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Abstract. We study the dynamics defined by the Boltzmann equation set in the Euclidean
space RD in the vicinity of global Maxwellians with finite mass. A global Maxwellian is a
special solution of the Boltzmann equation for which the collision integral vanishes identically.
In this setting, the dispersion due to the advection operator quenches the dissipative effect of
the Boltzmann collision integral. As a result, the large time limit of solutions of the Boltzmann
equation in this regime is given by noninteracting, freely transported states and can be described
with the tools of scattering theory.

1. Introduction

In kinetic theory, the state of a monatomic gas is described by its distribution function
F ≡ F (v, x, t) ≥ 0, that is the number density at time t of gas molecules with velocity v ∈ RD

located at the position x ∈ RD. The distribution function is governed by the Boltzmann
equation

(1.1) ∂tF + v · ∇xF = B(F, F ) ,

where B(F, F ) is a quadratic integral operator acting on the v variable only, known as the
Boltzmann collision integral. The collision integral has a rather complicated expression whose
details are not needed in this introduction. Suffice it to say that all the information on molecular
interaction needed for the kinetic description of a gas is encoded in the collision kernel b(ω, V ),
a nonegative function of the relative velocity V of colliding particle pairs and of a unit vector ω
that measures the deviation of relative velocity before and after collision. The explicit formula
of the Boltzmann collision integral and its dependence on the collision kernel b will be given in
section 2.2 below.

The present paper investigates the long time behavior of solutions F ≡ F (v, x, t) of the
Boltzmann equation (1.1) on RD× RD×R+ satisfying appropriate decay conditions as |x| +
|v| → ∞, implying in particular that

(1.2)

∫∫
RD×RD

(1 + |x|2 + |v|2)F (v, x, t) dvdx <∞ for each t ≥ 0 .

The Boltzmann equation set in the spatial domain RD involves two very different mechanisms,
namely dispersion and relaxation to local equilibrium.

Dispersion is associated to the free transport equation, and one of its manifestations is the
following observation. Let f ≡ f(v, x, t) be a solution of

∂tf + v · ∇xf = 0 , f
∣∣
t=0

= f in ,
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and assume that f in ≡ f in(v, x) satisfies a bound of the form

0 ≤ f in(v, x) ≤ φ(x) for a.e. (v, x) ∈ RD× RD ,

where φ ∈ L1(RD). Then, for each t > 0, the macroscopic density ρ associated to f satisfies

0 ≤ ρ(x, t) :=

∫
RD

f(v, x, t) dv ≤
∫
RD

φ(x− tv) dv =
1

tD

∫
RD

φ(y) dy =
1

tD
‖φ‖L1

for a.e. x ∈ RD. In particular

ρ(x, t)→ 0 as t→ +∞ for a.e. x ∈ RD .

Relaxation to local equilibrium is associated to the collision integral and can be more or
less formulated as follows. Let g ≡ g(v, t) be a solution of the space homogeneous Boltzmann
equation

∂tg = B(g, g) , g
∣∣
t=0

= gin ,

where gin ≡ gin(v) satisfies the assumptions

gin(v) ≥ 0 for a.e. v ∈ RD and

∫
RD

gin(v)(1 + |v|2) dv < +∞ .

In the limit as t→ +∞, we expect that g(v, t) converges to a Maxwellian distribution, i.e.

g(t, v)→M [ρ∞, u∞, θ∞](v) :=
ρ∞

(2πθ∞)
D
2

exp

(
−|v − u

∞|2

2θ∞

)
,

where

ρ∞ :=

∫
RD

gin(v) dv , u∞ :=
1

ρ∞

∫
RD

gin(v) dv , θ∞ :=
1

ρ∞

∫
RD

1
D
|v − u∞|2gin(v) dv

if ρ∞ > 0, while g(v, t) = 0 for a.e. (v, t) ∈ RD× RD if ρ∞ = 0.
In general, dispersion and relaxation to local equilibrium are competing mechanisms, because

the effect of molecular collisions at the position x ∈ RD obviously vanishes if the macroscopic
density ρ(x, t) → 0 as t → +∞. For instance, dispersion is used in [13, 11, 2] to control the
nonlinear collision integral, and to establish the global existence of solutions of the Boltzmann
equation.

However, these two mechanisms cooperate to produce a remarkable class of explicit solu-
tions of the Boltzmann equation in the spatial domain RD, henceforth referred to as global
Maxwellians.

Definition 1.1. A global Maxwellian is a distribution function M≡M(v, x, t) satisfying both

∂tM+ v · ∇xM = 0 and B(M,M) = 0 .

An example of global Maxwellian is

M(v, x, t) := e−|x−tv|
2

.

A complete description of global Maxwellians with finite mass can be found in [16]. More
precisely, the main result in [16] is the following variational characterization.
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Given F in ∈ L1(RD× RD, (1 + |x|2 + |v|2)dxdv) such that F in ≥ 0 a.e. on RD× RD, there
exists a unique global Maxwellian MF in such that1

∫∫
RD×RD



1
v
|v|2
x− tv
|x− tv|2

(x− tv) · v
x ∧ v


MF in(v, x, t) dvdx =

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


F in(v, x) dvdx

for all t ∈ R. Notice that the left hand side of the equality above is independent of t. Indeed,
any global Maxwellian M satisfies M(v, x, t) =M(v, x− tv, 0) for all (v, x, t) ∈ RD× RD× R.

Moreover, for each t ∈ R, the function (v, x) 7→ MF in(v, x, t) satisfies the following variational
property:

H[f ] :=

∫∫
RD×RD

f ln f(v, x) dvdx ≥ H[MF in(t)] = H[MF in(0)]

for all a.e. nonnegative f ∈ L1(RD× RD, (1 + |x|2 + |v|2)dxdv) such that

∫∫
RD×RD



1
v
|v|2
x− tv
|x− tv|2

(x− tv) · v
x ∧ v


f(v, x) dvdx =

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


F in(v, x) dvdx ,

with equality if and only if f(v, x) = MF in(v, x, t) for a.e. (v, x) ∈ RD× RD. (See section 1.5
in [16] for more details.)

The purpose of the present work is to study the dynamics defined by the Boltzmann equation
near global Maxwellians in the Euclidean space RD. In particular, we establish the existence
and uniqueness of solutions in that regime and analyze in detail the large time behavior of these
solutions. More precisely, solutions F of the Boltzmann equation (1.1) over RD× RD×R+ such

that F
∣∣∣
t=0

= F in satisfy the global conservation laws

∫∫
RD×RD



1
v
|v|2
x− tv
|x− tv|2

(x− tv) · v
x ∧ v


F (v, x, t) dvdx =

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


F in(v, x) dvdx

for all t ≥ 0, under some appropriate decay condition on F that implies (1.2). (See Theorem
B below for a precise statement.) On the other hand, under a decay condition more stringent
than (1.2), Boltzmann’s H Theorem (see below) asserts that the function

t 7→ H[F (t)]

1For a, b ∈ RD, the notation a ∧ b designates the skew-symmetric tensor a⊗ b− b⊗ a.
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is nonincreasing for each solution F of the Boltzmann equation (1.1).
Together with the variational chacterization of global Maxwellians recalled above, this raises

the following question, which is at the core of the present paper.

Problem. Let F be a solution of the Cauchy problem for the Boltzmann equation (1.1) with
initia data F in satisfying appropriate decay conditions at infinity, implying in particular (1.2).
In the limit as t→ +∞, does F (t) converge (in some sense) to the state of maximal entropy (or
minimal H-function) compatible with the global conservation laws satisfied by F? In particular,
does H[F (t)] converge to H[MF in ] as t→ +∞?

The main result in the present work is that this question is answered in the negative.

2. Main results

2.1. Background on global Maxwellians. We first recall the complete description of global
Maxwellians from [16].

Theorem A. The family of all global Maxwellians over the spatial domain RD and belonging
to L∞(Rt;L

1(RD× RD)) is of the form

M(v, x, t) =
m

(2π)D

√
det(Q) exp(−q(v − v0, x− x0, t)) ,

with

q(v, x, t) = 1
2
(c|v|2 + a|x− tv|2 + 2b(x− tv) · v + v ·B(x− tv)) and Q = (ac− b2)I +B2 ,

where m, a, c > 0, b ∈ R, x0, v0 ∈ RD and B is a skew-symmetric D×D matrix with real entries
such that the symmetric matrix Q is definite positive.

Henceforth we denote by Ω the set

Ω := {(a, b, c, B) ∈ R3×RD×D s.t. a, c > 0 , B = −BT , and (ac− b2)I +B2 > 0} .

With the notation

M [ρ, u, θ](v) :=
ρ

(2πθ)
D
2

e−
|v−u|2

2θ ,

elementary computations show that

M(v, x, t) = M [ρ(x, t), u(x, t), θ(t)](v) ,

with

(2.1) ρ(x, t) = mθ(t)
D
2

√
det( Q

2π
) exp(−1

2
θ(t)xTQx) , u(x, t) = θ(t)(axt− bx−Bx) ,

and

(2.2) θ(t) =
1

at2 − 2bt+ c
.

Given any global Maxwellian M on RD× RD× R, we consider the Banach spaces

XM :=ML∞(RD× RD× R) , with norm ‖F‖M := ‖F/M‖L∞(RD×RD×R) ,

and

YM(0) :=M(0)L∞(RD× RD) , with norm |f |M(0) := ‖f/M(0)‖L∞(RD×RD) .
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2.2. Assumptions on the collision kernel. Henceforth, we assume that the collision kernel
has separated form, i.e.

b(z, ω) = |z|β b̂(ω · n) with n = z/|z| ,
and satisfies the weak cutoff condition

b :=

∫
SD−1

b̂(ω · n)dω <∞ .

Such a collision kernel will be said to correspond to a “hard” potential for the molecular
interaction if β ∈ (0, 1], and to a “soft” potential if β ∈ (−D, 0). The case β = 0 corresponds to
an assumption made by Maxwell in [17], and is referred to as the case of “Maxwell molecules”.
The case of hard sphere collisions is the case where b(z, ω) = |z · ω|. The case β ∈ (1, 2] is
referred to as “super-hard”; it does not arise from any radial, inverse power law potential and
is therefore of limited physical interest.

The collision integral is defined in terms of the collision kernel as follows. For each measurable
F ≡ F (v, x, t) defined a.e. on RD× RD× I where I is an interval of R and satisfying

(2.3) |F (v, x, t)| ≤ M(v, x, t) for a.e. (v, x, t) ∈ RD× RD× I
for some global Maxwellian M, one has

B(F, F )(v, x, t) =

∫∫
SD−1×RD

(F (v′, x, t)F (v′∗, x, t)− F (v, x, t)F (v∗, x, t))b(v − v∗, ω)dωdv∗ .

The velocities v′ and v′∗ are defined in terms of v, v∗ and ω by the formulas

v′ = v − (v − v∗) · ωω , v′∗ = v∗ + (v − v∗) · ωω .
These formulas give the general solution (v′, v′∗) ∈ RD× RD of the system of equations

v′ + v′∗ = v + v∗ , |v′|2 + |v′∗|2 = |v|2 + |v∗|2 ,
where v and v∗ are given vectors in RD. Henceforth we use the notation

F = F (v, x, t) , F∗ = F (v∗, x, t) , F ′ = F (v′, x, t) , F ′∗ = F (v′∗, x, t) ,

which is customary in the literature on the Boltzmann equation.
Since we are dealing with cutoff kernels throughout the present work, the Boltzmann colli-

sion integral can be decomposed into gain and loss terms, denoted respectively B+(F, F ) and
B−(F, F ), and defined as follows

B+(F, F )(v, x, t) =

∫∫
SD−1×RD

F (v′, x, t)F (v′∗, x, t)b(v − v∗, ω)dωdv∗ ,

B−(F, F )(v, x, t) =

∫∫
SD−1×RD

F (v, x, t)F (v∗, x, t)b(v − v∗, ω)dωdv∗ .

The loss term can be recast as

B−(F, F )(v, x, t) := F (v, x, t)A(F )(v, x, t) ,

with

A(F )(v, x, t) :=

∫∫
SD−1×RD

F (v∗, x, t)b(v − v∗, ω)dωdv∗ .

Integrating first in the ω variable, the term A(F ) takes the form

A(F )(v, x, t) = b

∫
RD

F (v∗, x, t)|v − v∗|βdv∗ .



6 C. BARDOS, I.M. GAMBA, F. GOLSE, AND C.D. LEVERMORE

In particular, if F is a global Maxwellian as in Theorem A, one has

(2.4)

A(M)(v, x, t) = ρ(x, t)θ(t)
β
2 aβ

(
v − u(x, t)√

θ(t)

)

= mb
√

det( Q
2π

)θ(t)
D+β
2 exp(−1

2
θ(t)xTQx)aβ

(
v − u(x, t)√

θ(t)

)
,

with the notation

(2.5) aβ(w) :=

∫
RD

|w − w∗|βM [1, 0, 1](w∗)dw∗ .

In the sequel, we shall use repeatedly the following elementary estimate: for all F,G ∈ XM,
one has

(2.6) |B−(F,G)(v, x, t)| ≤ ‖F‖M‖G‖MB−(M,M) = ‖F‖M‖G‖MA(M)M ,

and

(2.7)
|B+(F,G)(v, x, t)| ≤ ‖F‖M‖G‖MB+(M,M)

= ‖F‖M‖G‖MB−(M,M) = ‖F‖M‖G‖MA(M)M ,

where the penultimate equality follows from the identity B(M,M) = 0.

2.3. Mild solutions of the Boltzmann equation and their fundamental properties.
We shall henceforth use the notation A to designate the advection operator, i.e. Aφ = v · ∇xφ,
which is the infinitesimal generator of the one-parameter group etA defined by the formula

etAφ(x, v) = φ(x+ tv, v) .

Throughout the present paper, we shall use the following notion of solution of the Boltzmann
equation.

Definition 2.1. A mild solution of the Boltzmann equation is a function F ≡ F (v, x, t) belong-
ing to L1

loc(RD× RD× I) where I is an interval of R, such that B(F, F ) ∈ L1
loc(RD× RD× I)

and

et2AF (v, x, t2) = et1AF (v, x, t1) +

∫ t2

t1

esAB(F, F )(v, x, s) ds

for a.e. (v, x) ∈ RD× RD and t1, t2 ∈ I. In particular, F is a.e. equal to a unique element of
C(I;L1

loc(RD× RD)), to which it will be henceforth identified.

Mild solutions of the Boltzmann equations with appropriate decay condition as |x|+ |v| → ∞
satisfy basic conservation properties, which are summarized in the following statement.

Theorem B. Let F ≡ F (v, x, t) be a measurable function defined a.e. on RD× RD× I where
I is an open interval of R and satisfying the bound (2.3). Then

(a) for a.e. (x, t) ∈ RD× I ∫
RD

B(F, F )(v, x, t)

 1
v

1
2
|v|2

 dv = 0 .

Assume moreover that F is a mild solution of the Boltzmann equation in the sense of distri-
butions on RD× RD× I. Then
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(b) the function F satisfies the global conservation laws

d

dt

∫∫
RD×RD



1
v

1
2
|v|2

x− tv
1
2
|x− tv|2

(x− tv) · v
x ∧ v


F (v, x, t)dv = 0

in the sense of distributions on I.

In addition, the Boltzmann equation satisfies a dissipation property, well known under the
name of “Boltzmann’s H theorem”, which is recalled below.

Boltzmann’s H Theorem. Let F ≡ F (v, x, t) be a measurable function defined a.e. on
RD× RD× I where I is an open interval of R and satisfying the bound

0 ≤ F (v, x, t) ≤M(v, x, t) , for a.e. (v, x, t) ∈ RD× RD× I

where M is a global Maxwellian. Then

(a) for a.e. (x, t) ∈ RD× I ∫
RD

B(F, F )(v, x, t) lnF (v, x, t)dv ≤ 0 ,

(b) the inequality above is an equality if and only if B(F, F ) = 0 a.e. on RD× RD× I or,
equivalently, if and only if F is a local Maxwellian, i.e. there exists ρ ≡ ρ(x, t) ≥ 0 and
θ ≡ θ(x, t) > 0, and a vector field u ≡ u(x, t) ∈ RD such that

F (v, x, t) = M [ρ(x, t), u(x, t), θ(x, t)](v) ,

Assume moreover that F is a mild solution of the Boltzmann equation on RD× RD× I sat-
isfying the lower bound

F (v, x, t) ≥ αM(v, x, t) , for a.e. (v, x, t) ∈ RD× RD× I ,

where α ∈ (0, 1). Then
(c) the Boltzmann H function associated to F defined as

H[F ](t) :=

∫∫
RD×RD

F lnF (v, x, t)dv

satisfies
dH[F ]

dt
(t) =

∫∫
RD×RD

B(F, F )(v, x, t) lnF (v, x, t)dv ≤ 0

in the sense of distributions on I.

Theorem B (a) and Boltzmann’s H Theorem (a)-(b) are classical properties of the Boltzmann
equation, and are discussed in most books on the Boltzmann equation, for instance [7, 5]. See
also Corollary 3.2 and Proposition 3.3 in [9] for proofs based on assumptions slightly more
general than those used in the present paper. Proofs of Theorem B (b) and of part (c) of the
H Theorem are given in the appendix for the reader’s convenience.
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2.4. Dispersion vs. dissipation. Let M be a global Maxwellian, of the form

M(v, x, t) :=
m

(2π)D

√
detQe−q(v,x,t)

where

q(v, x, t) = 1
2

(
v

x− tv

)T (
cI bI −B

bI +B aI

)(
v

x− tv

)
, Q := (ac− b2)I +B2

with (a, b, c, B) ∈ Ω.

Lemma 2.1. Assume that the collision kernel b has separated form with β ∈ (−D, 0] and let
M be a global Maxwellian as in Theorem A. Then

‖A(M)(t)‖L∞(RD×RD) ≤ mb
√

det( Q
2π

)aβ(0)θ(t)
D+β
2 ,

with

aβ(0) = 2β/2Γ(D+β
2

)/Γ(D
2

) > 0 .

Moreover, if β ∈ (1−D, 0] then

(2.8) µ(M) :=

∫
R
‖A(M)(t)‖L∞(RD×RD)dt <∞ .

The next lemma shows the effect of dispersion induced by the free transport operator on the
damping coefficient in the loss term of the Boltzmann collision integral. By integrating first
in the time variable before taking the sup norm in x and v, one gains one extra power of the
relative velocity in the collision kernel b. Therefore, this lemma applies to all cutoff collision
kernels corresponding to hard as well as soft potentials, unlike Lemma 2.1. It extends the
computation on pp. 221-222 of [13] (see also formula (3.5) in [11]) to the larger class of global
Maxwellians described in [16] and considered in the present work.

Lemma 2.2. Assume that the collision kernel b has separated form with β ∈ (1−D, 1]. Under
the assumptions above, the function

(v, x, t) 7→
∫
J

A(M)(v, x− tv + sv, s) ds

is bounded on RD× RD× R for each interval J ⊂ R. Specifically, one has∣∣∣∣∫
J

A(M)(v, x− tv + sv, s) ds

∣∣∣∣ ≤ ν(M) for a.e. (v, x, t) ∈ RD× RD× R ,

where

(2.9)

ν(M) : = sup
(v,x,t)∈RD×RD×R

∣∣∣∣∫
R
A(M)(v, x− tv + sv, s) ds

∣∣∣∣
≤ mb

(2π)D−
1
2
√
a

(
(2πa)D/2 +

|SD−1|
√

detQ

β + D− 1

)
.
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2.5. Existence, uniqueness and stability for the Cauchy problem. Our analysis of the
dynamics of the Boltzmann equation in the neighborhood of global Maxwellian begins with
the following existence and uniqueness result. It states the existence and uniqueness of the
mild solution of the Cauchy problem for the Boltzmann equation under the assumption that
the initial distribution function F in is close enough to the restriction at time t = 0 of a global
Maxwellian M which is itself small enough when measured in terms of the parameter ν(M)
defined in Lemma 2.2.

Theorem 2.1. Assume that the collision kernel b has separated form with β ∈ (1−D, 1]. Let
M be a global Maxwellian such that ν(M) defined in (2.9) satisfies ν(M) < 1

4
.

(a) For each F in ∈ YM(0) such that

|F in −M(0)|M(0) <
(1− 4ν(M))2

8ν(M)
,

there exists a unique mild solution F ∈ XM of the Boltzmann equation such that

F (0) = F in and ‖F −M‖M ≤ r ,

with

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F in −M(0)|M(0)

(1− 4ν(M))2

)
.

(b) Moreover, if 1
2
≤ 4ν(M) < 1, or if 0 < 4ν(M) < 1

2
and |F in −M(0)|M(0) ≤ 1 − 6ν(M),

then r ≤ 1 and therefore

0 ≤ (1− r)M(v, x, t) ≤ F (v, x, t) ≤ (1 + r)M(v, x, t) for a.e. (v, x, t) ∈ RD× RD× R .

Theorem 2.1 extends earlier works, especially those of Illner and Shinbrot [13] and Hamdache
[11]. Our proof is based on the same type of fixed-point argument that was used in [11], rather
than the Kaniel-Shinbrot iteration method [14] that was used in [13]. (See section 6 of [14] for
citations of earlier uses of the fixed-point argument.) We also refer to more recent papers by
Toscani [20], by Goudon [10], and by Alonso and Gamba [1], all of which use Kaniel-Shinbrot
iteration to construct solutions near global Maxwellians for the case of soft potentials. Unlike
Theorem 2.1, these later references do not require a smallness condition (like ν(M) < 1

4
) on

the reference Maxwellian. Otherwise, Theorem 2.1 considers a class of collision kernels larger
than that in [1, 10, 13, 20] and the largest possible class of global Maxwellians, including those
with rotation, whereas [1, 10, 13, 20] consider only global Maxwellians without rotation. In [3]
we use Kaniel-Shinbrot iteration to extend many of the results in this paper to solutions near
global Maxwellians that do not satisfy any smallness condition.

Another difference with [11] is statement (b), which gives a sufficient condition for the posi-
tivity of the solution so obtained. The Boltzmann equation governs the evolution of distribution
functions for gas molecules. Therefore, solutions of the Boltzmann equation which are negative
on sets of positive measure are not physically admissible.

Henceforth, the solution F of the Cauchy problem with initial condition F (0) = F in obtained
in Theorem 2.1 will be denoted

F (t) = StF
in , t ∈ R .

In other words, St is the one-parameter group generated by the Boltzmann equation. Notice
that, under the condition on F in in Theorem 2.1, the solution StF

in is defined for all values
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of the time variable t, negative as well as positive. Such solutions are referred to as “eternal
solutions”.

Although the mathematical results obtained thoughout this paper hold for positive as well as
negative times, the Cauchy problem for the Boltzmann equation for positive times is of course
of greater physical interest than its analogue for negative times. The fact that the solutions
of the Cauchy problem for the Boltzmann equation obtained in Theorem 2.1 can be extended
to all negative times is a mathematical property of the physical regime corresponding to the
assumptions of Theorem 2.1. This observation applies to all the statements in sections 2.5 and
2.6, and we shall return to it later.

The next theorem establishes the continuous dependence of the solution F of the Cauchy
problem for the Boltzmann equation in terms of the initial data F in. More precisely, we show
that the one-parameter group St is locally Lipschitz continuous on the neighborhood of M(0)
where it is defined.

Theorem 2.2. Assume that the collision kernel b has separated form with β ∈ (1−D, 1]. LetM
be a global Maxwellian. Assume that ν(M) defined in (2.9) satisfies the condition ν(M) < 1

4
.

Let F in
1 and F in

2 ∈ YM(0) be such that

ε := max(|F in
1 −M(0)|M(0), |F in

2 −M(0)|M(0)) <
(1− 4ν(M))2

8ν(M)
.

Let F1(t) = StF
in
1 and F2(t) = StF

in
2 for all t ∈ R. Then

‖F1 − F2‖M ≤
|F in

1 − F in
2 |M(0)√

(1− 4ν(M))2 − 8ν(M)ε
.

In the case of cutoff collision kernels corresponding to soft potentials, one has the following
more general stability and uniqueness result.

Theorem 2.3. Assume that the collision kernel b has separated form with β ∈ (1−D, 0]. Let
F1 and F2 be two mild solutions of the Boltzmann equation satisfying the bound

|Fj(v, x, t)| ≤ M(v, x, t) , for a.e. (v, x, t) ∈ RD× RD× R and j = 1, 2 .

Then

‖F1 − F2‖M ≤ |F1(0)− F2(0)|M(0)e
4µ(M) ,

where µ(M) is the constant defined in (2.8).

Uniqueness is a direct consequence of the last inequality: if F1(0) = F2(0) a.e. on RD× RD,
then F1 = F2 a.e. on RD× RD× R. The constant µ(M) is not optimal in the bound above,
and can be replaced with

max

(∫ ∞
0

‖A(M)(t)‖L∞(RD×RD)dt,

∫ 0

−∞
‖A(M)(t)‖L∞(RD×RD)dt

)
,

as can be seen from the proof.
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2.6. Large time behavior. In this section, we pursue our analysis of the dynamics of the
Boltzmann equation near global Maxwellian with a detailed discussion of the asymptotic be-
havior of StF

in for t → ±∞. Recall that A denotes the advection operator, i.e. Aφ = v · ∇xφ,
which is the infinitesimal generator of the one-parameter group etA defined by the formula
etAφ(x, v) = φ(x+ tv, v).

Our first result in this direction is the following simple but general observation.

Theorem 2.4. Assume that the collision kernel b has separated form with β ∈ (1−D, 2]. Let
F ≡ F (v, x, t) be a mild solution of the Boltzmann equation defined a.e. on RD× RD× (t0,+∞)
— resp. RD× RD× (−∞, t0)) — for some t0 ∈ R. Assume that, for some global Maxwellian
M, defined in terms of m > 0 and (a, b, c, B) ∈ Ω as in Theorem A, the solution F satisfies

|F (v, x, t)| ≤ M(v, x, t)

for a.e. (v, x, t) ∈ RD× RD× (t0,+∞) — resp. RD× RD× (−∞, t0). Then there exists a
unique F+∞ ≡ F+∞(v, x) — resp. F−∞ ≡ F−∞(v, x) — such that

‖F (t)− e−tAF+∞‖L1(RD×RD) → 0

as t→ +∞ — resp.

‖F (t)− e−tAF−∞‖L1(RD×RD) → 0

as t→ −∞.
The functions F±∞ are given by

F+∞ = F in +

∫ ∞
0

esAB(F, F )(s) ds ,

F−∞ = F in −
∫ 0

−∞
esAB(F, F )(s) ds ,

and satisfy the bound

|F±∞(v, x)| ≤ M(v, x, 0) for a.e. (v, x) ∈ RD× RD .

This theorem obviously applies to the solution F (t) = StF
in obtained in Theorem 2.1, since

it satisfies the bound −(1 + r)M(t) ≤ (1− r)M(t) ≤ StF
in ≤ (1 + r)M(t) for all t ∈ R. The

asymptotic states F±∞ so obtained obviously satisfy the bounds

(1− r)M(v, x, 0) ≤ F±∞(v, x) ≤ (1 + r)M(v, x, 0) for a.e. (v, x) ∈ RD× RD ,

since etAM(t) =M(0) and

(1− r)M(v, x, t) ≤ StF
in(v, x) ≤ (1 + r)M(v, x, t) for a.e. (v, x, t) ∈ RD× RD× R .

Definition 2.2. LetM be a global Maxwellian. Let F in and F+∞ (resp. F−∞) be two elements
of YM(0). We say that F+∞ = T +F in (resp. F−∞ = T −F in) if there exists a unique mild
solution F of the Boltzmann equation on RD× RD × [0,+∞) (resp. on RD× RD × (−∞, 0])
such that ‖F (t)− e−tAF+∞‖L1(RD×RD) → 0 as t→ +∞ (resp. ‖F (t)− e−tAF−∞‖L1(RD×RD) → 0
as t→ −∞).

This defines two operators T + and T − on subsets of YM(0). In view of Theorems 2.1
and 2.4 and of the remarks before the definition above, the operators T ± are defined on



12 C. BARDOS, I.M. GAMBA, F. GOLSE, AND C.D. LEVERMORE

BYM(0)

(
M(0), (1−ν(M))2

8ν(M)

)
provided that ν(M) < 1

4
, and satisfy2

T ±
(
BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

))
⊂ BYM(0)

(
M(0), 1

4ν(M)
− 1
)
.

Notice that the existence of the operators T ± on balls of a slightly more general class of
spaces analogous to YM(0) had been established by Hamdache [11]. The more general existence
theorem above (Theorem 2.4) is new. See also formula (16.16) in [19] and Theorem 5.4 in [4]
for an analogous result on discrete velocity models of the kinetic theory of gases.

Although the asymptotic behavior of solutions of the Boltzmann equation over RD for large
positive time is of greater physical interest than the large negative time limit, the fact that
both limits are obtained by exactly the same mathematical arguments is an important clue.

We know that when the Boltzmann equation is set on a bounded spatial domain, assuming
for instance that x belongs to some periodic box, or to some bounded, connected open set of
RD with smooth boundary and appropriate boundary conditions (such as specular reflection
of the gas molecules at the boundary), its solution converges, as t → +∞, to the uniform
Maxwellian state that is compatible with the initial and boundary conditions, as well as with
the fundamental conservation laws implied by the Boltzmann equation itself (see for instance
[8]). In particular, different initial data F in may, in the case of a bounded spatial domain, lead
to the same Maxwellian state in the long time limit.

By analogy, one might think that the asymptotic behavior for t→ +∞ of any mild solution
F of the Boltzmann equation over RD, satisfying appropriate decay conditions more stringent
than (1.2) as |x| + |v| → ∞, is given by the global Maxwellian M with the same globally
conserved quantities as F — i.e. by the state of maximal entropy compatible with the same
conserved quantities as F . However, this seems unlikely, since the mathematically analogous
asymptotic behavior for t→ −∞ is not expected to involve the entropy.

In fact the dynamics defined by the Boltzmann equation set in the Euclidean space RD in
the long time limit is completely different from the case of a bounded domain, as shown by the
next theorem.

Theorem 2.5. Assume that the collision kernel b has separated form with β ∈ (1−D, 0]. Let
F1 ≡ F1(v, x, t) and F2 ≡ F2(v, x, t) be mild solutions of the Boltzmann equation defined a.e.
on RD× RD× (t0,+∞) — resp. RD× RD× (−∞, t0) — satisfying the bounds

|F1(v, x, t)| ≤ M(v, x, t) and |F2(v, x, t)| ≤ M(v, x, t)

for a.e. (v, x, t) ∈ RD× RD× (t0,+∞) — resp. RD× RD× (−∞, t0) — where M is a global
Maxwellian, defined in terms of m > 0 and (a, b, c, B) ∈ Ω as in Theorem A.

Let F±∞j ≡ F±∞j (v, x) be such that

‖Fj(t)− e−(t−t0)AF+∞
j ‖L1(RD×RD) → 0 for j = 1, 2

as t→ +∞ — resp.

‖Fj(t)− e−(t−t0)AF−∞j ‖L1(RD×RD) → 0 for j = 1, 2

as t→ −∞. Then

|F1(t)− F2(t)|M(t) ≤ |F+∞
1 − F+∞

2 |M(t0)e
4µ(M)

2If E is a Banach space, BE(x, r) — resp. BE(x, r) — designates the open ball — resp. the closed ball —
centered at x with radius r in E.
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for all t > t0 — resp.

|F1(t)− F2(t)|M(t) ≤ |F−∞1 − F−∞2 |M(t0)e
4µ(M)

for all t < t0. In particular, if F+∞
1 = F+∞

2 (resp. F−∞1 = F−∞2 ) a.e. on RD× RD, then

F1(v, x, t) = F2(v, x, t) for a.e. (v, x) ∈ RD× RD

for all t > t0 — resp. t < t0.

In other words, the operators T ± are one-to-one on their domains of definition in the case
of soft molecular interactions: unlike in the case of the Boltzmann equation set in a bounded
domain, different initial data lead to different asymptotic states F±∞.

Whether these operators are onto is another natural question, which is partially answered
by the next theorem.

Theorem 2.6. Assume that b has separated form with β ∈ (1 − D, 1]. Let M be a global
Maxwellian, with ν(M) defined in (2.9) such that ν(M) < 1

4
. Let F±∞ satisfy

F±∞ ∈ BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

)
.

Then there exists a unique F in
± ∈ YM(0) satisfying F in

± ∈ BYM(0)
(M(0), r) with

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F±∞ −M(0)|M(0)

(1− 4ν(M))2

)
,

and

T ±F in
± = F±∞ .

We henceforth denote

(2.10) (T ±)−1F±∞ := F in
±

the initial data obtained in Theorem 2.6. In other words, Theorem 2.6 defines right inverse oper-

ators (T ±)−1 : F±∞ 7→ F in
± such that T ± ◦ (T ±)−1 = Id on the ball BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

)
.

Besides

(T ±)−1
(
BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

))
⊂ BYM(0)

(
M(0), 1

4ν(M)
− 1
)
.

Notice the difference between Theorems 2.5 and 2.6. Theorem 2.5 establishes the one-to-one
property for the operators F in 7→ F±∞ possibly for large initial data, under the only assumption
that the Boltzmann equation has a mild solution with initial data F in that remains below some
global Maxwellian. However, we do not know whether Theorem 2.5 holds for hard potentials.
Theorem 2.6 on the other hand holds for all cutoff kernels, for hard as well as soft potentials,
and implies that the operators F in 7→ F±∞ are not only one-to-one but also onto. But Theorem
2.6 is only a local result: it holds only in some neighborhood of a global Maxwellian.

Theorems 2.5 and 2.6 answer in the negative the question raised in the problem stated at the
end of section 1. As explained above, the asymptotic behavior of solutions of the Boltzmann
equation over RD for large positive time is of much greater physical interest than the large
negative time limit. Nevertheless, the mathematical methods used in the proof of Theorems
2.5 and 2.6 allow treating both limits in the same way.

In the next theorem, we discuss the continuity properties of the operators T ± and of their
right inverses (T ±)−1 defined in (2.10).
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Theorem 2.7. Assume that b has separated form with β ∈ (1 − D, 1], and let M be a global

Maxwellian with ν(M) defined in (2.9) such that ν(M) < 1
4
, and let 0 ≤ ε < (1−4ν(M))2

8ν(M)
.

(a) For F in
1 , F

in
2 ∈ BYM(0)

(M(0), ε) one has

|T ±F in
1 − T ±F in

2 |M(0) ≤
|F in

1 − F in
2 |M(0)√

(1− 4ν(M))2 − 8ν(M)ε
.

(b) For F±∞1 , F±∞2 ∈ BYM(0)
(M(0), ε) one has

|(T ±)−1F±∞1 − (T ±)−1F±∞2 |M(0) ≤
|F±∞1 − F±∞2 |M(0)√

(1− 4ν(M))2 − 8ν(M)ε
.

2.7. Scattering theory for the Boltzmann equation. The results obtained in the previ-
ous section imply the existence of a scattering regime for the Boltzmann equation set in the
Euclidean space RD, at least in the vicinity of some global Maxwellian states — i.e. those for
which ν(M) < 1

4
.

In the words of P. Lax and R. Phillips [15], “Scattering theory compares the asymptotic
behavior of an evolving system as t tends to −∞ with its asymptotic behavior as t tends to
+∞”. Chapter 2 of [15] defines the notion of scattering operator in terms of the translation
representation of unitary groups in Hilbert spaces.

Since the Boltzmann equation involves entropy production via Boltzmann’s H theorem, the
one-parameter group St constructed in Theorem 2.1 is very different from a unitary group
defined on a Hilbert space. Therefore, it is a priori unclear that the concepts of scattering
theory defined in such terms can be applied in the context of the kinetic theory of gases.

There is however a scattering theory for the linear Boltzmann equation, sketched for instance
in section XI.12 of [18]. The notion of scattering operator for the linear Boltzmann equation
considered by M. Reed and B. Simon differs from the theory described in [15] in two ways,
which they summarize as follows. “In the first place, the natural space of states is not a Hilbert
space but a cone in a (non-Hilbert) vector space; in the second place, the equation of motion
we describe defines a one-sided dynamics [. . . ]” For that reason, the definition of the wave and
scattering operators in formulas (239)-(240) of [18] differs from the one in [15].

The present section uses the same formalism as [15].

Definition 2.3. Let M be a global Maxwellian. Let F+∞ and F−∞ be two elements of YM(0).
We say that F+∞ = SF−∞ if there exists a unique mild solution F of the Boltzmann equation
on RD× RD× R such that |F (v, x, t)| ≤ M(v, x, t) for a.e. (v, x, t) ∈ RD× RD× R for some
global Maxwellian M, and

‖F (t)− e−tAF+∞‖L1(RD×RD) → 0 as t→ +∞ ,

while

‖F (t)− e−tAF−∞‖L1(RD×RD) → 0 as t→ −∞ .

We have put together in the next theorem the main properties of the scattering operator S.

Theorem 2.8. Assume that b has separated form with β ∈ (1 − D, 1], and let M be a global
Maxwellian with ν(M) defined in (2.9) such that ν(M) < 1

4
.
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(a) For each F−∞ ∈ BYM(0)
(M(0), (1−4ν(M))2

8ν(M)
), there exists a unique F+∞ ∈ BYM(0)

(M(0), r)

with

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F−∞ −M(0)|M(0)

(1− 4ν(M))2

)
,

such that

SF−∞ = F+∞ .

In particular SM(0) =M(0).

(b) For each F+∞ ∈ BYM(0)
(M(0), (1−4ν(M))2

8ν(M)
), there exists a unique F−∞ ∈ BYM(0)

(M(0), r)

with

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F+∞ −M(0)|M(0)

(1− 4ν(M))2

)
,

such that

SF−∞ = F+∞ .

The distribution function F−∞ so obtained is henceforth denoted by

S−1F+∞ := F−∞ .

In other words, the map S−1 so defined is a right inverse of S, i.e. S ◦ (S−1) = Id on the ball

BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

)
.

(c) The maps S and S−1 are locally Lipschitz continuous on BYM(0)
(M(0), (1−4ν(M))2

8ν(M)
). More

precisely, for each ε satisfying 0 < ε < (1−4ν(M))2

8ν(M)
and each F±∞1 , F±∞2 ∈ BYM(0)

(M(0), ε), one

has

|SF−∞1 − SF−∞2 |M(0) ≤
|F−∞1 − F−∞2 |√

(1− 4ν(M))2 − 8ν(M)ε
, and

|S−1F+∞
1 − S−1F+∞

2 |M(0) ≤
|F+∞

1 − F+∞
2 |√

(1− 4ν(M))2 − 8ν(M)ε
.

(d) The scattering operator S satisfies the global conservation laws

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


SF−∞(v, x) dvdx =

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


F−∞(v, x) dvdx

for each F−∞ ∈ BYM(0)
(M(0), (1−4ν(M))2

8ν(M)
).

(e) The scattering operator S decreases the Boltzmann H function: if 1
2
< 4ν(M) < 1, or if

0 < 4ν(M) ≤ 1
2

and |F−∞ −M(0)|M(0) < 1− 6ν(M), then

H[F−∞] ≥ H[SF−∞] ,

with equality if and only if there exists a global Maxwellian M̃ such that F−∞ = M̃(0).
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(f) Assume that β ≤ 0. Assume moreover that 1
2
≤ 4ν(M) < 1, or that 0 < 4ν(M) < 1

2
and

that F−∞ satisfies the condition |F−∞ −M(0)|M(0) ≤ 1 − 6ν(M). Let MF−∞ be the global
Maxwellian such that

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


F−∞(v, x) dvdx =

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


MF−∞(v, x, 0) dvdx ;

(see [16]). Then

H[SF−∞] ≥ H[MF−∞ ] ,

with equality if and only if F−∞ = SF−∞ =MF−∞(0).

The existence of a scattering operator has been established by Bony [4] in the case of the
discrete velocity models of the kinetic theory of gases — see also lecture 16 in [19], especially
the sentence following formula (16.16). However the scattering theory so obtained is noticeably
different from the one constructed in the present work. For instance, the operator analogous to
T + in [4] is known to be discontinuous (see section 5.6 in [4]). A significant difference between
the real Boltzmann equation and all the discrete velocity models is of course the class of global
Maxwellians studied in [16] in the former case. Indeed, no analogue of the class of global
Maxwellians is known to exist in general for discrete velocity models.

One way to poetically recast our results is that the traditional argument for the heat death
of the universe is wrong, at least when applied to a universe that expands forever. That
argument asserts the universe will approach its entropy maximizing state, which will be a
cooling homogeneous state. However our results show that an unconfined system generally
does not approach its entropy maximizing state, but rather has a dispersing asymptotic state
upon which much of its past depends through a Lipschitz continuous bijection. In physical
terms, most particles do not experience enough collisions for the entropy maximizing state
to be approached before the unconfined system disperses. Of course, the unconfined system
modeled here by the Boltzmann equation is not a good model for the universe and we are not
claiming that the fate of the universe is not a cooling homogeneous state. Rather, we are only
pointing out that the traditional heat death argument has gaps in it.

3. Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. The first inequality follows from the formula (2.4) and observing that

a(w) =

∫
RD

|w − w∗|βM [1, 0, 1](w∗)dw∗ ≤
∫
RD

|w∗|βM [1, 0, 1](w∗)dw∗ = aβ(0)
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because w 7→M [1, 0, 1](w) and w 7→ |w|β are nonincreasing functions3 of |w| since β ≤ 0. (The
argument in the footnote follows the proof of inequality (10.2.1) on p. 261 in [12]). Thus∫

R
‖A(M)(t)‖L∞(RD×RD)dt ≤ mb

√
det( Q

2π
)aβ(0)

∫
R
θ(t)

D+β
2 dt <∞

since θ(t) = O(1/t2) as t → ±∞ (by 2.2) and D+β
2

> 1
2
. The explicit formula for aβ(0) comes

from an explicit computation (we recall that |SD−1| = 2β/2Γ(D
2

)). �

Proof of Lemma 2.2. First∫
J

A(M)(v, x− tv + sv, s) ds = b

∫
RD

|v − v∗|β
∫
J

M(v∗, x− tv + sv, s) dsdv∗

= b

∫
RD

|v − v∗|β
∫
J

M(v∗, x− tv + s(v − v∗), 0) dsdv∗ .

Indeed, since (∂t + v · ∇x)M = 0, one has

M(v∗, x− tv + sv, s) =M(v∗, x− tv + s(v − v∗), 0) .

Then
q(v∗, X + Z, 0) = 1

2
(a|X + Z|2 + c|v∗|2 + 2(X + Z) · (bI +B)v∗)

= 1
2
(a|X + Z + 1

a
(bI +B)∗v∗|2 − 1

a
|(bI +B)Tv∗|2 + c|v∗|2) .

Since B = −BT , one has

|(bI +B)Tv∗|2 = ((bI +B)Tv∗|(bI +B)Tv∗) = b2|v∗|2 + (BTv∗|BTv∗) = b2|v∗|2 − (B2v∗|v∗) ,

so that

q(v∗, X + Z, 0) = 1
2

(
a

∣∣∣∣X + Z +
1

a
(bI +B)∗v∗

∣∣∣∣2 +
1

a
(ac|v∗|2 − b2|v∗|2 + (B2v∗|v∗))

)

= 1
2

(
a

∣∣∣∣X + Z +
1

a
(bI +B)Tv∗

∣∣∣∣2 +
1

a
(Qv∗|v∗)

)
.

3Lemma. Let f, g ∈ C((0,+∞)) be nonincreasing on (0,+∞), and such that the function y 7→ f(|x−y|)g(|y|)
is integrable for each x ∈ RD. Then∫

RD

f(|x− y|)g(]y|)dy ≤
∫
RD

f(|y|)g(|y|)dy for each x ∈ RD .

Proof. Elementary computations show that, for each x ∈ RD, one has∫
RD

f(|y|)g(]y|)dy −
∫
RD

f(|x− y|)g(|y|)dy = 1
2

∫
RD

(f(|y|)− f(|x− y|))(g(|y|)− g(|x− y|))dy

= 1
2

∫
|x−y|>|y|

(f(|y|)− f(|x− y|))(g(|y|)− g(|x− y|))dy

+ 1
2

∫
|x−y|<|y|

(f(|y|)− f(|x− y|))(g(|y|)− g(|x− y|))dy .

In the first integral on the right hand side, one has both f(|y|)− f(|x− y|) ≥ 0 and g(|y|)− g(|x− y|) ≥ 0 since
f and g are nonincreasing. By the same token, f(|y|)− f(|x− y|) ≤ 0 and g(|y|)− g(|x− y|) ≤ 0 in the second
integral on the right hand side. Hence both integrals on the right hand side are nonnegative. �
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Thus ∣∣∣∣∫
J

M(v∗, x− tv + s(v − v∗), 0) ds

∣∣∣∣
=

m

(2π)D

√
detQe−(Qv∗|v∗)/2a

∣∣∣∣∫
J

e−a|x−tv+
1
a
(bI+B)T v∗+s(v−v∗)|2/2 ds

∣∣∣∣
≤ m

(2π)D

√
detQe−(Qv∗|v∗)/2ae−a(|x−tv+

1
a
(bI+B)T v∗|2−(x−tv+ 1

a
(bI+B)T v∗|v−v∗)2/|v−v∗|2)

×
∫
R
e−as

2|v−v∗|2/2 ds

=
m

(2π)D

√
detQe−(Qv∗|v∗)/2ae−a(|x−tv+

1
a
(bI+B)T v∗|2−(x−tv+ 1

a
(bI+B)T v∗|v−v∗)2/|v−v∗|2)

×
√

2π

a

1

|v − v∗|

≤ m

(2π)D

√
2π

a

1

|v − v∗|
√

detQe−(Qv∗|v∗)/2a .

We conclude that∣∣∣∣∫
J

A(M)(v, x− tv + sv, s) ds

∣∣∣∣ ≤ mb

(2π)D

√
2π

a

√
detQ

∫
RD

|v − v∗|β−1e−(Qv∗|v∗)/2a dv∗

≤ mb

(2π)D

√
2π

a

√
detQ

∫
|v−v∗|>1

e−(Qv∗|v∗)/2a dv∗

+
mb

(2π)D

√
2π

a

√
detQ

∫
|v−v∗|<1

|v − v∗|β−1 dv∗

≤ mb

(2π)D

√
2π

a

(
(2πa)D/2 +

|SD−1|
√

detQ

β + D− 1

)
.

�

4. Existence, uniqueness and stability for the Cauchy problem

In the case of hard potentials, A(M) /∈ L∞(RD× RD× R); hence B± does not map XM×XM
into XM. Controling the collision integral requires integrating first along the characteristic lines
of the free transport operator and using the dispersion effect of the free transport operator as
in the previous section (Lemma 2.2), as explained in the next lemma.

Lemma 4.1. Consider the maps defined on XM ×XM by

C± : (F,G) 7→ C±(F,G)(v, x, t) :=

∫ t

0

B±(F,G)(v, x− tv + sv, s) ds ,

and set
C := C+ − C− .

Then, for all F,G ∈ XM, one has

‖C(F, F )− C(G,G)‖M ≤ 2ν(M)‖F +G‖M‖F −G‖M ,

and
‖C(F, F )‖M ≤ 2ν(M)(2 + ‖F −M‖M)‖F −M‖M .
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Proof. Observe that, for all F,G ∈ XM,

C±(F, F )− C±(G,G) = 1
2
C±(F +G,F −G) + 1

2
C±(F −G,F +G) .

Therefore, by (2.7) and (2.6)

|C±(F, F )− C±(G,G)| ≤ ‖F +G‖M‖F −G‖M

×
∣∣∣∣∫ t

0

A(M)(v, x− tv + sv, s)M(v, x− tv + sv, s) ds

∣∣∣∣
≤ ‖F +G‖M‖F −G‖MM(v, x, t)

×
∣∣∣∣∫ t

0

A(M)(v, x− tv + sv, s) ds

∣∣∣∣ ,
so that

‖C±(F, F )− C±(G,G)‖M ≤ ν(M)‖F +G‖M‖F −G‖M .

With the definition of C in terms of C±, this gives the first inequality in the lemma. The second
inequality in the lemma follows from the first inequality, the fact that

‖F +M‖M ≤ ‖F −M‖M + 2‖M‖M = ‖F −M‖M + 2

and the identity C(M,M) = 0. �

The proof of Theorem 2.1 is based on the previous lemma and a fixed point argument.

Proof of Theorem 2.1. To say that F is a (mild) solution of the Boltzmann equation

(∂t + v · ∇x)F = B(F, F ) , F
∣∣∣
t=0

= F in ,

means that

F (v, x, t) = F in(v, x− tv) + C(F, F )(v, x, t) ,

or in other words, that F is a fixed point of the map

E : G 7→ F in(v, x− tv) + C(G,G)(v, x, t) .

Assume that F in ∈ YM(0); then

E(F )(v, x, t)−M(v, x, t) = F in(v, x− tv)−M(v, x− tv, 0) + C(F, F )(v, x, t)

so that

‖E(G)−M‖M ≤ ‖F in/M(0)− 1‖L∞(RD×RD) + ‖C(G,G)‖M
≤ |F in −M(0)|YM(0)

+ 2ν(M)(‖G−M‖2M + 2‖G−M‖M) .

Set ε(M, r) := (1 − 4ν(M)(1 + 1
2
r))r. Obviously, ε(M, r) < r, and since 4ν(M) < 1, one

has ε(M, r) ≥ 2ν(M)r2 > 0. Thus, if |F in −M(0)|YM(0)
≤ ε(M, r) and if ‖G −M‖M ≤ r,

then

‖E(G)−M‖M ≤ ε(M, r) + 2ν(M)(r2 + 2r) = r .

Moreover, if F,G ∈ B(M, r) ⊂ XM, then

‖E(F )− E(G)‖M ≤ ‖C(F, F )− C(G,G)‖M ≤ 2ν(M)‖F +G‖M‖F −G‖M
≤ 4ν(M)(‖1

2
(F +G)−M‖M + ‖M‖M)‖F −G‖M

= 4ν(M)(r + 1)‖F −G‖M .
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Since 4ν(M)(r + 1) < 1, the map E is a strict contraction from the closed ball B(M, r) of
the Banach space XM into itself, and therefore has a unique fixed point in that ball. In other
words, the Boltzmann equation with initial data F in has a unique mild solution which belongs
to the ball B(M, r) ⊂ XM.

The map r 7→ ε(M, r) is increasing on (0, 1
4ν(M)

− 1) and

sup
0<4ν(M)(r+1)<1

ε(M, r) =
(1− 4ν(M))2

8ν(M)
.

Thus, for each F in ∈ YM(0) such that |F in −M(0)|M(0) <
(1−4ν(M))2

8ν(M)
, there exists a unique

r ∈ [0, 1
4ν(M)

− 1) such that ε(M, r) = |F in −M(0)|M(0), which is given by

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F in −M(0)|M(0)

(1− 4ν(M))2

)
.

This proves statement (a).
If 1

2
≤ 4ν(M) < 1, then r ≤ 1

4ν(M)
− 1 ≤ 1. If 0 < 4ν(M) < 1

2
and r ∈ [0, 1

4ν(M)
− 1],

then ε(M, r) ≤ ε(M, 1) = 1 − 6ν(M) if and only if 0 ≤ r ≤ 1, so that ‖F −M‖M ≤ 1 if
|F in −M(0)|M(0) ≤ 1− 6ν(M). This proves statement (b). �

Proof of Theorem 2.2. One has

(F1 − F2)(v, x, t) = (F in
1 − F in

2 )(v, x− tv, t) + (C(F1, F1)− C(F2, F2))(v, x, t)

so that

‖F1 − F2‖M ≤ ‖(F in
1 − F in

2 )/M(0)‖L∞(RD×RD) + ‖C(F1, F1)− C(F2, F2)‖M
≤ |F in

1 − F in
2 |YM(0)

+ 2ν(M)‖F1 + F2‖M‖F1 − F2‖M
≤ |F in

1 − F in
2 |YM(0)

+ 4ν(M)(1 + r)‖F1 − F2‖M ,

assuming that ‖Fj −M‖M ≤ r for j = 1, 2. Therefore

‖F1 − F2‖M ≤
|F in

1 − F in
2 |YM(0)

1− 4ν(M)(r + 1)
.

Inserting the expression of r in terms of |F in −M(0)|M(0) obtained in Theorem 2.1 (a) in the
right hand side of this inequality leads to the inequality of Theorem 2.2. �

Proof of Theorem 2.3. Since Fj is a mild solution on RD× RD× R of the Boltzmann equation
for j = 1, 2, one has

etAFj(t) = Fj(0) +

∫ t

0

esAB(Fj(s), Fj(s)) ds

for each t ∈ R. The inequalities (2.6) and (2.7) and the bound on Fj assumed in the statement
of Theorem 2.5 imply that

(4.1)

|B(F1(s), F1(s))− B(F2(s), F2(s))| ≤1
2
|B(F1(s) + F2(s), F1(s)− F2(s))|

+ 1
2
|B(F1(s)− F2(s), F1(s) + F2(s))|

≤4|F1(s)− F2(s)|M(s)A(M(s))M(s) ,
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so that

|F1(t)− F2(t)|M(t) = |etA(F1(t)− F2(t))|M(0)

≤ |F1(0)− F2(0)|M(0) +

∫ t

0

|esA(B(F1, F1)(s)− B(F2, F2)(s))|M(0) ds

= |F1(0)− F2(0)|M(0) +

∫ t

0

|B(F1, F1)(s)− B(F2, F2)(s)|M(s) ds

≤ |F1(0)− F2(0)|M(0) + 4

∫ t

0

|F1(s)− F2(s)|M(s)‖A(M(s))‖L∞(RD×RD) ds .

Using Lemma 2.1 and applying Gronwall’s inequality shows that

|F1(t)− F2(t)|M(t) ≤ |F1(0)− F2(0)|M(0) exp

(
4

∣∣∣∣∫ t

0

‖A(M(s))‖L∞(RD×RD)ds

∣∣∣∣) ,

from which the announced conclusion immediatly follows. �

5. Large time behavior: proofs of Theorems 2.4 and 2.5

Proof of Theorem 2.4. Observe first that∫
RD

A(M)M(v, x, t)dv = Caθ(t)
β
2 ρ(x, t)2 ,

where

Ca =

∫∫
RD×RD

|w − w∗|βM [1, 0, 1](w)M [1, 0, 1](w∗)dwdw∗ <∞

since β ∈ (1−D, 2]. On the other hand∫
RD

ρ(x, t)2 dx = m2θ(t)D det( Q
2π

)

∫
RD

exp(−θ(t)xTQx))dx = m2
√

det( Q
4π

)θ(t)
D
2

so that ∫∫∫
RD×RD×R

A(M)M(v, x, t)dvdxdt = Cam
2
√

det( Q
4π

)

∫
R
θ(t)

D+β
2 dt <∞

since θ(t) = O(1/t2) as t→ ±∞ (as implied by (2.2)) and D+β
2

> 1
2
.

Thus, if F is a mild solution of the Boltzmann equation on RD× RD× I (where I is some
interval of R) satisfying the bound in Theorem 2.4, one has

(5.1)
|B(F, F )| ≤ B+(|F |, |F |) + B−(|F |, |F |)

≤ B+(M,M) + B−(M,M) = 2A(M)M ,

and therefore∫∫∫
RD×RD× I

|B(F, F )(v, x, t)|dvdxdt ≤ 2

∫∫∫
RD×RD×R

A(M)M(v, x, t)dvdxdt <∞ .

If I = [t0,+∞), then

e(t−t0)AF (t) = F (t0) +

∫ t

t0

e(s−t0)AB(F (s), F (s))ds ,

and since∫ +∞

t0

‖e(s−t0)AB(F (s), F (s))‖L1(RD×RD)ds =

∫ +∞

t0

‖B(F (s), F (s))‖L1(RD×RD)ds <∞ ,
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we conclude that e(t−t0)AF (t) converges to a limit in L1(RD× RD) as t→ +∞. The case where
I = (−∞, t0] is handled similarly. �

Proof of Theorem 2.5. Since Fj is a mild solution on RD× RD× [t0,+∞) of the Boltzmann
equation for j = 1, 2, one has

e(t
′−t0)AFj(t

′) = e(t−t0)AFj(t) +

∫ t′

t

e(s−t0)AB(Fj(s), Fj(s)) ds

for each t′ > t > t0. Letting t′ → +∞ and using the assumption on the large time behavior of
F1 and F2 shows that

e(t−t0)A(F1(t)− F2(t)) = F+∞
1 − F+∞

2 −
∫ +∞

t

e(s−t0)A(B(F1(s), F1(s))− B(F2(s), F2(s))) ds .

The inequality (4.1) and the bound on Fj assumed in the statement of Theorem 2.5 imply that

|B(F1(s), F1(s))− B(F2(s), F2(s))| ≤ 4|F1(s)− F2(s)|M(s)A(M(s))M(s)) ,

so that

|F1(t)− F2(t)|M(t) = |e(t−t0)A(F1(t)− F2(t))|M(t0)

≤ |F+∞
1 − F+∞

2 |M(t0) + 4

∫ +∞

t

|F1(s)− F2(s)|M(s)‖A(M(s))‖L∞(RD×RD)ds

in view of the obvious identity e(s−t0)AM(s) =M(t0). The conclusion follows from Lemma 2.1
and Lemma 5.1 below. �

The second lemma is a variant of the Gronwall inequality.

Lemma 5.1. Let φ ∈ L∞([t0,+∞)) satisfy the integral inequality

0 ≤ φ(t) ≤ ∆ +

∫ +∞

t

φ(s)m(s)ds , for a.e. t > t0 ,

where ∆ > 0 and m is a measurable function on [t0,+∞) satisfying

m(t) > 0 for a.e. t ≥ t0 , and

∫ ∞
t0

m(s)ds <∞ .

Then

φ(t) ≤ ∆ exp

(∫ +∞

t0

m(s)ds

)
for a.e. t ≥ t0.

Proof. One has
φ(t)m(t)

∆ +

∫ ∞
t

φ(s)m(s) ds

≤ m(t) ,

so that[
− ln

(
∆ +

∫ ∞
t

φ(s)m(s)ds

)]+∞
t=τ

=

∫ +∞

τ

φ(t)m(t)dt

∆ +

∫ ∞
t

φ(s)m(s)ds

≤
∫ +∞

τ

m(t)dt .
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Taking the exponential of both sides of this inequality, one finds that

∆ +

∫ ∞
τ

φ(s)m(s)ds ≤ ∆ exp

(∫ +∞

τ

m(s)ds

)
,

from which the announced inequality immediatly follows. �

6. The operators T ±: proofs of Theorems 2.6 and 2.7

Going back to the proof of Theorem 2.4 shows that T +F in
+ = F+∞ if and only if there exists

a unique mild solution F of the Boltzmann equation such that

F+∞ = etAF (t) +

∫ +∞

t

esAB(F (s), F (s)) ds = 0 , for all t ∈ R ,

or equivalently

f(t) = F+∞ −
∫ +∞

t

esAB(e−sAf(s), e−sAf(s)) ds = 0 , for all t ∈ R ,

with f(t) := etAF (t). This is an equation for the unknown f , which is put in the form

f = F+∞ −F+(f) ,

with

(6.1) F+(f)(v, x, t) :=

∫ +∞

t

esAB(e−sAf, e−sAf)(v, x, s) ds .

Proof of Theorem 2.6. Proceeding as in the proof of Lemma 4.1, we see that, for each f, g ∈ XM,
one has

(6.2) ‖F+(f)−F+(g)‖M ≤ 2ν(M)‖f + g‖M‖f − g‖M ,

and

(6.3) ‖F+(f)‖M ≤ 2ν(M)(2 + ‖f −M‖M)‖f −M‖M .

Thus
‖F+∞ −F+(f)−M‖M ≤ |F+∞ −M|M(0) + ‖F+(f)‖M

≤ ε(M, r) + 2ν(M)(2 + r)r = r

provided that |F+∞ −M|M(0) ≤ ε(M, r) := (1 − 4ν(M)(1 + 1
2
r))r and ‖f −M‖M ≤ r. In

other words the map f 7→ F+∞ − F+(f) sends the closed ball BXM(M, r) into itself provided
that |F+∞ −M|M(0) ≤ ε(M, r).

On the other hand, if f, g ∈ BXM(M, r)

(6.4) ‖F+(f)−F+(g)‖M ≤ 2ν(M)‖f + g‖M‖f − g‖M ≤ 4ν(M)(1 + r)‖f − g‖M ,

so that the map f 7→ F+∞−F+(f) is a strict contraction on the closed ball BXM(M, r) provided
that 4ν(M)(1 + r) < 1. By the Banach fixed point theorem, the map f 7→ F+∞ − F+(f) has

a unique fixed point f ∈ BXM(M, r).
Thus F (t) = e−tAf(t) is a mild solution of the Boltzmann equation on RD× RD× R such

that etAF (t)→ F+∞ in L1(RD× RD) as t→ +∞. Setting F in
+ := F (0), one has T +F in

+ = F+∞.
Arguing as in the proof of Theorem 2.1,

|F+∞ −M(0)|M(0) <
(1−4ν(M))2

8ν(M)
⇒ ‖f −M‖M = ‖F −M‖M ≤ r ,
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where r is the unique element of [0, 1
4ν(M)

− 1) such that ε(M, r) = |F+∞ −M(0)|M(0), i.e.

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F+∞ −M(0)|M(0)

(1− 4ν(M))2

)
.

In particular |F in
+ −M(0)|M(0) ≤ ‖F −M‖M ≤ r.

By looking instead for a fixed point of the map f 7→ F−∞ + F−(f), where

F−(f)(v, x, t) :=

∫ t

−∞
esAB(e−sAf, e−sAf)(v, x, s) ds ,

one obtains F in
− such that T −F in

− = F−∞ in the same way. Since F− satisfies the same estimates
(6.2) and (6.3) as F+, i.e.

(6.5) ‖F−(f)−F−(g)‖M ≤ 2ν(M)‖f + g‖M‖f − g‖M ,

and

(6.6) ‖F−(f)‖M ≤ 2ν(M)(2 + ‖f −M‖M)‖f −M‖M .

one obtains the existence and uniqueness of F in
− satisfying the condition |F in

− −M(0)|M(0) ≤ r,

provided that |F−∞ −M(0)|M(0) <
(1−4ν(M))2

8ν(M)
. �

The proof of Theorem 2.7 (a) is based on Theorem 2.2, while Theorem 2.7 (b) follows from
the classical argument proving the continuous dependence of the fixed point on the initial data.

Proof of Theorem 2.7. Since ν(M) < 1
4

and F in
1 , F

in
2 ∈ BYM(0)

(M(0), ε) with 0 ≤ ε < (1−4ν(M))2

8ν(M)
,

applying Theorem 2.2 shows that

|etAF1(t)− etAF2(t)|M(0) ≤ ‖F1 − F2‖M ≤
|F in

1 − F in
2 |M(0)√

(1− 4ν(M))2 − 8ν(M)ε

for each t ∈ R, where Fj(t) = StF
in
j for j = 1, 2. Observing that etAFj(t) → T ±F in

j in

L1(RD× RD) as t→ ±∞, we conclude that

|T ±F in
1 − T ±F in

2 |M(0) ≤
|F in

1 − F in
2 |M(0)√

(1− 4ν(M))2 − 8ν(M)ε
,

which is statement (a).

If F+∞
1 , F+∞

2 ∈ BYM(0)
(M(0), ε) with 0 ≤ ε < (1−4ν(M))2

8ν(M)
, applying Theorem 2.6 shows that

F+∞
j = T +F in

j for j = 1, 2, where F in
j = fj(0) and fj satisfies

fj = F+∞
j −F+(fj) , and ‖fj −M‖M ≤ r , j = 1, 2

where F+ is defined in (6.1). Because of (6.2)

‖f1 − f2‖M ≤ |F+∞
1 − F+∞

2 |M(0) + ‖F+(f1)−F+(f2)‖M
≤ |F+∞

1 − F+∞
2 |M(0) + 4ν(M)(1 + r)‖f1 − f2‖M ,

so that

|F in
1 − F in

2 |M(0) ≤ ‖f1 − f2‖M ≤
|F+∞

1 − F+∞
2 |M(0)

1− 4ν(M)(1 + r)
.

Inserting the expression of r in terms of |F+∞ −M(0)|M(0) given in Theorem 2.6 in the right
hand side of this inequality leads to the estimate in statement (b) for the operator (T +)−1.
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The analogous estimate for (T −)−1 is obtained by the same argument involving F− defined in
(6.4) instead of F+. �

7. The scattering operator S: proof of Theorem 2.8

If F is a mild solution of the Boltzmann equation on RD× RD× R,

et
′AF (t′) = etAF (t) +

∫ t′

t

esAB(F (s), F (s)) dx

for each t, t′ ∈ R. In terms of f(t) = etAF (t), the equality above is recast as

f(t′) = f(t) +

∫ t′

t

esAB(e−sAf(s), e−sAf(s)) ds .

According to Definition 2.3, one has F+∞ = SF−∞ if the function s 7→ esAB(e−sAf(s), e−sAf(s))
is integrable on R a.e. on RD× RD and

F+∞ = F−∞ +

∫
R
esAB(e−sAf(s), e−sAf(s)) ds .

Proof of Theorem 2.8. Since the functional F− defined in (6.4) satisfies the estimates (6.5) and
(6.6), arguing as in the proof of Theorem 2.1 shows that the map f 7→ F−∞+F−(f) sends the

closed ball BX (M, r) into itself provided that |F−∞−M|M(0) ≤ ε(M, r), where we recall that
ε(M, r) = (1− 4ε(M)(1 + 1

2
r))r. Since 4ν(M)(1 + r) < 1, one has ε(M, r) > 0. Moreover

‖F−(f)−F−(g)‖M ≤ 4ν(M)(1 + r)‖f − g‖M for all f, g ∈ BX (M, r)

by (6.5). By the Banach fixed point theorem, the map f 7→ F−∞ + F−(f) has a unique fixed

point in BX (M, r). The distribution function F (t) := e−tAf(t) is therefore a mild solution
of the Boltzmann equation on RD× RD× R and satisfies the bound ‖F −M‖M ≤ r, so that
|F (v, x, t)| ≤ (1 + r)M(v, x, t) for a.e. (v, x, t) ∈ RD× RD× R. By Theorem 2.4, there exists
a unique F+∞ ∈ YM(0) such that f(t) = etAF (t) → F+∞ as t → +∞, which means that
SF−∞ = F+∞. Besides |F+∞−M(0)|M(0) ≤ ‖F−M‖M ≤ r. This defines the scattering map S
on the closed ball BYM(0)

(M, ε(M, r)) and shows that S(BYM(0)
(M, ε(M, r))) ⊂ BYM(0)

(M, r)

provided that 4ν(M)(1 + r) < 1.
Arguing as in the proof of Theorem 2.1, we conclude that S is defined on the open ball

BYM(0)
(M, (1−4ν(M))2

8ν(M)
) and that |SF−∞ −M|M(0) ≤ r where

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F+∞ −M(0)|M(0)

(1− 4ν(M))2

)
.

i.e. r is the unique element of [0, 1
4ν(M)

− 1) such that ε(M, r) = |F−∞ −M(0)|M(0). This

proves statement (a).
Statement (b) is obtained in exactly the same manner, by seeking a fixed point of the map

f 7→ F+∞ −F+(f), where F+ is the map defined in (6.1).

If F−∞1 , F−∞2 ∈ BYM(0)
(M(0), ε) with 0 ≤ ε < (1−4ν(M))2

8ν(M)
, there exists unique elements f1, f2

of XM such that

fj = F−∞j + F−(fj) , and ‖fj −M‖M ≤ r , j = 1, 2 .
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Because of (6.5)

‖f1 − f2‖M ≤ |F−∞1 − F−∞2 |M(0) + ‖F−(f1)−F−(f2)‖M
≤ |F−∞1 − F−∞2 |M(0) + 4ν(M)(1 + r)‖f1 − f2‖M ,

so that

|SF−∞1 − SF−∞2 |M(0) ≤ ‖f1 − f2‖M ≤
|F−∞1 − F−∞2 |M(0)

1− 4ν(M)(1 + r)
.

The analogous local Lipschitz continuity estimate for the map S−1 is obtained by the same
arguments involving F+ instead of F−. This proves statement (c).

Let a, c, l,m ∈ R and b, p, q ∈ RD. For each F−∞ ∈ BYM(0)
(M(0), (1−4ν(M))2

8ν(M)
), let f be the

unique fixed point of the map f 7→ F−∞ + F−(f) in the closed ball BXM(0, r) where

r =

(
1

4ν(M)
− 1

)(
1−

√
1−

8ν(M)|F+∞ −M(0)|M(0)

(1− 4ν(M))2

)
.

Thus F (t) = e−tAf(t) is a mild solution of the Boltzmann equation. By Theorem B (b), the
distribution function F satisfies the global conservation law

d

dt

∫∫
RD×RD

(a+ b · v+ c|v|2 +p · (x∧ v) + q · (x−tv) + l(x−tv) · v+m|x−tv|2)F (v, x, t) dvdx = 0 .

Equivalently, f(t) = etAF (t) satisfies

d

dt

∫∫
RD×RD

(a+ b · v + c|v|2 + p · (x ∧ v) + q · x+ lx · v +m|x|2)f(v, x, t) dvdx = 0 .

Since f(t)→ F−∞ in L1(RD× RD) as t→ −∞ and f(t)→ SF−∞ in L1(RD× RD) as t→ +∞
and ‖f‖M ≤ 1 + r, one has∫∫

RD×RD

(a+ b · v + c|v|2 + p · (x ∧ v) + q · x+ lx · v +m|x|2)SF−∞(v, x) dvdx

=

∫∫
RD×RD

(a+ b · v + c|v|2 + p · (x ∧ v) + q · x+ lx · v +m|x|2)F−∞(v, x) dvdx ,

which is obviously equivalent to statement (d).
Let F be the mild solution of the Boltzmann equation on RD× RD× R such that

(7.1) ‖etAF (t)− F±∞‖L1(RD×RD) → 0 as t→ ±∞
with F+∞ = SF−∞, while ‖F −M‖M ≤ r with r given by the formula in statement (a). If
1
2
< 4ν(M) < 1 or if 0 < 4ν(M) ≤ 1

2
and ‖F−∞ −M‖M < 1 − 6ν(M), then r given by the

expression in statement (a) satisfies 0 ≤ r < 1 so that

0 ≤ (1− r)M(t) ≤ F (t) ≤ (1 + r)M(t)a.e. on RD× RD , for all t ∈ R .
By Boltzmann’s H Theorem (c), the t 7→ H[F (t)] is nonincreasing on R and one has

H[F (t)]−H[F (−t)] =

∫ t

−t

∫∫
RD×RD

B(F (s), F (s)) lnF (s) ds , for all t ≥ 0 .

On the other hand H[F (t)] = H[etAF (t)], and since (1− r)M(0) ≤ etAF (t) ≤ (1 + r)M(0) a.e.
on RD× RD for all t ∈ R, one has

(1− r)M(0) ln((1− r)M(0)) ≤ etAF (t) ≤ (1 + r)M(0) ln((1 + r)M(0)) a.e. on RD× RD .
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Since M(0) and M(0) lnM(0) ∈ L1(RD× RD), we conclude by dominated convergence that

H[F (t)]→ H[F−∞]as t→ −∞ , H[F (t)]→ H[SF−∞]as t→ +∞ ,

and

H[SF−∞]−H[F−∞] =

∫ +∞

−∞

∫∫
RD×RD

B(F (s), F (s)) lnF (s) dvdxds ≤ 0 ,

with equality if and only if∫
RD

B(F, F )(v, x, s) dv = 0 for a.e. (x, s) ∈ RD× R .

By Boltzmann’s H Theorem (b), this implies that F is a.e. equal to a local Maxwellian, i.e.
that F is of the form F (v, x, t) = M [ρ(x, t), u(x, t), θ(x, t)](v) for a.e. (v, x, t) ∈ RD× RD× R.
Since F is also a mild solution of the Boltzmann equation, this local Maxwellian must be a
global Maxwellian M̃. Hence

F−∞ = lim
t→−∞

etAF (t) = lim
t→−∞

etAM̃(t) = M̃(0) .

This establishes statement (e).
As for statement (f), observe that statement (d) implies that

∫∫
RD×RD



1
v
|v|2
x− tv
|x− tv|2

(x− tv) · v
x ∧ v


MF−∞(v, x, t) dvdx =

∫∫
RD×RD



1
v
|v|2
x
|x|2
x · v
x ∧ v


SF−∞(v, x) dvdx .

The variational characterization of MSF−∞ (see the remark following Theorem 1.1 in [16])
implies that MSF−∞ = MF−∞ , so that H[SF−∞] ≥ H[MF−∞ ], with equality if and only if
SF−∞ = MF−∞(0). Since β ≤ 0, applying Theorem 2.5 shows that the only mild solution F
of the Boltzmann equation on RD× RD× R such that |F | ≤ M a.e. on RD× RD× R for some
global MaxwellianM and such that ‖F (t)−e−tAMF−∞(0)‖L1(RD×RD) → 0 as t→ +∞ isMF−∞ .
Hence

F−∞ = lim
t→−∞

etAF (t) = lim
t→−∞

etAMF−∞(t) =MF−∞(0) .

�

8. Conclusion and perspectives

The main results in this paper bear on the large time behavior of solutions of the Boltzmann
equation set in the Euclidean space RD in the vicinity of global Maxwellians. The fact that both
operators T + and T − in Definition 2.2 are locally one-to-one and onto is a major difference
between the dynamics of the Boltzmann equation in the Euclidean space RD and in the torus
TD, or in any bounded domain with specular reflection of the gas molecules at the boundary.
The reason for this difference is that the dispersion effect induced by the streaming operator
v · ∇x in the Euclidean space RD quenches the dissipation effect of the Boltzmann collision
integral in the large time limit. The present paper uses the Banach fixed point theorem and
provides a complete discussion of the large time limit in the case of solutions of the Cauchy
problem for the Boltzmann equation that are sufficiently close to a global MaxwellianM, which
is in turn assumed “small” enough, in the sense that ν(M) < 1

4
. Whether the same asymptotic
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behavior of the dynamics defined by the Boltzmann equation — especially the fact that the
operators T + and T − are onto — can be established in a more general setting remains an
open problem at the time of this writing. Notice however that T + and T − are already known
to be one-to-one wherever they are defined without smallness assumption on the initial data
(Theorem 2.5), at least in the case of cutoff collision kernels corresponding to soft potentials.

Appendix A. Properties of mild solutions of the Boltzmann equation:
Proofs of Theorems B (b) and of H Theorem (c)

Proof of Theorem B (b). Let

φ(v, x, t) := (a+ b · v + c|v|2 + p · (x ∧ v) + q · (x−tv) + l(x−tv) · v +m|x−tv|2)

where a, c, l,m ∈ R and p, q ∈ RD. Obviously

φ(v, x+ tv, t) = φ(v, x, 0) for each (v, x, t) ∈ RD× RD× R .

Therefore

et2A(φF )(v, x, t2)− et1A(φF )(v, x, t1) +

∫ t2

t1

esA(φB(F, F ))(v, x, s) ds

for a.e. (v, x) ∈ RD× RD and t1, t2 ∈ I. Since 0 ≤ F ≤ M a.e. on RD× RD × I, one has
φF ∈ L1(RD× RD × I), and |B(F, F )| ≤ A(M)M a.e. on RD× RD × I by (5.1). Using (2.4),
(2.5), (2.1) and (2.2), we conclude that φB(F, F ) ∈ L1(RD× RD × I). Therefore∫∫

RD×RD

et2A(φF )(v, x, t2) dvdx =

∫∫
RD×RD

et1A(φF )(v, x, t1) dvdx

+

∫ t2

t1

∫∫
RD×RD

esA(φB(F, F ))(v, x, s) dvdxds ,

or equivalently∫∫
RD×RD

(φF )(v, x, t2) dvdx =

∫∫
RD×RD

(φF )(v, x, t1) dvdx

+

∫ t2

t1

∫∫
RD×RD

(φB(F, F ))(v, x, s) dvdxds ,

since ∫∫
RD×RD

etAg(v, x) dvdx =

∫∫
RD×RD

g(v, x+ tv) dvdx =

∫∫
RD×RD

g(v, y) dvdy

for each g ∈ L1(RD× RD) and each t ∈ R. Finally∫
RD

(φB(F, F ))(v, x, s) dv = 0 for a.e. (x, s) ∈ RD × I

because v 7→ φ(v, x, s) is a linear combination of 1, v1, . . . , vD, |v|2 (see statement (a) in Theorem
B). Hence ∫∫

RD×RD

(φF )(v, x, t2) dvdx =

∫∫
RD×RD

(φF )(v, x, t1) dvdx

for all t1, t2 ∈ R. �
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Proof of H Theorem (c). By definition, if F is a mild solution of the Boltzmann equation on
RD× RD × I, for a.e. (v, x) ∈ RD× RD, the function t 7→ F (v, x, t) is absolutely continuous on
I. Assuming that αM≤ F ≤M a.e. on RD× RD× I implies in particular that F > 0 a.e., so
that the chain rule applies (see for instance Corollary VIII.10 in [6]) and

d

dt
F lnF (v, x+ tv, t) = B(F, F )(lnF + 1)(v, x+ tv, t) , for a.e. (v, x, t) ∈ RD× RD × I .

Besides, one has

lnα + lnM≤ lnF ≤ lnM , a.e. on RD× RD × I .
Since |B(F, F )| ≤ A(M)M a.e. on RD× RD × I by (5.1) and lnM = O(|x|2 + |v|2) as
|x|+ |v| → ∞, we conclude that B(F, F )(lnF + 1) ∈ L1(RD× RD × I), so that

d

dt
H[F ](t) =

d

dt

∫∫
RD×RD

F lnF (v, x+ tv, t) dvdx

=

∫∫
RD×RD

B(F, F )(lnF + 1)(v, x+ tv, t) dvdx

=

∫∫
RD×RD

B(F, F ) lnF (v, y, t) dvdy ≤ 0

for a.e. t ∈ I. The last equality follows from the first conservation law in Theorem B (a), and
the last inequality from statement (a) in Boltzmann’s H Theorem. �
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