting
error, which is first order in k = ∆t, for any fixed ε > 0.

Strang splitting (SP2)
In order to obtain a scheme which is second order in time (for fixed ε > 0),
one can use the Strang splitting method, i.e. on the time-interval [tn, tn+1]
we compute,

uε,n+1
j = e iV (xj)k/2ε uε,∗∗

j , j = 0, 1, 2, . . . ,M − 1,

where

uε,∗∗
j =

1
M

M/2−1∑
`=−M/2

e iεkγ2
` /2 ûε,∗

` e iγ`(xj−a),

with ûε,∗
` denoting the Fourier coefficients of uε,∗ given by

uε,∗
j = e iV (xj)k/2ε uε,n

j .

Again, the overall time discretization error comes solely from the splitting,
which is now (formally) second order in ∆t = k for fixed ε > 0.

Remark 5.1. Extensions to higher order (in time) splitting schemes can
be found in the literature, see e.g. (Bao and Shen 2005). For rigorous
investigations about the long time error estimates of such splitting schemes
we refer to (Dujardin and Faou 2007a), (Dujardin and Faou 2007b) and the
references given therein.

In comparison to finite difference methods, the main advantage of such
splitting schemes is that they are gauge invariant (cf. the discussion in
Section 4 above). Concerning the stability of the time-splitting spectral
approximations with variable potential V = V (x), one can prove (see (Bao,
Jin and Markowich 2002)) the following lemma, in which we denote U =
(u1, . . . , uM )> and ‖ · ‖l2 the usual discrete l2-norm on the interval [a, b], i.e.

‖U‖l2 =

b− a

M

M∑
j=1

|uj |2
1/2

.

Lemma 5.2. The time-splitting spectral schemes (SP1) and (SP2) are un-
conditionally stable, i.e. for any mesh size h and any time-step k, it holds:

‖U ε,n‖l2 = ‖U ε,0‖l2 ≡ ‖U ε
in‖l2 , n ∈ N,

and consequently

‖uε,n
int ‖L2(a,b) = ‖uε,0

int‖L2(a,b), n ∈ N,
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where uε,n
int denotes the trigonometric polynomial interpolating

{(x1, u
ε,n
1 ), (x1, u

ε,n
1 ), . . . , (xM , u

ε,n
M )}.

In other words, time-splitting spectral methods satisfy mass-conservation on
a fully discrete level.

5.2. Error estimate of (SP1) in the semiclassical limit

To get a better understanding of the stability of spectral methods in the clas-
sical limit ε → 0, we shall establish the error estimates for (SP1). Assume
that the potential V (x) is (b− a)-periodic, smooth, and satisfies∥∥∥ dm

dxm
V
∥∥∥

L∞[a,b]
≤ Cm, (A)

for some constant Cm > 0. Under this assumptions it can be shown that the
solution uε = uε(t, x) of (5.1) is (b − a) periodic and smooth. In addition,
we assume ∥∥∥ ∂m1+m2

∂tm1∂xm2
uε
∥∥∥

C([0,T ];L2[a,b])
≤ Cm1+m2

εm1+m2
, (B)

for all m,m1, m2 ∈ N ∪ {0}. Thus, we assume that the solution oscillates
in space and time with wavelength ε, but not smaller.

Remark 5.3. The latter is known to be satisfied if the initial data uε
in only

invokes oscillations of wavelength ε (but not smaller).

Theorem 5.4. Let V (x) satisfy assumption (A) and uε(t, x) be a solu-
tion of (5.1) satisfying (B). Denote by uε,n

int the interpolation of the discrete
approximation obtained via (SP1). Then, if

∆t
ε

= O(1),
∆x
ε

= O(1),

as ε→ 0, we have that for all m ∈ N and tn ∈ [0, T ] :∥∥uε(tn)− uε,n
int

∥∥
L2(a,b)

≤ Gm
T

∆t

(
∆x

ε(b− a)

)m

+
CT∆t
ε

, (5.4)

where C > 0 is independent of ε and m and Gm > 0 is independent of ε,
∆x, ∆t.

The proof of this theorem is given in (Bao et al. 2002), where a similar result
is also shown for (SP2). Now, let
Dt > 0 be a desired error bound such that

‖uε(tn)− uε,n
int ‖L2[a,b] ≤ δ,



24 S. Jin and P. Markowich and C. Sparber

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Figure 5.2. Numerical solution of ρε (left) and jε (right) at t = 0.54 as
given in Example 5.5. In the picture the solution computed by using SP2
for ε = 0.0008, h = 1

512 , is superimposed with the limiting ρ and j,
obtained by taking moments of the Wigner measure solution of (3.8).

holds, uniformly in ε. Then Theorem 5.4 suggests the following meshing
strategy on O(1)-time and space intervals:

∆t
ε

= O (δ) ,
∆x
ε

= O
(
δ1/m(∆t)1/m

)
, (5.5)

where m ≥ 1 is an arbitrary integer, assuming that Gm does not increase too
fast as m→∞. This meshing is already more efficient than what is needed
for finite differences. In addition, as will be seen below, the conditions
(5.5) can be strongly relaxed if, instead of resolving the solution uε(t, x),
one is only interested in the accurate numerical computation of quadratic
observable densities (and thus asymptotically correct expectation values).

Example 5.5. This is an example from (Bao et al. 2002). The Schrödinger
equation (2.1) is solved with V (x) = 10 and the initial data

ρin(x) = exp(−50(x− 0.5)2) ,
Sin(x) = −1

5 ln(exp(5(x− 0.5)) + exp(−5(x− 0.5))), x ∈ R .

The computational domain is restricted to [0, 1] equipped with periodic
boundary conditions. Figure 5.2 shows the solution of the limiting position
density ρ and current density j obtained by taking moments of w, satisfying
the Liouville equation (3.8). This has to be compared with the oscillatory
ρε and jε, obtained by solving the Schrödinger equation (2.1) using SP2. As
one can see these oscillations are average out in the weak limits ρ, j.
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5.3. Accurate computation of quadratic observable densities using
time-splitting

We shall again invoke the theory of Wigner functions and Wigner measures.
To this end, let uε(t, x) be the solution of (5.1) and wε(t, x, ξ) the corre-
sponding Wigner transform. Having in mind the results of Section 3, we
see that the first order splitting scheme (SP1), corresponds to the following
time-splitting scheme for the Wigner equation (3.2):

Step 1. For t ∈ [tn, tn+1], first solve the linear transport equation

∂tw
ε + ξ ∂xw

ε = 0 . (5.6)

Step 2. On the same time-interval, solve the non-local (in space) ordinary
differential equation

∂tw
ε −Θε[V ]wε = 0 , (5.7)

with initial data obtained from Step 1 above.

In (5.6), the only possible ε-dependence stems from the initial data. In
addition, in (5.7) the limit ε → 0 can be easily carried out (assuming suf-
ficient regularity of the potential V (x)) with k = ∆t fixed. In doing so,
one consequently obtains a time-splitting scheme of the limiting Liouville
equation (3.8) as follows:

Step 1. For t ∈ [tn, tn+1] solve

∂tw + ξ ∂xw
0 = 0.

Step 2. Using the outcome of Step 1 as initial data, solve, on the same
time-interval:

∂tw − ∂xV ∂ξw
0 = 0.

Note that in this scheme no error is introduced other than the splitting
error, since the time-integrations are performed exactly.

These considerations, which can easily be made rigorous (for smooth po-
tentials), show that a uniform time-stepping (i.e. an ε-independent k = ∆t)
of the form

∆t = O(δ)

combined with the spectral mesh-size control given in (5.5) yields the fol-
lowing error

‖wε(tn)− wε,n
int ‖L2(a,b) ≤ δ,

uniformly in ∆t as ε → 0. Essentially this implies that a fixed number
of grid points in every spatial oscillation of wavelength ε combined with



26 S. Jin and P. Markowich and C. Sparber

ε-independent time-stepping is sufficient, to guarantee the accurate compu-
tation of (expectation values of) physical observables in the classical limit.
This strategy is therefore clearly superior to finite difference schemes, which
require k/ε → 0 and h/ε → 0, even if one only is interested in computing
physical observables.

Remark 5.6. Time-splitting methods have been proved particularly suc-
cessful in nonlinear situations, see the references given in Section 15.4 below.

6. Moment closure methods

We have seen before that a direct numerical calculation of uε is numeri-
cally very expensive, in particular in higher dimensions, due to the mesh
and time step constraint (5.5). In order to circumvent this problem, the
asymptotic analysis presented in Sections 2 and 3 can be invoked in order to
design asymptotic numerical methods which allow for an efficient numerical
simulation in the limit ε→ 0.

The initial value problem (3.8)-(3.9) is the starting point of the numerical
methods to be described below. Most recent computational methods are
derived from, or closely related to, this equation. The main advantage is
that (3.8)-(3.9) correctly describes the limit of quadratic densities of uε

(which in itself exhibits oscillations of wave-length O(ε)) and thus allows a
numerical mesh size independent of ε. However, we are facing the following
major difficulties in the numerical approximation:

(i) High dimensionality : The Liouville equation (3.8) is defined in phase
space, thus the memory requirement exceeds the current computational
capability in d ≥ 3 spatial dimensions.

(ii) Measure valued initial data: The initial data (3.9) is a delta measure
and the solution at later time remains one (for single-valued solution) or
summation of several delta functions (for multivalued solution (3.10)).

In the past few years, several new numerical methods have been intro-
duced to overcome these difficulties. In the following, we shall briefly de-
scribe the basic ideas in these methods.

6.1. The concept of multi-valued solutions

In order to overcome the problem of high dimensionality one aims to approx-
imate w(t, x, p) by using averaged quantities depending only on t, x. This
is a well-known technique in classical kinetic theory, usually referred to as
moment closure. A basic example for it is provided by the result of Theorem
3.4, which tells us that, as long as the WKB analysis of Section 2.2 is valid
(i.e. before the appearance of the first caustic), the Wigner measure is given
by a mono-kinetic distribution on phase space, i.e.

w(t, x, ξ) = ρ(t, x)δ(ξ − v(t, x))
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where one identifies ρ = |a|2 and v = ∇S. The latter solve the pressure-less
Euler system

∂tρ+ div(ρv) = 0, ρ(0, x) = |ain|2(x),
∂tv + (v · ∇)v +∇V = 0, v(0, x) = ∇Sin(x),

(6.1)

which, for smooth solutions, is equivalent to the system of transport equation
(2.14) coupled with the Hamilton-Jacobi equation (2.12), obtained through
the WKB approximation. Thus instead of solving the Liouville equation on
phase space, one can as well solve the system (6.1) which is posed on physical
space Rt×Rd

x. Of course, this can only be done until the appearance of the
first caustic, or, equivalently, the emergence of shocks in (6.1).

In order to go beyond that one might be tempted to use numerical meth-
ods based on the unique viscosity solution, cf. (Crandall and Lions 1983),
for (6.1). However, the latter does not provide the correct asymptotic
description–the multivalued solution– of the wave function uε(t, x) beyond
caustics. instead, one has to pass to so-called multi-valued solutions, based
on higher order moment closure methods. This fact is illustrated in Fig.
6.3, which shows the difference between viscosity solutions and multivalued
solutions. The top figures are the two different solutions for the following
eiconal equation (in fact, the zero level set of S):

∂tS + |∇xS| = 0 , x ∈ R2. (6.2)

This equation, corresponding to H(ξ) = |ξ|, arises in the geometric optics
limit of the wave equation and models two circular fronts moving outward
in the normal direction with speed 1, cf. (Osher and Sethian 1988). As
one can see the main difference occurs when the two fronts merge. Simi-
larly, the bottom figures shows the difference between the viscosity and the
multivalued solution to the Burgers equation

∂tv +
1
2
∂xv

2 = 0 , x ∈ R. (6.3)

This is nothing but the second equation in the system (6.1) for V (x) = 0
and written in divergence form. The solution begins as a sinusodial function
and then forms a shock. Clearly, the solutions are different after the shock
formation.

6.2. Moment-closure

The moment closure idea was first introduced by (Brenier and Corrias 1998)
in order to define multi-valued solutions to Burgers’ equation and seems to
be the natural choice in view of the multi-phase WKB expansion given
in (2.21). The method has then been used numerically in (Engquist and
Runborg 1996) (see also (Engquist and Runborg 2003) for a broad review)
and (Gosse 2002) to study multivalued solutions in the geometrical optics
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Eikonal equation

Burgers equation

Multivalue solution Viscosity solution

Figure 6.3. Multivalued solution (left) vs. viscosity solution (right). Top
figures are the zero level set curves (at different times) of solutions to the
eiconal equation (6.2). The bottom figures are the two solutions to the
Burgers’ equation (6.3) before and after the formation of a shock.

regime of hyperbolic wave equations. A closely related method is given in
(Benamou 1999), where a direct computation of multi-valued solutions to
Hamilton-Jacobi equations is performed. For the semiclassical limit of the
Schrödinger equation, this was done in (Jin and Li 2003) and then (Gosse
et al. 2003).

In order to describe the basic idea, let d = 1 and define

m`(t, x) =
∫

R
ξ`w(t, x, ξ) dξ , ` = 1, 2, . . . , L ∈ N, (6.4)

i.e. the `-th moment (in velocity) of the Wigner measure. By multiplying
the Liouville equation (3.8) by ξ` and integrating over Rξ, one obtains the
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following moment system

∂tm0 + ∂xm1 = 0,
∂tm1 + ∂xm2 = −m0∂xV,

. . . . . . . . .

∂tmL−1 + ∂xmL = −(L− 1)mL−2∂xV.

Note that this system is not closed, since the equation determining the `-th
moment involves the (`+ 1)-st moment.

The δ-closure
As already mentioned in (3.10), locally away from caustics the Wigner mea-
sure of uε as ε→ 0 can be written as

w(t, x, ξ) =
J∑

j=1

ρj(t, x)δ(ξ − vj(t, x)) , (6.5)

where the number of velocity branches J in principle can be determined
a-priori from ∇Sin(x). For example, in d = 1, it is the total number of
inflection point of v(0, x), see (Gosse et al. 2003). Using this particular form
(6.5) of w with L = 2J provides a closure condition for the moment system
above. More, precisely, one can express the last moment m2J as a function
of allof the lower order moments (Jin and Li 2003), i.e.

m2J = g(m0,m1, . . . ,m2J−1) (6.6)

This consequently yields a system of 2J × 2J equations (posed in physical
space), which effectively provides a solution of the Liouville equation, before
the generation of a new phase, yielding a new velocity vj , j > J . It was
shown in (Jin and Li 2003) that this system is only weakly hyperbolic, in the
sense that the Jacobian matrix of the flux is a Jordan Block, with only J
distinct eigenvalues v1, v2, . . . , vJ . This system is equivalent to J pressure-
less gas equations (6.1) for (ρj , vj) respectively. In (Jin and Li 2003) the
explicit flux function g in (6.6) was given for J ≤ 5. For larger J a numerical
procedure was proposed for evaluating g.

Since the moment system is only weakly hyperbolic, with phase jumps
which are under-compressive shocks (Gosse et al. 2003), standard shock cap-
turing schemes such as the Lax-Friedrichs scheme and the Godunov scheme
face severe numerical difficulties as in the computation of the pressure-less
gas dynamics, cf. (Bouchut, Jin and Li 2003), (Engquist and Runborg 1996),
or (Jiang and Tadmor 1998). Following the ideas of (Bouchut et al. 2003)
for the pressure-less gas system, a kinetic scheme derived from the Liouville
equation (3.8) with the closure condition (6.6), was used in (Jin and Li 2003)
for this moment system.
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The Heaviside closure
Another type of closure was introduced by Brenier and Corrias (Brenier and
Corrias 1998) using the following ansatz, called H-closure:

w(t, x, ξ) =
J∑

j=1

(−1)j−1H(vj(t, x)− ξ) , (6.7)

to obtain the J-branch velocities vj , with j = 1, . . . , J . This type of
closure-condition for (3.8) arises from an entropy-maximization principle,
see (Levermore 1996). Using (6.7) one arrives at (6.6) with L = J . The
explicit form of the corresponding function g(m0, . . . ,m2J−1) for J < 5 is
available analytically in (Runborg 2000). Note that this method decouples
the computation of velocities vj from the densities ρj . In fact, to obtain the
latter, (Gosse 2002) has proposed to solve the following linear conservation
law (see also (Gosse and James 2002) and (Gosse et al. 2003)):

∂tρj + ∂x(ρjvj) = 0, for j = 1, . . . , N .

The numerical approximation to this linear transport with variable or even
discontinuous flux is not straightforward. In (Gosse et al. 2003) a semi-
Lagrangian method that uses the method fo characteristics was used, requir-
ing the time step to be sufficiently small for the case of non-zero potentials.

The corresponding method is usually referred to as H-closure. Note that
in d = 1 the H-closure system is a non-strictly rich hyperbolic system,
whereas the δ-closure system described before is only weakly hyperbolic.
Thus one expects a better numerical resolution from theH-closure approach,
which, however, is much harder to implement in the higher dimension. In
d = 1, the mathematical equivalence of the two moment systems was proved
in (Gosse et al. 2003).

Remark 6.1. Multivalued solutions also arise in the high-frequency ap-
proximation of nonlinear waves, for example, in the modeling of electron
transport in vacuum electronic devices, see e.g. (Granastein, Parker and
Armstrong 1999). There the underlying equations are the Euler-Poisson
equations, which is a nonlinearly coupled hyperbolic-elliptic system. The
multivalued solution of the Euler-Poisson system also arises for electron
sheet initial data and can be characterized by a weak solution of the Vlasov-
Poission equation, see (Majda, Majda and Zheng 1994). Similarly, the
work of (Li, Wohlbier, Jin and Booske 2004) uses the moment closure
ansatz (6.6) for the Vlasov-Poisson system, see also (Wohlbier, Jin and
Sengele 2005). For multivalued (or multiphase) solution of the semiclas-
sical limit of nonlinear dispersive waves using the closely related method of
Whitham’s modulation theory we refer to (Whitham 1974), (Flaschka, For-
est and McLaughlin 1980). Finally, we mention that multivalued solutions
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also arise in supply chain modeling, see, e.g, (Armbruster, Marthaler and
Ringhofer 2003).

In summary, the moment closure approach yields an Eulerian method
defined in the physical space which offers a greater efficiency compared to
the computation on phase space. However, when the number of phases
J ∈ N becomes very large and/or in dimensions d > 1, the moment systems
become very complex and thus difficult to solve. In addition, in high space
dimension, it is very difficult to estimate a-priori the total number of phases
needed to construct the moment system. Thus it remains an interesting
and challenging open problem to develop more efficient and general physical
space based numerical methods for the multivalued solutions.

7. Level-set methods

7.1. Eulerian approach

Level-set methods have been recently introduced for computing multi-valued
solutions in the context of geometric optics and semiclassical analysis. These
methods are rather general and applicable to any (scalar) multi-dimensional
quasilinear hyperbolic system or Hamilton-Jacobi equation (see below). We
shall now review the basic ideas, following the lines of (Jin and Osher 2003).
The original mathematical formulation is classical, see for example (Courant
and Hilbert 1962).

Computation of the multi-valued phase
Consider a general d-dimensional Hamilton-Jacobi equation of the form

∂tS +H(x,∇S) = 0; S(0, x) = Sin(x). (7.1)

For example, in present context of semiclassical analysis for Schrödinger
equations,

H(x, ξ) =
1
2
|ξ|2 + V (x),

while for applications in geometrical optics (i.e. the high frequency limit of
the wave equation)

H(x, ξ) = c(x)|ξ|,
with c(x) denoting the local sound (or wave) speed. Introducing, as before,
a velocity v = ∇S and taking the gradient of (7.1) one gets an equivalent
equation (at least for smooth solutions) in the form (Jin and Xin 1998):

∂tv + (∇ξH(x, v) · ∇)v +∇xH(x, v) = 0; v(0, x) = ∇xSin(x). (7.2)

Then, in d ≥ 1 spatial dimensions, define level-set functions φj , for j =
1, . . . , d, via

∀(t, x) ∈ R× Rd : φj(t, x, ξ) = 0 at ξ = vj(t, x) .
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In other words, the (intersection of the) zero level-sets of all {φj}d
j=1 yields

the graph of the multivalued solution vj(t, x) of (7.2). Using (7.2) it is easy
to see that φj solves the following initial value problem:

∂tφj + {H(x, ξ), φj}φj = 0; φj(x, ξ, 0) = ξj − vj(0, x) , (7.3)

which is nothing but the phase space Liouville equation. Note that in con-
trast to (7.2), this equation is linear and thus can be solved globally in-
time. In doing so, one obtains, for all t ∈ R, the multi-valued solution to
(7.2), needed in the asymptotic description of physical observables. See also
(Cheng, Liu and Osher 2003).

Computation of the particle density
It remains to compute the classical limit of the particle density ρ(t, x). To do
so, a simple idea was introduced in (Jin, Liu, Osher and Tsai 2005a). This
method is equivalent to a decomposition of the measure-valued initial data
(3.9) for the Liouville equation. More precisely, a simple argument based on
the method of characteristics (see (Jin, Liu, Osher and Tsai 2005b)), shows
that the solution to (3.8)-(3.9) can be written as

w(t, x, ξ) = ψ(t, x, ξ)
d∏

j=1

δ(φj(t, x, ξ)) ,

where φj(t, x, ξ) ∈ Rn, j = 1, . . . , d, solves (7.3) and the auxiliary function
ψ(t, x, ξ) again satisfies the Liouville equation (3.8), subject to initial data:

ψ(0, x, ξ) = ρin(x)

The first two moments of w w.r.t. ξ (corresponding to the particle ρ and
current-density J = ρu) can then be recovered through

ρ(t, x) =
∫

Rd

ψ(t, x, ξ)
d∏

j=1

δ(φj(t, x, ξ)) dξ,

u(t, x) =
1

ρ(t, x)

∫
Rd

ξψ(t, x, ξ)
d∏

j=1

δ(φj(t, x, ξ)) dξ.

Thus the only time one has to deal with the delta measure is at the numerical
output, while during the time-evolution one simply solves for φj and ψ, both
of which are smooth L∞-functions. This avoids the singularity problem
mentioned earlier, and gives numerical methods with much better resolution
than solving directly (3.8), (3.9), e.g., by approximating the initial delta-
function numerically. An additional advantage of this level-set approach
is that one only needs to care about the zero level-sets of φj . Thus the
technique of local level-set methods developed in (Adalsteinsson and Sethian
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1995) and (Peng, Merriman, Osher, Zhao and Kang 1999) can be used. One
thereby restricts the computational domain to a narrow band around the
zero level set, in order to reduce the computational cost to O(N lnN), for
N computational points in the physical space. This is an nice alternative
for dimension reduction of the Liouville equation. When solutions for many
initial data need to be computed, fast algorithms can be used, see (Fomel
and Sethian 2002), or (Ying and Candès 2006).

Example 7.1. This example is from (Jin et al. 2005b). Consider (2.1) in
d = 1 with periodic potential V (x) = cos(2x+ 0.4)) , and WKB initial data
corresponding to

Sin(x) = sin(x+ 0.15),

ρin(x) =
1

2
√
π

[
exp

(
−
(
x+

π

2

)2
)

+ exp
(
−
(
x− π

2

)2
)]

.

Figure 7.4 shows the time-evolution of the velocity and the corresponding
density computed by the level set method described above. The velocity
eventually develops some small oscillations with higher frequency, which
require a finer grid to resolve.

Remark 7.2. The outlined ideas has been extended to general linear sym-
metric hyperbolic systems in (Jin et al. 2005a). So far, however, level-set
methods have not been formulated for nonlinear equations, except for the
one-dimensional Euler-Poisson equations (Liu and Wang 2007), where a
three-dimensional Liouville equation has to be used in order to calculate
the corresponding one-dimensional multivalued solutions.

7.2. The Lagrangian phase flow method

While the Eulerian level-set method is based on solving the Liouville equa-
tion (3.8) on a fixed mesh, the Lagrangian (or particle) method, is based on
solving the Hamiltonian system (3.6), which is nothing but the characteristic
flow of the Liouville equation (3.7). In geometric optics this idea is referred
to as ray tracing, cf. (Cervený 2001), and the curves x(t, y, ζ), ξ(t, y, ζ) ∈ Rd

obtained by solving (3.6), are usually called bi-characteristics.

Remark 7.3. Note that finding an efficient way to numerically solve Hamil-
tonian ODEs, such as (3.6), is a problem of great (numerical) interests in
its own right, see, e.g., (Leimkuhler and Reich 2004).

Here we shall briefly describe a fast algorithm, called the phase flow
method in (Ying and Candès 2006), which is very efficient if multiple initial
data, as it is often the case in practical applications, are to be propagated
by the Hamiltonian flow (3.6). Let Ft : R2d → R2d be the phase flow defined
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Figure 7.4. Example 7.1. The left column shows the multivalued velocity v
at time T = 0.0, 6.0, and 12.0. The right column shows the corresponding
density ρ.
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by
Ft(y, ζ) = (x(t, y, ζ), ξ(t, y, ζ)), t ∈ R.

A manifold M ⊂ Rd
x × Rd

ξ is said to be invariant if Ft(M) ⊂ M. For the
autonomous ODEs, such as (3.6), a key property of the phase map is the
one parameter group structure, Ft ◦ Fs = Ft+s.

Instead of integrating (3.6) for each individual initial condition (y, ζ), up
to, say, time T the phase flow method constructs the complete phase map
FT . To this end, one first constructs the Ft for small times using standard
ODE integrators and then builds up the phase map for larger times via a
local interpolation scheme together with the group property of the phase
flow. Specifically, fix a small time τ > 0 and suppose that T = 2nτ .

Step 1. Begin with a uniform or quasi-uniform grid on M.

Step 2. Compute an approximation of the phase map Fτ at time τ . The
value of Fτ at each grid point is computed by applying a standard ODE or
Hamiltonian integrator with a single time step of length τ . The value of Fτ

at any other point is defined via a local interpolation.

Step 3. For k = 1, . . . , n, construct F2kτ using the group relation F2kτ =
F2k−1τ ◦ F2k−1τ . Thus, for each grid point (y, ζ),

F2kτ (y, ζ) = F2k−1τ (F2k−1τ (y, ζ))

while F2kτ is defined via a local interpolation at any other point.

When the algorithm terminates, one obtains an approximation of the
whole phase map at time T = 2nτ . This method is clearly much faster than
solving each for initial condition, independently.

8. Gaussian beam methods - Lagrangian approach

A common numerical problem with all numerical approaches based on the
Liouville-equation with mono-kinetic initial data (3.8), (3.9), is that the
particle density ρ(t, x) blows up at caustics. Another problem is the loss of
phase information when passing through a caustic point, i.e. the loss of the
Keller-Maslov index (Maslov 1981). To this end, we recall that the Wigner
measure only sees the gradient of the phase, see (3.10). The latter can be
fixed by incorporating this index into a level-set method as it was done in
(Jin and Yang 2008)). Nevertheless, one still faces the problem that any
numerical method based on the Liouville equation is unable handle wave
interference effects. The Gaussian beam method (or Gaussian wave packet
approach, as it is called in quantum chemistry, cf. (Heller 2006)), is an
efficient approximate method that allows an accurate computation of the
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wave amplitude around caustics, and in addition captures the desired phase
information. This, by now, classical method has been developed in (Popov
1982), (Ralston 1982) and (Hill 1990), and has seen increasing activities in
recent years. In the following, we shall describe the basic ideas, starting
with its classical Lagrangian formulation.

8.1. Lagrangian dynamics of Gaussian beams

Similar to the WKB method, the approximate Gaussian beam solution is
given in the form

ϕε(t, x, y) = A(t, y)e iT (t,x,y)/ε, (8.1)

where the variable y = y(t, y0) will be determined below and the phase
T (t, x, y) is given

T (t, x, y) = S(t, y) + p(t, y) · (x− y) +
1
2
(x− y)>M(t, y)(x− y) +O(x− y|3).

This is reminiscent of the Taylor expansion of the phase S around the point
y, upon identifying p = ∇S ∈ Rd, M = ∇2S, the Hessian matrix. The
idea is now to allow the phase T so be complex-valued (in contrast to WKB
analysis) and choose the imaginary part of M ∈ Cn×n positive definite so
that (8.1) has indeed a Gaussian profile.

Plugging the ansatz (8.1) into the Schrödinger quation (2.1), and ignoring
the higher order terms in both ε and (y−x), one obtains the following system
of ODEs:

dy
dt

= p,
dp
dt

= −∇yV, (8.2)

dM

dt
= −M2 −∇2

yV, (8.3)

dS
dt

=
1
2
|p|2 − V,

dA
dt

= −1
2
(
Tr(M)

)
A, (8.4)

where p, V,M, S and A have to be understood as functions of (t, y(t, y0)).
The latter defines the center of a Gaussian beam. The equations (8.2)-(8.4)
can be considered as the the Lagrangian formulation of the Gaussian beam
method, with (8.2) furnishing a classical the ray-tracing algorithm. We
further note that (8.3) is a Riccati equation for M . We the main properties
of (8.3), (8.4) in the following Theorem, the proof of which can be found in
(Ralston 1982) (see also (Jin, Wu and Yang 2008b)):

Theorem 8.1. Let P (t, y(t, y0)) and R(t, y(t, y0)) be the (global) solutions
of the equations

dP

dt
= R,

dR

dt
= −(∇2

yV )P, (8.5)
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with initial conditions

P (0, y0) = Id, R(0, y0) = M(0, y0), (8.6)

where Id is the identity matrix and Im(M(0, y0)) is positive definite. Assume
that M(0, y0) is symmetric. Then, for each initial position y0, it holds:

(i) P (t, y(t, y0)) is invertible for all t > 0.
(ii) The solution to equation (8.3) is given by

M(t, y(t, y0)) = R(t, y(t, y0))P−1(t, y(t, y0)) (8.7)

(iii) M(t, y(t, y0)) is symmetric and Im(M(t, y(t, y0))) is positive definite for
all t > 0.

(iv) The Hamiltonian H = 1
2 |p|

2 + V is conserved along the y-trajectory as
is (A2 detP ), i.e. A(t, y(t, y0)) can be computed via

A(t, y(t, y0)) =
(
(detP (t, y(t, y0)))−1A2(0, y0)

)1/2
, (8.8)

where the square root is taken as the principle value.

In particular, since (A2 detP ) is a conserved quantity, we infer that A does
not blow up along the time-evolution (provided it initially bounded).

8.2. Lagrangian Gaussian beam summation

It should be noted that a single Gaussian beam given by (8.1) is not an
asymptotic solution of (2.1), since its L2(R2d) norm goes to zero, in the
classical limit ε→ 0. Rather, one needs to sum over several Gaussian beams,
the number of which is O(ε−1/2). This is referred to as the Gaussian beam
summation, see for example (Hill 1990). In other words, one first needs to
approximate a given initial data through Gaussian beam profiles. For WKB
initial data (2.18), a possible way to do so, is given by the next theorem
proved by (Tanushev 2008).

Theorem 8.2. Let the initial data be given by

uε
in(x) = ain(x)e iSin(x)/ε,

with ain ∈ C1(Rd) ∩ L2(Rd) and Sin ∈ C3(Rd), and define

ϕε(x, y0) = ain(y0)e iT (x,y0)/ε,

where

T (x, y0) = Tα(y0) + Tβ · (x− y0) +
1
2
(x− y0)>Tγ (x− y0),

Tα(y0) = Sin(y0) , Tβ(y0) = ∇xSin(y0) , Tγ(y0) = ∇2
xSin(y0) + iId .

Then ∥∥∥uε
in − (2πε)−d/2

∫
Rd

rθ(· − y0)ϕε(·, y0) dy0

∥∥∥
L2
≤ Cε

1
2 ,
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where rθ ∈ C∞0 (Rd), rθ ≥ 0 is a truncation function with rθ ≡ 1 in a ball of
radius θ > 0 around the origin and C is a constant related to θ.

In view of Theorem 8.2, one can specify the initial data for (8.2)-(8.4) as

y(0, y0) = y0, p(0, y0) = ∇xSin(y0), (8.9)

M(0, y0) = ∇2
xSin(y0) + i Id, (8.10)

S(0, y0) = Sin(y0), A(0, y0) = ain(y0). (8.11)

Then, the the Gaussian beam solution approximating the exact solution of
(2.1) is given by

uε
G(t, x) = (2πε)−d/2

∫
Rd

rθ(x− y(t, y0))ϕε(t, x, y(t, y0)) dy0.

In discretized form this reads

uε
G(t, x) ≈ (2πε)−d/2

Ny0∑
j=1

rθ(x− y(t, yj
0))ϕ

ε(t, x, yj
0)∆y0,

where the yj
0 are equidistant mesh points, and Ny0 is the number of the

beams initially centered at yj
0.

Remark 8.3. Note that the cut-off error introduced via rθ becomes large
when the truncation parameter θ is taken too small. On the other hand, a
big θ for wide beams makes the error in the Taylor expansion of T large. As
far as we know, it is still an open mathematical problem to determine an
optimal size of θ when beams spread. However, for narrow beams one can
take a fairly large θ which makes the cut-off error almost zero. For example,
a one-dimensional constant solution can be approximated through

1 =
∫

R

1√
2πε

exp
(
−(x− y0)2

2ε

)
dy0 ≈

∑
j

∆y0√
2πε

exp

(
−(x− yj

0)
2

2ε

)
,

in which rθ ≡ 1.

8.3. Higher order Gaussian beams

The above Gaussian beam method can be extended to higher order in ε, see
(Tanushev 2008), (Jin et al. 2008b), (Liu and Ralston 2010). For notational
convenience we shall only consider the case d = 1. Consider the Schrödinger
equation (2.1) with initial data

uε
in(x) = e iSin(x)/ε

N∑
j=0

εjaj(x), x ∈ R.
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Let a ray y(t, y0) start at a point y0 ∈ R. Expand Sin(x) in a Taylor series
around y0:

Sin(x) =
k+1∑
β=0

Sβ(y0)(x− y0)β +O(|x− y0|β+1) .

Then, a single k-th order Gaussian beam takes the form

ϕε
k(t, x, y) =

[k/2]−1∑
j=1

εjAj(t, y)e iT (t,x,y)/ε

where the phase is given by

T (t, x, y) = T0(t, y)+p(t, y)(x−y)+
1
2
M(t, y)(x−y)2+

k+1∑
β=3

1
β!
Tβ(t, y)(x−y)β

and the amplitude reads

Aj =
k−2j−1∑

β=0

1
β!
Aj,β(t, y)(x− y)β .

Here the bi-characteristic curves (y(t, y0), p(t, y(t, y0))) satisfy the Hamilto-
nian system (8.2) with initial data

y(0, y0) = y0 , p(0, y0) = ∂yS0(y0)

In addition, the equations for the phase coefficients along the bi-characteristic
curves are given by

dT0

dt
=
p2

2
− V,

dM
dt

= −M2 − ∂2
yV,

dTβ

dt
= −

β∑
γ=2

(β − 1)!
(γ − 1)!(β − γ)!

TγTβ−γ+2 − ∂β
y V ,

for β = 3, . . . , k+1. These equations are equipped with the following initial
data

T0(0, y0) = S0(y0) , M(0, y0) = ∂2
yS0(y0) + i Id, Tβ(0, y0) = Sβ(y0) .

Finally, the amplitude coefficients are obtained recursively by solving the
transport equations for Aj,β with β ≤ k − 2j − 1, starting from

dA0,0

dt
= −1

2
Tr(M(t, z))A0,0 (8.12)
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with initial data

Aj,β(0, y0) = aβ(y0)

In d = 1, the k-th order Gaussian beam superposition is thus formed by

uε
G,k(t, x) = (2πε)−1/2

∫
R
rθ(x− y(t, y0))ϕε

k(t, x, y(t, y0)) dy0 (8.13)

where, as before, rθ ∈ C∞0 (R; R), is some cut-off function. For this type
of approximation, the following theorem was proved in (Liu, Runborg and
Yanushev n.d.):

Theorem 8.4. If uε(t, x) denotes the exact solution to the Schrödinger
equation (2.1) and uε

G,k is the k-th order Gaussian bean superposition, then

sup
|t|<T

‖uε(t, ·)− uε
G,k(t, ·)‖ ≤ C(T )εk/2, (8.14)

for any T > 0.

9. Gaussian beam methods - Eulerian approach

9.1. Eulerian dynamics of Gaussian beams

The Gaussian beam method can be reformulated in an Eulerian framework.
To this end, let us first define the linear Liouville operator as

L = ∂t + ξ · ∇y −∇yV · ∇ξ.

In addition, we shall denote

Φ := (φ1, . . . , φd),

where φj is the level set function defined in (7.1) and (7.3). Using this, it
was shown in (Jin et al. 2005b) and (Jin and Osher 2003), that one can
obtain from the original Lagrangian formulation (8.2)-(8.4), the following
(inhomogeneous) Liouville equations for velocity, phase and amplitude, re-
spectively:

LΦ = 0, (9.1)

LS =
1
2
|ξ|2 − V, (9.2)

LA =
1
2
Tr
(
(∇ξΦ)−1∇yΦ

)
A. (9.3)

In addition, if one introduces the following new quantity, cf. (Jin et al.
2005b):

f(t, y, ξ) = A2(t, y, ξ)det(∇ξΦ),
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then f(t, y, ξ) again satisfies the Liouville equation, i.e.

Lf = 0. (9.4)

Two more inhomogeneous Liouville equations, which are the Eulerian ver-
sion of (8.5) for P and R, were introduced in (Leung, Qian and Burridge
2007) to construct the Hessian matrix. More precisely, one finds

LR = −(∇2
yV )P, (9.5)

LP = R. (9.6)

Note that the equations (9.1)–(9.4) are real, while (9.5) and (9.6) are complex
and consist of 2n2 equations.

Gaussian beam dynamics using complex level set functions
In (Jin et al. 2008b) the following observation was made. Taking the gradient
of the equation (9.1) with respect to y and ξ separately, one has

L(∇yΦ) = ∇2
yV∇ξΦ, (9.7)

L(∇ξΦ) = −∇yΦ, (9.8)

Comparing (9.5), (9.6) with (9.7), (9.8), one observes that −∇yΦ and ∇ξΦ
satisfy the same equations as R and P , respectively. Since the Liouville
operator is linear, one can allow Φ to be complex-valued and impose for
−∇yΦ, ∇ξΦ the same initial conditions as for R and P , respectively. By
doing so,

R = −∇xΦ, P = ∇ξΦ .

holds true for any time t ∈ R. In view of (8.6) and (8.10), this suggests the
following initial condition for Φ:

Φ0(y, ξ) = −iy + (ξ −∇yS0). (9.9)

With this observation, now one can solve (9.1) for complex Φ, subject to
initial data (9.9). Then the matrix M can be constructed by

M = −∇yΦ(∇ξΦ)−1 (9.10)

where the velocity v = ∇yS is given by the intersection of the zero-level
contours of the real part of Φ, i.e. for each component φj ,

Re(φj(t, y, ξ)) = 0, at ξ = v(t, y) = ∇yS. (9.11)

Note that in order to compute v, S and M one only needs to solve d
complex-valued homogeneous Liouville equations (9.1). The Eulerian level
set method of (Jin et al. 2008b) (on complex phase space) can then be sum-
marized as follows:

Step 1. Solve (9.1) for Φ complex, with initial condition (9.9) and obtain
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the velocity v by the intersection of the zero-level sets of Reφj , j = 1, . . . , n.

Step 2. Use −∇yΦ and ∇ξΦ to construct M by (9.10) (note that these
quantities are already available from the first step after discretizing the Li-
ouville equation for Φ).

Step 3. Integrate the velocity v along the zero-level sets (Gosse 2002),
(Jin and Yang 2008) to get the phase S. To do so, one performs a numerical
integration following each branch of the velocity. The integration constants
are obtained by the boundary condition and the fact that the multivalued
phase is continuous when passing from one branch to the other. For example,
if one considers a bounded domain [a, b] in d = 1 space dimension, the phase
function is given by

S(t, x) = −V (a)t− 1
2

∫ t

0
v2(τ, a) dτ +

∫ x

a
v(t, y) dy + S(0, a). (9.12)

For more details on this and its extension to higher dimensions, see (Jin and
Yang 2008).

Step 4. Solve (9.4) with the initial condition

f0(y, ξ) = A2
0(y, ξ).

Then amplitude A is given by

A = (det(∇ξΦ)−1f)1/2, (9.13)

where the square root has to be understood as the principle value. (We also
refer to (Jin, Wu and Yang 2011) for a more elaborated computation of A.)

Note that all functions appearing in Steps 2–4 only need to be solved
locally around the zero-level sets of Reφj , j = 1, . . . , n. Thus, the entire
algorithm can be implemented using the local level set methods of (Osher,
Cheng, Kang, Shim and Tsai 2002) and (Peng et al. 1999). For a given mesh
size ∆y, the computational cost is therefore O((∆y)−d ln(∆y)−1), about the
same as the local level set methods for geometrical optics computation, see
(Jin et al. 2005b).

Remark 9.1. If one is only interested in computing the classical limit of
(the expectation values of) physical observables, one observes that the only
term in (9.12) which affects a quadratic observable density for fixed time t is∫ x
a v(t, y) dy. Thus, as long as one is only interested in physical observables,

one can simply take

S(t, x) =
∫ x

a
v(t, y) dy (9.14)
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in the numerical simulations.

That M and A are indeed well-defined via (9.10) and (9.13) is justified by
the following theorem (which can be seen as the Eulerian version of Theorem
8.1) proved in (Jin et al. 2008b):

Theorem 9.2. Let Φ = Φ(t, y, ξ) ∈ C be the solution of (9.1) with initial
data (9.9). Then, the following properties hold:

(i) ∇ξΦ is non-degenerate for all t ∈ R.
(ii) Im

(
−∇yΦ(∇ξΦ)−1

)
is positive definite for all t ∈ R, y, ξ ∈ Rd.

Although det
(
Re(∇ξΦ)

)
= 0 at caustics, the complexified Φ makes ∇ξΦ

non-degenerate, and the amplitude A, defined in (9.13), does not blow-up at
caustics.

9.2. Eulerian Gaussian beam summation

As before we are facing the problem of Gaussian beam summation, i.e. in
order to reconstruct the full solution uε a superposition of single Gaussian
beams has to be considered. To this end, we define a single Gaussian beam,
obtained through the Eulerian approach, by

ϕ̃ε(t, x, y, ξ) = A(t, y, ξ)eiT (t,x,y,ξ)/ε, (9.15)

where A is solved via (9.13) and

T (t, x, y, ξ) = S(t, y, ξ) + ξ · (x− y) +
1
2
(x− y)>M(t, y, ξ)(x− y).

Then, the wave function is constructed via the following Eulerian Gaussian
beam summation formula, cf. (Leung et al. 2007):

ũε
G(t, x) = (2πε)−d/2

∫∫
Rd×Rd

rθ(x− y)ϕ̃ε(t, x, y, ξ)
d∏

j=1

δ(Re(φj)) dξ dy,

which is consistent to the Lagrangian summation formula (8.2).
Indeed, the above given double-integral for uε

G can be evaluated as a single
integral in y as follows: We again denote by vj , j = 1, . . . , J the j-th branch
of the multi-valued velocity and write

ũε
G(t, x) = (2πε)−d/2

∫
Rd

rθ(x− y)
J∑

j=1

ϕ̃ε(t, x, y, vk)
|det(Re(∇ξΦ)ξ=vj

)|
dy. (9.16)

However, since det
(
Re(∇ξΦ)

)
= 0 at caustics, a direct numerical integration

of (9.16) loses accuracy around caustics. To get a better accuracy, one can
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split (9.16) into two parts

I1 =
J∑

j=1

∫
Ω1

(2πε)−d/2rθ(x− y)
ϕ̃ε(t, x, y, vk)∣∣det(Re(∇ξΦ)ξ=vj

)
∣∣ dy, (9.17)

I2 =
J∑

j=1

∫
Ω2

(2πε)−d/2rθ(x− y)
ϕ̃ε(t, x, y, vk)∣∣det(Re(∇ξΦ)ξ=vj

)
∣∣ dy, (9.18)

where

Ω1 :=
{
y :

∣∣ det(Re(∇pφ)(t, y, pj))
∣∣ ≥ τ

}
,

Ω2 :=
{
y :

∣∣ det(Re(∇pφ)(t, y, pj))
∣∣ < τ

}
,

with τ being a small parameter. The latter is chosen sufficiently small in
order to minimize the cost of computing (9.18), yet large enough to make
I1 a regular integral.

The regular integral I1 can then be approximated by a standard quadra-
ture rule, such as the trapezoid quadrature rule, while the singular integral
I2 is evaluated by the semi-Lagrangian method introduced in (Leung et
al. 2007).

Remark 9.3. When the velocity contours are complicated due to large
numbers of caustics, the implementation of the local semi-Lagrangian method
is hard. In such situations one can use a discretized δ-function method for
numerically computing (9.18) as was done in (Wen 2010). In this method
one needs to numerically solve (9.2) in order to obtain the phase function,
since all values of φj near the support of δ(Re(φj)) are needed to evaluate
(9.18).

Example 9.4. This is an example from (Jin et al. 2008b). It considers the
free motion of particles in d = 1 with V (x) = 0. The initial conditions for
the Schrödinger equation (2.1) are induced by

ρin(x) = exp(−50x2), vin(x) = ∂xS0(x) = − tanh(5x).

Fig. 9.5 shows the l∞ errors between the square modulus of uε, the exact
solution of the Schrödinger equation (2.1), and the approximate solution
constructed: (i) by the level set method described in Section 7; (ii) the level
set method with Keller-Maslov index built in, cf. (Jin and Yang 2008), and
(iii) the Eulerian Gaussian beam method described above. As one can see,
method (ii) improves the geometric optics solution (i) away from caustics,
while Gaussian beam method offers a uniformly small error even near the
caustics.

Compared to the Lagrangian formulation based on solving the ODE sys-
tem (8.2)-(8.4), the Eulerian Gaussian beam method has the advantage of
maintaining a good numerical accuracy since they are based on solving PDEs
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Figure 9.5. Example 9.4. Errors between the solution of the Schrödinger
equation when compared to the geometrical optics solution (top left), the
geometrical optics with phase-shift built in (top right), and the Gaussian
beam method (bottom). Caustics are around x = ±0.18.

on fixed grids. Moreover, higher order (in ε) Eulerian Gaussian beam meth-
ods have been constructed, see (Liu and Ralston 2010) and (Jin et al. 2011).

Remark 9.5. Research on the Gaussian beam methods is of great recent
interest in the applied math community, see, e.g, (Leung et al. 2007), (Jin
et al. 2008b), (Leung and Qian 2009) for Eulerian formulations, (Tanushev
2008), (Motamed and Runborg n.d.), (Liu and Ralston 2010), (Bougacha,
Akian and Alexandre 2009), (Liu et al. n.d.) for error estimates, and
(Tanushev, Engquist and Tsai 2009), (Ariel, Engquist, Tanushev and Tsai
n.d.), (Qian and Ying 2010), and (Yin and Zheng n.d.) for initial data
decompositions.

9.3. Frozen Gaussian approximations

The construction of Gaussian beam approximation is based on the trunca-
tion of the Taylor expansion of the phase T (t, x, y) (8.1) around the beam
center y, hence it loses accuracy when the width of the beam becomes large,
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i.e. when the imaginary part of M(t, y) in (8.1) becomes small so that
the Gaussian function is not localized any more. This happens for example
when the solution of the Schrödinger equation spreads (namely, the ray de-
termined by (8.2) diverges), which can be seen as the time-reversed situation
of caustic-formation. The corresponding loss in the numerical computation
can be overcome by re-initialization every once in a while, see (Tanushev et
al. 2009), (Ariel et al. n.d.), (Qian and Ying 2010), and (Yin and Zheng n.d.).
However, this approach increases the computational complexity in particu-
lar, when beams spread quickly.

The frozen Gaussian approximation (as it is referred to in quantum chem-
istry), first proposed in (Heller 1981), uses Gaussian functions with fixed
widths to approximate the exact solution uε. More precisely, instead of us-
ing Gaussian beams only in the physical space, the frozen Gaussian approx-
imation uses a superposition of Gaussian functions in phase space. That’s
why the method is also known under the name coherent state approxmia-
tion. To this end, one first decomposes the initial data into several Gaussian
functions in phase space

ψε(y0, p0) =
∫

Rd

uε
in(y)e

−( ip0·(y−y0)− 1
2
|y−y0|2)/ε dy ,

and then propagates the center of each function (y(t), p(t)) along the Hamil-
tonian flow (8.2), subject to initial data at (y0, p0). The frozen Gaussian
beam solution takes the form

uε
FG(t, x) =

(2πε)−3d/2

∫∫
Rd×Rd

a(t, y0, p0)ψ(y0, p0)e( ip(t)·(x−y(t))− 1
2
|x−y(t)|2)/ε dp0 dy0 ,

where the complex valued amplitude a(t, y0, p0), is the so-called Herman-
Kluk pre-factor, cf. (Herman and Kluk 1984). Since the width of the Gaus-
sians is fixed, one does not encounter the problem of beam spreading here.
However, since this method is based in the phase space, the computational
cost is considerably higher than the standard Gaussian beam methods. For
subsequent developments in this direction, see (Herman and Kluk 1984),
(Kay 1994), (Kay 2006), (Robert 2010), (Swart and Rousse 2009), (Lu and
Yang n.d.).

10. Asymptotic methods for discontinuous potentials

Whenever a medium is heterogeneous, the potential V can be discontin-
uous, creating a sharp potential barrier or interface where waves can be
partially reflected and transmitted (as in the Snell-Descartes’ law of refrac-
tion). This gives rise to new mathematical and numerical challenges not
present in the smooth potential case. Clearly, the semiclassical limit (3.8)
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Figure 10.6. Wave transmissions and reflections through an interface

and (3.9) does not hold at the barrier. Whenever V is discontinuous, the
Liouville equation (3.8) contains characteristics which are discontinuous or
even measure-valued. To this end, we recall that the characteristics curves
(x(t), ξ(t)) are determined by the Hamiltonian system (3.6). The latter is
a nonlinear system of ODEs whose right hand side is not Lipschitz due to
the singularity in ∇xH(x, ξ) and thus the classical well-posedness theory
for the Cauchy problem of the ODEs fails. Even worse, the coefficients in
the Liouville equation in general are not even BV (i.e. of bounded varia-
tion), for which almost everywhere solutions were introduced by (DiPerna
and Lions 1989) and (Ambrosio 2004). Analytical studies of semiclassical
limits in situations with interface were carried out in, e.g., (Bal, Keller,
Papanicolaou and Ryzhik 1999b), (Miller 2000), (Nier 1995), (Nier 1996),
and (Benedetto, Esposito and Pulvirenti 2004) using more elaborate Wigner
transformation techniques, such as two-scale Wigner measures.

10.1. The interface condition

In order to allow for discontinuous potentials, one first needs to introduce
a notion of solutions of the underlying singular Hamiltonian system (3.6).
This can be done by providing interface conditions for reflection and trans-
mission, based on Snell’s law. The solution so constructed will give the
correct transmission and reflection of waves through the barrier, obeying
the laws of geometrical optics.

Fig. 10.6 (taken from (Jin, Liao and Yang 2008a)) shows typical cases of
wave transmissions and reflections through an interface. When the interface
is rough, or in higher dimension, the scattering can be diffusive, in which
the transmitted or reflected waves can move in all directions (see the right
picture). However, in this section we will not discuss the diffusive interface,
which was treated analytically in (Bal et al. 1999b) and numerically in (Jin
et al. 2008a).
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An Eulerian interface condition
In (Jin and Wen 2006a), an interface condition is provided, connecting the
Liouville equations at both sides of a given (sharp) interface. Let us focus
here on the case of only space dimension d = 1 and consider a particle
moving with velocity ξ > 0 towards the barrier. The interface condition at
a given fixed time t is given by:

w(t, x+, ξ+) = αT w(t, x−, ξ−) + αR w(t, x+,−ξ+) (10.1)

Here the superscripts “±” represent the right and left limits of the quantities,
αT ∈ [0, 1] and αR ∈ [0, 1] are the transmission and reflection coefficients
respectively, satisfying αR + αT = 1. For a sharp interface x+ = x−, while
ξ+ and ξ− are connected by the Hamiltonian preserving condition:

H(x+, ξ+) = H(x−, ξ−) (10.2)

The latter is motivated as follows: In classical mechanics, the Hamiltonian
H = 1

2ξ
2 + V (x) is conserved along the particle trajectory, even across the

barrier. In this case, αT , αR = 0 or 1, i.e., a particle can be either completely
transmitted or completely reflected. In geometric optics (corresponding to
H(x, ξ) = c(x)|ξ|), condition (10.2) is equivalent to Snell’s Law of Refrac-
tion for a flat interface (Jin and Wen 2006b), i.e. waves can be partially
transmitted or reflected.

Remark 10.1. In practical terms, the coefficients αT and αR are deter-
mined from the original Schrödinger equation (2.1) before the semiclassical
limit is taken. Usually one invokes stationary scattering theory to do so.
Thus (10.1) represents a multi-scale coupling between the (macroscopic)
Liouville equation and the (microscopic) Schrödinger (or wave) equation.
Furthermore, by incorporating the diffraction coefficients, determined from
the Geometrical Theory of Diffraction developed in (Keller and Lewis 1995),
into the interface condition, one could even simulate diffraction phenomena
near boundaries, interfaces or singular geometries (Jin and Yin 2008b) (Jin
and Yin 2008a) (Jin and Yin n.d.).

The well-posedness of the initial value problem of the singular Liouville
equation with the interface condition (10.1) was established in (Jin and
Wen 2006a), using the method of characteristics. To determine a solution
at (x, p, t) one traces back along the characteristics determined by the Hamil-
tonian system (3.6) until hitting the interface. At the interface, the solution
bifurcates with the interface condition (10.1), one corresponds to the trans-
mission and the other reflection, and this process continues until one arrives
at t = 0. The interface condition (10.1) thus provides a generalization of
the method of characteristics.
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A Lagrangian Monte-Carlo particle method for the interface
A notion of the solution of the (discontinuous) Hamiltonian system (3.6) was
introduced in (Jin 2009) (see also (Jin and Novak 2006)) using a probability
interpretation. One thereby solves the system (3.6) using a standard ODE or
Hamiltonian solver, but at the interface, the following Monte-Carlo solution
can be constructed (we shall only give solution in the case of ξ− > 0; the
other case is similar):

(i) With probability αR, the particle (wave) is reflected with

x 7→ x, ξ− 7→ −ξ− . (10.3)

(ii) With probability αT , the particle (wave) is transmitted, with

x 7→ x, ξ+ is obtained from ξ− using (10.2) (10.4)

Although the original problem is deterministic, this probabilistic solution
allows one to go beyond the interface with the new value of (x, ξ) defined in
(10.3)-(10.4). This is the Lagrangian formulation of the solution determined
by using the interface condition (10.1). This is the basis of a (Monte-Carlo
based) particle method for thin quantum barriers introduced in (Jin and
Novak 2007).

10.2. Modification of the numerical flux at the interface

A typical one-dimensional semi-discrete finite difference method for the Li-
ouville equation (3.7) is

∂twij + ξj

w−
i+ 1

2
,j
− w+

i− 1
2
,j

∆x
−DVi

wi,j+ 1
2
− wi,j− 1

2

∆ξ
= 0 .

Here wij is the cell average or pointwise value of w(t, xi, ξj) at fixed t. The
numerical fluxes wi+ 1

2
,j , wi,j+ 1

2
are typically defined by a (first, or higher

order) upwind scheme, and DVi is some numerical approximation of ∂xV at
x = xi.

When V is discontinuous, such schemes face difficulties when the Hamilto-
nian is discontinuous, since ignoring the discontinuity of V in the actual nu-
merical computation will result in solutions which are inconsistent with the
notion of the physically relevant solution, defined in the preceding subsec-
tion. Even with a smoothed Hamiltonian, it is usually impossible (at least in
the case of partial transmission and reflection) to obtain transmission and re-
flection with the correct transmission and reflection coefficients. A smoothed
V will also give a severe time step constraint like ∆t ∼ O(∆x∆ξ), see, e.g.,
(Cheng, Kang, Osher, Shim and Tsai 2004). This is a parabolic type CFL
condition, despite the fact that we are solving a hyperbolic problem.

A simple method to solve this problem was introduced in (Jin and Wen



50 S. Jin and P. Markowich and C. Sparber

2005) and (Jin and Wen 2006a). The basic idea is is to build the interface
condition (10.1) into the numerical flux, as follows: Assume V is discontin-
uous at xi+1/2. First one should avoid discretizing V across the interface at
xi+1/2. One possible discretization is

DVk =
V −

k+1/2 − V +
k−1/2

∆x
, for k = i, i+ 1 ,

where, for example,
V ±

k+1/2 = lim
x→xk+1/1±0

V (x).

The numerical flux in the ξ direction, Wi,j±1/2, can be the usual numerical
flux (for example, the upwind scheme or its higher order extension). To
define the numerical flux w±i+1/2,j , without loss of generality, consider the
case ξj > 0. Using upwind scheme, w−

i+ 1
2
,j

= wij . However,

w+
i+1/2,j = w(x+

i+1/2, ξ
+
j ) = αT w(x−i+1/2, ξ

−
j ) + αR w(x+

i+1/2,−ξ
+
j )

= αT wi(ξ−j ) + αR wi+1,−j .

while ξ− is obtained from (10.2) with ξ+j = ξj . Since ξ− may not be a
grid point, one has to define it approximately. A simple approach is to
locate the two cell centers that bound it, then use a linear interpolation to
evaluate the needed numerical flux at ξ−j . The case of ξj < 0 is treated
similarly. The detailed algorithm to generate the numerical flux is given
(Jin and Wen 2005) (Jin and Wen 2006a).

This numerical scheme overcomes the aforementioned analytic and nu-
merical difficulties. In particular, it possesses the following properties:

(i) It produces the correct physical solution crossing the interface (as de-
fined in the previous subsection). In particular, in the case of geometric
optics, this solution is consistent to Snell-Descartes’ Law of Refraction
at the interface.

(ii) It allows a hyperbolic CFL condition ∆t = O(∆x,∆ξ).

The idea outlined above, has its origin in so-called well-balanced kinetic
schemes for shallow water equations with bottom topography, cf (Perthame
and Simeoni 2001). It has been applied to compute the semiclassical limit of
the linear Schrödinger equation with potential barriers in (Jin and Wen 2005)
and the geometrical optics limit with complete transmission/reflection in
(Jin and Wen 2006b), for thick interfaces, and (Jin and Wen 2006a), for sharp
interfaces. Positivity, and both l1 and l∞ stabilities were also established,
under a hyperbolic CFL condition. For piecewise constant Hamiltonians, an
l1-error estimate of the first order finite difference of this type was established
in (Wen 2009), following (Wen and Jin 2009).
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Remark 10.2. Let us remark that this approach has also been extended to
high frequency elastic waves (Jin and Liao 2006), and high frequency waves
in random media with diffusive interfaces (Jin et al. 2008a). When the initial
data are measure-valued, such as (3.9), the level set method introduced in
(Jin et al. 2005b) becomes difficult for interfaces where waves undergo partial
transmissions and reflections, since one needs to increase the number of level
set functions each time a wave hits the interface. A novel method to get
around this problem has been introduced in (Wei, Jin, Tsai and Yang 2010).
It involves two main ingredients:

(i) The solutions involving partial transmissions and partial reflections are
decomposed into a finite sum of solutions, obtained by solving problems
involving only complete transmissions or complete reflections. For the
latter class of problems, the method of (Jin et al. 2005b) applies.

(ii) Consequently, a re-initialization technique is introduced such that waves
coming from multiple transmissions and reflections can be combined
seamlessly as new initial value problems. This is implemented by
rewriting the sum of several delta functions as one delta measure with
a suitable weight, which can be easily implemented numerically.

10.3. Semiclassical computation of quantum barriers

A correct modeling of electron transport in nano-structures, such as resonant
tunneling diodes, superlattices or quantum dots, requires the treatment of
quantum phenomena in highly localized regions within the devices (so-called
quantum wells), while the rest of the device can be dealt with by classical
mechanics. However, solving the Schrödinger equation in the entire physical
domain is usually too expensive, and thus, it is attractive to use a multi-
scale approach as given in (Ben Abdallah, Degond and Gamba 2002). That
is, solving the quantum mechanics only in the quantum well, and couple the
solution to classical mechanics outside the well. To this, end, the following
semiclassical approach for thin quantum barriers was proposed in (Jin and
Novak 2006):

Step 1. Solve the time-independent Schrödinger equation (either analyt-
ically, or numerically) for the local barrier-well to determine the scattering
data, i.e. the transmission and reflection coefficients αT , αR.

Step 2. Solve the classical Liouville equation elsewhere, using the scat-
tering data generated in Step 1 and the the interface condition (10.1) given
above.

The results for d = 1 and d = 2 given in (Jin and Novak 2006) (Jin and
Novak 2007) demonstrate the validity of this approach whenever the well is



52 S. Jin and P. Markowich and C. Sparber

either very thin (i.e. of the order of only a few ε’s) or well-separated. In
higher dimension, the interface condition (10.1) needs to be implemented in
the direction normal to interface, and the interface condition may be nonlocal
for diffusive transmissions or reflections (Jin and Novak 2007). This method
correctly captures both, the transmitted and the reflected quantum waves
and the results agree (in the sense of weak convergence) with the solution
obtained by directly solving the Schrödinger equation with small ε. Since
one obtains the quantum scattering information only in a preprocessing step
(i.e. Step 1), the rest of the computation (Step 2) is classical, and thus the
overall computational cost is the same as for computing classical mechanics.
Nevertheless, purely quantum mechanical effects, such as tunneling can be
captured.

If the interference needs to be accounted for , then such Liouville based
approaches are not appropriate. One attempt was made in (Jin and Novak
2010) for one-dimensional problems, where a complex Liouville equation is
used together with interface condition using (complex-valued) quantum scat-
tering data obtained from solving the stationary Schrödinger equation. Its
extension to multi-dimensional problem remains to be done. A more gen-
eral approach could use the Gaussian beam methods, which do capture the
phase information. This is an interesting line of research yet to be pursued.

11. Schrödinger equations with matrix-valued potentials and
surface hopping

Closely related problems to those mentioned in the Section 10 arise in the
study of semiclasscial Schrödinger equations with matrix-valued potentials.
This type of potentials can be seen as a caricature of the full many-body
quantum dynamics of molecular dynamics. Using the celebrated Born-
Oppenheimer approximation to decouple the dynamics of the electrons from
the one for the much heavier nuclei, see, e.g., (Spohn and Teufel 2001), one
finds that the electrons are subject to external forces which can be modeled
by system of Schrödinger equations for the nuclei along the electronic energy
surfaces. The nucleonic Schrödinger system has matrix valued potentials,
which will be treated in this section.

To this end, we consider the following typical situation. Namely, a time-
dependent Schrödinger equation with R2×2-matrix valued potential, see, e.g.,
(Spohn and Teufel 2001), or (Teufel 2003):

iε∂tu
ε =

(
−ε

2

2
∆x + V (x)

)
uε, uε(0, x) = uε

in ∈ L2(R2,C2), (11.1)

for (t, x) ∈ R+ × R2 and ∆x = diag(∆x1 + ∆x2 ,∆x1 + ∆x2). The unknown
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uε(t, x) ∈ C2 and V is a symmetric matrix of the form

V (x) =
1
2
trV (x) +

(
v1(x) v2(x)
v2(x) −v1(x)

)
, (11.2)

with v1(x), v2(x) ∈ R. The matrix V then has two eigenvalues

λ(±)(x) = trV (x)±
√
v1(x)2 + v2(x)2.

Remark 11.1. In the born-Oppenheimer approximation, the dimension-
less semiclassical parameter ε > 0 is given by ε =

√
m
M , where m and M are

the masses of an electron and a nucleus respectively (Spohn and Teufel 2001).
Then, all oscillations are roughly characterized by the frequency 1/ε, which
typically ranges between one hundred and one thousand.

11.1. Wigner matrices and the classical limit for matrix-valued potentials

In this section, we shall discuss the influence of matrix-valued potentials on
the semiclassical limit of the Schrödinger equations (11.1). Introduce the
Wigner matrix as defined in (Gérard et al. 1997):

W ε[uε](x, ξ) = (2π)−2

∫
R2

ψε(x− ε
2
η)⊗ψ̄ε(x+

ε

2
η)e iη·ξ dy, (x, ξ) ∈ R2

x×R2
ξ .

We also denote by W denote the corresponding (weak) limit

W ε[uε] ε→0−→W ∈ L∞(R;M+(R2
x × R2

ξ ; R2)).

In order to describe the the dynamics of the limiting matrix-valued measure
W (t, x, ξ), first note that the complex 2× 2 matrix-valued symbol of (11.1)
is given by

P (x, ξ) =
i
2
|ξ|2 + iV (x).

The two eigenvalues of − iP (x, ξ) are

λ1,2(x, ξ) =
|ξ|2

2
+ trV (x)±

√
v1(x)2 + v2(x)2 =

|ξ|2

2
+ λ±(x).

These eigenvalues λn, n = 1, 2, govern the time-evolution of the limiting
measure W (t), as proved in (Gérard et al. 1997). They act as the correct
classical Hamiltonian function on phase space, corresponding to the two
energy levels, respectively. In the following, we shall say that two energy
levels cross at a point x∗ ∈ R2 if λ+(x∗) = λ−(x∗). Such a crossing is called
conical if the vectors ∇xv1(x∗) and ∇xv2(x∗) are linearly independent. If
all the crossings are conical, the crossing set

S = {x ∈ R2|λ+(x) = λ−(x)}
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is a sub-manifold of co-dimension two in R2, cf. (Hagedorn 1994). Assume
that the Hamiltonian flows with Hamiltonians λn leave invariant the set

Ω = (R2
x × R2

ξ)\S.

For (x, ξ) ∈ Ω, denote by χn(x, ξ) the column eigenvector corresponding to
the eigenvalue λn(x, ξ) and the matrix

Πn(x, ξ) = χn(x, ξ)(χτ (x, ξ))>

is the orthogonal projection onto the eigenspace associated to λn(x, ξ).
By Theorem 6.1 of (Gérard et al. 1997), the matrix-valued Wigner mea-

sure W (t) commutes with the projectors Πn, outside the crossing set S, and
thus can be decomposed as

W (t, ·) = Π1W (t, ·)Π1 + Π2W (t, ·)Π2.

Since the eigen-spaces are both one-dimensional, the decomposition is sim-
plified to be

W (t, ·) = W1(t, ·)Π1 +W2(t, ·)Π2.

The scalar functions Wn(t, x, ξ) given by

Wn(t, x, ξ) = tr(ΠnW (t, x, ξ)) ,

are then found to satisfy the following Liouville equations

∂tWn +∇ξλn · ∇xWn −∇xλn · ∇ξWn = 0, (t, x, ξ) ∈ R+ × Ω, (11.3)

subject to initial data

Wn(0) = tr(ΠnW ), (x, ξ) ∈ Ω. (11.4)

The scalar functions Wn, n = 1, 2, are the phase space probability densities
corresponding to the upper and lower energy levels, respectively. One can
recover from them the particle densities ρn via

ρn(t, x) =
∫

R2
ξ

Wn(t, x, ξ) dξ, n = 1, 2. (11.5)

In other words, the Liouville equations (11.3) yields the propagation of the
Wigner measures W1(t, ·) and W2(t, ·) on any given time interval, provided
that their support do not intersect the eigenvalue crossing set S.

However, analytical and computational challenge arise when their support
intersects the set S. In S the dynamics of W1,W2 are coupled due to the
non-adiabatic transitions between the two energy levels and an additional
hopping condition is needed (analogous to the interface condition considered
in Section 10 above).
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The Landau-Zener formula
In (Lasser, Swart and Teufel 2007), a heuristic derivation of the non-adiabatic
transition probability is given. The derivation is based on the Hamiltonian
system corresponding to the Liouville equations (11.3), i.e.{

ẋn(t) = ∇ξλn(t) = ξn(t),

ξ̇n(t) = −∇xλn(t), n = 1, 2.
(11.6)

The basic idea is to insert the trajectories (x(t), ξ(t)) of the Hamiltonian
systems (11.6) into the trace-free part of the potential matrix (11.2) to
obtain a system of ordinary differential equations, given by

iε
d

dt
uε(t) =

(
v1(x(t)) v2(x(t))
v2(x(t)) −v1(x(t))

)
uε(t).

The non-adiabatic transitions happen in the region where the spectral gap
between the eigenvalues becomes minimal. The function

h(x(t)) = |λ+(x(t))− λ−(x(t))| = 2|ϑ(x(t))|

measures the gap between the eigenvalues in phase space along the classical
trajectory (x(t), ξ(t)), where ϑ(x) = (v1(x), v2(x)) and | · | denotes the Eu-
clidean norm. The necessary condition for a trajectory to attain the minimal
gap is given by,

d

dt
|ϑ(x(t))|2 = ϑ(x(t)) · ∇xϑ(x(t))ξ(t) = 0,

where∇xϑ(x(t) is the Jacobian matrix of the vector ϑ(x(t)), and ξ(t) = ẋ(t).
Hence, a crossing manifold in phase space containing these points is given
by

S∗ =
{
(x, ξ) ∈ R2

x × R2
ξ : ϑ(x(t)) · ∇xϑ(x(t))ξ(t) = 0

}
.

The transition probability when one particle hits S∗ is assumed to be given
by

T ε(x0, ξ0) = exp
(
−π
ε

(ϑ(x0) ∧∇xϑ(x0) · ξ0)2

|∇xϑ(x0) · ξ0|3

)
, (11.7)

which is the famous Landau-Zener formula (Landau 1932) (Zener 1932).
Note that T decays exponentially in x and ξ and

lim
ε→0

T ε = T0 =
{

1, (x, ξ) ∈ S∗},
0, (x, ξ) /∈ S∗,

In other words, as ε → 0, the transition between the energy bands only
occurs on the set S∗, which is consistent with the result in the previous
subsections.
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11.2. Numerical approaches

Lagrangian surface hopping
One of the widely used numerical approaches to simulate the non-adiabatic
dynamics at energy-crossings, is the surface hopping method, first proposed
by (Tully and Preston 1971), and further developed in (Tully 1990) and
(Sholla and Tully 1998). The basic idea is to combine the classical transports
of the system on the individual potential energy surfaces λ±(x) that follow
(11.6) with an instantaneous transitions at S∗ from one energy surface to
another. The rate of transition is determined by the Landau-Zener formula
(11.7) whenever available, or computed by some quantum mechanical sim-
ulation locally around S∗. The hoppings were performed in a Monte-Carlo
procedure based on the transition rates. For a review of surface hopping
methods see (Drukker 1999).

More recently, surface hopping methods have generated increasing inter-
ests in the mathematical community. For molecular dynamical simulations,
(Horenko, Salzmann, Schmidt and Schütte 2002) adopted the partial Wigner
transform to reduce a full quantum dynamics into the quantum-classical
Liouville equation, and then the surface hopping is realized by approxi-
mating the quantum Liouville equation using phase space Gaussian wave
packets. From the analytical point of view (Lasser and Teufel 2005) and
(Fermanian Kammerer and Lasser 2003) analyzed the propagation through
conical surface crossings using matrix-valued Wigner measures and proposed
a corresponding rigorous surface hopping method based on the semiclassical
limit of the time-dependent Born-Oppenheimer approximation. They used a
particle method to solve the Liouville equation in (Lasser et al. 2007), (Kube,
Lasser and Weber 2009) in which each classical trajectory was subject to a
deterministic branching (rather than the Monte-Carlo) process. Branching
occurs whenever a trajectory attains one of its local minimal gaps between
the eigenvalue surfaces. The new branches are consequently re-weighted
according to the Landau-Zener formula for conical crossings

These Lagrangian surface hopping methods are very simple to implement,
and in particular, very efficient in high space dimension. However, they
require either many statistical samples in a Monte-Carlo framework, or the
increase of particle numbers whenever hopping occurs. In addition, as it
is typical for Lagrangian methods, a complicated numerical re-interpolation
procedure is needed whenever the particle trajectories diverge, in order to
maintain uniform accuracy in-time.

Eulerian surface hopping
The Eulerian framework introduced in (Jin, Qi and Zhang n.d.) consists
of solving the two Liouville equations (11.3), with a hopping condition that
numerically incorporates the Landau-Zener formula (11.7). Note that the
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Schrödinger equation (11.1) implies conservation of the total mass, which in
the semiclassical limit ε→ 0, locally away from S∗, yields

d
dt

∫
(W1 +W2)(t, x, ξ) dξ dx = 0. (11.8)

For this condition to hold for all x, ξ, the total flux in direction normal to
S∗ needs to be continuous across S∗. To ensure this, the Landau-Zener
transition at S∗ should be formulated as a continuity condition for the total
flux in the normal direction en: Define the flux-function jn(x, ξ) ∈ R2 for
each eigenvalue surface via

jn(x, ξ) = (∇ξλn,−∇xλn)Wn(x, ξ), n = 1, 2.

Assume, before hopping, that the particle remains on one of the eigenvalue
surfaces, i.e.

(i) j1(x−0 , ξ
−
0 ) 6= 0 and j2(x−0 , ξ

−
0 ) = 0, or

(ii) j1(x−0 , ξ
−
0 ) = 0 and j2(x−0 , ξ

−
0 ) 6= 0 .

Then the interface condition is given by(
j1(x+

0 , ξ
+
0 ) · en

j2(x+
0 , ξ

+
0 ) · en

)
=
(

1− T (x0, ξ0) T (x0, ξ0)
T (x0, ξ0) 1− T (x0, ξ0)

)(
j1(x−0 , ξ

−
0 ) · en

j2(x−0 , ξ
−
0 ) · en

)
where (x±, ξ±) are the (pre- and post-hopping) limits to (x0, ξ0) ∈ S∗ along
the direction en.

Remark 11.2. There is a restriction of this approach based on Liouville
equation and the Laudau-Zener transition probability. The interference ef-
fects generated when two particles from different energy level arrive at S∗ at
the same time are thereby not accounted, thus important quantum phenom-
ena, such as Berry phase, are missing. One would expect that a Gaussian
beam methods could handle this problem, but this remains to be explored.

12. Schrödinger equations with periodic potential

So far we have only considered ε-independent potential V (x). The situation
changes drastically if one allows for potentials varying on the fast scale y =
x/ε. An important example concerns the case of highly oscillatory potentials
VΓ(x/ε), which are periodic with respect to a periodic lattice Γ ⊂ Rd. In
the following we shall therefore consider Schrödinger equations of the form

iε∂tu
ε = −ε

2

2
∆uε + VΓ

(x
ε

)
uε + V (x)uε; uε(0, x) = uε

in(x). (12.1)

Here V ∈ C∞ denotes some smooth, slowly varying potential and VΓ a
rapidly oscillating potential (not necessarily smooth). For definiteness we
shall assume that for some orthonormal basis {ej}d

j=1, VΓ satisfies

VΓ(y + 2πej) = VΓ(y) ∀ y ∈ Rd, (12.2)
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i.e. Γ = (2πZ)d.

Remark 12.1. Equations of the form arise in solid state physics where
they are used to describe the motion of electrons under the action of an
external field and a periodic potential generated by the ionic cores. This
problem has been extensively studied from a physical, as well as from a
mathematical point of view, see e.g. see e.g. (Ashcroft and Mermin 1976),
(Bensoussan, Lions and Papanicolaou 1978), (Teufel 2003) and the references
given therein. One of the most striking dynamical effect due to the inclusion
of a periodic potential VΓ, is the occurrance of so-called Bloch oscillations.
These are oscillations exhibited by electrons moving in a crystal lattice under
the influence of a constant electric field V (x) = F · x, F ∈ Rd (see Section
12.2 below).

12.1. Emergence of Bloch bands

In order to better understand the influence of VΓ, we recall here the basic
spectral theory for periodic Schrödinger operators of the form, c.f. (Reed
and Simon 1976):

Hper = −1
2
∆y + VΓ(y).

With VΓ obeying (12.2) we have:

(i) The fundamental domain of the lattice Γ = (2πZ)d is the interval Y =
[0, 2π]d.

(ii) The dual lattice Γ∗ can then be defined as the set of all wave numbers
k ∈ R, for which plane waves of the form e ik·x have the same periodicity
as the potential VΓ. This yields Γ∗ = Zd in our case.

(iii) The fundamental domain of the dual lattice, i.e. the (first) Brillouin
zone, Y ∗ is the set of all k ∈ R closer to zero than to any other dual lat-
tice point. In our case Y ∗ =

[
−1

2 ,
1
2

]d, equipped with periodic boundary
conditions, i.e. Y ∗ ' Td.

By periodicity, it is sufficient to consider the operatorHper on the fundamen-
tal domain Y only, where we impose the following quasi-periodic boundary
conditions:

f(y + 2πej) = e2 ikjπf(y) ∀ y ∈ R, k ∈ Y ∗. (12.3)

It is well known (Wilcox 1978) that under mild conditions on VΓ, the opera-
tor H admits a complete set of eigenfunction {ψm(y, k)}m∈N, parametrized
by k ∈ Y ∗. These eigenfunctions provide, for each fixed k ∈ Y ∗, an or-
thonormal basis in L2(Y ). Correspondingly there exists a countable family
of real eigenvalues {E(k)}m∈N, which can be ordered as

E1(k) ≤ E2(k) ≤ · · · ≤ Em(k) ≤ . . . ,
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Figure 12.7. The eigenvalues Em(k), m = 1, . . . , 8 for Mathieu’s model:
VΓ = cos y.

where the respective multiplicities are accounted for in the ordering. The set
{Em(k) | k ∈ Y } ⊂ R is called the m-th energy band of the operator Hper.
Concerning the dependence on k ∈ Y ∗, it has been shown (Wilcox 1978)
that for any m ∈ N there exists a closed subset X ⊂ Y ∗ such that: Em(k)
is analytic and ψm(·, k) can be chosen to be a real analytic function for all
k ∈ Y ∗\X. Moreover

Em−1 < Em(k) < Em+1(k) ∀ k ∈ Y ∗\X.

If this condition indeed holds for all k ∈ Y ∗ then Em(k) is called an isolated
Bloch band. Moreover, it is known that

measX = meas {k ∈ Y ∗ | En(k) = Em(k), n 6= m} = 0. (12.4)

This set of Lebesgue measure zero consists of the so called band crossings.
See Fig. evalue:exam1 for an example of bands for Mathieu’s model with
potential VΓ = cos y.

Note that due to (12.3) one can rewrite ψm(y, k) as

ψm(y, k) = e ik·yχm(y, k) ∀m ∈ N, (12.5)

for some 2π-periodic function χm(·, k), usually called Bloch functions. In
terms of χm(y, k) the spectral problem for Hper becomes (Bloch 1928):{

H(k)χm(y, k) =Em(k)χm(y, k),
χm(y + 2πej , k) =χm(y, k) ∀ k ∈ Y ∗,

(12.6)
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where H(k) denotes the shifted Hamiltonian

H(k) := e− ik·yHpere ik·y =
1
2
(− i∇y + k)2 + VΓ(y). (12.7)

Most importantly, the spectral data obtained from (12.6) allow us to de-
compose the original Hilbert space L2(Rd) into a direct sum of the so-called,
band spaces: L2(Rd) =

⊕∞
m=1Hm. This is the well-known Bloch decompo-

sition method, which implies that

∀ f ∈ L2(Rd) : f =
∑
m∈N

fm, fm ∈ Hm. (12.8)

The corresponding projection of f ∈ L2(Rd) onto the m-th band space Hm

is thereby given via (Reed and Simon 1976)

fm(y) =
∫

Y ∗

(∫
Rd

f(ζ)ψm (ζ, k) dζ
)
ψm (y, k) dk. (12.9)

In the following, we shall also denote

Cm(k) :=
∫

Rd

f(ζ)ψm (ζ, k) dζ. (12.10)

the coefficient of the Bloch decomposition.

12.2. Two-scale WKB approximation

Equipped with the basic theory of Bloch bands, we recall here an exten-
sion of the WKB method presented in Section 2.2 to the case of highly
oscillatory periodic potentials. Indeed it has been shown in (Bensoussan et
al. 1978) (Guillot, Ralston and Trubowitz 1988) that solutions to (12.1) can
be approximated (at least locally in-time) by

uε(t, x) ε→0∼ a(t, x)χm

(x
ε
,∇S

)
e iS(t,x)/ε +O(ε), (12.11)

where χm is parametrized via k = ∇S(t, x). The phase function S thereby
solves the semiclassical Hamilton-Jacobi equation

∂tS + Em(∇S) + V (x) = 0; S(0, x) = Sin(x). (12.12)

The corresponding semiclassical flow Xsc
t : y 7→ x(t, y) is given by{

ẋ(t, y) = ∇kEm(k(t, y)); x(0, x) = y,

k̇(t, y) = −∇xV (x(t, y)); k(0, y) = ∇Sin(y).
(12.13)

The wave vector k ∈ Y ∗ is usually called crystal momentum. In the case of
a constant electric field V = F · x, the second equation in (12.13) yields

k(t, y) = k − tF, k = ∇Sin(y).
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Note that since k ∈ Y ∗ ' Td, this yields a periodic motion in-time of x(t, y),
the so-called Bloch oscillations.

In addition, the leading order amplitude in (12.11) is found to be the
solution of the semiclassical transport equation (Carles, Markowich and
Sparber 2004):

∂ta+∇kEm(∇S) · ∇a+
1
2

divx(∇kEm(∇xφm))am = (βm · ∇xV (x)) am,

(12.14)
where

βm(t, x) := 〈χm(y,∇S),∇kχm(y,∇S)〉L2(Y ), (12.15)

denotes the the so-called Berry phase term (cf. (Carles et al. 2004), (Panati,
Spohn and Teufel 2006), which is found to be purely imaginary βm(t, x) ∈
(iR)d. It is importantly related to the Quantum Hall effect (Sundaram and
Niu 1999). The amplitude a therefore is necessarily complex-valued and
exhibits a non-trivial phase modulation induced by the geometry of VΓ, see
also (Shapere and Wilczek 1989) for more details. Note that (12.14) yields
the following conservation law for ρ = |a|2,

∂tρ+ div(ρ∇kEm(∇S)) = 0.

The outlined two-scale WKB approximation again faces the problem of
caustics. Furthermore there is an additional problem of possible band-
crossings at which ∇kEm is no longer defined. The right hand side of (12.11)
can therefore only be regarded a valid approximation for (possibly very)
short times only. Nevertheless it shows the influence of the periodic poten-
tial which can be seen to introduce additional high frequency oscillations
(Γ-periodic) within uε.

Remark 12.2. These types of techniques have also been successfully ap-
plied in weakly nonlinear situations (Carles et al. 2004).

12.3. Wigner measures in the periodic case

The theory of Wigner measures discussed in Section 3 can be extended to
the case of highly oscillatory potentials. The theory of the so-called Wigner
band-series has been developed in (Markowich, Mauser and Poupaud 1994),
(Gérard et al. 1997). The basic idea is to use Bloch’s decomposition and
replace the continuous momentum variable ξ ∈ Rd by the crystal momentum
k ∈ Y ∗.

A more general approach, based on space adiabatic perturbation theory
(Teufel 2003), yields in the limit ε→ 0 a semiclassical Liouville equation of
the form

∂tw + {Hsc
m , w} = 0; w(0, x, k) = win(x, k), (12.16)
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where w(t, x, k) is the m-th band Wigner measure on the Γ-periodic phase
space Rd

x × Y ∗, {·, ·} denotes the corresponding Poisson-bracket, and

Hsc
m = Em(k) + V (x), (12.17)

the m-th band semiclassical Hamiltonian.

13. Numerical methods for the Schrödinger equation with
periodic potentials

13.1. Bloch decomposition based time-splitting method

The introduction of a highly oscillatory potential VΓ

(
x
ε

)
poses numerical

challenges in the numerical computation of semiclassical Schrödinger equa-
tions. It has been observed in (Gosse 2006) and (Gosse and Markowich 2004)
that conventional split step algorithms do not perform well. More pre-
cisely, in order to guarantee convergence of the scheme, time steps of or-
der O(ε) are required. In order to overcome this problem, a new time-
splitting algorithm based on Bloch’s decomposition method has been pro-
posed (Huang, Jin, Markowich and Sparber 2007) and further developed in
(Huang, Jin, Markowich and Sparber 2008) and (Huang, Jin, Markowich
and Sparber 2009). The basic idea is as follows:

Step 1. For t ∈ [tn, tn+1] one first solves

iε∂tu
ε = −ε

2

2
∆uε + VΓ

(x
ε

)
uε, (13.1)

The main point is that, by using the Bloch decomposition method, Step 1
can be solved exaclty, i.e. only up to numerical errors. In fact, in each band
space Hm, equation (13.1) is equivalent to

iε∂tu
ε
m = Em(− i∇)uε

m, uε
m ∈ Hm, (13.2)

where uε
m ≡ Pε

mu
ε is the (appropriately ε-scaled) projection of uε ∈ L2(Rd)

onto Hm defined in (12.9) and Em(− i∇) is the Fourier-multiplier corre-
sponding to the symbol Em(k). Using the standard Fourier transformation,
equation (13.2) is easily solved by

uε
m(t, x) = F−1

(
e iEm(k)t/ε(Fum)(0, k)

)
, (13.3)

where F−1 is the inverse Fourier Transform. In other words, one can solve
(13.1) by decomposing uε into a sum of band-space functions uε

m , each
of which is propagated in time via (13.3). After resummation this yields
uε(tn+1, x). Once this is done, one proceeds as usual in order to take into
account V (x).



Methods for semiclassical Schrödinger equations 63

Step 2. On the same time interval as before, we solve the ODE

iε∂tu
ε = V (x)uε, (13.4)

where the solution obtained in Step 1 serves as initial condition for Step 2.
In this algorithm, the dominant effects from the dispersion and the pe-

riodic lattice potential are computed one step. It thereby maintains their
strong interaction and treats the non-periodic potential as a perturbation.
Because the split-step error between the periodic and non-periodic parts is
relatively small, the time-steps can be chosen considerably larger than a con-
ventional time-splitting algorithm (see below). As in a conventional splitting
method (cf. Section 5), the numerical scheme conserves the particle density
ρε = |uε|2 on the fully discrete level. More importantly, if V (x) = 0, i.e. no
external potential, the algorithm preserves the particle density (and hence
the mass) in each individual band space Hm.

Remark 13.1. Clearly, the algorithm given above is only first order in
time, but this can easily be improved by using the Strang splitting method,
cf. Section 5. In this case, the method is unconditionally stable and com-
prises spectral convergence for the space discretization as well as second
order convergence in time.

Numerical calculation of Bloch bands
In the numerical implementation of this algorithm a necessary prerequisite
is the computation of Bloch bands Em(k) and Bloch eigenfunction χm(y, k).
This requires to numerically solve the eigenvalue problem (12.6). In one
spatial dimension d = 1 we proceed as in (Gosse and Markowich 2004), by
expanding VΓ ∈ C1(R) in its Fourier series

VΓ(y) =
∑
λ∈Z

V̂ (λ) e iλy, V̂ (λ) =
1
2π

∫ 2π

0
VΓ(y) e− iλy dy.

Clearly, if VΓ ∈ C∞(R) the corresponding Fourier coefficients V̂ (λ) decay
faster than any power, as λ→ ±∞, and which case, we only need to take into
account a few coefficients to achieve sufficient accuracy. Likewise, expand
the Bloch eigenfunction χm(·, k), in its respective Fourier series

χm(y, k) =
∑
λ∈Z

χ̂m(λ, k) e iλy.
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For λ ∈ {−Λ, . . . ,Λ − 1} ⊂ Z, one consequently approximates the spectral
problem (12.6), by the following algebraic eigenvalue problem

H(k)


χ̂m(−Λ)
χ̂m(1− Λ)

...
χ̂m(Λ− 1)

 = Em(k)


χ̂m(−Λ)
χ̂m(1− Λ)

...
χ̂m(Λ− 1)

 (13.5)

where the 2Λ× 2Λ matrix H(k) is given by

H(k) =
V̂ (0) + 1

2(k − Λ)2 V̂ (−1) . . . V̂ (1− 2Λ)
V̂ (1) V̂ (0) + 1

2(k − Λ + 1)2 . . . V̂ (2− 2Λ)
...

...
. . .

...
V̂ (2Λ− 1) V̂ (2Λ− 2) . . . V̂ (0) + 1

2(k + Λ− 1)2

 .

The matrix H(k) has 2Λ eigenvalues. Clearly, this number has to be large
enough to have sufficiently many eigenvalues Em(k) for the simulation, i.e.
we require m ≤ 2Λ. Note however, that the number Λ is independent of
the spatial grid (in particular independent of ε), thus the numerical costs
of this eigenvalue problem are often negligible compared to those of the
evolutionary algorithms (see below for more details).

In higher dimensions d > 1, computing the eigenvalue problem (12.6)
along these lines becomes numerically too expensive to be feasible. In many
physical application, however, the periodic potential splits into a sum of
one-dimensional potentials, i.e.

VΓ(y) =
d∑

j=1

VΓ(yj), Vj(yj + 2π) = Vj(yj),

where y = (y1, y2, . . . , yd) ∈ Rd. In this case, Bloch’s spectral problem can
be treated separately (using a fractional step-splitting approach) for each
coordinate yj ∈ R, as outlined before.

Remark 13.2. In practical applications, the accurate numerical compu-
tation of Bloch bands is a highly nontrivial task. Nowadays though, there
already exists a huge amount of numerical data detailing the energy band
structure of the most important materials used in, e.g., the design of semi-
conductor devices. In the context of photonic crystals the situation is sim-
ilar. Thus, relying on such data one can in principle avoid the above given
eigenvalue-computations and its generalizations to more dimensions com-
pletely. To this end, one should also note that, given the energy bands
Em(k), we do not need any knowledge about VΓ in order to solve (12.1)
numerically. Also, we remark that it was shown in (Huang et al. 2009) that
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the Bloch decomposition-based time splitting method is remarkably stable
with respect to perturbations of the spectral data.

Implementation of the Bloch decomposition based time-splitting method
In the numerical implementation, we shall assume that VΓ admits the de-
composition (13.1). In this case we can solve (12.1) by using a fractional
step method, treating each spatial direction separately, i.e. one only needs
to study the one-dimensional equation

iε∂tu
ε = −ε

2

2
∂xxu

ε + Vj

(x
ε

)
uε, (13.6)

on the time-interval [tn, tn+1]. This equation will be considered on a one-
dimensional computational domain (a, b) ⊂ R, equipped with periodic bound-
ary conditions (necessary in order to invoke Fast Fourier transforms). We
suppose that there are L ∈ N lattice cells within (a, b) and numerically com-
pute uε at L × R grid points, for some R ∈ N. In other words we assume
that there are R grid points in each lattice cell, which yields the following
discretization

k` = − 1
2

+
`− 1
L

, where ` = {1, . . . , L} ⊂ N,

yr =
2π(r − 1)

R
, where r = {1, . . . , R} ⊂ N,

(13.7)

and thus, un ≡ u(tn) are evaluated at the grid points

x`,r = ε(2π(`− 1) + yr). (13.8)

Note that in numerical computations one can use R� L, whenever ε� 1,
i.e. only a few grid points are needed within each cell.

Having in mind the basic idea of using Bloch’s decomposition, one is
facing the problem that the solution uε of (13.6) in general does not admit
the same periodicity properties as ϕm. A direct decomposition of uε into
this new basis of eigenfunctions is therefore not possible. This problem can
be overcome by invoking the following unitary transformation for f ∈ L2(R):

f(y) 7→ f̃(y, k) :=
∑
γ∈Z

f(ε(y + 2πγ)) e− i2πkγ , y ∈ Y, k ∈ Y ∗,

with the properties

f̃(y + 2π, k) = e2 iπkf̃(y, k), f̃(y, k + 1) = f̃(y, k).

In other words f̃(y, k) admits the same periodicity properties w.r.t. k and y
as the eigenfunction ψm(y, k). In addition, the following inversion formula
holds

f(ε(y + 2πγ)) =
∫

Y ∗
f̃(y, k) e i2πkγ dk. (13.9)
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Moreover, one easily sees that the Bloch coefficient, defined in (12.10), can
be equivalently written as

Cm(k) =
∫

Y
f̃(y, k)ψm (y, k) dy, (13.10)

which, in view of (12.5), resembles a Fourier integral. In fact, all of these
formulae can be easily implemented by using the Fast Fourier transform.
The numerical algorithm needed to perform Step 1 outlined above is then
as follows:

Step 1.1. First compute ũε at time tn by

ũε(tn, x`,r, k`) =
L∑

j=1

uε(tn, xj,r) e− i2πk`·(j−1),

where x`,r is as in (13.8).

Step 1.2. Compute the coefficient Cε
m(tn, k`) via (13.10),

Cε
m(tn, k`) ≈

2π
R

R∑
r=1

ũε(tn, x`,r, k`)χm(yr, k`) e− ik`yr .

Step 1.3. Evolve Cε
m(tn, k) up to time tn+1 according to (13.2),

Cε
m(tn+1, k`) = Cε

m(tn, k`) e− iEm(k`)∆t/ε.

Step 1.4. ũε can be obtained at time tn+1 by summing over all band
contributions

ũε(tn+1, x`,r, k`) =
M∑

m=1

Cε
m(tn+1, k`)χm(yr, k`) e ik`yr .

Step 1.5. Perform the inverse transformation (13.9),

uε(tn+1, x`,r, k`) ≈
1
L

L∑
j=1

ũε(tn+1, xj,r, kj) e i2πkj(`−1).

This concludes the numerical procedure performed in Step 1.
The Bloch decomposition based time-splitting method was found to be

converging for ∆x = O(ε) and ∆t = O(1), see (Huang et al. 2007) for more
details. In other words, the time-steps can be chose independently of ε, a
huge advantage in comparison to the standard time-splitting method used
in e.g. (Gosse 2006). Moreover, the numerical experiments done in (Huang
et al. 2007) show that of only a few Bloch bands Em(k) are sufficient to
achieve very high accuracy, even in cases where V (x) is no longer smooth
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(typically m = 1, . . . ,M , with M ≈ 8 is sufficient). Applications of this
method are found in the simulation of lattice Bose-Einstein condensates
(Huang et al. 2008) and of wave propagation in (disordered) crystals (Huang
et al. 2009).

Remark 13.3. For completeness, we recall the numerical complexities for
the algorithm outlined above, see (Huang et al. 2007): The complexities
of Step 1.1 and 1.5 are O(RL lnL), the complexities of Step 1.2 and 1.4
are O(MLR lnR), and for Step 1.3 it is O(ML). The complexity of the
eigenvalue problem (13.5) is O(Λ3). However, since Λ (or R) is independent
of ε and since (13.5) needs to be solved only once (as a preparatory step),
the computational costs for this step are negligible. In addition, since M
and R are independent of ε, one can choose R � L and M � L, whenever
ε � 1. Finally, one should notice that the complexities in each time step
are comparable to the usual time-splitting method.

13.2. Moment closure in Bloch bands

It is straightforward to adapt the moment closure method presented in Sec-
tion 6 to the case of periodic potentials. To this end, one considers the
semiclassical Liouville equation (12.16), i.e.

∂tw +∇kEm(k) · ∇xw −∇xV (x) · ∇kw = 0,

and close it with the following ansatz for the Wigner measure

w(t, x, k) =
J∑

j=1

|aj(t, x)|2δ](k − vj(t, x)),

where we denote by δ] the Γ∗-periodic delta distribution, i.e.

δ] =
∑

γ∗∈Γ∗

δ(· − γ∗).

By following this idea, (Gosse and Markowich 2004) showed the applicability
of the moment closure method in the case of periodic potentials in d = 1 (see
also (Gosse 2006)). In addition, self-consistent Schrödinger-Poisson systems
were treated in (Gosse and Mauser 2006). As already mentioned before,
extending this method to higher spatial dimensions d > 1 is numerical chal-
lenging.

13.3. Gaussian beams in Bloch bands

The Gaussian beam approximation, discussed in Sections 8 and 9, can also
be extended to Schrödinger equation with periodic potentials. To this end,
one adopts the Gaussian beam within each Bloch band of the Schrödinger
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equation (12.1). In the following, we shall restrict ourselves to the case
d = 1, for simplicity.

Lagrangian formulation
Similar to the two-scale WKB ansatz (12.11), we define

ϕε
m(t, x, ym) = Am(t, ym)χ∗m

(
∂xTm,

x

ε

)
e i Tm(t,x,ym)/ε, (13.11)

where ym = ym(t, y0), and

Tm(t, x, ym) = Sm(t, ym) + pm(t, ym)(x− ym) +
1
2
Mm(t, ym)(x− ym)2.

Here Sm ∈ R, pm ∈ R, am ∈ C, Mm ∈ C. In addition, we denote by χ∗m
the function obtained by evaluating the usual Bloch function χm (y, k) (with
real-valued k ∈ Y ∗) at the point y = x/ε and k = ∂xTm ∈ C. To this end,
we impose the following condition:

χ∗m(y, z) = χm(y, z) for z ∈ R.

One can derive a similar derivation of the Lagrangian formulation as in
Section 8.1 that corresponds to the semiclassical Hamiltonian (12.17). For
more details we refer to (Jin, Wu, Yang and Huang 2010b). Here we only
mention, that in order to define the initial values for the Gaussian beams,
one first decomposes the initial condition, which is assumed to be given in
two-scale WKB form, i.e.

uε
in(x) = bin

(
x,
x

ε

)
e iSin(x)/ε,

in terms of Bloch waves with the help of the stationary phase method, cf.
(Bensoussan et al. 1978):

uε
in(x)

ε→0∼
∞∑

m=1

ain
m(x)χm

(x
ε
, ∂xSin

)
e iSin(x)/ε +O(ε),

where the coefficient

ain
m(x) =

∫
Y
bin(x, y)χm(y, ∂xSin) dy.

When one computes the Lagrangian beam summation integral, the complex-
valued

∂xTm = pm + (x− ym)Mm

can be approximated by the real-valued pm with a Taylor truncation error of
order O(|x− ym|). Since |x− ym| is of O(

√
ε), cf. (Tanushev 2008) and (Jin

et al. 2008b)), this approximation does not destroy the total accuracy of the
Gaussian beam method, yet it provides the benefit that the eigenfunction
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χ∗m(k, z) is only evaluated for real-valued k (and thus, consistent with the
Bloch decomposition method) However, because of this, the extension of
this method to higher order becomes a challenging task.

Eulerian formulation
Based on the ideas presented in Section 9, an Eulerian Guassian beam
method for Schrödinger equations with periodic potentials has been intro-
duced in (Jin et al. 2010b). It involves solving the (multivalued) velocity
um = ∂xSm from the zero level set of the function Φm which satisfies the
homogeneous semiclassical Liouville equation (12.16) in the form

LmΦm = 0,

where the m-th band Liouville operator Lm is defined as

Lm = ∂t + ∂kEm∂x − ∂xV ∂ξ , (13.12)

and Φm is the complex-valued d-dimensional level set function for the ve-
locity corresponding to the m-th Bloch band. They also solve the following
inhomogeneous Liouville equations for the phase Sm and amplitude am:

LmSm = k∂kEm − V,

Lmam = −1
2
∂2

kEmMmam + βmam∂yV,

where Lm is defined by (13.12) and βm denoted the Berry phase term as
given by (12.15). Above, the Hessian Mm ∈ C is obtained from

Mm = −∂yΦm

∂ξΦm
.

14. Schrödinger equation with random potentials

Finally, we shall consider (small) random perturbations of the potential V (x).
It is well known that in one space dimension, linear waves in a random
medium get localized even when the random perturbations are small, see,
e.g. (Fouque, Garnier, Papanicolaou and Sølna 2007), Thus the analysis
here is restricted to three dimensions. (The two dimensional case is difficult
because it of criticality, i.e. the mean field approximation outlined below is
most likely incorrect).

14.1. Scaling and asymptotic limit

Consider the Schrödinger equation with a random potential VR:

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε +

√
ε VR

(x
ε

)
uε; x ∈ R3 . (14.1)

Here VR(y) is a mean zero, stationary random function with correlation
length of order one. Its correlation length is assumed to be of the same
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order as the wavelength. The
√
ε-scaling given above is critical in the sense

that the influence of the random potential is of the same order as the one
given by V (x) (see also the remark below). We shall also assume that the
fluctuations are statistically homogeneous and isotropic so that

〈VR(x)VR(y)〉 = R(|x− y|), (14.2)

where 〈· ·〉 denotes statistical average and R(|x|) is the covariance of random
fluctuations. The power spectrum of the fluctuations is defined by

R̂(ξ) = (2π)−3

∫
e iξ·xR(x) dx. (14.3)

When (14.2) holds, the fluctuations are isotropic and R̂ is a function of |k|
only.

Remark 14.1. Because of the statistical homogeneity, the Fourier trans-
form of the random potential VR is a generalized random process with or-
thogonal increments

〈V̂R(ξ)V̂R(p)〉 = R̂(ξ)δ(ξ + p). (14.4)

If the amplitude of these fluctuations is large, then purely random scattering
will dominate and waves will be localized, cf. (Fröhlich and Spencer 1983).
On the other hand, if the random fluctuations are too weak they will not
affect the transport of waves at all. Thus, in order to have scattering induced
by the random potential and the influence of the slowly varying background
V (x) affect the (energy transport of the) waves in comparable ways, the
fluctuations in the random potential must be of order

√
ε.

Using the ε-scaled Wigner transformation, we can derive the analog of (3.2)
in the following form

∂tw
ε + ξ · ∇xw

ε −Θε[V + VR]wε = 0; (14.5)

where the pseudo-differential operator Θε is given by (3.3). The behavior
of this operator as ε → 0 is very different from the case without VR, as
can be seen already on the level of formal multi-scale analysis, cf. (Ryzhik,
Papanicolaou and Keller 1996).

Let y = x/ε be a fast spatial variable and introduce an expansion of wε(t)
in the following form

wε(t, x, ξ) = w(t, x, ξ) + ε1/2w(1)(t, x, y, ξ) + εw(2)(t, x, y, ξ) + . . . . (14.6)

Note that we hereby assume that the leading term w does not depend on
the fast scale. We shall also assume that the initial Wigner distribution
wε

in(x, ξ) tends to a smooth, non-negative function win(x, ξ) which decays
sufficiently fast at infinity. Then, as ε→ 0, one formally finds that 〈wε(t)〉,
i.e. the averaged solution to (14.5), is close to a limiting measure w(t), which
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satisfies the following linear Boltzmann-type transport equation

∂tw + ξ · ∇xw −∇xV · ∇ξw = Qw .

Here, the linear scattering operator Q is given by

Qw(x, ξ) = 4π
∫

R3

R̂(ξ − p)δ(|ξ|2 − |p|2)(w(x, p)− w(x, ξ)) dp , (14.7)

with differential scattering cross-section

σ(k, p) = 4πR̂(ξ − p)δ(|ξ|2 − |p|2) (14.8)

and total scattering cross-section

Σ(k) = 4π
∫

R3

R̂(ξ − p)δ(|ξ|2 − |p|2) dp. (14.9)

Note that the transport equation (14.7) has two important properties. First,
the total mass (or, energy, depending on the physical interpretation) is con-
served, i.e.

E(t) =
∫∫

R3×R3

w(t, x, ξ) dξ dx = E(0). (14.10)

Second, the positivity of w(t, x, ξ) is preserved. Rigorous mathematical re-
sults concerning the passage from (14.1) to the transport equation (14.7)
can be found in (Spohn 1977), (Dell’Antonio 1983), and (Ho, Landau and
Wilkins 1993) (which contains extensive references), and, more recently, in
(Erdős and Yau 2000).

14.2. Coupling with other media

One can also study the problems when there are other media, including
periodic media and interfaces (flat or random).

In the case of periodic media coupled with random media, one can use the
above multi-scale analysis combined with the Bloch decomposition method
to derive a system of radiative transport equations, see (Bal, Fannjiang,
Papanicolaou and Ryzhik 1999a). In the limit system ε→ 0, the transport
part is governed by the semiclassical Liouville equation (12.16) in each Bloch
band, while the right hand side is a nonlocal scattering operator (similar to
the one above) coupling all bands.

One can also consider random high frequency waves propagating through
a random interface. Away from the interface, one obtains the radiative
transport equation (14.7). At the interface, due to the randomness of the
interface, one needs to consider a diffusive transmission or reflection process,
in which waves can be scattered into all directions (see Fig. 10.6). To this
end, a nonlocal interface condition has to be derived, see (Bal et al. 1999b).
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So far there has been few numerical works on random Schrödinger equa-
tions of the form (14.1). In (Bal and Pinaud 2006) the accuracy of the
radiative transport equation (14.7) as an approximation to (14.1) has been
studied. In (Jin et al. 2008a) a non-local interface condition for diffusive
scattering is discretized, similarly in spirit to the treatment described in
Section 10.2. We also mention that the temporal resolution issue for time-
splitting approximations of the Liouville equations with random potentials
was rigorously studied in (Bal and Ryzhik 2004). Finally, we refer to (Fouque
et al. 2007) and (Bal, Komorowski and Ryzhik 2010) for a comprehensive
reading on high frequency waves in random media.

15. Nonlinear Schrödinger equations in the semiclassical
regime

So far we have only considered linear Schrödinger equations. Nonlinear
models however are almost as important, since they describe a large num-
ber of physical phenomena in nonlinear optics, quantum superfluids, plasma
physics or water waves, see e.g. (Sulem and Sulem 1999) for a general
overview. The inclusion of nonlinear effects poses new challenges for math-
ematical and numerical study.

15.1. Basic existence theory

In the following we consider nonlinear Schrödinger equations (NLS) in the
form

iε∂tu
ε = −ε

2

2
∆uε + V (x)uε + εαf(x, |uε|2)uε; uε(0, x) = uε

in(x), (15.1)

with α ≥ 0 some scaling parameter, measuring (asymptotically) the strength
of the nonlinearity. More precisely we shall focus on two important classes
of nonlinearities. Namely,

(i) local gauge invariant nonlinearities, where f = ±|uε|2σ, with σ > 0.
(ii) Hartree type nonlinearities, where f = V0 ∗ |uε|, with V0 = V0(x) ∈ R

some given convolution kernel.

The first case of nonlinearities has important applications in Bose-Einstein
condensation and nonlinear optics, whereas the latter typically appears as a
mean-field description for the dynamics of quantum particles, say electrons
(in which case one usually has V0(x) = ± 1

|x| in d = 3).
Concerning the existence of solutions to (15.1), we shall in the following

only sketch the basic ideas. For more details we refer (Cazenave 2003) and
(Carles 2008). As a first step we represent the solution to (15.1) using
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Duhamel’s formula:

uε(t) = U(t)uε
in − iεα

∫ t

0
U ε(t− s)

(
fε(x, |uε|2)(s)uε(s)

)
ds. (15.2)

where U ε(t) is the unitary semi-group generated by the linear Hamiltonian
H = −1

2∆+V (see the discussion in Section 2.1). The basic idea is to prove
that the right hand side of (15.2) defines a contraction mapping (in some
suitable topology). To this end, one has to distinguish between the case of
sub- and super-critical nonlinearities. It suffices to say, that the existence of
a unique solution uε ∈ C([0,∞);L2(Rd)) can be guaranteed, provided σ < 2

d

and/or V0 sufficiently smooth and decaying, say V0 ∈ L∞(Rd)∩Lq(Rd), with
q > d

4 .

Remark 15.1. Unfortunately, this sub-critical range of nonlinearities does
not allow to include several physically important examples, such as a cubic
nonlinearity σ = 1 in three spatial dimensions (needed e.g. in the description
of Bose-Einstein condensates).

In the case of super-critical nonlinearities σ > 2
d , the space L2(Rd) in general

is too large to guarantee existence of solutions. Typically, one restricts the
initial data to uε ∈ H1(Rd), i.e. initial data with finite kinetic energy,
in order to control the nonlinear terms by means of Sobolev’s imbedding.
Assuming that uε ∈ H1 local in-time existence can be guaranteed by using
Strichartz estimates, see (Cazenave 2003) for more details, and one obtains
uε ∈ C([−T ε, T ε];H1(Rd)), for some (possibly small) existence time T ε > 0.

Remark 15.2. Strictly speaking, we require σ < 2
d−2 in order to use

Sobolev’s imbedding to control the nonlinearity. Note however that the
case of cubic NLS in d = 3 is allowed.

Even though local in-time existence is relatively easy to achieve even in
the super-critical case, the existence of a global in-time solution to (15.1)
in general does not hold. The reason being the possibility of finite time
blow-up, i.e. the existence of a time |T ∗| <∞, such that

lim
t→T ∗

‖∇uε‖ = +∞.

For T > T ∗, a strong solutions to (15.1) ceases to exist and one can only
hope for weak solutions, which however are usually not uniquely defined. In
order to understand better in which situations blow-up can occur, consider,
for simplicity, the case of a cubic NLS with V (x) = 0:

iε∂tu
ε = −ε

2

2
∆uε ± |uε|2uε; uε(0, x) = uε

in(x). (15.3)
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Given a local in-time solution to this equation one can invoke the conserva-
tion of the (nonlinear) energy, i.e.

E[uε(t)] =
ε2

2

∫
Rd

|∇uε(t, x)|2 dx± 1
2

∫
Rd

|uε(t, x)|4 dx = E[uε
in].

Since E[uε
in] < const, by assumption, we can see that in the case where the

nonlinearity comes with ‘+’, the a-priori bound on the energy rules out the
possibility of finite time blow-up. These type of nonlinearities are usually
referred to as defocusing. On the other hand, in the case of a focusing
nonlinearity, i.e. f = −|uε|2, we can no longer guarantee the existence of
a global in-time solutions (in the supercritical regime). Rather, we have to
expect finite time blow-up to occur in general. Clearly, this phenomena will
also have a significant impact on numerical simulations, in particular for
ε� 1.

15.2. WKB Analysis of nonlinear Schrödinger equations

In order to understand the influence of nonlinear terms in the limit ε → 0
one can again invoke a WKB approximation of form (2.10),

uε(t, x) ε→0∼ aε(t, x)e iS(t,x)/ε .

Let us assume for simplicity that α ∈ N. Then, upon plugging the ansatz
given above into (15.1), and ordering equal powers in ε we see that S solves

∂tS +
1
2
|∇S|2 + V (x) =

{
0, if α > 0,

f(x, |a|2), if α = 0.
(15.4)

We see that in the case α = 0 we can no longer solve the Hamilton-Jacobi
equation for the phase S independently from the amplitude a. In other
words, the amplitude influences the geometry of the rays or characteristics.
This is usually referred to as super-critical geometric optics (Carles 2008),
not to be confused with supercritical regime concerning the existence of
solutions as outlined in Section 15.1 above.

Weakly nonlinear geometric optics
In contrast to that, the situation for α > 0 (sub-critical geometric optics)
is similar to the linear situation in the sense that the rays of geometric
optics are still given by (2.13) and thus independent of the nonlinearity.
In this case, the method of characteristics guarantees the existence of a
smooth S ∈ C∞([−T, T ] × Rd) up to caustics and one can proceed with
the asymptotic expansion to obtain the following transport equation for the
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leading order amplitude

∂ta+∇S · ∇a+
a

2
∆S =

{
0, if α > 1,

− if(x, |a|2), if α = 1.
(15.5)

One sees that if α > 1 nonlinear effects are asymptotically negligible for
ε� 1. The solution is therefore expected to be roughly the same as in the
linear situation (at least before caustics). For α = 1, however, nonlinear
effects show up in the leading order amplitude. Note however, that by
multiplying (15.5) with ā and taking the real part, one again finds

∂tρ+ div(ρ∇S) = 0

which is the same conservation law for ρ = |a|2 as in the linear case. The
nonlinear effects for α = 1 are therefore solely given by nonlinear phase
modulations of the leading order amplitude. In the case of a simple cubic
nonlinearity one explicitly finds (Carles 2000):

a(t, x) =
a0(y(t, x))√
Jt(y(t, x))

e iG(t,x), |t| ≤ T, (15.6)

where the slowly varying phase G is given by

G(t, x) = −
∫ t

0

|a0(y(τ, x))|2

Jτ (y(τ, x))
dτ.

This regime is therefore often called weakly nonlinear geometric optics and
indeed it is possible to prove a rigorous approximation result analogous to
Theorem 2.3 also in this case.

Super-critical geometric optics
On the other hand, the situation for α = 0 is much more involved. Indeed
it can be easily seen that a naive WKB approximation breaks down since
the system of amplitude equation is never closed, i.e. the equation for an,
obtained at O(εn), involves an+1 and so on (a problem which is reminiscent
of the moment closure problem discussed in Section 6 above). This difficulty
was overcome by (Grenier 1998) and (Carles 2007b) (Carles 2007a), who
noticed that there exists an exact representation of uε in the form

uε(t, x) = aε(t, x)e iSε(t,x)/ε, (15.7)

with real-valued phase Sε (possibly ε-dependent) and complex-valued ampli-
tude aε. (Essentially the right hand side of (15.7) introduces an additional
degree of freedom by invoking complex amplitudes). Plugging (15.7) into
(15.1) with α = 0 one has the freedom to split the resulting equations for aε

and Sε as follows: Upon plugging the ansatz given above into (15.1), and
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ordering equal powers in ε one sees that S solves

∂tS
ε +

1
2
|∇Sε|2 + V (x) + f(x, |aε|2) = 0,

∂ta
ε +∇Sε · ∇aε +

a

2
∆Sε − i

ε

2
∆aε = 0.

Formally, we expect the limit of this system as ε→ 0 to give a semiclassical
approximation of uε, at least locally in-time. Indeed this can be done by first
rewriting these equations into a new system for ρε = |aε|2 and vε = ∇Sε.
Under some assumptions on the nonlinearity f (satisfied e.g. in the cubic
case), the obtained equations form a strictly hyperbolic system in which one
can rigorously pass to the limit as ε→ 0 to obtain

∂tv + v · ∇v + V (x) + f(ρ) = 0,
∂tρ+ div(ρv) = 0.

(15.8)

This is a system of (irrotational) Euler equations for a classical fluid with
pressure law p(ρ) = f ′(ρ)/ρ. Following this approach, one can prove that
as long as (15.8) admits (local in-time) smooth solutions ρ, v, the quantum
mechanical densities (2.6), (2.7) indeed converge

ρε ε→0−→ ρ, Jε ε→0−→ ρ, in C([0, T ];L1(Rd)) strongly.

Reconstructing out of these limits an approximate solution of the nonlinear
Schrödinger equation in WKB form, i.e.

uε
app(t, x) =

√
ρ(t, x)e iS(t,x)/ε, v(t, x) := ∇S(t, x),

in general requires some care, though see (Carles 2007b). Essentially one
needs to take into account a higher order corrector to ensure that the formal
approximation is indeed correct up to errors of order O(ε), independent of
t ∈ [0, T ].

The semiclassical limit for α = 0 for |t| > T , i.e. beyond the formation
of shocks in (15.8), is a very challenging mathematical problem. In one-
dimensional case the only available result is given by (Jin, Levermore and
McLaughlin 1999) using the inverse scattering technique. The semiclassical
limit of focusing NLS is more delicate, but can also be obtained by inverse
scattering, see (Kamvissis, McLaughlin and Miller 2003).

Remark 15.3. Let us close this subsection by noticing that the analysis
for Hartree type nonlinearities is found to require slightly less sophistication
than for local ones (Alazard and Carles 2007) and that the intermediate case
0 < α < 1 can be understood as a perturbation of the situation for α = 0
(Carles 2007b).
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15.3. Wigner measure techniques for nonlinear potentials

One might hope to extend the results for Wigner measures given Section 3
also to nonlinear problems. This would have the considerable advantage of
avoiding problems due to caustics. Unfortunately, this idea has not been
very successful so far, the reason being that Wigner measures are obtained
as weak limits only, which in general is not sufficient to pass to the limit
in nonlinear terms. Indeed, one can even prove an ill-posedness result for
Wigner measures in the nonlinear case (Carles 2001).

A notable exception is the case of Hartree nonlinearities f = V0 ∗ |uε|
with smooth interaction kernels V0 ∈ C1

b(Rd) (Lions and Paul 1993). In this
case the Wigner measure associated to uε is found to be a solution of the
self-consistent V lasov equation:

∂tw + ξ · ∇ξw −∇x(V0 ∗ ρ) · ∇ξw = 0, ρ(t, x) =
∫

Rd

w(t, x, dξ).

The physically more interesting case of a non-smooth interaction kernels,
such as V0 ∼ 1

|x| which describes the coupling to a Poisson equation, is not
covered by this result and can only be established in the particular case of
fully mixed quantum state, see (Lions and Paul 1993) and (Markowich and
Mauser 1993) for more details and also (Zhang 2002) for a similar result
valid for short time, only.

15.4. Numerical challenges

Due to the introduction of nonlinear effects, the numerical difficulties dis-
cussed in Sections 4 and 5 are enhanced. The main numerical obstacles are
the formation of singularities in focusing nonlinear Schrödinger equations
and the creation of new scales at caustics for both focusing and defocusing
nonlinearities. Basic numerical studies of semiclassical NLS were conducted
in (Bao et al. 2002) and (Bao, Jin and Markowich 2003b), with the result
that finite difference methods typically require prohibitively fine meshes to
even approximate observables well in semiclassical defocusing and focusing
NLS computations. In the case where these very restrictive meshing con-
straints are bypassed, usual finite-difference schemes for NLS can deliver
wrong approximations in the classical limit ε → 0 without any particular
sign of instability (Carles and Gosse 2007). Time-splitting spectral schemes
are therefore the preferred method of choice. To this end, we refer to (Jin,
Markowich and Zheng 2004) for the application of the time-splitting spec-
tral method to the Zakharov system, to (Huang, Jin, Markowich, Sparber
and Zheng 2005) for the numerical solution of the Dirac-Maxwell system
and to (Bao et al. 2003b) for numerical studies of nonlinear Schrödinger
equations. In addition, let us mention (Bao, Jaksch and Markowich 2003a),
(Bao, Jaksch and Markowich 2004) where numerical simulations of the cu-
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bically nonlinear Gross-Pitaevskii equation (appearing in the description
of Bose-Einstein condensates) are given using time-splitting trigonometric
spectral methods. A numerical study of ground state solutions of the Gross-
Pitaevskii equation can be found in (Bao, Wang and Markowich 2005).

Remark 15.4. Note, however, that in the nonlinear case, even for ε > 0
fixed, a rigorous convergence analysis of splitting methods is considerably
more difficult than for linear Schrödinger equations, see e.g. (Lubich 2008),
(Gauckler and Lubich 2010), and (Faou and Grebert 2010).

Due to the nonlinear creation of new highly oscillatory scales in the limit
ε → 0, time-splitting methods suffer from more severe meshing restrictions
for NLS than for linear Schrödinger equations, in particular after the ap-
pearance of the first caustics in the corresponding WKB approximation, see
(Bao et al. 2003b), (Carles and Gosse 2007) for more details. In the weakly
nonlinear regime the following meshing strategy is sufficient

∆x = O(ε), ∆t = O(ε).

(to be compared with (5.5)) whereas in the regime of supercritical geometric
optics, one typically requires (even for quadratic observable densities)

∆x = O(ε), ∆t = o(ε).

i.e. a severe restriction on the time-step. In addition, one may need to
invoke Krasny filter (Krasny 1986), i.e. high Fourier-mode cut-offs, to avoid
artifacts (like symmetry breaking) in focusing NLS computations (Bao et
al. 2003b). The latter, however, violates the conservation of mass a clear
drawback from the physics point of view. In order to overcome this problem
higher order methods (in time), such as exponential time-differencing or the
use of integrating factors have to be deployed and we refer to (Klein 2007/08)
for a comparison of different fourth order methods for cubic NLS in the
semiclassical regime.

Remark 15.5. In the closely related problem of the complex-Ginzburg
Landau equation in the large space and time limit, the situation is known to
be slightly better, due to the dissipative nature of the equation, see (Degond,
Jin and Tang 2008) for a numerical investigation. Finally, we note that the
cubic NLS in d = 1 is known to be fully integrable by means of inverse
scattering. This feature can be used in the design of numerical algorithms,
as has been done in e.g. (Zheng 2006). A generalization to higher dimensions
or more general nonlinearities seems to be out of reach so far.

The lack of a clear mathematical understanding of the asymptotic behav-
ior of solution to semiclassical NLS beyond the formation of caustics has
so far hindered the design of reliable asymptotic schemes. One of the few
exceptions is the case of the Schrödinger-Poisson equation in d = 1, which
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can be analyzed using Wigner measures and which has recently been studied
numerically in (Jin, Wu and Yang 2010a) using a Gaussian beam method.
In addition, moment closure methods have been employed for this type of
nonlinearities, since it is known that the underlying classical problem, i.e.
the Euler-Poisson system, allows for a construction of multi-valued solu-
tions. Numerical simulations for the classical system have been conducted
in (Wohlbier et al. 2005). In addition the case of the Schrödinger-Poisson
equation with periodic potential is treated in (Gosse and Mauser 2006).
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