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Abstract

In the absence of external material deposition, crystal surfaces usually relax to become
flat by decreasing their free energy. We study an asymmetry in the relaxation of macro-
scopic plateaus, facets, of a periodic surface corrugation in 1+1 dimensions via a contin-
uum model below the roughening transition temperature. The model invokes a highly
degenerate parabolic partial differential equation (PDE) for surface diffusion, which is
related to the weighted-H−1 (nonlinear) gradient flow of a convex, singular surface free
energy in homoepitaxy. The PDE is motivated both by an atomistic broken-bond model
and a mesoscale model for steps. By constructing an explicit solution to the PDE, we
demonstrate the lack of symmetry in the evolution of top and bottom facets in periodic
surface profiles. Our explicit, analytical solution is compared to numerical simulations
of the PDE via a regularized surface free energy.

Keywords: Crystal surface; Epitaxial relaxation; Facet; Degenerate-parabolic PDE;
subgradient formalism; Burton-Cabrera-Frank (BCF) model

1. Introduction

The epitaxial growth and relaxation of crystals include kinetic processes by which
atoms are deposited from above, and are adsorbed and diffuse on a substrate to form
solid films or other nanostructures. Hence, the crystal surface undergoes morphologi-
cal changes [37, 17, 32]. If the crystal of the film matches that of the substrate, the
processes pertain to homoepitaxy. Below the roughening transition temperature, macro-
scopic plateaus, called facets, may form. Their evolution is linked to various nanoscale
phenomena [40]; for example, the stability of semiconductor quantum dots and the wet-
ting/dewetting of crystal surfaces.

In this paper, we study implications of a continuum model based on a singular-
diffusion partial differential equation (PDE) satisfied by the height profile in crystal
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surface relaxation, in the absence of external material deposition, in 1+1 dimensions. The
PDE encompasses continuum thermodynamics and mass conservation. Mathematically,
the model is related to the weighted-H−1 (nonlinear) gradient flow for a convex, singular
surface free energy in homoepitaxy. The PDE is motivated by the continuum limit of
the following models: (i) a mesoscale theory of line defects, steps, under diffusion-limited
kinetics in monotone step trains [4, 30]; and (ii) a family of atomistic, broken-bond
models, in which the kinetic rates obey the Arrhenius law involving the energy barriers
for atom hopping [23, 31].

Physically, our continuum model reflects the presence of strong, isotropic stiffness of
steps. This notion of step stiffness is related to the energy cost to create a step, and affects
the local-equilibrium density, %s, of adsorbed atoms (adatoms). By the Gibbs-Thomson
relation [39, 22], this %s is an exponential function of the step chemical potential, µs,
scaled by the Boltzmann energy, kBT . The µs is defined as the change per atom in
the step energy; and in principle expresses the joint effect of step stiffness and step-
step interactions [17, 24, 25]. We assume that |µs| may be of the same order as or
larger than kBT ; thus, the exponential dependence of %s on µs cannot be neglected.
A similar chemical potential was used in [23] in the setting of adatom rates in order
to derive continuum equations for the height profile from an atomistic perspective. At
the continuum level, the assumption of an exponential law for %s versus µs implies that
the adatom mass flux is proportional to the gradient of exp[µs/(kBT )], instead of the
gradient of µs/(kBT ) as, e.g., in [41, 2].

The PDE, henceforth called “exponential PDE”, that results from the aforementioned
exponential law expresses an asymmetry in the evolution of convex and concave parts of
the surface. By assuming that step-step interactions are negligible, we show informally
via an analytical solution that an implication of the PDE is an asymmetry in facet
evolution: top and bottom facets evolve differently in a periodic surface corrugation in
1+1 dimensions. In addition, we indicate numerically how such an asymmetry manifests
in the presence of elastic-dipole step-step interactions.

In contrast, in past continuum treatments of epitaxial growth, the aforementioned
exponential of µs/(kBT ) is typically linearized under the hypothesis that |µs| � kBT ;
see, e.g., [2, 21, 30, 36, 38, 40, 41]. This simplification in turn yields the standard (linear)
Fick law for the mass flux in terms of the continuum-scale step chemical potential. The
resulting continuum-scale evolution law does not distinguish between convex and concave
parts of surface profiles.

We adopt an approach based on the following tools. (i) The extended-gradient (or,
subgradient) formalism for the construction of an explicit solution to the PDE for the
height profile across facets. This formalism is an extension of the PDE framework from
the previous, familiar cases of evaporation-condensation and surface diffusion under lin-
earization of %s versus µs, in which the metric space is L2 or (non-weighted) H−1 [20, 35],
to the present case of a weighted H−1 gradient flow. (ii) Numerical simulations of the
PDE by use of a regularized surface free energy, in the spirit of [3, 21]. Our findings point
to a few open questions about the connection of the microscale dynamics of crystals to
the corresponding exponential PDE.

Our main results in this paper can be summarized as follows.

• We formulate a singular-diffusion PDE model. Away from facets, this model is
consistent with the continuum limit of the Burton-Cabrera-Frank (BCF) theory
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for moving steps in 2+1 dimensions [4, 30]. The PDE is also motivated by a family
of kinetic Monte Carlo (KMC) models of crystal surface relaxation that include
both the solid-on-solid (SOS) and discrete Gaussian models [23, 31].

• We consider the setting with a periodic surface corrugation in 1+1 dimensions, and
treat facet edges as free boundaries. Accordingly, we informally develop an explicit
solution for the height profile with recourse to the extended-gradient formalism in
the absence of elasticity (i.e., without step-step interactions). Our construction
invokes mass conservation and continuity of the continuum-scale step chemical po-
tential across the facet. This procedure results in two coupled differential equations
for the facet position and height, xf and hf . This approach forms an extension of
the theory underlying [10, 11, 12, 35] to the framework of exponential PDEs.

• In the context of the extended-gradient formalism outlined above, we show that
the expansion of a facet is accompanied by a jump of the height profile at the facet
edge; and the facet expands at finite speed.

• By heuristically analyzing the differential equation system for (xf , hf ) in the peri-
odic setting without elasticity, we predict that top and bottom facets are character-
ized by distinctly different evolutions. In particular, the top facet starts expanding
regardless of its initial size; in contrast, the bottom facet expands if its initial size
exceeds a certain critical length which we compute analytically.

• To test our analytical results within the continuum model, we compare them against
numerical simulations by using a regularized surface free energy [3, 21]. Our numer-
ics confirm our prediction that top and bottom facets behave in distinct fashion.

From a physical perspective, the present, fully continuum treatment of facets, which
are known to have a microscopic structure [17], leaves pending questions that need to be
spelled out. The governing PDE can in principle be derived for monotone step trains;
for the typical case of a linear-in-chemical-potential Fick law, see, e.g., [30, 1]. This type
of PDE, viewed as a continuum limit of step motion, may break down in the vicinity of
facets, where the distance between steps changes rapidly [16, 14, 29]. Specifically, in the
radial setting it has been shown that the continuum prediction based on the subgradient
formalism may not be consistent with step flow; microscopic events of step annihilations
on top of facets may significantly affect the surface slope outside the facet [29].

Hence, our results here are viewed as direct consequences of continuum thermodynam-
ics and mass conservation. Our goal is to point out qualitative features of facet evolution
that contrast some of the insights obtained previously by the continuum theory with
a linearized law for the equilibrium adatom density versus step chemical potential. A
striking feature predicted by our model is the asymmetry between top and bottom facets.
The connection of our approach to step motion or KMC simulations in the presence of
facets is left unresolved, and deserves further research.

1.1. Continuum framework

Next, we outline the main ingredients of the continuum model in canonical form.
In Section 2, we provide details about the linkage of the continuum evolution laws to
microscale models [30].
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For a crystal surface evolving near a fixed crystallographic plane of symmetry, the
surface free energy as a functional of height is convex and reads [13, 33]

E[h] = γ

∫
Ω

(
|∇h|+ g

3
|∇h|3

)
dx (Ω ⊂ R2) , (1)

where γ is proportional to the energy cost to create a line defect (step), h(x, t) is the
graph of the surface, and the facet is identified with points (x, h) where ∇h(x, t) = 0.
It is important that, when g = 0, free energy (1) supports jumps in the height profile;
see Section 4. Physically, E[h] expresses the joint effect of step line tension (|∇h| term),
and elastic-dipole step-step repulsive interactions (|∇h|3 term) where g is a non-negative
constant equal to the relative strength of the interaction (g ≥ 0) [13]; see also [24, 25].
Formula (1) does not account for long-range elasticity of heteroepitaxy; see, e.g., [6, 44].

Accordingly, the continuum-scale step chemical potential is defined as the variational
derivative of E[h], viz., [40]

µs =
δE

δh
= −γ div

(
∇h
|∇h|

+ g|∇h|∇h

)
, (2)

where we set the atomic volume equal to unity for algebraic convenience. Notice that (2)
is ill-defined locally at the facet (where ∇h = 0). By the Gibbs-Thomson relation [39, 22,
30], which is connected to the theory of molecular capillarity, the corresponding local-
equilibrium density of adatoms is given by %s = %0 exp[µs/(kBT )], where %0 is a constant
reference density. For diffusion-limited kinetics, by which surface diffusion between steps
is the rate-limiting process, by Fick’s law the vector-valued adatom flux reads [30]

J = −Ds∇%s = −Ds%
0∇eµs/(kBT ) , (3)

where Ds is the surface diffusion constant.
The desired evolution PDE results by combining (2) and (3) with the familiar mass

conservation statement
∂th+ divJ = 0 . (4)

Consequently, the height profile, h(x, t), obeys the PDE

∂th = ∆e−βdiv ( ∇h|∇h|+g|∇h|∇h) , (5)

below the roughening transition; β = (kBT )−1. Here, we set the material parameter
Ds%

0 equal to unity; alternatively, this parameter, Ds%
0, can be absorbed in the scaling

of the time variable. In a similar vein, the parameter γ is eliminated in (5) by suitable
scaling of the spatial coordinates.

Note that a simplified version of PDE (5) comes from linearizing the exponential of
the Gibbs-Thomson relation, %s ≈ %0(1 + βµs), under the assumption that the chemical
potential, µs, has magnitude sufficiently smaller than β−1 = kBT [22].

1.2. Relevant microscopic models

The derivation of PDE (5) is expected to hold away for facets [30]. This PDE is
plausibly linked to: (a) the BCF model of step flow on monotone step trains [4, 1, 30];
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and (b) a family of atomistic models [31]. Here, we outline elements of these microscale
theories. In Section 2, we provide a more detailed review of their linkages to (5).

First, consider the mesoscale picture of step flow. The BCF model accounts for
diffusion of adatoms and attachment/detachment of atoms at steps [4]. Key ingredients
of the respective formalism are: (i) a step velocity law by mass conservation; (ii) a
diffusion equation for adatoms on each nanoscale domain, terrace, between steps; and
(iii) a Robin boundary condition for the adatom density at the step edge. Hence, the step
is viewed as a free boundary for a Stefan-type problem; the step position is determined
via diffusion and each step is a level set for the height. In the kinetic regime of diffusion-
limited kinetics, the Robin boundary condition reduces to a Dirichlet condition [4]. In the
continuum limit, the step height, which is equal to the vertical lattice spacing, approaches
zero while the surface slope is kept fixed.

Alternatively, in the respective atomistic picture based on the SOS model, the core
mechanism is the hopping of atoms on the crystal lattice [43, 31]. The formalism relies
on a Markovian process representing the motion of each atom from one lattice site to
a neighboring site. In this model, the transitions between atomistic configurations are
determined by Arrhenius rates which in turn are related to the number of bonds that
each atom would be required to break in order to move. In [31], a macroscopic limit of
these dynamics, as the lattice spacing vanishes, is proposed via the form of the surface
tension as the p-Laplacian for the potential V (x) = |x|p, p > 1. PDE (5) is an extension
of that macroscopic limit in [31] to p = 1. Notably, the resulting PDE is sensitive to the
way by which the initial height profile is scaled [31].

1.3. Our mathematical approach and core result

Our mathematical approach makes use of a version of the subgradient formalism [20],
adapted to the exponential, fourth-order PDE (5). In physical terms, intuitively, this
formalism may be viewed as tantamount to a limiting procedure by which the facet is
artificially smoothed out and then is allowed to approach a flat plateau. This procedure
can be viewed as the outcome of the regularization of the surface free energy, E[h]; see,
e.g., [3, 21]. It should be noted that a different approach of regularization found in the
literature relies on the truncation of Fourier series expansions for the height profile, which
yields nonlinear differential equations for the requisite coefficients [40, 41, 5].

In mathematical language, our construction of a solution treats the facet edge as a
free boundary, in the spirit of [42]. In the continuum thermodynamics framework, the
boundary conditions at the facet edge result from the extended-gradient formalism as
follows. Replace PDE (5) by the statement that ∂th picks the subgradient of E[h] with
the minimal norm in the appropriate metric; see, e.g., [35, 19] for works on the (non-
weighted) H−1 gradient flow. In the present case, in 1+1 dimensions PDE (5) is replaced
by the statement

∂th = ∂xxxv where ∂xv = e−∂xw ,

where −∂xw ∈ ∂L2E is an element of the L2-subdifferential of E[h], and the function v(x)
is determined in the sense described by (23) (see section 3). It follows that the functions
v and ∂xv are continuous; in addition, these functions are subject to the symmetry
of the surface profile. Thus, −∂xw = µ, the continuum-scale step chemical potential,
and w are continuous across the facet. Furthermore, the mass conservation statement
∂th+ ∂xJ = 0 where J = −∂xxv is the x-component of the (vector-valued) adatom flux

5



J, entails a jump condition for the continuum-scale adatom flux and height across the
facet edge [10]. It should be borne in mind that the facet height, hf , is constant in x;
thus, the above conditions can be applied by successive integrations with respect to x
of the conservation law for the height, where ∂th in the facet region is the vertical facet
speed, ḣf .

For g = 0, i.e., if step-step interactions are neglected, this procedure entails a discon-
tinuous height and mass flux at the facet boundary, in agreement with rigorous studies
in [10] on the total variation flow model

∂th = −∂3
x

(
∂xh

|∂xh|

)
= ∂2

x

(
δE

δh

)
, (6)

which has the structure of a (non-weighted) H−1-gradient flow. The reader is referred
to [7, 44] for related works in the presence of elasticity.

A noteworthy result here is the derivation of a system of two differential equations
for the facet position, xf , and facet height, hf , via the exponential PDE. By properties
of this system, we infer that facets in convex and concave parts of the surface behave
differently. In particular, if the initial height profile is sinusoidal, the surface peaks
immediately break into expanding facets; in contrast, no facets form at the valleys of the
initial profile.

1.4. Limitations

Our work points to several open questions. As noted earlier, the comparison of our
continuum predictions to results from the step flow near facets is an interesting problem
left for future research. A requisite issue in this context is the sign of the interactions
between colliding steps on facets [15]. In a similar vein, we do not pursue comparisons
of the continuum predictions against KMC simulations, which would connect the PDE
solution to atomistic dynamics; see [31]. Our construction of an explicit solution to the
exponential PDE focuses on one spatial coordinate with diffusion-limited kinetics and
g = 0. In 2+1 dimensions or settings with elasticity or other kinetics (say, attachment-
detachment limited kinetics), the subgradient formalism becomes more intricate. The
facet evolution in such cases needs to be further studied.

1.5. Paper outline

The remainder of this paper is organized as follows. In Section 2, we review linkages
of PDE (5) to existing microscopic models. Section 3 focuses on the construction of
the ODEs governing facet dynamics. In Section 4, we numerically solve both the ODE
system and an appropriately regularized version of the PDE; and compare the outcomes.
The discretization algorithms used to solve these inherently degenerate, stiff systems are
discussed. Finally, in Section 5, we summarize the results obtained and outline some
topics for future work.

2. Mesoscale and atomistic descriptions: A review

In this section, we describe ingredients of the mesoscale and atomistic models that
motivate the study of (5) as a hydrodynamic-type limit. In particular, we review basics
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Figure 1: Geometry of monotone step train in 2+1 dimensions (top view). In curvilinear coordinates
(η, σ), the depicted contours are projections of descending steps onto a fixed reference plane; η = ηi at
the i-th edge while σ varies along a step edge. The step orientation, relative to a fixed axis, is indicated
by the (local) angle φ.

of the BCF model [4] and a heuristic derivation of its continuum limit assuming that
this limit exists (Section 2.1). We also outline the relevance to the exponential PDE of a
kinetic Monte Carlo model of crystal surface relaxation [31] (Section 2.2). The emergence
of the BCF description of step flow from atomistic dynamics is not addressed here; see,
e.g., [27].

2.1. BCF model and its continuum limit

By the BCF model [4], the crystal surface consists of atomic steps separated by
nanoscale terraces. In this subsection, we review the basic elements of step flow, needed
for our purposes, by mainly following the formalism of [30].

Figure 1 depicts the top view of descending, non-intersecting steps in 2+1 dimensions.
The projections of the steps onto a fixed reference plane are modeled as smooth curves,
numbered by i (i = 1, 2, . . .) relative to the top terrace. We use local coordinates (η, σ)
to represent the projected step train; η identifies each step and σ specifies the position
along a step edge. Let r(η, σ; t) be the position vector on the reference plane. The
unit vectors normal and parallel to step edges in the direction of increasing η and σ are
denoted eη and eσ, where we take eη · eσ = 0. The corresponding metric coefficients, ξη
and ξσ, are (typically) defined by

ξη = |∂ηr| , ξσ = |∂σr| . (7)

The i-th step is the level set {(η, σ) : η = ηi = const.}, and the i-th terrace is the region
{(η, σ) : ηi < η < ηi+1}. Hence, the surface height, h, is a function of η only, and obeys

h|η=ηi+1
− h|η=ηi = −a ,
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where a is the (atomic) step height. In the continuum limit, we let a ↓ 0 while we keep
the step density fixed. The Taylor expansion of the left-hand side of the last equation
entails that a/(ξηδηi) approaches the (fixed) positive slope −(∂⊥h)|η=ηi = |∇h|, as a ↓ 0
and δηi := ηi+1 − ηi ↓ 0; note that ∂⊥ := ξ−1

η ∂η.

2.1.1. Laws of step flow and continuum limit

First, the normal velocity of the i-th step is given by

vi,⊥ = a−1(Ji−1,⊥ − Ji,⊥) at (ηi, σ) . (8)

Here, Ji,⊥ = eη · Ji where Ji = −Ds∇%i is the vector-valued adatom flux on the i-th
terrace and %i is the respective adatom concentration. In the quasi-steady approximation,
divJi ≈ 0 on the i-th terrace.

In the continuum limit, as a ↓ 0, (8) reduces to a mass conservation statement.
Indeed, the vi,⊥ approaches ∂th/|∇h| at (ηi, σ). Furthermore, by Taylor expanding we
have Ji,⊥(ηi, σ) ≈ Ji,⊥(ηi+1, σ) − (δηi)∂ηJi,⊥(ηi, σ) = Ji,⊥(ηi+1, σ) + (ξηδηi)ξ

−1
σ ∂σJi,‖

where Ji,‖ = eσ · Ji(ηi, σ) and use was made of divJi ≈ 0. Thus, the right-hand side
of (8) approximately reads −a−1(δηi)∂ηJ⊥− a−1(ξηδηi)ξ

−1
σ ∂σJ‖ which is identified with

−|∇h|−1divJ; J(x, t) is the continuum-scale adatom flux, with J⊥ = eη ·J and J‖ = eσ ·J.
Therefore, we obtain

∂th = −divJ . (9)

Next, we consider the attachment/detachment of atoms at steps. By the quasi-steady
approximation, we set Ds∆%i = ∂t%i ≈ 0 on the i-th terrace. The boundary conditions
for this diffusion equation are of the Robin type, viz.,

−Ji,⊥ = k(%+
i − %

eq
i ) at (ηi, σ) , Ji,⊥ = k(%−i − %

eq
i+1) at (ηi+1, σ

′) , (10)

where %±i is the restriction of %i at a step edge as η approaches: ηi (+), or ηi+1 (−) on
the i-th terrace. Equations (10) are combined for σ 6= σ′ to yield

Ji,⊥(ηi, σ) + Ji,⊥(ηi+1, σ
′) = k[%i(ηi+1, σ

′)− %i(ηi, σ)]− k[%eq
i+1(σ′)− %eq

i (σ)] .

We now show that, in the limit where δσ := σ′ − σ → 0 and δηi ↓ 0, the last equation
entails a Fick-type law for J in terms of the continuum-scale equilibrium density, %eq.
Notice that δηi is O(a), because the slope is kept fixed, whereas δσ is allowed to approach
zero independently of a. By assuming that

Ds

ka
= O(1) ,

consider the Taylor expansions

%i(ηi+1, σ
′)− %i(ηi, σ) = (δηi) ∂η%i + (δσ)∂σ%i +O((δηi)

2, (δσ)2)

≈ −(ξηδηi)D
−1
s J⊥ − (ξσδσ)D−1

s J‖
(11)

and
%eq
i+1(σ′)− %eq

i (σ) ≈ (ξηδηi)∂⊥%
eq + (ξσδσ)∂‖%

eq , ∂‖ := ξ−1
σ ∂σ .
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Accordingly, we obtain the expression

(ξηδη)

{(
2Ds

ka
|∇h|+ 1

)
J⊥ +Ds ∂⊥%

eq

}
+ (ξσδσ)

{
J‖ +Ds ∂‖%

eq
}

= O(a2, a(ξσδσ))

at the point (ηi, σ), provided |∇h| = O(1) (|∇h| 6= 0). Hence, by setting each term equal
to zero in the first line, we extract the formulas

J⊥ = − Ds

1 +
2Ds

ka
|∇h|

∂⊥%
eq , J‖ = −Ds ∂‖%

eq , (12a)

in the local coordinate system. In particular, for diffusion-limited kinetics, when the
diffusion of adatoms on terraces is the slowest process, the length Ds/k is much smaller
than the terrace size, [Ds/(ka)]|∇h| � 1; thus, we find

J = −Ds∇%eq if
Ds

ka
|∇h| � 1 ; (12b)

cf. (3) if Ds = 1 and %s is identified with %eq.
Equations (25) and (12) need to be complemented with a formula for %eq involving

the continuum-scale step chemical potential, µs. At the level of step flow, the Gibbs-
Thomson relation dictates that

%eq
i = %0e

µi
kBT , (13)

where %0 is a reference density for an atomically flat terrace. The step chemical potential,
µi(σ), of the i-th step is defined as the change of the step energy by addition or removal
of an atom to or from the step edge at η = ηi. Following [30], consider a short step
length, ds = ξσdσ, of the i-th edge that has energy Uids at (ηi, σ); Ui is the step energy
per unit length. The exchange of atoms with the step edge results in the motion of the
step along its local normal by distance dr = ξηdη where dη is the respective shift of ηi.
Hence, the step energy Uids changes by dη(Ui dσ), where the shift operator dη is defined
by dηQ := Q|η+dη −Q|η. Accordingly, we write

µi =
1

a

dη(Uids)
drds

=
1

a
{ξ−1
η ∂ηiUi + Ui (ξηξσ)−1∂ηξσ} at η = ηi . (14)

By using the elementary formula ξ−1
η ∂ηξσ = κξσ where κ is the curvature of the curve

r(η, σ; t) with η = const., we obtain

µi =
1

a

(
κiUi + ξ−1

ηi ∂ηiUi
)
. (15)

The quantity Ui incorporates the step line tension, γ̃i, which is the energy cost per unit
length to create a step, as well as the step-step interaction contribution, U int

i . In a
simple scenario for homoepitaxy, γ̃i = γa is a global, material-dependent constant; and
step interactions are modeled as nearest-neighbor repulsions [28, 33], viz.,

Ui = aγ + U int
i , U int

i = g̃ (Vi,i+1 + Vi,i−1) , (16)
9



where g̃ is the interaction strength (energy/length), and Vi,i±1 amounts to the interaction
between the i-th and (i ± 1)-th steps and depends on ηi and ηi±1. For elastic-dipole or
entropic interactions, the Vi,j (j = i± 1) is taken to be [30]

Vi,i+1 =
1

3
m2
iΦ(ri, ri+1) , Vi,i−1 =

1

3
m2
i−1Φ(ri, ri−1) ,

where

mi :=
a

ri+1 − ri
; ri = r|η=ηi , r =

∫ η

η0

ξη′ dη
′ ,

and Φ(ζ, χ) is a geometrical factor described in some detail in [30].
In the continuum limit, the curvature κi of the step approaches −div[∇h/|∇h|] at

the point (ηi, σ). By (15), the step chemical potential, µi, approaches form (2) under
mild assumptions for Φ. The interested reader is referred to [30].

Note that in the attachment-detachment-limited regime, where

Ds

ka
|∇h| � 1 ,

the attachment/detachment of atoms at steps is the slowest process. In this case, the
resulting PDE in 1+1 dimensions acquires a slope-dependent, extra mobility, viz.,

∂th = ∂x

[
1

|∂xh|
∂xe
−β∂x( ∂xh

|∂xh|
+g|∂xh|∂xh)

]
. (17)

The study of this PDE lies beyond our present scope.

2.2. Broken-bond model and hydrodynamic limit

In this subsection, we review aspects of the emergence of continuum laws from atom-
istic principles in [31]. Motivated by an adatom model proposed in [23] and studies of
hydrodynamic limits undertaken in [8, 9, 34], the authors in [31] derive exponential PDEs
of form similar to (5). This atomistic formulation views the crystal surface as a function

hN (α, t) for time t ≥ 0 and position α ∈ TdN = (Z/NZ)
d

on the periodic lattice, with
values of hN in the set of integers, Z; d is the spatial dimension. The rates are related
to an interaction potential, V : Z → R, taken to be the non-negative, strictly convex,
symmetric function, V (z) = |z|p, of the discrete slope, z. The choice for V made in
[31], and the most common choice in the literature on the physics of crystal surfaces, is
V (z) = |z| (if p = 1), which amounts to bond breaking by the SOS model [43].

From such an interaction potential, V = |z|p, in [31] a family of Arrhenius rates are
proposed based upon a generalized coordination number. One can think of the gener-
alized coordination number as the (symmetrized) energy cost associated with removing
a single atom from site α on the crystal surface, where the energy is determined by
summing over the interaction potential evaluated on local fluxes.

In [31], two scaling limits are studied. First, for p ≥ 1, the evolution of the height of
a smooth crystal surface is found to be

∂th = − 1

2d
∆(div(∇σD(∇h)) , (18)

10



where ∇σD : Rd → Rd is the gradient of the surface tension, σD, which is a con-
vex function determined by a free-energy computation and depends on the choice of
the interaction potential, V . The definition of this σD arises from essentially apply-
ing the local Gibbs measure (local equilibrium) for finding non-equilibrium dynamics in
the microscopic model of crystal surface evolution [31]. In particular, σD stems from
using a discrete chemical potential, which matches well the macroscopic dynamics; see
[31]. PDE (18) arises from a smooth diffusion scaling limit of the form h̄N (x, t) =
N−1h(α,N4t) with Nx ∈ [α− 1/2, α+ 1/2).

Similarly, in [31], a second PDE for a rough crystal evolution is proposed for p > 1
with fixed temperature β−1 (β > 0), viz.,

∂th =
1

2d
∆
(
e−div(∇σC(∇h̄))

)
; σC(z) = lim

κ→∞
κ−pσD(κz) . (19)

The form that the surface tension then takes is the p-Laplacian for σC(z) = β|z|p,
resulting in the evolution

∂th =
1

2d
∆
(
e−βdiv((|∇h|p−2∇h) )

)
. (20)

This PDE arises from a rough scaling limit of the form h̄N (x, t) = N−qh(α,Nq+2t) with
Nx ∈ [α− 1/2, α+ 1/2) and q = p/(p− 1).

However, the rough scaling when p = 1 can be adapted by formally following the
derivation in [31, Section 6.2], if one systematically lowers the temperature, β−1, as
one increases the system size (β = β(N) such that β(N) → ∞ as N → ∞). Then,
the methods of [31] can be invoked to derive (5) with Boltzmann constant β̃, and, for
instance, q = 1 and β(N) = β̃N .

3. ODE system for facet motion via exponential PDE

In this section, we formulate an ODE system for facets in a periodic surface corruga-
tion in 1+1 dimensions. Then, we analytically indicate the different behaviors of top and
bottom facets. For algebraic convenience, we use PDE (5) by setting β equal to unity,
absorbing the β-dependence into the scaling of the spatial coordinates.

In the case with the non-weighted H−1 total variation flow (e.g. [10, 11, 12]), the
PDE takes the form

∂th = −∂xx∂x
(
∂xh

|∂xh|

)
, h(x, 0) = h0(x) , (21)

where h0(x) is assumed to have an extrema at x = 0. A weak solution to (21) is derived
in [10] as a facet solution (symmetric about whether h0 has a maximum or a minimum
at x = 0) near the critical point x = 0 of h0. This weak solution has the form

h(x, t) =

{
hf (t) for x < xf (t) ,

h0(x) for x > xf (t) ,

where x = xf (t) is the facet position and hf (t) is the facet height. The dynamics for
(hf (t), xf (t)) obey the ODE system{

ḣf = − 3
x3
f (t)

,

ẋf (h0(xf )− hf ) = −3x−2
f .

(22)

11



This is the symmetric formulation for the H−1 total variation flow. For the case of the
L2 total variation flow, in which the PDE for h is of second order, see e.g. [20].

We now turn our attention to exponential PDE (5) with g = 0. Following the works
of [10, 11, 12], we recognize that (5) with g = 0 can be realized as the nonlinear H−1

flow given by

∂th = −∂x
[
e−∂x(

∂xh
|∂xh| )∂xx

(
∂xh

|∂xh|

)]
= ∂x

[
e−∂x(

∂xh
|∂xh| )∂x

(
δE

δh

)]
.

This evolution can be viewed as a weighted H−1 flow with mobility equal to e−∂x(
∂xh
|∂xh| ).

This model of evolution implies a strong asymmetry between convex and concave parts of
the crystal surface.

Since the effective values of ∂xh
|∂xh| are ±1 (if ∂xh 6= 0), we infer that the subdifferential

(see [10, 19]) for a symmetric height profile takes the form

min
v∈H2

{
∫ r0

−r0
(∂xxv)2 dx | v : odd, ∂xv(±r0) = 1} (23)

such that ∂xv = e−∂xw where w(u) = u/|u|; u is identified with ∂xh outside the facet.
Here, [−r0, r0] describes the domain, and H2 denotes the metric (Sobolev) space of
functions with square-integrable second-order derivatives.

Based on this formalism, we proceed to derive ODEs for facet motion in the expo-
nential total variation flow

∂th = ∂xxe
−∂x( ∂xh

|∂xh| ), h(x, 0) = h0(x) , (24)

using the natural profile stemming from a regularized solution for the 1-Laplacian. We
assume that the facet is symmetric (with respect to x = 0).

Evidently, PDE (24) has the structure

∂th = −∂xJ (continuity equation) ,

J = −∂x% (Fick’s law) ,

% = eµ (Gibbs-Thomson relation) ,

µ =
δE

δh
= −∂xw(∂xh) (thermodynamic force) ,

where J is the (scalar) mass flux. On the facet, where 0 < x < xf (t) and h(x, t) = hf (t),
we therefore obtain

ḣf = −∂xJ ,

which by integration yields
J(x, t) = −xḣf + C1(t) .

Note that C1(t) = 0 by symmetry considerations. In addition, as in the total variation
flow observations of [10], we are compelled to recognize a jump in h at x = xf (t), forcing
the remaining functions j and µ to have continuous derivatives.

12



By the PDE structure, we additionally have

∂x(eµ) = −J(x, t) ,

which entails

µ(x, t) = ln

(
x2

2
ḣf + C2(t)

)
.

We also have

∂xw = − ln

(
x2

2
ḣf + C2(t)

)
,

which is integrated to give

w = −
∫ x

0

ln

(
s2

2
ḣf + C2(t)

)
ds+ C3(t) .

The integration constant C3(t) is determined by the observation that w is odd in x,
because of the property that v is odd where ∂xv = e−∂xw; cf. (23). Hence, we have w = 0
at x = 0, by which C3 = 0.

In addition, by mass conservation, we have∫ xf

0

h0(s)ds = hfxf ,

which yields the motion law

ẋf (h0(xf )− hf ) = ḣfxf . (25)

3.1. Dynamics of top facet

At this stage, we need to specify if the symmetric facet lies in the convex or concave
part of the surface. This choice affects the sign of ḣf and leads to different dynamics,
as we show below. Let us begin with the case in which the facet is a degenerate local
maximum.

By continuity of w and µ, the following conditions hold:

w(xf , t) = −
∫ xf

0

ln

(
s2

2
ḣf + C2(t)

)
ds = −1 ,

µ(xf , t) = ln

(
x2
f

2
ḣf + C2(t)

)
= 0 ,

where
ḣf < 0 .

The condition for µ yields

C2(t) = 1−
x2
f

2
ḣf (C2 > 0) .

Hence, we have { ∫ xf
0

ln
(
s2

2 ḣf + 1− x2
f

2 ḣf

)
ds = 1 ,

ẋf (h0(xf )− hf ) = ḣfxf .
(26)
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The requisite integration can be carried out exactly to give the relation

∫ xf

√
|ḣf |
2

0

ln

(
1−

x2
f

2
ḣf − ξ2

)
dξ =

√
|ḣf |

2
.

By the definition

Xf = xf

√
|ḣf |

2
,

we arrive at the system 2
√

1 +X2
f ln

(
Xf +

√
1 +X2

f

)
− 2Xf =

√
|ḣf |

2 ,

ẋf (h0(xf )− hf ) = ḣfxf .

This is a closed ODE system describing the top-facet dynamics. Because ḣf < 0, we
may frame the system of equations as a system of differential-algebraic equations (DAE),
viz.,

Xf = xf

√
|ḣf |

2
,

2
√

1 +X2
f ln

(
Xf +

√
1 +X2

f

)
− 2Xf =

√
|ḣf |

2
,

ẋf (h0(xf )− hf ) = ḣfxf .

For computational convenience, we recast the above system in the form
Ẋf =

ẋfF (Xf )
1−xfF ′(Xf ) ,

ḣf = −2F (Xf )2 ,
ẋf (h0(xf )− hf ) = −2xfF (Xf )2 ,

(27)

with

F (Xf ) = 2
√

1 +X2
f ln(Xf +

√
1 +X2

f )− 2Xf .

It is of interest to note that the algebraic equation for Xf suggests that the correct value
for Xf (0) is given by a solution of

xf (0)
[
2
√

1 +X2
f ln

(
Xf +

√
1 +X2

f

)
− 2Xf

]
−Xf = 0 , (28)

which has three roots given by Xf = 0, ±g(xf ). The non-zero roots ±g(xf ) for large Xf

should take the form

g(xf ) ≈ e
1

2xf (0)
+1

2
.

We reach the conclusion that, under the dynamics of (27), there is no restriction on
the initial width, 2xf (0), of the facet for the expansion of the facet at times t > 0.
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3.2. Dynamics of bottom facet

Let us now discuss the case where the facet possibly corresponds to a degenerate local
minimum of the height profile. Because we have

ḣf > 0

in this case, the dynamics in (26) are replaced by the system{ ∫ xf
0

ln
(
s2

2 ḣf + 1− x2
f

2 ḣf

)
ds = −1 ,

ẋf (h0(xf )− hf ) = ḣfxf .
(29)

The first equation implies that
x2
f

2ḣf
≤ 1.

Accordingly, by changing variables we observe that

∫ Xf

0

ln
(
ξ2 + 1−X2

f

)
dξ = −

√
ḣf
2
≤ 0 . (30)

By integrating directly in view of ḣf > 0, we obtain the system

2
√

1−X2
f

tan−1


√

1−X2
f

Xf

− π

2

+ 2Xf =

√
ḣf
2
,

ẋf (h0(xf )− hf ) = ḣfxf .

The first equation can be written as

y
(

tan−1 y − π

2

)
+ 1 =

1

2xf
(31)

where

y =

√
1−X2

f

Xf
.

The left-hand side of (31) is bounded by 1 for y ≥ 0 (in fact, it is monotonically decreasing
from 1); while, if xf is sufficiently small, the right-hand side gets arbitrarily large. Hence,
we reach the conclusion that: only if xf (0) > 1

2 is it possible to find a solution with a
moving bottom facet.

As a result, facet solutions at minima are in fact fixed points of the evolution unless
there is already a sufficiently long facet. This asymmetry in convexity and concavity of
the morphological crystal surface evolution is consistent with observations of solutions
to the exponential PDE in [31].

Remark 1. For the dynamics given by (5) as a weighted H−1 flow, the evolutions
of top and bottom facets are distinctly different, precisely because of the effect of the
exponential mobility, e−∂x(∂xh/|∂xh|). In particular, bottom facets have extremely slow
(or non-existent) motion by diffusion, while top facets move relatively fast.
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4. Numerical results

In this section, we present numerical results for the evolution of the height profile
under sinusoidal initial data in 1+1 dimensions. Our numerics are based on: (i) the
ODE system discussed in Section 3; and (ii) the numerical solution of PDE (5) via the
regularization of free energy (1). Specifically, we use the regularized surface free energy

E[h; ν] =

∫ [√
|∇h|2 + ν2 +

g

3
|∇h|3

]
dx , (32)

which has a regularization parameter ν > 0.

4.1. Numerical approximation with g = 0

Next, we focus on the regularized versions of PDEs (24) and (21). The corresponding
PDEs now read

∂th = ∂xxe
−∂x

 ∂xh√
(∂xh)2 + ν2


(33)

and

∂th = −∂xx∂x

(
∂xh√

(∂xh)2 + ν2

)
. (34)

For discretizing both (33) and (34), we apply a standard central finite difference dis-
cretization in space with a fully implicit stepping scheme in time (by using routine ode15s
in MATLAB).

Snapshots of solutions to evolution equations (33) and (34) under an initial height
profile h(0, x) = sinx with N = 60 uniform grid points on the interval [0, 2π] and
ν = 10−3 by use of periodic boundary conditions can be seen in Figure 2. We have
chosen time scales such that the facets are evident in the numerical solutions. Note that
exponential PDE (33) results in a strong asymmetry between regions of convexity and
concavity. For each simulation, we have chosen the regularization parameter and the grid
spacing such that the resulting derivatives are sufficient to allow facet motion but also
to maintain a sharp facet boundary. In contrast to the clear convex/concave asymmetry
of the solution to (33), notice the symmetry in the solution of (34).

In Figure 3, the evolution of PDE (33) is compared to ODE system (27) on time
scales such that the facets are evident. In these simulations, the parameters for the PDE
simulation are the same as above. To solve DAE system (27), we use the implicit ODE
solver ode15i in MATLAB with explicitly chosen initial data for Xf (0) as a non-zero root
of (28). To generate the initial data (xf (0), hf (0)), we find it ideal to numerically solve
PDE (33) for a short time (≈ 5 × 10−7). Then, we generate a non-singular (i.e. with
xf (0) > 0) initial configuration for the ODEs by reading off the maximum height of the
resulting numerical facet solution and the outer extent of the facet position. Note that
there is some sensitivity in how the initial data xf (0) is chosen given the discretization,
which explains the small discrepancy observed in those plots involving xf (t). To compare
the relevant parameters to the PDE evolution, we take

hf,pde(t) = max
x∈[0,2π]

h(x, t), xf = max{x ∈ [0, 2π] : ( max
x∈[0,2π]

h(x, t))− h(x, t) < ε}, (35)
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Figure 2: Snapshots of evolving surface height profile, h(x, t), under initial data h(0, x) = sin(x) (top
panel) by fourth-order total variation flows given by: exponential PDE (33) with regularization parameter
ν = 10−3 on a time scale T = 10−4 (bottom left panel); and by PDE (34) with regularization parameter
ν = 10−3 on a time scale T = 10−2 (bottom right panel).

where we typically choose ε = 10−2. The data points for xf (t) in Figure 3 appear to
occur on larger time scales than the discretization would suggest. However, this is purely
a manifestation of the time required for the facet edge to travel from one discrete grid
point to another in the numerical experiment. To make the figure clearer, we have thus
only plotted times at which the solution has moved to a new grid point; the large gaps
in data points for xf are due entirely to the spatial grid size.

In Figure 4, we carry out a similar numerical study as in Figure 3, but now for the
non-weighted H−1 total variation flow (34) studied, e.g., in [20, 10, 11, 12]. The PDE
evolution is compared to the ODE system (22) on time scales such that the (top and
bottom) facets are evident. In these simulations, the discretizations for the PDE are the
same as those used for the exponential PDE in this section.

4.2. Numerical approximation with g > 0

In this subsection, we focus on the case with nonzero step-step interactions (g > 0);
see (1) and (32). Accordingly, we consider the fourth-order PDE

∂th = ∂xxe
−∂x( ∂xh

|∂xh|
+g∂xh|∂xh|) , g > 0 . (36)
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Figure 3: (Color Online) Plots of facet height hf (t) versus time, t (top left panel), facet position xf (t)
versus t (top right panel) and facet height versus facet position (xf (t), hf (t)) (bottom panel). In each
plot, (xf , hf ) as a solution of (27) is plotted using crosses (×); and the corresponding components of a
solution to (33) as described in (35) are plotted using circles (◦). The initial data for (27) is taken from
the PDE evolution as xf (t0) = π

15
, hf (t0) = .98879899 with t0 = 5× 10−7. The numerical experiments

for the ODEs and PDE are then compared up to time T = 10−3.

In this setting, we still observe asymmetry in the solution. However, due to presence of
the (less singular) term |∂xh|3 in the surface energy, the solution to this PDE no longer
develops jumps in the height profile. This is expected from other studies in the non-
weighted H−1 total variation flow; see e.g. [21]. Similarly to the case where g = 0, we
can study the evolution numerically by using the regularized flow

∂th = ∂xxe
−∂x

(
∂xh√

(∂xh)2+ν2
+g∂xh|∂xh|

)
, (37)

which corresponds to free energy E[h; ν] of (32).
In this case, there is no explicit ODE system to predict the dynamics of facets,

since the underlying, regularized energy (32) does not permit the formation of jumps in
height and facets (flat parts of the height profile) for ν, g > 0. Indeed, our numerical
scheme does not result in jumps in the height profile in this case, though of course the
asymmetry of the exponential model is still manifest in the evolution; see Figure 5 for
a typical evolution of (36) with g = 3. For sufficiently small regularization parameter,
ν, the numerical solution for h evolves to become quite flat near a maximum. This flat
part of the height profile is still considered as a facet. In contrast, the height profile near
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Figure 4: (Color Online) Plots of facet height hf (t) versus time, t (top left panel), facet position xf (t)
versus t (top right panel) and facet height versus facet position (xf (t), hf (t)) (bottom panel). In each
plot, (xf , hf ) as a solution of (22) is plotted using crosses (×); and the corresponding components of a
solution to (34) as described in (35) are plotted using circles (◦). The initial data for (22) is taken from
the PDE evolution as xf (t0) = π

15
, hf (t0) = .98632751 with t0 = 5× 10−5. The numerical experiments

for the ODEs and PDE are then compared up to time T = 10−2.

a minimum seems to develop a discontinuity in the slope (see Figure 5).
We note that the case with g > 0 in (36) results in dynamics similar to those observed

in [31] with interaction potentials V (z) = |z|p, p > 1. These dynamics include a flattening
of the surface profile near the maximum of the initial height, and the finite-time formation
of a discontinuity in the derivative of the height at the minimum of the initial height
profile. We conjecture that these features are indeed expected in these types of degenerate
fourth-order PDEs with exponential mobility. The reader is referred to [31] for a more
detailed discussion of this type of breakdown of regularity in ∂xh in various settings.

5. Conclusion and discussion

In this paper, we study implications of PDE (5) arising from a mesoscale model for
line defects and an atomistic broken-bond model in crystal surface morphological evo-
lution. A noteworthy feature of this PDE is the presence of an exponential, singular
mobility. Because of this feature, the evolution occurs in the framework of a weighted
(nonlinear) H−1 gradient flow. For this evolution, in the absence of elasticity (g = 0),
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Figure 5: Snapshots of surface height evolution by fourth-order, regularized flow (37). Left panel: Initial
data h0(x) = sin(x). Right panel: Height profile, h(x, t), at t = T = 10−1 with ν = 10−3 and g = 3.

we constructed a solution for the surface height that explicitly showed an asymmetry be-
tween the dynamics on convex and concave parts of the crystal surface. This asymmetry
manifests in the following way. Top facets expand fast, regardless of their initial size;
in contrast, bottom facets move only if their size exceeds a certain critical length (see
Remark 1).

Our analysis points to several open questions. So far, we have focused on crystal sur-
faces in 1+1 dimensions. However, PDEs with exponential mobility in higher dimensions
are derived in [31]; in addition, such PDEs are plausibly linked to step flow [30]. There-
fore, the analysis of the dynamics stemming from such equations in higher dimensions is
an interesting topic for future study.

We note that the non-weighted H−1 total variation flow (6) and the corresponding L2

total variation flow have been studied in some detail by many authors, e.g. [20, 10, 11, 12].
In the weighted setting, these studies fall into the more general framework of evolution
equations of the form

ht = Leµ[h] + c[h] , h(x, 0) = h0 ,

where the case with L = −1 and c = 1 refers to an exponential version of evaporation-
condensation dynamics, while L = ∆ and c = 0 corresponds to the diffusion-limited
kinetics in surface diffusion dynamics; recall that µ[h] is the variation of the surface
free energy. The analysis of evolutions of this form is still under development, including
ODE dynamics for facets, existence of solutions in the total variation norm, and finite
relaxation times (otherwise known as extinction times) to reach the equilibrium state.

In particular, the exponential PDE derived from atomistic dynamics in [31] with p = 2
has the form (for L = ∆ and c = 0)

∂th = ∆e−∆h.

This PDE is studied in [26], where the authors derive weak solutions for a class of
functions where ∆h lives in a measure space. Extending such derivations and global
dynamics to a general family of 4th-order degenerate models with exponential mobility
deserves attention for future research.
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In a related fashion, the numerical schemes that we use here are based on straight-
forward finite-difference discretizations. Of course, energetic methods such as those for
related problems in [21] motivated by algorithms developed in [18] would seem viable.
However, the presence of the exponential mobility renders these methods much more
computationally expensive. The convergence analysis and development of efficient nu-
merical schemes for evolution equations of form (5) will be valuable for predictions of
faceting in crystal surface morphological evolution.
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