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ABSTRACT. The Generalized Langevin Equation, in history, arises as a natural fix for the rather traditional

Langevin equation when the random force is no longer memoryless. It has been proved that with fractional

Gaussian noise (fGn) mostly considered by biologists, the overdamped Generalized Langevin equation satis-

fying fluctuation dissipation theorem can be written as a fractional stochastic differential equation (FSDE).

While the ergodicity is clear for linear forces [1], it remains less transparent for nonlinear forces. In this

work, we present both a direct and a fast algorithm respectively to this FSDE model. The strong orders of

convergence are proved for both schemes, where the role of the memory effects can be clearly observed.

We verify the convergence theorems using linear forces, and then present the ergodicity study of the double

well potentials in both 1D and 2D setups.

1. INTRODUCTION

Diffusion in statistical mechanics is a class of ubiquitous phenomena that appears commonly in na-

ture and has been extensively studied from both physical and mathematical points of view. While the

normal diffusion, typically formalized by random walk, is well understood through the rather classical

Brownian Motion theory and the Langevin equation (LE), the so-called anomalous diffusion processes,

however, remain far from fully explored. Among them, subdiffusion, in which the mean square displace-

ment 〈∆x(t )2〉 scales as tβ with 0 < β < 1, has been found in many different physical contexts such as

cytoplasmic macromolecules in living cells [2, 3], the movement of lipids and single-molecule on mem-

branes [4, 5, 6], the solute transport in porous media [7], the translocation of polymer solutions [8, 9, 10],

and the conformational dynamics and fluctuations of protein molecules [11, 12]. To better describe sub-

diffusive phenomena, the Generalized Langevin Equation (GLE) with fractional Gaussian noise (fGn) is

therefore introduced [13] from a model point of view. This particular GLE can be written as

(1.1) mẍ(t ) =−∇V (x)−
∫ t

t0

γ(t − s)ẋ(s)d s +η(t ),

where a particle with mass m and position x(t ) is considered. Besides the external force −∇V (x) = b(x),

the particle is also driven by the friction (dissipation) and a random force (fluctuation), in which the

friction term depending on the history of the particle velocity – instead of the instantaneous velocity

– has a memory effect with the memory kernel γ(t ), and the random fluctuation force η(t ) = σḂH is

the fractional Gaussian noise with the Hurst index H and some fluctuation constant σ. Here, ḂH is

understood as the distributional time derivative of the fractional Brownian motion BH . See section 2.2

for the brief introduction and we refer the readers to [14, 15] for more details. This equation is sometimes

also referred to as the fractional Langevin equation in physical literature [16, 17, 18, 19].
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The intuitive picture of the GLE (or LE) description, as is provided by Kubo [20], is to consider for ex-

ample the colloidal particles floating in a liquid medium. The random impacts of surrounding particles

are responsible for two effects – the random force and the systematic friction, and hence the two parts

must be related. To be specific, the energy restored by fluctuation must be balanced with the energy

loss by dissipation so that the particle achieves the equilibrium with the correct temperature. This inter-

nal relationship linking both parts of the microscopic forces is described in general as the fluctuation-

dissipation theorem (FDT) [21, 20, 22]. To be specific, η(t ) and the kernel γ(t ) satisfy

E(η(t )η(t +τ)) = kTγ(|τ|), ∀τ ∈R,(1.2)

where E means ‘ensemble average’ in physics or expectation in mathematics.

We point out that the GLE is, of course, by no means introduced merely for the sake of subdiffusion.

Proposed by Mori [23] and Kubo [20] in the sixties, the GLE is a well-appreciated object enjoying a long

history. From a model viewpoint, GLE appears naturally according to the fluctuation-dissipation theo-

rem as a generalization of the Langevin equation when the random force in considerations is no longer

memoryless; In terms of derivation, it can be derived from the Mori-Zwanzig formulation [24, 25] as

a powerful tool for dimension reduction in many different forms depending on applications, such as

molecular dynamics [26, 27, 28, 29] and recently uncertainty quantification [30]. For different random

forces, their corresponding memory kernels are different as a consequence of the fluctuation dissipation

theorem (1.2). In the subdiffusion model with fractional Gaussian noise, the reasonable memory kernel

turns out to behave as a power law γ(t ) ∝ t−α with certain constant α and the friction term becomes

the fractional derivative, as is shown both formally and rigorously that in the contexts of the absence of

external force and with quadratic potential in the overdamped regime (m ¿ 1) [1, 13, 20, 31], respectively.

It worths pointing out that due to the complicated memory effects, a rigorous proof of the fluctuation

dissipation theorem is by no means an easy task, if not impossible. Fortunately in above cases, the so-

lution can be formally written down explicitly, which makes the proofs feasible. For general potentials,

however, a validation analysis of the fluctuation dissipation theorem in Equation (1.1) remains unclear,

which is also proposed as an open problem in [1]. Therefore, trying to understand this problem numeri-

cally serves as one main motivation of this work.

Following the analytical work, we also restrict ourselves to the overdamped GLE (m → 0) as in [1]. The

corresponding fractional stochastic differential equation (FSDE) reads [1]

(1.3) Dα
c x =−∇V (x)+σḂH ,

which is also known as the overdamped fractional Langevin equation with fractional noise, where

α= 2−2H , σ=
p

2p
Γ(2H +1)

,

as a result of FDT (1.2) (see section 2.2 for more details). The fractional derivative in the Caputo sense

[32, 33] is given by

(1.4) Dα
c x(t ) = 1

Γ(1−α)

∫ t

0

ẋ(s)

(t − s)α
d s.

Though motivated by the understanding of overdamped GLE in this FSDE model, we point out that

the numerical analysis of FSDE is by itself an interesting mathematical problem. Although there has

been some numerical simulations of the FLE [18, 34], the numerical analysis remain untouched. The
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main difficulties of our problem are of two folds: (a) In terms of numerical analysis, different from the

usual SDE where the correlation between increments of the standard Wiener process is simply absent,

in FSDE the increments of fBm depends on the history, resulting in the analysis of strong convergence

much harder comparing to usual case. (b) From a computational viewpoint, due to the memory effect, a

straightforward discretization will be very memory-consuming, as one needs access to all history values

at each time step. This becomes particularly troublesome when computing a number of sample paths.

Providing a rigorous strong convergence analysis, our paper also features a fast algorithm that can be

used for general potentials with good efficiency. The rest of the paper is organized as follows. In this

work, we first propose a direct numerical scheme for the FSDE with general parameters

α ∈ (0,1), H ∈
(

1

2
,1

)
, σ> 0,(1.5)

based on the integral formulation of the FSDE and prove its convergence result in the strong sense. The

optimal strong order for the overdamped GLE in the case b(·) is linear has been obtained by careful

estimates of correlation for increments of fBm. However, due to the memory effects, the computational

cost is rather formidable. In particular, a speeding up of the solver becomes crucial in the considerations

of the ergodicity, and moreover the stochastic nature of our problem where multiple sample paths need

to be computed. To tackle the task, a fast numerical algorithm is then introduced in Section 4. The

idea is to make use of the sum-of-exponentials (SOE) approximation of the algebraic memory kernel,

which can be understood intuitively here as Markovian approximations of the non-Markovian process.

The convergence of the fast algorithm is proved by establishing a stability lemma (Lemma 4.4) based on

comparison principles. We point out that SOE approximation has been applied in various situations for

improving the computational efficiency of convolution integrals, for instance, [35, 36, 37, 38, 39, 40, 41,

42]. Finally, the algorithms are tested on a number of numerical examples, including the verification test

of FDT for quadratic and double-well potentials of both 1D and 2D cases.

2. FSDE AND FRACTIONAL BROWNIAN MOTION

2.1. Preliminaries and notations. In this paper, we will fix the probability space (Ω,F ,P). x0 is a ran-

dom variable defined on this space, while BH is a fractional Brownian motion defined on this space (see

section 2.2 for brief introduction). We will use the filtration (Gt ) with

Gt =∩s>tσ
(
BH (τ),06 τ6 s, x0

)
, ∀t ∈ [0,T ).

The notation E represents the expectation (integral) under probability measure P.

The FSDE model (1.3) with general parameters given in (1.5) is rigorously defined through the follow-

ing integral formulation

x(t ) = x0 + 1

Γ(α)

∫ t

0
(t − s)α−1b(x(s))d s + σ

Γ(α)

∫ t

0
(t − s)α−1dBH ,(2.1)

where b(x) =−∇V . In the discussion below, we will consider a general force field b(x) that is not neces-

sarily conservative. As is shown in [1, Theorem 1], if b is Lipschitz, the FSDE has a unique strong solution

x(t ), which is a stochastic process adapted to the filtration {Gt }.

For the convenience of discussion, we introduce the norm of a random variable v ∈ L2(Ω;P)

‖v‖ =
√
E|v |2,(2.2)
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together with the associated inner product

〈u, v〉 = Euv.(2.3)

Occasionally, we will drop the measure P and use L2(Ω) to mean the space of square integrable random

variables.

We denote by Jα the fractional integral operator

Jα f = 1

Γ(α)

∫ t

0
(t − s)α−1 f (s)d s.(2.4)

Moreover, we note that the solution to the fractional ODE [43]

Dα
c u = Lu, u(0) = A,(2.5)

is given by

u(t ) = AEα(Ltα),(2.6)

where Eα(·) is the Mittag-Leffler function defined by

Eα(z) =
∞∑

n=0

zn

Γ(1+nα)
.(2.7)

In the following subsections, we shall briefly revisit the basics of fractional Brownian motion, and then

prove some basic estimates for the FSDE that prepares us for the numerical analysis in later sections.

2.2. Fractional Brownian Motion. The fractional Brownian motion BH (see [44, 45] for more detailed

discussions) with Hurst parameter H ∈ (0,1) is a Gaussian process defined on some probability space

(Ω,F ,P ) such that BH (0) = 0, with mean zero and covariance

E(B H
t B H

s ) = RH (s, t ) = 1

2

(
s2H + t 2H −|t − s|2H )

.(2.8)

By definition, BH has stationary increments which are normal distributions with E((BH (t )−BH (s))2) =
(t − s)2H . By the Kolmogorov continuity theorem, BH is Hölder continuous with order H − ε for any ε ∈
(0, H). BH has finite 1/H-variation. Besides, it is self similar: BH (t )

d= a−H BH (at ) where ‘
d=’ means they

have the same distribution. It is non-Markovian except for H = 1/2 when it is reduced to the Brownian

motion (i.e., Wiener process). With this definition and the fact that (BH (t +h)−BH (t ))/h converges in

distribution (i.e. under the topology of the dual of C∞
c (0,∞)) to ḂH (t ), we have

(2.9) E(ḂH (t )ḂH (τ+ t )) = lim
h→0,h1→0

E

(
BH (t +h1)−BH (t )

h1

BH (t +τ+h)−Bh(t +τ)

h

)
= lim

h→0,h1→0

1

2hh1

(
(τ+h1)2H − (t +h −h1)2H −τ2H + (τ−h)2H )= H(2H −1)τ2H−2.

This explains why the fractional noise leads to power law kernel by the (1.2) and why we have the FSDE

in the over-damped limit as mentioned in the introduction.

Also, for the convenience, we denote

G(t ) = σ

Γ(α)

∫ t

0
(t − s)α−1dBH .(2.10)

The process G(t ) is clearly a Gaussian process because BH (t ) is a Gaussian process. In [1], it has been

shown that
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Lemma 2.1 ([1]). The increments of G satisfies

E|G(t2)−G(t1)|26C |t2 − t1|2H+2α−2.(2.11)

Consequently, G(t ) is H+α−1−εHölder continuous for any ε> 0. Moreover, ifα= 2−2H andσ=
p

2p
Γ(2H+1)

,

then

G(t )
d=βH B1−H(2.12)

is a fractional Brownian motion up to a factor. Here, βH is a constant given by

βH =
p

2p
Γ(3−2H)

.(2.13)

2.3. Some Estimates of the FSDE. In this section, we prove some basic estimates of the FSDE, which

helps the understanding of the equation and prepares us for the numerical analysis in the later sections.

For the FSDE (2.1), assume that

|b(x)−b(y)|6 L|x − y |.(2.14)

In [1], it has been shown that (2.1) has a unique continuous strong solution. Moreover, we have the

following moment control:

Lemma 2.2. If E(|x0|2 +|b(x0)|2) <∞, then

sup
06t6T

‖x(t )‖26C (T ).(2.15)

Proof. Using (2.14), the strong solution x(t ) satisfies

|x(t )−x0|6 tα

Γ(α+1)
|b(x0)|+ L

Γ(α)

∫ t

0
(t − s)α−1|x −x0|(s)d s +|G(t )|.

Taking square and using the elementary inequality (a +b + c)26 3(a2 +b2 + c2), we have

|x(t )−x0|26 3

[
t 2α

Γ(α+1)2 |b(x0)|2 + L2

Γ(α)2

(∫ t

0
(t − s)α−1|x −x0|(s)d s

)2

+|G(t )|2
]

.(2.16)

For the second term, Hölder inequality yields

(2.17)

(∫ t

0
(t − s)α−1|x −x0|(s)d s

)2

6
∫ t

0
(t − s)α−1 d s

∫ t

0
(t − s)α−1|x −x0|2(s)d s = tα

α

∫ t

0
(t − s)α−1|x −x0|2(s)d s.

Further, by the result in [1, Prop. 1]

E|G(t )|26C (T ).(2.18)

Combining (2.16)-(2.18), we have

E|x(t )−x0|26C1(T )+C2(T )
1

Γ(α)

∫ t

0
(t − s)α−1E|x −x0|2(s)d s.(2.19)

Using the Grönwall inequality in [46, Prop. 5], we have

E|x(t )−x0|26C (T ),∀t ∈ [0,T ].(2.20)

The claim therefore follows. �
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Now we are ready to estimate the increments of the solution.

Lemma 2.3. There exists a constant C (T ) such that for all δ ∈ (0,1), we have

(2.21) ‖x(t +δ)−x(t )‖26C (T )δ2H+2α−2

for all t 6 T, t +δ6 T .

Proof. By (2.1), we have

x(t +δ)−x(t ) = 1

Γ(α)

∫ t

0

[
(t +δ− s)α−1 − (t − s)α−1]b(x(s))d s

+ 1

Γ(α)

∫ t+δ

t
(t +δ− s)α−1b(x(s))d s + (G(t +δ)−G(t )) =: I1 + I2 + I3.

Using again (a +b + c)26 3(a2 +b2 + c2), we have

‖x(t +δ)−x(t )‖26 3(‖I1‖2 +‖I2‖2 +‖I3‖2).

Using the Hölder inequality,

E

(∫ t

0
[(t +δ− s)α−1 − (t − s)α−1]b(x(s))d s

)2

6
∫ t

0

[
(t − s)α−1 − (t +δ− s)α−1] d s E

∫ t

0

[
(t − s)α−1 − (t +δ− s)α−1] |b(x(s))|2 d s

Since

06
∫ t

0
(t − s)α−1 − (t +δ− s)α−1 d s = 1

α
(tα+δα− (t +δ)α)6

1

α
δα,

we have

‖I1‖26C (α)δ2α sup
06s6T

E|b(x(s))|2.

Similarly, one can apply Hölder inequality for E(
∫ t+δ

t (t +δ− s)α−1b(x(s))d s)2. Finally, we have

‖x(t +δ)−x(t )‖26Cδ2α sup
06s6T

E|b(x(s))|2 +E|G(t +δ)−G(t )|26C (T )
(
δ2α+δ2H+2α−2) ,(2.22)

where we used Lemma 2.1 and Lemma 2.2. Apparently 2α> 2H +2α−2, and the claim follows. �

Remark 2.4. When FDT is satisfied, α = 2−2H , the order in the right hand side of Equation (2.22) be-

comes

‖x(t +δ)−x(t )‖26Cδ2−2H .

If H = 1
2 and BH =W is the standard Wiener process, this is a well-known result for diffusion processes.

3. DIRECT DISCRETIZATION

For the fixed terminal time T , we introduce the time step

k = T

N
,(3.1)

where N is a positive integer and we define

t j = j k.(3.2)

We will use the notation C to represent the complexity, or cost, of an algorithm.
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We approximate b(x(t )) with a function b̃(t ) such that

b̃(t ) = b(x j−1), t ∈ [t j−1, t j ).(3.3)

This then gives a numerical scheme for the FSDE (2.1):

(3.4) xn = x0 + 1

Γ(α)

n∑
j=1

b(x j−1)
∫ t j

t j−1

(tn − s)α−1d s +G(tn)

= x0 + kα

Γ(1+α)

n∑
j=1

b(x j−1)((n − j +1)α− (n − j )α)+G(tn).

Let NG be the complexity for sampling process G(t ). Then, a simple estimate gives the following claim

regarding the numerical scheme (3.4):

Proposition 3.1. The scheme (3.4) has time complexity C = O(N 2 +NG ) and it converges to the solution

of the FSDE strongly in the following sense:

sup
n6T /k

‖xn −x(tn)‖6C (T )k H+α−1.(3.5)

Proof. To compute the the fractional integral, we need O(N 2) operations. Hence, the complexity is

clearly

C =O(N 2 +NG ).

Using (2.1) and (3.4), we have

(3.6) xn −x(tn) = 1

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1(b(x j−1)−b(x(s)))d s

= 1

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1(b(x j−1)−b(x(t j−1)))d s + 1

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1(b(x(t j−1))−b(x(s)))d s.

Denote

Rn := 1

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1(b(x(t j−1))−b(x(s)))d s.(3.7)

It follows from (2.14) and Lemma 2.3 that for all n6 T /k

‖Rn‖6C1(T )k H+α−1.(3.8)

Hence, for any n6 T /k, we have

‖xn −x(tn)‖6 L

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1d s‖x j−1 −x(t j−1)‖+C1(T )k H+α−1.

Applying [46, Lemma 6.1], we find that

‖xn −x(tn)‖6 u(tn)6C (T )kα+H−1,

where u solves

Dα
c u = Lu, u(0) =C1(T )k H+α−1.

This then finishes the proof. �
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The rate in Proposition 3.1 is only optimal for multiplicative noise and we expect better bounds for

the strong order since we have additive noise. As is well known, the Euler-Maruyama scheme for usual

SDE has strong order O(k) for additive noise, which can be proved using the fact that W (t2)−W (t1) is

independent of the sigma algebra σ(W (s) : s 6 t1). Unfortunately, for the fractional Brownian motion,

BH (t2)−BH (t1) is not independent of the history. However, we note that the correlation decays and we

may use this fact to improve the strong order. In fact, we are able to improve the result for the case

b(x) = B x and α= 2−2H .

Theorem 3.2. Let α= 2−2H and b(x) = B x where B is a d ×d constant matrix. The scheme (3.4) has time

complexity C =O(N 2 +NG ) and the strong error of the scheme can be controlled as

sup
n6T /k

‖xn −x(tn)‖6


C (T, H)k3−3H , H ∈ (3/4,1)

C (T, H)
√

| lnk|k3/4, H = 3/4,

C (T, H)k3/2−H , H ∈ (1/2,3/4).

(3.9)

We need the following to prove this theorem.

Lemma 3.3 ([47], Theorem 3.1). Suppose f ∈ C 0,β([0,T ];B) for a Banach space B and 0 6 β 6 1. Let

α ∈ (0,1) and

u(t ) = u0 + 1

Γ(α)

∫ t

0
(t − s)α−1 f (s)d s.

Then,

u(t ) = u0 + f (0)

Γ(1+α)
tα+ψ(t ),(3.10)

where

ψ ∈


C 0,β+α([0,T ];B), β+α< 1,

C 1,β+α−1([0,T ];B), β+α> 1,

C 0,1;1([0,T ];B), β+α= 1.

(3.11)

Now, we are ready to prove Theorem 3.2:

Proof of Theorem 3.2. To simplify the notation, we denote

(3.12) R(n,k) :=


k6−6H H > 3

4 ,

| lnn|k6−6H H = 3
4 ,

t 3−4H
n k3−2H H ∈ ( 1

2 , 3
4 ).

As in the proof of Proposition 3.1, we only need to estimate

Rn = 1

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1(b(x(t j−1))−b(x(s)))d s.(3.13)

Recall

x(t ) =
(
x0 + 1

Γ(α)

∫ t

0
(t − s)α−1b(x(s))d s

)
+G(t ) =: ζ(t )+βH B1−H (t ),

where we have identified G(t ) with βH B1−H since they have the same distribution.

Since b(x) = B x, we have
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(3.14) Rn = B

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1(ζ(t j−1)−ζ(s))d s

+ BβH

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1(B1−H (t j−1)−B1−H (s))d s =: Rn,1 +Rn,2.

Step 1

We first of all estimate Rn,1. We denote

I j
n,1 := B

Γ(α)

∫ t j

t j−1

(tn − s)α−1(ζ(t j−1)−ζ(s))d s,

and

Rm
n,1 :=

m∑
j=1

I j
n,1.(3.15)

Clearly, Rn,1 = Rn
n,1. By the definition of Rm

n,1, we easily get that

‖Rm
n,1‖2 = 2

m−1∑
j=1

E(R j
n,1I j+1

n,1 )+
m∑

j=1
‖I j

n,1‖2,

since R1
n,1 = I 1

n,1.

(3.16) ‖I j
n,1‖6C

∫ t j

t j−1

(tn − s)α−1‖ζ(s)−ζ(t j−1)‖d s6C k2−2H
∫ t j

t j−1

(tn − s)α−1 d s,

where the estimate of ‖ζ(s)−ζ(t j−1)‖ is due to that ζ is α-Hölder continuous by Lemma 3.3 (see also the

estimates of I1, I2 in Lemma 2.3).

Hence, we have

n∑
j=1

‖I j
n,1‖26C k4(1−H)

(
k2α+

n−1∑
j=1

(
∫ t j

t j−1

(tn − s)α−1 d s)2

)
6C k4(1−H)(k2α+k2

n−1∑
j=1

(tn − t j )2α−2)

=C k4(1−H)(k2α+k2α
n−1∑
m=1

m2α−2) =C k8−8H (1+
n−1∑
m=1

m2−4H ).

Depending on the behavior of
n−1∑
m=1

m2−4H , the estimates branches into three cases. Clearly, when 4H−2 >
1, i.e. H > 3/4, the finite sum is bounded by a constant, while H = 3/4, it is bounded by lnn. When

H < 3/4,
∑n−1

m=1 m2−4H 6
∫ n

0 x2−4H d x = n3−4H

3−4H . Hence, it is easily bounded by C R(n,k).

Now turning to the first term in Rn,1 which is present for n> 2. Before starting the estimate, we point

out that x ∈ C 0,1−H [0,T ;L2(Ω)], so is b(x(s)). Hence one could apply Lemma 3.3 to ζ with f (s) = b(x(s))

and B = L2(Ω), and get

ζ(s) = x0 + b(x(0))

Γ(1+α)
s2−2H +ψ(s),

where ψ ∈C 0,3−3H for H > 2/3 or C 1,2−3H for H < 2/3. It follows that ‖ψ(s)−ψ(t j )‖6C kmin(1,3−3H), H 6=
2/3. For H = 2/3, there is | logk| factor but overall it is bounded by kmin(3/2−H ,3−3H). Note that the same

bound as in (3.16) is not enough for the desired results, so we must split ζ as ψ and s2−2H . Now we are

ready for the estimation of 2
∑m−1

j=1 E(R j
n,1I j+1

n,1 ). We first apply Cauchy-Schwarz Inequality inequality.

2
m−1∑
j=1

E(R j
n,1I j+1

n,1 )6C
m−1∑
j=1

‖R j
n,1‖

∫ t j+1

t j

(tn − s)α−1(kmin(3/2−H ,3−3H) + (s2−2H − t 2−2H
j ))
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6C
m−1∑
j=1

∫ t j+1

t j

(tn − s)α−1‖R j
n,1‖2 d s +C

m−1∑
j=1

∫ t j+1

t j

(tn − s)α−1k2min(3/2−H ,3−3H) d s

+C
m−1∑
j=1

∫ t j+1

t j

(tn − s)α−1(s2−2H − t 2−2H
j )2 d s =: J1 + J2 + J3.

For J1, we simply estimate it as

J16C
∫ tm

0
(tn − s)α−1un(s)d s6C

∫ tm

0
(tm − s)α−1un(s)d s

where

un(s) := ‖R j
n,1‖2, s ∈ [t j , t j+1),

R0
n,1 = 0.

(3.17)

J2 is easily bounded:

J26C k2min(3/2−H ,3−3H)tαn 6C (T )R(n,k).

For J3, we first of all note

(s2−2H − t 2−2H
j )26C k2t 2−4H

j .

Hence,

J36C k2
m−1∑
j=1

∫ t j+1

t j

(tn − s)α−1t 2−4H
j d s6C k2

(
k2−4H k2−2H +

n−1∑
j=2

∫ t j+1

t j

(tn − s)α−1t 2−4H
j d s

)
.

For the last term, we do a simple change of variables s −k → s, and obktain

n−1∑
j=2

∫ t j+1

t j

(tn − s)α−1t 2−4H
j d s6

n−1∑
j=2

∫ t j

t j−1

(tn−1 − s)α−1t 2−4H
j d s6

∫ tn−1

k
(tn−1 − s)α−1s2−4H d s.

If H < 3/4, this integral is bounded by t 4−6H
n−1 . If H = 3/4, it is bounded by ln(n)t 4−6H

n−1 . If H > 3/4, we have

it bounded by∫ tn−1

k
(tn−1 − s)α−1s2−4H d s = t 4−6H

n−1

∫ 1

1/(n−1)
(1− s)α−1s2−4H d s6C t 4−6H

n−1 (
1

n −1
)3−4H 6C t 1−2H

n−1 k3−4H .

Hence, we find that J36C R(n,k) still holds.

Overall, we have

un(tm)6C
∫ tm

0
(tm − s)α−1un(s)d s +C R(n,k).

Applying [46, Lemma 6.1], we find

‖Rn,1‖2 = un(tn)6C (T, H)R(n,k).

Step 2

We now estimate Rn,2. We similarly define

I j
n,2 =

BβH

Γ(α)

∫ t j

t j−1

(tn − s)α−1(B1−H (t j−1)−B1−H (s))d s.

Then, it is clear that

‖Rn,2‖2 =
(∑

j
‖I j

n,2‖2 +2
∑

i< j : j6i+3
EI i

n,2I j
n,2

)
+2

∑
i< j : j>i+4

EI i
n,2I j

n,2 =: K1 +K2.



NUMERICAL STUDY OF ERGODICITY FOR THE OVERDAMPED GENERALIZED LANGEVIN EQUATION WITH FRACTIONAL NOISE 11

Here we split the terms into two part so that the i and j in the second term are separated enough, which

helps its estimate.

‖I j
n,2‖6C

∫ t j

t j−1

(tn − s)α−1‖B1−H (t j−1)−B1−H (s)‖d s6C k1−H
∫ t j

t j−1

(tn − s)α−1 d s,

where the increments of the fBm are estimated as term I3 of Lemma 2.3. Then a straightforward calcula-

tion shows,

n∑
j=1

‖I j
n,2‖26C k2(1−H)

(
k2α+

n−1∑
j=1

(
∫ t j

t j−1

(tn − s)α−1 d s)2

)
6C k2(1−H)(k2α+k2

n−1∑
j=1

(tn − t j )2α−2)

=C k2(1−H)(k2α+k2α
n−1∑
m=1

m2α−2) =C k6−6H (1+
n−1∑
m=1

m2−4H ).

Similar as the first part of Step 1, the estimates henceforth branch according to the behavior of
n−1∑
m=1

m2−4H .

Clearly, when 4H − 2 > 1, i.e. H > 3/4, the finite sum is bounded by a constant, while H = 3/4, it is

bounded by lnn. When H < 3/4,

n−1∑
m=1

m2−4H 6
∫ n

0
x2−4H d x = n3−4H

3−4H
.

Hence we then have
n∑

j=1
‖I j

n,2‖26C R(n,k).(3.18)

Clearly,

K16 7
∑

j
‖I j

n,2‖26C R(n,k)

by (3.18).

For K2, which is present only if n> 8, we use (2.8) and have

EI i
n,2I j

n,2 =C
∫ ti

ti−1

∫ t j

t j−1

(tn−s)α−1(tn−τ)α−1(|s−t j−1|2−2H−|s−τ|2−2H+|τ−ti−1|2−2H−|ti−1−t j−1|2−2H )dτd s.

where

ti−16 s6 ti < ti +3k 6 t j−16 τ6 t j .

We first apply mean value theorem for t 7→ |t − t j−1|2−2H −|t −τ|2−2H so that there exists ξ ∈ (ti−1, s) such

that

|s− t j−1|2−2H −|s−τ|2−2H +|τ− ti−1|2−2H −|ti−1− t j−1|2−2H = (2−2H)(s− ti−1)(|ξ− t j−1|1−2H −|ξ−τ|1−2H )

Then, we apply mean value theorem again so that there exists η ∈ (t j−1,τ) and have the bound

|s − t j−1|2−2H −|s −τ|2−2H +|τ− ti−1|2−2H −|ti−1 − t j−1|2−2H

6 (2−2H)(2H −1)(s − ti−1)(τ− t j−1)|ξ−η|−2H 6C k2|τ− s −2k|−2H .

We do change of variables τ−k → τ and s +k → s to find

EI i
n,2I j

n,26C k2
∫ ti+1

ti

∫ t j−1

t j−2

(tn +k − s)α−1(tn −k −τ)α−1|s −τ|−2H dτd s
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6C k2
∫ ti+1

ti

∫ t j−1

t j−2

(tn−1 − s)α−1(tn−1 −τ)α−1|s −τ|−2H dτd s.

It follows that

K26C k2
∑

i6 j−2, j6n−1

∫ ti

ti−1

∫ t j

t j−1

(tn−1 − s)α−1(tn−1 −τ)α−1|s −τ|−2H dτd s

6C k2
∫ tn−2

0

∫ tn−1

s+k
(tn−1 − s)α−1(tn−1 −τ)α−1|s −τ|−2H dτd s =C k2

∫ tn−1

k

∫ s−k

0
sα−1τα−1|s −τ|−2H dτd s,

where in the last equality, we have made the change of variables (tn−1 − s, tn−1 −τ) → (s,τ). Since∫ s−k

0
τα−1|s −τ|−2H dτ= s2−4H

∫ 1−k/s

0
τα−1|1−τ|−2H dτ6C s2−4H k1−2H s2H−1 =C k1−2H s1−2H ,

we thus have

K26C k2k1−2H
∫ tn−1

k
s2−4H d s =C k3−2H t 3−4H

n−1

∫ 1

1/(n−1)
s2−4H d s

6C k3−2H t 3−4H
n−1 (1+k3−4H t 4H−3

n−1 )6C kmin(3−2H ,6−6H).

Hence, we have

‖Rn
n‖6


C k3−3H H > 3

4 ,

C
√
| lnk|k3−3H H = 3

4 ,

C k3/2−H H ∈ ( 1
2 , 3

4 )

=: R̃(T,k, H).

Using (3.6), we find

‖xn −x(tn)‖6 L

Γ(α)

n∑
j=1

∫ t j

t j−1

(tn − s)α−1d s‖x j−1 −x(t j−1)‖+ R̃(T,k, H).

Applying [46, Lemma 6.1] again, we obtain the desired error bound. �

By the proof, we find that proving the strong order for FSDE is much more difficult compared with

the usual SDE (Itô equations). The reason is that the increments of the fBm are not independent due

to the memory. The key point we use is the fact that the correlation between the increments decay if

the distance between them grows. In fact, we have an explicit representation of the fractional Brownian

motion, which is given by (see [44])

BH (t ) =C1(H)

(∫ t

0
(t − s)H−1/2dW (s)+

∫ 0

−∞
((t − s)H−1/2 − (−s)H−1/2)dW (s)

)
,(3.19)

where C1(H) is a constant. Define the filtration A (t ) by

A (t ) =∩s>tσ(W (τ),τ ∈ (−∞, s], x0).(3.20)

It is then clear that under this representation Gt ⊂At , t > 0 and x(t ) ∈A (t ).

It is worth pointing out that we then have the following explicit formula regarding the decay of the

correlation, though it is not directly used in this paper:

Lemma 3.4. Let a6 b < c and H ∈ (0,1). We have√
E
(
E(BH (c)−BH (b)|A (a))

)2
6C (H)|H − 1

2
|((c −a)H − (b −a)H ).(3.21)
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Proof. Using the representation (3.19), we find

Ξ := E(BH (c)−BH (b)|A (a)) =C1(H)
∫ a

−∞
((c − s)H−1/2 − (b − s)H−1/2)dW (s).

The result then follows from the simple calculation below:

√
E(Ξ)2 =C1(H)

√∫ a

−∞
((c − s)H−1/2 − (b − s)H−1/2)2 d s =C1(H)|H − 1

2
|
√∫ a

−∞

(∫ c

b
(r − s)H−3/2 dr

)2

d s

6C1(H)|H − 1

2
|
∫ c

b
‖(r −·)H−3/2‖L2(−∞,a) dr = C1(H)|H − 1

2 |p
2−2H

∫ c

b
(r −a)H−1 dr.

�

For general b(x), we expect that the strong order can also be improved compared with Proposition 3.1

by making use of the decay of correlation. However, this seems difficult and we leave this for future.

4. A FAST SCHEME

The cost of the direct discretization will be large if we compute many sample paths. In this section, we

propose a fast scheme. The idea is to use sum-of-exponentials (SOE) approximation in [40].

4.1. The fast scheme. We first introduce the SOE approximation:

Lemma 4.1. For α ∈ (0,1), tolerance ε > 0, truncation δ > 0,and fixed T > 0, there exist positive numbers

si ,ωi , with 16 i 6M such that

|tα−1 −
M∑

i=1
ωi e−si t |6 ε, ∀t ∈ [δ,T ],

where

M =O

(
log

1

ε
(loglog

1

ε
+ log

T

δ
)+ log

1

δ
(loglog

1

ε
+ log

1

δ
)

)
.

If ε= kσ and δ= k, we have

M =O((log N )2).

We then break the convolution kernel

tα−1 = tα−1χ(t 6 k)+ tα−1χ(t > k).

Then, for t > k, we apply the SOE approximation (4.1). Hence, we are then led to the kernel

γ(t ) =


1
Γ(α) tα−1 t 6 k,

1
Γ(α)

∑M
i=1ωi e−si t t > k.

(4.1)

This kernel is discontinuous, integrable and nonnegative.

Then, approximation (3.3) gives the following scheme:

xn = x0 +
n∑

j=1
b(x j−1)

∫ t j

t j−1

γ(tn − s)d s +G(tn).(4.2)

We denote

ηn
i =

0, n = 1,

1
Γ(α)

∑n−1
j=1 b(x j−1)

∫ t j

t j−1
e−si (tn−s) d s, n> 2.

(4.3)
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Then, we obtain our fast scheme:

xn = x0 + kα

Γ(1+α)
b(xn−1)+

M∑
i=1

ωiη
n
i +G(tn).(4.4)

To make the efficiency of the solver more transparent, we note:

Lemma 4.2. For any 16 i 6M, the sequence {ηn
i } satisfies

ηn+1
i = e−si kηn

i +
1

siΓ(α)
(e−si k −e−2si k )b(xn−1).(4.5)

Proof. This is just a consequence of direct computation. �

In fact, Lemma 4.2 is a consequence of the well-known fact that dynamics with exponentially decaying

memory kernels can be made Markovian. With the fast algorithm, we only need

O(N M) =O(N (log N )2)

time to compute {ηn
i } for a sample path. To make the computational efficiency more transparent, we list

some intuitive comparisons of the size of N and log(N ): for example, when N = 1000, (log N )2 ≈ 47; when

N = 10000, (log N )2 ≈ 85. In fact, M used here is a number even smaller than (log N )2, which is illustrated

more specifically in later numerical sections 6.1.2.

4.2. Stability and convergence of the fast algorithm. We will use the following fractional ODE as a ref-

erence:

Dα
c v = (1+ ε

Γ(α)
T 1−α) f (v(t )), v(0) = y0.(4.6)

The solution exists on [0,Tb) where either Tb =∞ or limt→T −
b

v(t ) =+∞ by the result in [46].

We first of all investigate a Volterra type integral equation that is useful for the stability of our scheme.

Lemma 4.3. Let y0> 0 and f (·) is a non-negative locally Lipschitz function. Consider

y(t ) = y0 +
∫ t

0
γ(t − s) f (y(s))d s.(4.7)

Then, there is a unique continuous solution y(t ) on [0,T ]∩ [0,Tb) with Tb being the blowup time for (4.6).

On [0,T ]∩ [0,Tb), y(t ) is a non-decreasing continuous function, and satisfies

y(t )6 v(t )

where v(·) solves (4.6). If f (·) is globally Lipschtiz, then Tb =∞ and y(t ) exists on [0,T ].

The proof of this lemma is standard. For the readers’ convenience, we give one proof in Appendix A.

The following lemma gives the stability of the fast algorithm:

Lemma 4.4. Let y0> 0. Assume f (v) is a non-negative, non-decreasing, Lipschitz function on [0,∞). Let

y(t ) be the solution to (4.7) on [0,T ]. For a given sequence z = {zm}, define

Tn(z, y0) = y0 +
n∑

j=1
f (z j−1)

∫ t j

t j−1

γ(tn − s)d s.(4.8)
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(1) Assume that a = {an} solves the induction relation an = Tn(a, y0). Then, {an} is non-negative, non-

decreasing and an 6 y(tn). In particular, if f (v) = Lv, we have

an 6 y0Eα

(
L(1+ ε

Γ(α)
)tαn

)
6C (T, H ,α)y0, ∀ε< 1,

where Eα(·) is the Mittag-Leffler function defined in (2.7).

(2) If a non-negative sequence c = {cn} satisfies cn 6 Tn(c, y0), then

cn 6 an 6 y(tn).

Proof. For (1), the claims follow by induction.

Indeed, a0 = y0 = y(0)> 0. Then,

06 a1 = y0 + f (y0)

Γ(α)

∫ k

0
(k − s)α−1 d s6 y0 + 1

Γ(α)

∫ k

0
(k − s)α−1 f (y(s))d s = y(t1)

by the monotonicity of f and y . Assume that for m 6 n − 1,n > 2, we have 0 6 am 6 y(tm). By the

monotonicity of f and y , an = Tn(a, y0)> 0 is trivial. Moreover,

an = Tn(a, y0)6 y0 +
n∑

j=1
f (a j−1)

∫ t j

t j−1

γ(tn − s)d s6 y0 +
n∑

j=1

∫ t j

t j−1

γ(tn − s) f (y(s))d s = y(tn).

Now, we show the monotonicity of {an}. a1> a0 = y0 is clear. For n> 2, we have:

f (an−1)

Γ(α)

∫ tn

tn−1

(tn − s)α−1 d s>
f (an−2)

Γ(α)

∫ tn

tn−1

(tn − s)α−1 d s = f (an−2)

Γ(α)

∫ tn−1

tn−2

(tn−1 − s)α−1 d s.(4.9)

Similarly,

f (a j−1)
∫ t j

t j−1

γ(tn − s)d s>

 f (a j−2)
∫ t j−1

t j−2
γ(tn − s)d s, j > 2,

0, j = 1.
(4.10)

Relations (4.9)-(4.10) then give an > an−1.

If f (v) = Lv , we have by Lemma 4.3 that

an 6 y(tn)6 v(tn) = y0Eα(L(1+ ε

Γ(α)
)tαn ).

Claim (2) is straightforward by induction. To see this, we note that if we have cm 6 am for all m6 n−1,

then

Tn(c, y0)6 Tn(a, y0),

which is just cn 6 an . �

Now, we have the convergence of the fast algorithm:

Theorem 4.5. Consider the fast scheme (4.4).

(1) Assume the SOE approximation as in Lemma 4.1 is applied with tolerance ε > 0, then the strong

error satisfies ‖xn − x(tn)‖ 6 C (T )(k H+α−1 + ε). In particular, if we set the tolerance ε = k H+α−1,

then sampling a path needs time complexity C = O(N (log N )2 +NG ), and we have the following

strong error bound

sup
n6T /k

‖xn −x(tn)‖6C (T )k H+α−1.(4.11)
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(2) In the case α= 2−2H and b(x) = B x, if we choose, ε= kmin(3/2−H ,3−3H), then the time complexity

for sampling a path is C =O(N (log N )2 +NG ) and the strong error is controlled as

sup
n6T /k

‖xn −x(tn)‖6


C (T, H)k3−3H , H ∈ (3/4,1)

C (T, H)
√

| lnk|k3/4, H = 3/4,

C (T, H)k3/2−H , H ∈ (1/2,3/4).

(4.12)

Proof. The complexity part is easy and we omit. We now focus on the error estimates.

Let

r (t ) := x(t )−
(

x0 +
∫ t

0
γ(t − s)b(x(s))d s +G(t )

)
.(4.13)

Then, we have r (t ) = 0 for t ∈ [0,k] and |r (t )|6 ε∫ t
0 |b(x(s))|d s, t ∈ [k,T ] by SOE approximation. It follows

that

sup
t∈[0,T ]

‖r (t )‖6C1(T )ε

It then follows from the definition of r (t ) that

x(tn)−xn =
n∑

j=1

∫ t j

t j−1

γ(tn − s)(b(x(s))−b(x j−1))d s + r (tn)

=
n∑

j=1

∫ t j

t j−1

γ(tn − s)(b(x(t j−1))−b(x j−1))d s −Rn + r1(tn),

where Rn is defined as in (3.7) and

r1(tn) = r (tn)+
n∑

j=1

∫ t j

t j−1

(
γ(tn − s)− 1

Γ(α)
(tn − s)α−1

)(
b(x(s))−b(x(t j−1))

)
d s.(4.14)

By the SOE approximation, we again have

sup
n6T /k

‖r1(tn)‖6C (T )ε.

We define En = ‖x(tn)−xn‖. We then have

En 6
n∑

j=1
LE j−1

∫ t j

t j−1

γ(tn − s)d s + sup
n6T /k

‖Rn‖+ sup
t∈[0,T ]

‖r1(t )‖.(4.15)

Applying Lemma 4.4 for

y0 = sup
n6T /k

‖Rn‖+ sup
t∈[0,T ]

‖r1(t )‖

and f (v) = Lv we have for ε< 1,

sup
n6T /k

En 6C (T, H ,α)( sup
n6T /k

‖Rn‖+ε).

The result follows by the estimates of Rn in the proof of Proposition 3.1 and Theorem 3.2. �
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5. SAMPLING FRACTIONAL BROWNIAN MOTION AND PROCESS G

To give a complete description of the numerical scheme, we must understand how to sample frac-

tional Brownian motion and the process G(t ).

Since fractional Brownian motion is a Gaussian process. Using the covariant matrices, one can trans-

form the standard Brownian motion into the desired Gaussian process.

For fractional Brownian motions, making use the time homogenuity, one has a fast algorithm to sam-

ple fractional Brownian motion. We use the circulant method (or Wood-Chan algorithm) (see [14] for

example). The idea is to sample

ξn = BH (tn)−BH (tn−1).

By the self-similarity,

ξn
d= k H (BH (n)−BH (n −1)).

Letting ζn = BH (n)−BH (n −1), (ζn) forms a Gaussian sequence whose covariance matrix satisfies

Σi j =Cov(ζi ,ζ j ) = ρH (|i − j |)(5.1)

for some function ρH . This structure allows us to construct a circulant matrix M of size 2(N−1)×2(N−1)

such that Σ= M(1 : N ,1 : N ). Then, one is able to take the square root of M using fast Fourier transform

(FFT). With the square root of M , it is straightforward to transform the standard multivariable normal

variables to a Gaussian sequence with covariant matrix M . The complexity is O(N log N ). The first N

elements will be a sample for the sequence (ζn). For the details, one can refer to [14, section 6].

As stated in [1], the case α= 2−2H is the physical case. As mentioned above, if α= 2−2H ,

G(t )
d=βH B1−H

is a fractional Brownian motion up to a factor, so G(t ) can be sampled directly using the method here.

This is a key observation for the simulation of overdamped GLE with fractional noise. Hence we conclude

Theorem 5.1. For the overdamped GLE with fractional noise (i.e. α= 2−2H, σ=p
2/Γ(2H +1)), we can

sample G(t ) with complexity

NG =O(N log N ).(5.2)

Consequently, the total complexity of the direct scheme (3.4) is

C =O(N 2),(5.3)

and the total complexity of our fast algorithm (4.4) is

C =O(N (log N )2)(5.4)

For general α, the FSDE model is not physical, but may be used in other situations. The covariance

matrix of G(t ) has been given in [1], for which the above trick fails, so that we do not have fast algorithms

for sampling G(t ). Another option is to consider the following equivalent form of the FSDE:

J1−α(x −x0)(t ) = 1

Γ(1−α)

∫ t

0
(t − s)−α(x(s)−x0)d s =

∫ t

0
b(x(s))d s +σBH (t )(5.5)
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This is like integrate the differential form formally. It is known that a discretization of J1−α(x − x0)(tn)−
J1−α(x −x0)(tn−1) is the L1 scheme [48, 49]. Hence, a possible numerical scheme is

(Dαx)n = b(xn−1)+ σ

k
ξn ,(5.6)

where Dα refers to the L1 scheme in [48]. This numerical scheme is like a Euler scheme for the differential

form (1.3). For this scheme, though we can sample ξn fast, we do not have a fast algorithm for the L1

scheme. Moreover, proving the convergence of this scheme is challenging. Hence, developing a fast

algorithm for the general α case is left for future.

6. NUMERICAL STUDY OF THE OVERDAMPED GLE

As we have mentioned, the overdamped GLE with fractional noise is equation (2.1) with

α= 2−2H , σ=
p

2p
Γ(2H +1)

.

We aim to study the ergodicity of the overdamped GLE

D2−2H x =−∇V (x)+
√

2

Γ(2H +1)
ḂH .

6.1. Example 1 (harmonic potential). In this subsection, we aim to validate the order of strong conver-

gence and study numerically the weak convergence of the schemes. The example we use is in the 1D

case and

∇V (x) = x.

In [1], the formula of the exact solution in terms of G(t ) is given:

x(t ) = x0eα,1(t )+G(t )+
∫ t

0
G(t − s)ėα,1(s)d s.(6.1)

Given a sample of G(t ), the integral here can be evaluated numerically with small time steps:∫ t

0
G(t − s)ėα,1(s)d s ≈∑

i
G(t − ti )(eα,1(ti )−eα,1(ti−1))

as the reference solution. For strong convergence, we must use the same sample of G , hence, we obtain

ξm
n for the small step km . Then, for km−1 = 2km ,

ξm−1
n = ξm

2n−1 +ξm
2n .

(km should be small so that the error from numerical integral is much smaller than the error from the

scheme.)

6.1.1. The strong convergence of the direct solver. We first test the strong convergence of the direct solver.

The time step for the reference solution is chosen as km = 2−14, and x0 = 1. The strong order of conver-

gence is tested for various H = 0.5,0.55,0.6,0.65,0.7,0.73,0.75,0.8,0.84 over 20000 sample paths. Note

that H = 0.5 is the memoryless case with the normal Brownian motion. In Fig. 1, we first plot the strong

error of the solution

E|xn −x(tn)|2

in terms of different time steps for some values of H to get a sense of convergence. Here cases of H =
0.8,0.6 are plotted, respectively: (1) in the case of H = 0.8, the strong order reads min{ 3

2 −H ,3−3H } = 0.6.
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As can be seen in Fig. 1, the slope is approximately 1.1718, and hence the convergence order is 0.586.

(2) similarly in the case H = 0.6, the convergence rate numerically reads 0.945, which approximately

matches the analytical results min{ 3
2 − H ,3−3H } = 0.9. Then Fig. 2 shows the plot of convergence rate

from our numerical results in terms of H , which matches the order proved in Theorem 3.2.
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FIGURE 1. Example 1 (Section 6.1.1): The strong convergence of the direct method for

H = 0.8 and H = 0.6, respectively in terms of various∆t in log-log scale. The convergence

orders match the theoretical result min{ 3
2 −H ,3−3H }, as is proved in Theorem 3.2.

6.1.2. The strong convergence of the fast solver. For the strong convergence of the fast solver. Similarly

as previous section, the time step for the reference solution is chosen as km = 2−14, and x0 = 1. We

first plot the strong order of convergence for H = 0.8 and H = 0.6 in Fig 3, where both cases match

the order min{ 3
2 − H ,3−3H } as proved in Theorem 4.5. Next, the strong convergence order for various

H = 0.55,0.6,0.65,0.7,0.73,0.75,0.8,0.84 is plotted in Fig 4. The numerical orders agree with theoretical

results.

Note that for the computational cost of the fast solver, as is shown in previous discussion is O(N M),

instead of O(N 2), where M is the number of terms used in the SOE approximation. For this example with

H = 0.8, ∆t = 2−11,T = 1 and the tolerance ε = 10−9, we only need M = 36 while N = 2048. To compute

longer time behavior as is interested here, say, T = 128, for H = 0.8 using∆t = 2−9, one only needs M = 44

while N = 65536. This drastically reduced the computational cost especially with many sample paths to

be simulated.

6.1.3. The test of ergodicity. As has been proved rigorously in [1, Theorem 2] that for the linear force case,

the process has ergodicity and converges algebraically to the Gibbs measure

(6.2) µ(d x) ∼ exp

(
−1

2
x2

)
d x.

Consider the initial data x0 = 0, H = 0.75 and computed over 50000 sample paths with ∆t = 2−9. Fig. 5

plots the empirical distribution at different times t = 0,0.25,1,2,8,32. Next, we plot the variance of x(t )
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FIGURE 2. Example 1 (Section 6.1.1): The strong convergence of the direct method for

H = 0.5,0.55,0.6,0.65,0.7,0.73,0.75,0.8,0.84 computed over 20000 sample paths in terms

of∆t = 2−11,2−9,2−7,2−5,2−3. As can be seen in the figure, the convergence orders match

the reference as is proved in Theorem 3.2.
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FIGURE 3. Example 1 (Section 6.1.1): The strong convergence of the direct method for

H = 0.8 and H = 0.6, respectively in terms of various∆t in log-log scale. The convergence

orders match the theoretical result min{ 3
2 −H ,3−3H }, as is proved in Theorem 3.2.

(also called the mean square displacement in physical literature) and its difference between its equi-

librium. As can be seen in Fig. 6, the variance of x(t ) convergences to its equilibrium E(x2(∞)) = 1

algebraically.
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FIGURE 4. Example 1 (Section 6.1.1): The strong convergence of the fast method for H =
0.55,0.6,0.65,0.7,0.73,0.75,0.8,0.84 computed over 10000 sample paths in terms of ∆t =
2−11,2−9,2−7,2−5,2−3. The convergence orders match those proved in Theorem 4.5.

6.2. Example 2 (confining potential). Here, we consider a 1D example, but with general potential V (x)

with confining structure. To be specific,

V (x) = ax4 +bx3 + cx2.

is considered for its ergodicity, where b = 0 gives rise to the symmetric case whereas b 6= 0 corresponds

to the asymmetric case.

6.2.1. Ergodicity of symmetric confining potential. Consider the symmetric double well potential

V (x) = 1

4
x4 − 1

2
x2, V ′(x) = x3 −x.

Consider the initial data x0 = 1, H = 0.6 and computed over 50000 sample paths with ∆t = 2−5 till the

final time T = 512 using the fast algorithm. Fig. 7 shows the empirical distribution at different times. It

can be seen that the empiral distribution of x concentrates at x = 1 initially, then gradually expands and

shifts to the left, and finally presents a symmetric double-well shape that matches the reference Gibbs

measure

µ(d x) ∼ exp(−V (x))d x.

Note that to consider the long time behavior, the initial values of x does not matter much.

6.2.2. Ergodicity of asymmetric confining potential. Consider the asymmetric double well potential

V (x) = 1

4
x4 + 1

3
x3 −x2, V ′(x) = x3 +x2 −2x.

Consider the initial data x0 = 1, H = 0.6 and computed over 50000 sample paths with ∆t = 2−5 till the

final time T = 512. Fig. 8 and Fig. 8 (cont.) plot the empirical distribution at different times. Since the
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FIGURE 5. Example 1 (Section 6.1.3): the empirical distribution of x at different times

t = 0,0.25,1,2,8,32. It can be seen that the distribution stays as a gaussian shape and

converges to the Gibbs measure (6.2) with mean 0 and variance 1.
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FIGURE 6. Example 1 (Section 6.1.3): The mean-square displacement of x(t ), i.e., the

variance of x(t ) in the case H = 0.75. The left plot shows its tendency of approaching its

equilibrium. The right figure plots its different between its equilibrium. As can be seen

the decay rate is algebraic.

initial data are all assigned as x0 = 1, at first the empiral distribution of x concentrates at x = 1, then

expands according to the time evolution, gradually shifts to the left and presents an asymmetric double-

well shape in the end, which resembles the reference Gibbs measure

µ(d x) ∼ exp(−V (x))d x.

6.3. Example 3 (2D double well potential). For the 2D case, we should use the driven process as BH :=
(B 1

H ,B 2
H ) where B i

H are two independent fractional Brownian motions. To see this, using the FDT, we

find that the kernel is simply 1
Γ(1−α)τ

−αId where Id is the 2×2 identity matrix. Hence, the equation (2.1)

still holds. The fractional Brownian motion BH here is different from the 2D fractional Brownian random

field (see for example [50]).

It is of interests to study double well potential in literature due to its application to describe the chem-

ical phenomena, such as vibrionic spectra [51], proton transfer [52] and etc. Here in the numerical test,

we consider the double-well potential

V (x, y) = 1

4
(x2 + y2)2 −x2 −x2 y,

the quadratic coupling cases as is considered in, say, [53, 54], which can be visualized in Fig. 9 . In this

example, consider intial datum (x, y) = (0,0.2) and compute till T = 512 with ∆t = 2−5 via the fast solver.

We plot the empirical distribution at different time t = 0,0.25,1,2,32,512 in Fig. 10 and 10 (cont.), where

both 3D histogram and its 2D contour are plotted for the convenience of visualization. In Fig. 11, the

mean square displacement of x(t ), namely,

(6.3) MSD(t ) := E|x(t )−x(0)|2,

is plotted in terms of time. The numerics indicate that the mean square displacement approaches to an

equilibrium in an algebraic rate, instead of exponential.



24 DI FANG AND LEI LI

0.6 0.8 1.0 1.2 1.40.0

0.2

0.4

0.6

0.8

1.0
At time t = 0.00. Fit results: mu = 1.00,  std = 0.00

(A) t = 0

−1 0 1 2 30.0

0.2

0.4

0.6

0.8

At time t = 0.0625. Fit results: mu = 0.98,  std = 0.45

(B) t = 0.0625

−2 −1 0 1 2 30.0

0.1

0.2

0.3

0.4

0.5

0.6

At time t = 0.2500. Fit results: mu = 0.82,  std = 0.65

(C) t = 0.25

−3 −2 −1 0 1 2 30.0

0.1

0.2

0.3

0.4

0.5
At time t = 1.00. Fit results: mu = 0.46,  std = 0.91

(D) t = 1

−3 −2 −1 0 1 2 30.0

0.1

0.2

0.3

0.4

At time t = 2.00. Fit results: mu = 0.27,  std = 0.98

(E) t = 2

−3 −2 −1 0 1 2 30.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

At time t = 4.00. Fit results: mu = 0.13,  std = 1.00

(F) t = 4

FIGURE 7. Example 2 (Section 6.2.1): the empirical distribution of x at different times

t = 0,0.0625,0.25,1,2,4,8,16,32,512. The solid line is the reference gibbs measure ∼
exp(−V (x)). It can be seen that given the intial data concentrating at x = 0, the distri-

bution of x expands, and moves gradually to create a symmetric double-well shape.
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FIGURE 7 (cont.). Example 2 (Section 6.2.1): the empirical distribution of x at various

moments t = 0,0.0625,0.25,1,2,4,8,16,32,512.

APPENDIX A. PROOF OF LEMMA 4.3

Proof of Lemma 4.3. Recall the SOE approximation kernel γ(t ) in (4.1), which is positive everywhere. Re-

call (4.7):

y(t ) = y0 +
∫ t

0
γ(t − s) f (y(s))d s.(A.1)

Assume that there are two continuous solutions y1(t ) and y2(t ) on some interval I = [0,T ]∩ [0,Tb). Let

T1 = min(T,Tb). We clearly have

|y1(t )− y2(t )|6
∫ t

0
γ(t − s)| f (y1(s))− f (y2(s))|d s.

Assume that y1(t ) = y2(t ) for all t < t∗ for some t∗ ∈ [0,T1). Then, we can pick δ small enough and then

|yi (t )| 6 M for some M > 0 and all t ∈ [0, t∗+δ]. Let L be the Lipschitz constant for f on the interval



26 DI FANG AND LEI LI

0.6 0.8 1.0 1.2 1.40.0

0.2

0.4

0.6

0.8

1.0
At time t = 0. Fit results: mu = 1.00,  std = 0.00

(A) t = 0

−1 0 1 2 30.0

0.2

0.4

0.6

0.8

1.0
At time t = 0.0625. Fit results: mu = 0.96,  std = 0.44

(B) t = 0.0625

−3 −2 −1 0 1 2 30.0

0.2

0.4

0.6

0.8
At time t = 0.25. Fit results: mu = 0.79,  std = 0.64

(C) t = 0.25

−3 −2 −1 0 1 2 30.0

0.2

0.4

0.6

0.8
At time t = 1.00. Fit results: mu = 0.24,  std = 1.13

(D) t = 1

−4 −3 −2 −1 0 1 2 30.0

0.2

0.4

0.6

0.8
At time t = 2.00. Fit results: mu = -0.26,  std = 1.32

(E) t = 2

−4 −3 −2 −1 0 1 2 30.0

0.2

0.4

0.6

0.8
At time t = 4.00. Fit results: mu = -0.80,  std = 1.31

(F) t = 4

FIGURE 8. Example 2 (Section 6.2.2): the empirical distribution of x at different times

t = 0,0.0625,0.25,1,2,4,8,16,32,512. The solid line is the reference Gibbs measure

∼ exp(−V (x)). It can be seen that provided the intial data all gathering at x = 1, the

distribution of x expands, and moves towards the left, and finally creates a double-well

shape.
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FIGURE 8 (cont.). Example 2 (Section 6.2.2): the empirical distribution of x at various

moments t = 0,0.0625,0.25,1,2,4,8,16,32,512.
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FIGURE 9. Example 3 (Section 6.3): The mean square displacement of x(t ) versus time.
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FIGURE 10. Example 3 (Section 6.3): the empirical distribution of x in 3D histogram and

2D contour, respectively, in at various moments t = 0,0.25,1,2,32,512. The solid line is

the reference Gibbs measure ∼ exp(−V (x)). It can be seen that provided the intial data all

gathering at x = (0,0.2), the distribution of x expands, and moves towards a double-well

shape.
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FIGURE 10 (cont.). Example 3 (Section 6.3): the empirical distribution of x in 3D his-

togram and 2D contour, respectively, in at various moments t = 0,0.25,1,2,32,512.
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FIGURE 11. Example 3 (Section 6.3): The mean square displacement is defined as (6.3).

It can be seen that the mean square displacement approaches an equilibrium alge-

braically, instead of exponentially.

[0, M ]. Then, for any t ∈ [t∗, t∗+δ],

|y1(t )− y2(t )|6
∫ t

t∗
γ(t − s)| f (y1(s))− f (y2(s))|d s6 L

(
sup

s∈(t∗,t∗+δ)
|y1(s)− y2(s)|

)
sup

t∈[t∗,t∗+δ]

∫ t

t∗
γ(t − s)d s

If δ is sufficiently small, we have

ν= L sup
t∈[t∗,t∗+δ]

∫ t

t∗
γ(t − s)d s < 1,

then we have

(1−ν) sup
s∈[t∗,t∗+δ]

|y1(s)− y2(s)|6 0.

This means the set of all such t∗ is open in I with the inherited topology from R. This set is clearly also

closed under the inherited topology by the continuity of yi . Hence, the set of all such t∗ is I , which means

y1(t ) = y2(t ) on I .

Now, we establish the existence result and the desired properties. Consider the following standard

Picard sequence,

yn+1(t ) = y0 +
∫ t

0
γ(t − s) f (yn(s))d s, y0(t ) = y0.

By induction, it is not hard to see

yn+1(t )> yn(t ), t ∈ [0,∞),

and for each n yn(t )> y0 and is non-decreasing.

Clearly, y06 v(t ) for t ∈ [0,T ]∩ [0,Tb). Assume this is true for n. Consider yn+1. For t ∈ [0,k]∩ [0,Tb),

it is easy to see

yn+1(t )6 y0 + 1

Γ(α)

∫ t

0
(t − s)α−1 f (yn(s))d s

6 y0 + 1

Γ(α)

∫ t

0
(t − s)α−1 f (v(s))d s + εT 1−α

Γ(α)

∫ t

0
(t − s)α−1 f (v(s))d s

= v(t )
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For t ∈ (k,T ]∩ [0,Tb), we have

yn+1(t )6 y0 + 1

Γ(α)

∫ t

0
(t − s)α−1 f (yn(s))d s + ε

Γ(α)

∫ t−k

0
f (yn(s))d s

6 y0 + 1

Γ(α)

∫ t

0
(t − s)α−1 f (yn(s))d s + εT 1−α

Γ(α)

∫ t

0
(t − s)α−1 f (yn(s))d s

6 y0 + 1

Γ(α)

∫ t

0
(t − s)α−1 f (v(s))d s + εT 1−α

Γ(α)

∫ t

0
(t − s)α−1 f (v(s))d s = v(t ).

Hence, on [0,T ]∩ [0,Tb), we have

yn−1(t )6 yn(t )6 . . .6 v(t ).

This means yn(t ) increases to a non-decreasing function y(t ) pointwise on [0,T ]∩ [0,Tb). By the mono-

tone convergence theorem, we have

y(t ) = y0 +
∫ t

0
γ(t − s) f (y(s))d s, ∀t ∈ [0,T ]∩ [0,Tb).

Since y(t )6 v(t ), we conclude that y(t ) must be continuous. This means that y(·) is a continuous solu-

tion with the desired properties.

If f is Lipschitz, it is well known that v(·) exists globally, or Tb =∞ (see [46] for example) and the claim

follows. �
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