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Abstract. Global optimization of a non-convex objective function often appears in large-scale
machine-learning and artificial intelligence applications. Recently, consensus-based optimization
(in short CBO) methods have been introduced as one of the gradient-free optimization methods.
In this paper, we provide a convergence analysis for the first-order CBO method in [5]. Prior
to the current work, the convergence study was carried out for CBO methods on corresponding
mean-field limit, a Fokker-Planck equation, which does not imply the convergence of the CBO
method per se. Based on the consensus estimate directly on the first-order CBO model, we provide
a convergence analysis of the first-order CBO method [5] without resorting to the corresponding
mean-field model. Our convergence analysis consists of two steps. In the first step, we show that the
CBO model exhibits a global consensus time asymptotically for any initial data, and in the second
step, we provide a sufficient condition on system parameters–which is dimension independent– and
initial data which guarantee that the converged consensus state lies in a small neighborhood of the
global minimum almost surely.

1. Introduction

Large-scale optimization problems often appear in machine learning and artificial intelligence
(AI) applications, in which objective functions to be optimized are not necessarily convex nor regu-
lar enough, say C1 in general. Thus, one might not be able to use the standard stochastic gradient
descent method. Alternatively, several gradient-free optimization methods based on collective dy-
namics are used in application domain, for example swarm intelligence methods [15, 28] such as
particle swarm optimization (in short PSO) [8], simulated annealing method [16, 20], ant-colony
algorithm [27], genetic algorithm [13] etc. A basic idea of these metaheuristic algorithm is to use
collective behaviors of underlying sample points coupled with suitable stochastic components in the
choice of system parameters. Despite of its usefulness, rigorous convergence analysis of such swarm
intelligence algorithms is often missing.

In this paper we provide a convergence analysis for the CBO method proposed in [5]. To be

more specific, let Xk
t = (xk,1t , · · · , xk,dt ) ∈ Rd be the coordinate process of the k-th sample point at

time t. Suppose that one looks for a global minimum X∗ ∈ Rd for a given objective function L:

X∗ ∈ argminX∈RdL(X),

where the objective function L may be neither convex nor smooth enough. In this situation,
gradient-based optimization methods such as the stochastic gradient descent method [4] can not be
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used as it is. In a recent work [5], the authors proposed the following variant of the CBO algorithm
introduced in [6, 23, 25]:

(1.1)


dXi

t = −λ(Xi
t − X̄∗t )dt+ σ

d∑
l=1

(xi,lt − x̄
∗,l
t )dW l

t el, t > 0, i = 1, · · · , N,

X̄∗t = (x∗,1t , · · · , x∗,dt ) :=

∑N
l=1X

l
te
−βL(Xl

t)∑N
l=1 e

−βL(Xl
t)

,

where λ and σ denote the drift rate and noise intensity, respectively, and β > 0 is a positive
constant corresponding to the reciprocal of temperature in statistical physics. Here {el} is the
standard orthonormal basis in Rd. The one-dimensional Brownian motions W l

t are i.i.d. and
satisfy the mean zero and covariance relations:

E[W l
t ] = 0 for l = 1, · · · , d and E[W l1

t W
l2
t ] = δl1l2t, 1 ≤ l1, l2 ≤ d.

Note that system (1.1) is expected to have a local relaxation dynamics which means that Xi
t

relaxes toward the local weighted average X̄∗t , and this local weighted average tends to the global
consensus state. This algorithm is an improvement upon those proposed in [6, 23] in that it is more
suitable for higher-dimensional optimization problems, since its convergence conditions on system
parameters are expected to be independent of the dimensionality d due to the use of componentwise
geometric Brownian motion.

We denote by Ω the underlying sample space for model (1.1), and assume that the objective
function L is locally Lipschitz continuous. For the optimization algorithm (1.1), we are interested
in the following two questions:

• (Question I): Does the N -state ensemble {Xi
t} exhibit a global consensus? i.e.,

for a.s. ω ∈ Ω, is there a global consensus state X∞(ω) ∈ Rd such that

lim
t→∞
|Xi

t(ω)−X∞(ω)| = 0, i = 1, · · · , N,

where | · | := ‖ · ‖`2 is the standard `2-norm in Rd ?

• (Question II): If the answer to the first problem is positive, then under what
condition the consensus state is a good approximation of the global minimum
X∗ of L?

In [5], the authors conducted a convergence analysis via the Fokker-Planck equation, which can
be deduced from (1.1) in the mean-field limit N → ∞, and showed that the global consensus
state lies in a O(1/β)-neighborhood of the global minimum under suitable assumptions on system
parameters which are independent of dimension d and initial data for β >> 1. Since the Fokker-
Planck equation is not the original model, thus this convergence result, although sheds lights on
the convergence property of the original CBO model, it does not imply the latter. The purpose of
this article is to conduct the convergence analysis of (1.1) directly.

Toward this goal, we first rewrite the relaxation term Xi
t − X̄∗t (1.1) in consensus form:

(1.2) dXi
t = λ

N∑
k=1

ψkt (Xk
t −Xi

t)dt+ σ

N∑
k=1

d∑
l=1

ψkt (xk,lt − x
i,l
t )dW l

t el, t > 0,

where ψkt := ψk(X , t) is the communication weight function:

(1.3) ψkt :=
e−βL(Xk

t )∑N
l=1 e

−βL(Xl
t)
, t ≥ 0, k = 1, · · · , N.
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Next, we return to the discrete-time dynamics associated with the continuous model (1.2)-(1.3).
We set a time-step h := ∆t and state at discrete time t = nh:

Xi
n := Xi

nh, xi,ln := xi,lnh, ψin := ψinh, n = 0, 1, · · · .

Then, the discrete consensus-based optimization model reads as follows:

(1.4)


Xi
n+1 = Xi

n + λh
N∑
k=1

ψkn(Xk
n −Xi

n) + σ
√
h

N∑
k=1

d∑
l=1

ψkn(xk,ln − xi,ln )Z lnel, n ≥ 0,

ψkn :=
e−βL(Xk

n)∑N
i=1 e

−βL(Xi
n)
, i = 1, · · · , N,

where the random variables {Z ln}n,l are i.i.d standard normal distributions with Z ln ∼ N (0, 1).

We summarize the two main results of this paper now. First, we are concerned with the emergence
of global consensus to the continuous and discrete models (1.1) and (1.4), respectively. Since the
analysis for the discrete model (1.4) is almost parallel to the analysis for the continuous one (1.1),
we mainly focus on the continuous model in what follows. To motivate the dynamic properties of
(1.1) or (1.2), we consider the deterministic counterpart:

dXi
t

dt
= λ

N∑
k=1

ψkt (Xk
t −Xi

t).

In this case, it is easy to see that the time-dependent convex hull generated by N sample points
X1
t , · · · , XN

t in Rd is contractive (see Lemma 2.1). Moreover, due to the special structure of the
communication weight ψkt :

(i) ψkt ≥ 0, 1 ≤ k ≤ N,
N∑
k=1

ψkt = 1 for all t ≥ 0,

(ii) Dependence only on the state of source sample point (independent of i in (1.2)),

(1.5)

the difference Xi
t −X

j
t satisfies a system of ordinary differential equations:

d

dt
(Xi

t −X
j
t ) = −λ(Xi

t −X
j
t ), t > 0,

which has the analytic solution:

(Xi −Xj)(t) = e−λt(Xi
0 −X

j
0), t ≥ 0.

On the other hand, maximal and minimal values of the component state of Xi
t are monotone so

that they converge to the same value. Hence, we can show that the state Xi
t tends to the unique

global consensus state X∞ independent of i for any initial state (see Theorem 3.1).
Next, we return to the stochastic model with σ > 0. In this case, due to the white noise effect, the

convex hull spanned by the state vector Xi
t is not contractive any more. However, fortunately the

l-th components of the relative state difference xi,lt − x
j,l
t satisfies the geometric Brownian motion:

d(xi,lt − x
j,l
t ) = −λ(xi,lt − x

j,l
t )dt− σ(xi,lt − x

j,l
t )dW l

t , t > 0.

Then we use stochastic calculus to get the exact solution:

xi,lt − x
j,l
t = (xi,l0 − x

j,l
0 ) exp

[
−
(
λ+

σ2

2

)
t+ σW l

t

]
, t ≥ 0.
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This yields the almost sure convergence of the relative state differences:

lim
t→∞
|xi,lt − x

j,l
t | = 0, a.s.

Similar analysis can be performed for the discrete algorithm (1.4) (see Theorem 3.3). Moreover,
under the condition 2λ > σ2–which is independent of the dimensionalizty d, we can show that there
exists a random vector X∞ which is the almost-sure limit of the Xi

t ’s (see Lemma 4.1). Thus we
answered the first posed question affirmatively for the continuous and discrete models.

Second, we deal with Question II on whether the global consensus state X∞ is close to the global
minimum of L or not. Under suitable assumptions on system parameters λ, σ and initial data such
that Xi

0 ∼ Xin for some random variable Xin, we derive

Ee−βL(X∞) ≥ εEe−βL(Xin), or − 1

β
logEe−βL(X∞) ≤ − 1

β
logEe−βL(Xin) − 1

β
log ε.

If the global minimizer X∗ of L is contained in supp(law(Xin)), then Laplace’s principle yields the
desired estimate (see Theorem 4.1):

ess infω∈Ω L(X∞(ω)) ≤ Lm +O
( 1

β

)
for ω ∈ Ω, β � 1.

Collective behaviors of agent-based models have been a hot topic in applied mathematics, control
theory and related areas in recent years, see for example several survey articles [1, 3, 7, 24, 26] and
related literature [9, 10, 11, 12, 17, 18, 19, 21, 22].

The rest of this paper is organized as follows. In Section 2, we provide preliminary materials on
the deterministic analogs of the continuous and discrete algorithms (1.1) and (1.4). In Section 3, we
study the emergence of global consensus states for the continuous and discrete consensus models.
In Section 4, we prove the convergence of the global consensus state toward the global minimum
of L as β →∞ only for the continuous algorithm. The corresponding convergence analysis for the
discrete model seems to be very challenging, thus will be left for a future work. In Section 5, we
provide several numerical examples and compare them with our analytical results. Finally, Section
6 is devoted to a brief summary of our main results and discussion on some remaining problems to
be investigated in future study.

Notation. For a random variable Z ∈ R on the probability space (Ω,F ,P), we denote its mean
by EZ or E[Z] interchangeably, and the function space C2

b (Rd) denotes the collection of all C2(Rd)
functions with bounded derivatives up to second-order.

2. Preliminaries

In this section, we provide several preliminaries on the deterministic counterparts to (1.2)-(1.3)
and (1.4) with σ = 0, respectively.

Consider the continuous model:

(2.1)


dXi

t

dt
= λ

N∑
k=1

ψkt (Xk
t −Xi

t), t > 0,

ψkt ≥ 0,

N∑
k=1

ψkt = 1, i = 1, · · · , N,
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and the discrete model:

(2.2)


Xi
n+1 = Xi

n + λh
N∑
k=1

ψkn(Xk
n −Xi

n), n = 0, 1, · · · ,

ψkn ≥ 0,

N∑
k=1

ψkn = 1, i = 1, · · · , N.

Next, we study basic properties of the deterministic models (2.1) and (2.2) before moving to the
stochastic ones.

2.1. Deterministic continuous algorithm. Let Xt := (X1
t , · · · , XN

t ) ∈ RNd be a solution to
(2.1). For t > 0 and l ∈ {1, · · · , d}, we introduce two extreme functions xl, x̄l and component-
diameter functional Dl(Xt):

xlt := min
1≤j≤N

xj,lt , x̄lt := max
1≤j≤N

xj,lt , Dl(Xt) := x̄lt − xlt.

Note that trajectories of xl and x̄l are Lipschitz continuous, thus they are differentiable almost
everywhere in t ∈ (0,∞).

Lemma 2.1. Let Xt = (X1
t , · · · , XN

t ) be a solution to (2.1) with the initial data X0. Then, the
following assertions hold.

(1) The extreme functions xl and x̄l are monotonically increasing and decreasing, respectively:

xlt ≥ xls and x̄lt ≤ x̄ls, for t ≥ s.
(2) The component diameter functional Dl(X ) is non-increasing in t:

Dl(Xt) ≤ Dl(X0), t ≥ 0.

Proof. (i) Note that each component of (2.1) satisfies the same form of equations. Thus, it suffices
to check one particular component. Consider the l-th component of system (2.1):

(2.3)
dxi,lt
dt

= λ
N∑
k=1

ψkt (xk,lt − x
i,l
t ).

Now, we choose extreme indices it and jt such that

xit,lt = xlt and xjt,lt = x̄lt.

• Case A (Increasing property of xlt): At a differentiable point t of xlt, it follows from (2.3) that

(2.4)
dxit,lt

dt
= λ

N∑
k=1

ψkt (xk,lt − x
it,l
t ) ≥ 0,

where we used
xk,lt − x

it,l
t ≥ 0.

Then, the Lipschitz continuity of xlt and (2.4) imply the non-increasing property of the lower enve-
lope xlt.

• Case B (Decreasing property of x̄lt): Similar to Case A, one has

dxjt,l

dt
= λ

N∑
k=1

ψkt (xk,lt − x
jt,l
t ) ≤ 0.
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Finally, one combines Case A and Case B to see the non-increasing property of Dl(Xt): for t ≥ s,
Dl(Xt) = x̄lt − xlt ≤ x̄ls − xls = Dl(Xs).

This yields the desired estimate. �

Remark 2.1. Below, we comment two remarks for Lemma 2.1.

1. The result of Lemma 2.1 implies that the convex hull of the set {Xi
t} is non-increasing along the

flow (2.1). More precisely, set

Ct := convex hull{X1
t , · · · , XN

t }.
Then, one has

Ct ⊂ Cs, for t ≥ s.
2. Using similar arguments, one can also show that the mixed norm ‖Xt‖2,∞:

|‖Xt‖2,∞ := max
1≤i≤N

‖Xi
t‖`2

is non-increasing in t:
‖Xt‖2,∞ ≤ ‖Xs‖2,∞, for t ≥ s.

2.2. Deterministic discrete algorithm. Let Xn := (X1
n, · · · , XN

n ) ∈ RNd be a state vector to
system (2.2), and for n ≥ 0 and l ∈ {1, · · · , d}, set

xln := min
1≤i≤N

xi,ln and xln := max
1≤i≤N

xi,ln .

Then, similar to Lemma 2.1, one has the discrete counterpart for Lemma 2.1.

Lemma 2.2. Let Xn = (X1
n, · · · , XN

n ) be a state to (2.2) with the initial data X0. Then, the
following assertions hold.

(1) For each k ∈ {1, · · · , N}, xln and xln are monotonically increasing and decreasing, respec-
tively:

xln ≥ xlm and xln ≤ xlm, for n ≥ m.
(2) For l ∈ {1, · · · , N}, the component diameter functional Dl(Xn) is non-increasing in n:

Dl(Xn) ≤ Dl(X0), n ≥ 0.

Proof. Basically, we use the same arguments as in Lemma 2.1.

(i) Let i and j be two indices such that

xln := xi,ln and xln := xj,ln .

Then for such i, by ψkn(xk,ln − xi,ln ) ≥ 0, one has

xi,ln+1 = xi,ln + λh
N∑
k=1

ψkn(xk,ln − xi,ln ) ≥ xi,ln = xln.

This implies

(2.5) xln+1 ≥ xln.
Hence xln is non-decreasing in n. Similarly, one has

xj,ln+1 = xj,ln + λh
N∑
k=1

ψkn(xk,ln − xj,ln ) ≤ xj,ln = xln.
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This yields

(2.6) xln+1 ≤ xln.
(ii) We combine (2.5) and (2.6) to get

Dl(Xn+1) = xln+1 − xln+1 ≤ xln − xln = Dl(Xn).

�

Remark 2.2. The result of Lemma 2.2 yields

min
1≤k≤N

xk,l0 ≤ x
i,l
n ≤ max

1≤k≤N
xk,l0 , i = 1, · · · , N, n ≥ 0.

3. Emergence of global consensus

In this section, we study the emergence of global consensus to systems (2.1) and (2.2) based on
the following two steps:

• Step A: We first derive an explicit formula for the state difference Xi
t − X

j
t , and then by

using this formula, we show that the relative state differences tend to zero exponentially
fast.

• Step B: For each component, we show that the maximal and minimal values are monoton-
ically decreasing and increasing respectively over time so that as time tends to infinity, all
extremal states tend to the same value. Then, together with the result of Step A, we can
see that all states converge to the same global consensus state X∞ independent of particle
number i.

3.1. Stochastic continuous algorithm. Consider the continuous algorithms for Xi
t and Xj

t :

(3.1)


dXi

t = λ
N∑
k=1

ψkt (Xk
t −Xi

t)dt+ σ
N∑
k=1

d∑
l=1

ψkt (xk,lt − x
i,l
t )dW l

t el, t > 0,

dXj
t = λ

N∑
k=1

ψkt (Xk
t −X

j
t )dt+ σ

N∑
k=1

d∑
l=1

ψkt (xk,lt − x
j,l
t )dW l

t el, t > 0,

subject to the initial data:

(3.2) Xi
t

∣∣∣
t=0

= Xi
0, Xj

t

∣∣∣
t=0

= Xj
0 .

First, we use the unit sum condition (1.5) of ψkt ’s to get

(3.3)
N∑
k=1

ψkt (Xk
t −Xi

t)−
N∑
k=1

ψkt (Xk
t −X

j
t ) = −

( N∑
k=1

ψkt

)
(Xi

t −X
j
t ) = −(Xi

t −X
j
t ).

Note that the dependence on ψit disappears on the R.H.S. of (3.3). Thus, one uses (3.3) to see that

Xi
t −X

j
t satisfies

(3.4) d(Xi
t −X

j
t ) = −λ(Xi

t −X
j
t )dt− σ

d∑
l=1

(xi,lt − x
j,l
t )dW l

t el.

Next, we provide the emergence of global consensus to the deterministic model (3.4) with σ = 0.
For a given configuration process Xt, we set

D(Xt) := max
1≤i,j≤N

|Xi
t −X

j
t |.
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Theorem 3.1. Let {Xi} be a solution to (3.1) - (3.2) with σ = 0. Then, the following two
assertions hold.

(1) The diameter D(X ) decays to zero exponentially fast:

D(Xt) ≤ e−λtD(X0), t ≥ 0.

(2) There exits a unique global consensus state X∞ = (x1
∞, · · · , xd∞) ∈ Rd such that for all

i = 1, · · · , N ,

lim
t→∞

Xi
t = X∞.

Proof. (i) It follows from (3.4) that

d

dt
(Xi

t −X
j
t ) = −λ(Xi

t −X
j
t ), t > 0.

This yields

|Xi
t −X

j
t | = e−λt|Xi

0 −X
j
0 |, t ≥ 0.

Again, by taking maximum over all the indices i and j, one gets the desired exponential decay of
D(Xt).

(ii) For each l ∈ {1, · · · , d}, we claim that the extreme functions x̄lt and xlt converge to the same value
xl∞ so that all the other state xi,l should converge to the same value xl∞, because the component
diameter shrinks to zero asymptotically. In the course of proof of (i), we showed that x̄lt is non-
increasing and bounded by x̄l0. Thus, it should converge to x̄l∞. Similarly, xl should converge to xl∞.
Then, it is easy to see that x̄l∞ = xl∞ due to the exponential decay of the component diameter. �

Remark 3.1. Note that the explicit form of ψit does not appear in the decay estimate of the diam-
eter.

On the other hand, it follows from (3.4) that xij,lt := xi,lt − x
j,l
t satisfies

(3.5)

{
dxij,lt = −λxij,lt dt− σxij,lt dW l

t , t > 0,

xij,lt

∣∣∣
t=0

= xi0 − x
j
0.

Now, we apply Ito’s formula for lnxij,lt using (3.5) to see

(3.6) d lnxij,lt =
dxij,lt

xij,lt

− 1

2(xij,lt )2
dxij,lt · dx

ij,l
t = −

(
λ+

σ2

2

)
dt+ σdW l

t .

Integrating the above relation (3.6) gives

(3.7) xij,lt = xij,l0 exp
[
−
(
λ+

σ2

2

)
t+ σW l

t

]
, t ≥ 0.

Then, the explicit formula (3.7) yields the following result.

Theorem 3.2. Let {Xi
t} be a solution process of (2.1). Then, for i 6= j = 1, · · ·N and k ∈

{1, · · · , d},

lim
t→∞
|xi,kt − x

j,k
t | = 0, a.s. and lim

t→∞
P
(
|xi,kt − x

j,k
t |2 > ε

)
= 0, for any ε > 0.
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Proof. The proof is essentially the same as in Theorem 3.1 of [2]. However, for reader’s convenience,
we briefly sketch the proof here.

(i) Recall the law of iterated logrithm of the Brownian motion:

lim sup
t→∞

|W k
t |√

2t log log t
= 1, a.s.,

and note that for t� 1, the linear negative term −
(
λ+ σ2

2

)
t in t is certainly dominant compared to

the Brownian term σW k
t which grows with a rate of at most t

1
2

+. Thus, the trajectory |xi,kt − x
j,k
t |

tends to zero almost surely as t→∞.

(ii) Since a.s. convergence implies convergence in probability, the result follows from (i). �

3.2. Stochastic discrete algorithm. Consider the discrete algorithms: for i, j = 1, · · · , N ,

(3.8)


Xi
n+1 = Xi

n + λh
N∑
k=1

ψkn(Xk
n −Xi

n) + σ
√
h

N∑
k=1

d∑
l=1

ψkn(xk,ln − xi,ln )Z lnel,

Xj
n+1 = Xj

n + λh
N∑
k=1

ψkn(Xk
n −Xj

n) + σ
√
h

N∑
k=1

d∑
l=1

ψkn(xk,ln −Xj,l
n )Z lnel,

subject to the initial data:

(3.9) Xi
n

∣∣∣
n=0

= Xi
0, Xj

n

∣∣∣
n=0

= Xj
0 .

Here the random variables {Z ln} are i.i.d. and satisfy Z ln ∼ N (0, 1).

Note that
N∑
k=1

ψkn(Xk
n −Xi

n)−
N∑
k=1

ψkn(Xk
n −Xj

n) = −(Xi
n −Xj

n).

Thus, one has

(3.10) xi,kn+1 − x
j,k
n+1 =

(
1− λh− σ

√
hZkn

)
(xi,kn − xj,kn ).

Based on the above explicit recursive relation, we have the following emergent dynamics.

Theorem 3.3. Suppose that parameters satisfy

σ = 0, λ > 0 and 0 < h <
1

λ
.

Then, for any solution {Xi
n} to (3.8) - (3.9), the following two assertions hold.

(1) The diameter D(Xn) decays to zero exponentially fast:

D(Xn) ≤ e−λnhD(X0), n = 0, 1, · · · .

(2) There exits a unique global consensus state X∞ = (x1
∞, · · · , xd∞) ∈ Rd independent of i such

that for all i = 1, · · · , N ,

lim
n→∞

Xi
n = X∞.
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Proof. (i) It follows from (3.10) that

Xi
n+1 −X

j
n+1 = Xi

n −Xj
n − λh

( N∑
l=1

ψln

)
(Xi

n −Xj
n) =

(
1− λh

)
(Xi

n −Xj
n).

This implies

Xi
n −Xj

n =
(

1− λh
)n

(Xi
0 −X

j
0).

Thus, we have the desired estimate:

|Xi
n −Xj

n| =
(

1− λh
)n
|Xi

0 −X
j
0 | ≤ e

−λhn|Xi
0 −X

j
0 |, n = 0, 1, · · · .

(ii) We use the same argument in Theorem 3.1 to get the desired convergence. �

Now, we return to the stochastic version with σ > 0 in the following theorem.

Theorem 3.4. Let {Xi
n} be a solution to (3.8) - (3.9). Then, we have the following stochastic

consensus:

(1) (Weak stochastic consensus I): Suppose that h and systems parameters satisfy

σ > 0, λ > 0 and 0 < h <
1

λ
.

Then, for i, j = 1, · · · , N , one has∣∣∣E[Xi
n −Xj

n]
∣∣∣ ≤ e−λnh∣∣∣E[Xi

0 −X
j
0 ]
∣∣∣.

(2) (Weak stochastic consensus II): Suppose that h and systems parameters satisfy

σ > 0, 2λ > σ2 and 0 < h <
2λ− σ2

λ
.

Then, for i, j = 1, · · · , N , one has the following exponential decay estimate:

E|Xi
n −Xj

n|2 ≤ e−nhmE|Xi
0 −X

j
0 |

2,

where m = m(λ, h, σ) is defined as follows:

m(λ, h, σ) := 2λ− λ2h− σ2.

(3) (Strong stochastic consensus): Suppose that h and system parameters satisfy

σ > 0, 2λ > σ2 and 0 < h <
2λ− σ2

λ
.

Then, for i, j = 1, · · · , N , one has

|Xi
n −Xj

n| ≤ e−nYn |Xi
0 −X

j
0 |, a.s. ω ∈ Ω,

where Yn is a random variable satisfying

lim
n→∞

Yn(ω) =
hm

2
:=

h

2
(2λ− λ2h− σ2) > 0, a.e. ω ∈ Ω.

Proof. (i) It follows from (3.10) that

Xi
n+1 −X

j
n+1

= Xi
n −Xj

n − λh(Xi
n −Xj

n) + σ
√
h(Xi

n −Xj
n)Zn =

(
1− λh+ σ

√
hZn

)
(Xi

n −Xj
n).

(3.11)
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Iterating the above recursive relation (3.11) gives

(3.12) Xi
n −Xj

n = Πn−1
`=0

(
1− (λh− σ

√
hZ`)︸ ︷︷ ︸

=:∆`

)
(Xi

0 −X
j
0).

Finally, we take expectation and absolute value on both sides of (3.12) using the independence of

Z` and Xi
0 −X

j
0 to get∣∣∣E[Xi

n −Xj
n]
∣∣∣ = (1− λh)n

∣∣∣E[Xi
0 −X

j
0 ]
∣∣∣ ≤ e−λnh∣∣∣E[Xi

0 −X
j
0 ]
∣∣∣.

(ii) We take the absolute value of (3.12) and square of it to find

(3.13) |Xi
n −Xj

n|2 = Πn−1
`=0 (1−∆`)

2|Xi
0 −X

j
0 |

2.

Taking expectation of the above relation and using the independence of ∆` and |Xi
0−X

j
0 |, one gets

(3.14) E|Xi
n −Xj

n|2 = Πn−1
`=0 E[(1−∆`)

2]× E[|Xi
0 −X

j
0 |

2].

On the other hand, since {∆`} are i.i.d. and for each ` = 0, · · · , n− 1, one has

E[(1−∆`)
2] = 1− E[2∆` −∆2

` ]

= 1− E
(

2λh− 2σ
√
hZ` − (λh)2 + 2σλh

3
2Z` − σ2hZ2

`

)
= 1− 2λh+ λ2h2 + σ2h = 1− hm(λ, h, σ) ≥ 0.

(3.15)

Now, we combine (3.14) and (3.15) to get

E|Xi
n −Xj

n|2 = (1− hm)nE|Xi
0 −X

j
0 |

2 ≤ e−mnhE|Xi
0 −X

j
0 |

2.

So a sufficient condition for the exponential decay of E|Xi
n −X

j
n|2 is

m(λ, h, σ) > 0 ⇐⇒ h <
2λ− σ2

λ
.

(iii) It follows from (3.16) and the inequality:

(1−∆`)
2 = 1− (2∆` −∆2

` ) ≤ e−(2∆`−∆2
` )

that

|Xi
n −Xj

n|2 = Πn−1
`=0 (1−∆(`))2|Xi

0 −X
j
0 |

2 ≤ Πn−1
`=0 e

−(2∆`−∆2
` )|Xi

0 −X
j
0 |

2

= exp
[
−
n−1∑
`=0

∆`(2−∆`)
]
|Xi

0 −X
j
0 |

2

= exp
[
− n× 1

n

n−1∑
`=0

∆`(2−∆`)
]
|Xi

0 −X
j
0 |

2.

(3.16)

On the other hand, using (3.15) one has

E[2∆` −∆2
` ] = hm.

Next, we use the strong law of large numbers to see

Yn :=
1

n

n−1∑
`=0

∆`(2−∆`) → E
[
∆`(2−∆`)

]
= hm as n→∞ a.s.
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where Yn is also a random variable since ∆` is a random variable. In (3.16), we use the above
convergence to see that

|Xi
n −Xj

n| ≤ exp
[
− n× 1

2n

n−1∑
`=0

∆`(2−∆`)
]
|Xi

0 −X
j
0 |

and

1

2n

n−1∑
`=0

∆`(2−∆`)→
hm

2
, n −→∞.

�

Remark 3.2. If one uses the result (ii) and the Cauchy-Schwarz inequality, one can obtain

E|Xi
n −Xj

n| ≤
√

E[|Xi
n −X

j
n|2] ≤ (1− hm)

n
2

√
E[|Xi

0 −X
j
0 |2].

4. Convergence analysis for continuous algorithm

In this section, we provide a convergence analysis for the continuous CBO algorithm using Ito’s
calculus. In previous section, we showed that the continuous algorithm admits a global consensus
for any initial data. Thus, the natural question is whether this global consensus is a global mini-
mum of L or not. If the answer is affirmative, then under what condition such a coincidence will
occur? This is the main concern of this section.

Recall that Xi
t satisfies

(4.1) dXi
t = −λ(Xi

t − X̄∗t )dt+ σ
d∑
l=1

(xi,lt − x̄
∗,l
t )dW l

t el,

and we introduce an ensemble average:

X̄t :=
1

N

N∑
i=1

Xi
t = (x̄1

t , · · · , x̄dt ).

Next, we present three elementary lemmas to be crucially used in the proof of convergence analysis.

Lemma 4.1. Let {Xi
t}1≤i≤N be a solution to (4.1). Then, the following estimates hold almost

surely.

(i) |Xi
t − X̄t|2 =

d∑
l=1

(xi,l0 − x̄
l
0)2 exp

[
−
(

2λ+ σ2
)
t+ 2σW l

t

]
.

(ii) |X̄t − X̄∗t |2 ≤ max
1≤i≤N

|Xi
t − X̄t|2.

(iii)
1

N

N∑
i=1

|Xi
t − X̄∗t |2 ≤ 2

d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
exp

[
−
(

2λ+ σ2
)
t+ 2σW l

t

]
.

Proof. (i) It follows from (4.1) that

(4.2) dX̄t = −λ(X̄t − X̄∗t )dt+ σ

d∑
l=1

(x̄lt − x̄
∗,l
t )dW l

t el.
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We subtract (4.1) from (4.2) to obtain

(4.3) d(Xi
t − X̄t) = −λ(Xi

t − X̄t)dt+ σ
d∑
l=1

(xi,lt − x̄lt)dW l
t el.

The l-th component of (4.3) implies

xi,lt − x̄lt = (xi,l0 − x̄
l
0) exp

[
−
(
λ+

1

2
σ2
)
t+ σW l

t

]
.

This yields

|Xi
t − X̄t|2 =

d∑
l=1

(xi,l0 − x̄
l
0)2 exp

[
−
(

2λ+ σ2
)
t+ 2σW l

t

]
.

(ii) We use the triangle inequality and the Cauchy-Schwarz inequality to get

|X̄t − X̄∗t |2 =

∣∣∣∣∣
∑N

k=1 e
−βL(Xk

t )(X̄t −Xk
t )∑N

k=1 e
−βL(Xk

t )

∣∣∣∣∣
2

≤

[∑N
k=1 e

−βL(Xk
t )|X̄t −Xk

t |∑N
k=1 e

−βL(Xk
t )

]2

≤
∑N

k=1 e
−βL(Xk

t )|X̄t −Xk
t |2∑N

k=1 e
−βL(Xk

t )
≤ max

1≤k≤N
|X̄t −Xk

t |2.

(iii) Note that

1

N

N∑
i=1

|Xi
t − X̄∗t |2 =

1

N

N∑
i=1

(
|Xi

t − X̄t|2 + 2(Xi
t − X̄t) · (X̄t − X̄∗t ) + |X̄t − X̄∗t |2

)
=

1

N

N∑
i=1

|Xi
t − X̄t|2 + |X̄t − X̄∗t |2 ≤ 2 max

1≤i≤N
|Xi

t − X̄t|2

= 2 max
1≤i≤N

(
d∑
l=1

(xi,l0 − x̄
l
0)2 exp

[
−
(

2λ+ σ2
)
t+ 2σW l

t

])

≤ 2
d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
exp

[
−
(

2λ+ σ2
)
t+ 2σW l

t

]
,

(4.4)

where we used the inequalities from (i) and (ii). �

Lemma 4.2. Let {Xi
t}1≤i≤N be a solution to (4.1). Then, the following estimates hold.

(i)
1

N

N∑
i=1

E|Xi
t − X̄∗t |2 ≤ 2e−(2λ−σ2)t

d∑
l=1

E
[

max
1≤i≤N

(xi,l0 − x̄
l
0)2
]
.

(ii) If 2λ > σ2, then there exists a random vector X∞ such that

lim
t→∞

Xi
t = X∞ a.s., 1 ≤ i ≤ N.
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Proof. (i) We take expectation on both sides of (4.4) to get

1

N

N∑
i=1

E|Xi
t − X̄∗t |2 ≤ 2

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
E exp

[
−
(

2λ+ σ2
)
t+ 2σW l

t

]

≤ 2e−(2λ−σ2)t
d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
,

where we used

exp
(

2σW l
t

)
∼ Lognormal(0, 4σ2t) =⇒ E exp

(
2σW l

t

)
= exp(2σ2t).

(ii) Note that equation (4.1) is equivalent to the following integral relation: for i = 1, · · · , N and
l = 1, · · · , d,

xi,lt = xi,l0 − λ
∫ t

0
(xi,ls − x̄∗,ls )ds+ σ

∫ t

0
(xi,ls − x̄∗,ls )dW l

s =: xi,l0 − λI11 + σI12.

Next, we show the a.s. convergence I11 and I12 separately.

• Case A (Almost sure convergence of I11): By (iii), we have

|xi,lt − x̄
∗,l
t | ≤

√√√√ N∑
i=1

|Xi
t − X̄∗t |2 ≤

√√√√2N
d∑
l=1

(
max

1≤i≤N
(xi,l0 − x̄l0)2

)
exp

[
−
(

2λ+ σ2
)
t+ 2σW l

t

]
.

This yields that there exist positive random functions Ci = Ci(ω), i = 1, 2 such that

|xi,lt − x̄
∗,l
t | ≤ C1e

−C2t, a.s. ω ∈ Ω,

where C1 and C2 are positive constants. We set

J11 := I11 −
∫ t

0
C1e

−C2sds =

∫ t

0

(
xi,ls − x̄∗,ls − C1e

−C2s
)︸ ︷︷ ︸

≤0

ds.

Since the integrand is nonpositive a.s., J11 is non-increasing in t a.s.

On the other hand, note that

J11 = I11 −
C1

C2
(1− e−C2t) ≥ I11 −

2C1

C2
+
C1

C2
(1− e−C2t)

= I11 −
2C1

C2
+

∫ t

0
C1e

−C2sds = −2C1

C2
+

∫ t

0

(
xi,ls − x̄∗,ls + C1e

−C2s
)
ds ≥ −2C1

C2
.

Since J11 is monotone decreasing and bounded below along sample paths, one has

∃ α = lim
t→∞
J11(t) = lim

t→∞

(
I11 −

∫ t

0
C1e

−C2sds
)
, a.s.

This implies

lim
t→∞
I11 = α+

C1

C2
, a.s.
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• Case B (Almost sure convergence of I12): Note that I12 is martingale and its L2(Ω)-norm is
uniformly bounded in t:

E
[∫ t

0

(
xi,ls − x̄∗,ls

)
dW l

s

]2

= E
∫ t

0
(xi,ls − x̄∗,ls )2ds ≤

∫ t

0

N∑
i=1

E|Xi
s − X̄∗s |2ds

≤ 2N

(∫ t

0
e−(2λ−σ2)sds

) d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)

≤ 2N

2λ− σ2

d∑
l=1

(
E max

1≤i≤N
(xi,l0 − x̄

l
0)2

)
.

In the second inequality we used (iv). Hence lim
t→∞
I12 exists a.s. Now we have shown that for each

i = 1, · · · , N , there exists some random variable Xi
∞ such that

lim
t→∞

Xi
t = Xi

∞ a.s.

Since for any 1 ≤ i, j ≤ N ,

lim
t→∞
|Xi

t −X
j
t | = 0, a.s.

Hence, there exists X∞ such that

Xi
∞ = Xj

∞ =: X∞ a.s.

�

Lemma 4.3. Let {Xi
t}1≤i≤N be a solution to (4.1). Then, the quadratic variation of xkt and xlt is

given as follows.

dxkt · dxlt =

{
σ2|xi,kt − x̄

∗,k
t |2dt, k = l,

0, k 6= l.

Proof. It follows from (4.1) that the l-th component of Xi
t satisfies

dxi,lt = −λ(xi,lt − x̄
∗,l
t )dt+ σ(xi,lt − x̄

∗,l
t )dW l

t .(4.5)

Now, we use the following quadratic variation relations:

dt · dt = 0, dt · dW l
t = 0, dW l

t · dt = 0, dW l
t · dW k

t = δlkdt

and (4.1) to see

dxkt · dxlt = σ2δkl(x
i,k
t − x̄

∗,k
t )(xi,lt − x̄

∗,l
t )dt.

This certainly implies the desired estimate. �

In what follows, we use a handy notation for partial derivatives:

∂l :=
∂

∂xl
, ∂2

kl :=
∂2

∂xk∂xl
, l, k = 1, · · · , d.

Let L = L(x) be a C2
b -objective function satisfying the following relations:

(4.6) Lm := inf
x∈Rd

L(x) > 0 and CL := max

{
sup
x∈Rd

‖∇2L(x)‖2, max
1≤l≤d

sup
x∈Rd

|∂2
l L(x)|

}
<∞,
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where ‖ · ‖2 denotes the spectral norm. First, note that

∂k

(
e−βL(Xi

t)
)

= −βe−βL(Xi
t)∂kL(Xi

t),

∂2
kl

(
e−βL(Xi

t)
)

= βe−βL(Xi
t)
[
β∂lL(Xi

t) · ∂kL(Xi
t)− ∂2

lkL(Xi
t)
]
.

(4.7)

Now, we apply Ito’s formula to 1
N

∑N
i=1 e

−βL(Xi
t) using the relations (4.7) to get

d

(
1

N

N∑
i=1

e−βL(Xi
t)

)

=
1

N

N∑
i=1

[ d∑
k=1

∂k

(
e−βL(Xi

t)
)
dxi,kt +

1

2

d∑
k,l=1

∂2
kl

(
e−βL(Xi

t)
)
dxi,kt · dx

i,l
t

]

=
1

N

N∑
i=1

[
− βe−βL(Xi

t)
d∑

k=1

∂kL(Xi
t)
(
− λ(xi,kt − x̄

∗,k
t )dt+ σ(xi,kt − x̄

∗,k
t )dW k

t

)]

+
1

N

N∑
i=1

1

2
βe−βL(Xi

t)
[ d∑
k,l=1

(
β∂lL(Xi

t) · ∂kL(Xi
t)− ∂2

lkL(Xi
t)
)
σ2δkl(x

i,k
t − x̄

∗,k
t )(xi,lt − x̄

∗,l
t )dt

]

=
1

N

N∑
i=1

βe−βL(Xi
t)∇L(Xi

t) ·
[
λ(Xi

t − X̄∗t )dt− σ
d∑

k=1

(xi,kt − x̄
∗,k
t )dW k

t ek

]

+
1

N

N∑
i=1

[
βe−βL(Xi

t)
d∑

k=1

(
− ∂kkL(Xi

t) + β(∂kL(Xi
t))

2
)1

2
σ2(xi,kt − x̄

∗,k
t )2

]
dt.

(4.8)

We take expectations on both sides of (4.8) to get

d

(
1

N

N∑
i=1

Ee−βL(Xi
t)

)

=
1

N

N∑
i=1

E
[
βe−βL(Xi

t)∇L(Xi
t) · λ(Xi

t − X̄∗t )
]
dt

+
1

N

N∑
i=1

E
[
βe−βL(Xi

t)
d∑

k=1

(
− ∂kkL(Xi

t) + β(∂kL(Xi
t))

2
)1

2
σ2(xi,kt − x̄

∗,k
t )2

]
dt

=: I21dt+ I22dt.

(4.9)

Below, we estimate the terms I2i, i = 1, 2 as follows.

Lemma 4.4. Let {Xi
t} be a solution to (4.1). Then, the term I2i, i = 1, 2 satisfies

(i) I21 ≥ −λCLβe−βLm
1

N

N∑
i=1

E|Xi
t − X̄∗t |2;

(ii) I22 ≥ −
1

2
σ2CLβe

−βLm
1

N

N∑
i=1

E|Xi
t − X̄∗t |2.
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Proof. Below, we estimate I2i separately.

• (Estimate of I21): First, we use definition of X̄∗t to see( N∑
i=1

e−βL(Xi
t)

)
X̄∗t =

N∑
i=1

e−βL(Xi
t)Xi

t .

This yields

(4.10)
N∑
i=1

e−βL(Xi
t)∇L(X̄∗t ) · (X̄∗t −Xi

t) = 0.

Then, we use (4.6) and (4.10) to find

I11 =
βλ

N

N∑
i=1

E
[
e−βL(Xi

t)∇L(Xi
t) · (Xi

t − X̄∗t )
]
dt

=
βλ

N

N∑
i=1

E
[
e−βL(Xi

t)
(
∇L(Xi

t)−∇L(X̄∗t )
)
· (Xi

t − X̄∗t )
]

≥ −λCLβe−βLm
1

N

N∑
i=1

E|Xi
t − X̄∗t |2.

(4.11)

• (Estimate of I22): By direct calculation, one has

I12 = −σ
2β

2N

N∑
i=1

E
[
e−βL(Xi

t)
d∑

k=1

∂kkL(Xi
t)(x

i,k
t − x̄

∗,k
t )2

]

≥ −1

2
σ2CLβe

−βLm
1

N

N∑
i=1

E|Xi
t − X̄∗t |2.

(4.12)

�

Now, we are ready to provide the convergence result of the continuous CBO algorithm. Note
that in [5], the L2(Ω)-limit of the stochastic process Xt was actually equal to some non-random
x̃ ∈ Rd, but it is not the case for our N -particle model. This resulted in the statement of Theorem
4.1 slightly different from the analogous theorem (Theorem 3.1) in [5].

Theorem 4.1. Suppose that λ, σ and {Xi
0} satisfy

2λ > σ2, Xi
0 : i, i.d, , Xi

0 ∼ Xin for some random variable Xin,

(1− ε)E
[
e−βL(Xin)

]
≥ 2λ+ σ2

2λ− σ2
CLβe

−βLm

d∑
l=1

E
[

max
1≤i≤N

(xi,l0 − x̄
l
0)2
]
,

for some 0 < ε < 1. Then, one has

ess infω∈Ω L(X∞(ω)) ≤ ess infω∈Ω L(Xin(ω)) +O
( 1

β

)
, for β � 1.

Consequently, if the global minimizer X∗ of L is contained in supp law(Xin), then

ess infω∈Ω L(X∞(ω)) ≤ Lm +O
( 1

β

)
, for β � 1.
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Proof. In (4.9), we use (4.11), (4.12) and Lemma 4.1 (iii) to find

d

dt

(
1

N

N∑
i=1

Ee−βL(Xi
t)

)
≥ −

(
λ+

1

2
σ2

)
CLβe

−βLm
1

N

N∑
i=1

E|Xi
t − X̄∗t |2

≥ −2

(
λ+

1

2
σ2

)
CLβe

−βLme−(2λ−σ2)t
d∑
l=1

E
[

max
1≤i≤N

(xi,l0 − x̄
l
0)2
]
.

(4.13)

Now integrating (4.13) in t gives

1

N

N∑
i=1

Ee−βL(Xi
t)

≥ 1

N

N∑
i=1

Ee−βL(Xi
0) − 2

(
λ+

1

2
σ2

)
CLβe

−βLm
1− e−(2λ−σ2)t

2λ− σ2

d∑
l=1

E
[

max
1≤i≤N

(xi,l0 − x̄
l
0)2
]

≥ 1

N

N∑
i=1

Ee−βL(Xi
0) − 2λ+ σ2

2λ− σ2
CLβe

−βLm

d∑
l=1

E
[

max
1≤i≤N

(xi,l0 − x̄
l
0)2
]
.

(4.14)

Letting t→∞, and we use Lemma 4.2 (i) to find

Ee−βL(X∞) ≥ 1

N

N∑
i=1

Ee−βL(Xi
0) − 2λ+ σ2

2λ− σ2
CLβe

−βLm

d∑
l=1

E
[

max
1≤i≤N

(xi,l0 − x̄
l
0)2
]
≥ εEe−βL(Xin),

i.e.,

− 1

β
logEe−βL(X∞) ≤ − 1

β
logEe−βL(Xin) − 1

β
log ε.

Now Laplace’s principle implies

ess infω∈Ω L(X∞(ω)) ≤ ess infω∈Ω L(Xin(ω)) +O
( 1

β

)
for β � 1.

�

5. Numerical simulations

In this section, we conduct several numerical tests to verify the results of the convergence analysis.
For a numerical test, we use the Rastrigin function as in [5, 23] as the objective function:

L(X) =

d∑
i=1

[
(xi −B)2 − 10 cos(2π(xi −B)) + 10

]
+ C,

where constants B and C are given by

B := argmin L(X), C := min L(X).

Note that this function has a unique global minimizer, namely X = (B, · · · , B) ∈ Rd. However,
it has many local minimizers as can be seen Figure 1 (see the graph for L is provided in Figure 1
with d = 2, B = C = 0).
For the initial data and system parameters, we choose N = 100 points uniformly from the square

[−2, 2]× [−2, 2], which includes a global minimum point, and use parameters:

∆t = h = 0.01, N = 100, β = 10, λ = 1.
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Figure 1. A 3D plot of the Rastrigin function

For the same chosen initial data set as above, we perform simulations for σ = 0, 1, 2 and compare
the results.

5.1. Continuous algorithm. For the simulations of the continuous algorithm, we use the following
two-step numerical scheme:

X̂i
n = X̄∗n + (Xi

n − X̄∗n)e−λh,

Xi
n+1 = X̂i

n + σ
√
h

d∑
l=1

(x̂i,ln − x̄∗,ln )wlnel,

where wln (l = 1, · · · , d, n = 0, 1, 2, · · · ) are independent and follow the standard normal distri-
bution, and ∆t is the time step. In Section 3, we derived the following explicit formula for the
continuous algorithm:

xi,lt − x
j,l
t = (xi,l0 − x

j,l
0 ) exp

[
−
(
λ+

1

2
σ2
)
t+ σW l

t

]
.
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It is easy to see from the above formula that the particles will reach a global consensus almost
surely if and only if the coupling strength and noise intensity satisfy

λ > 0 or |σ| > 0.

Note that for larger σ, the speed of consensus on average is faster. Note that these facts do not
require the condition 2λ > σ2 as can be seen in convergence analysis in Section 4. One can observe
this result numerically. In Figures 2,3 and 4, we plot the positions of the particles for σ = 0, 1, 2,
respectively. Indeed, the particles seem to converge faster, as σ increases. In Figure 5, we plot a
sample path of log |x1,1

t − x
2,1
t | for σ = 0, 1, 2. As expected, the graph for σ = 0 is linear, and the

function eventually decays faster for large σ.
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Figure 2. Temporal evolution of state configuration for t = 0, 1, 2, 10 (σ = 0).
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Figure 3. Temporal evolution of state configuration for t = 0, 1, 2, 10 (σ = 1).
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Figure 4. Temporal evolution of state configuration for t = 0, 1, 2, 10 (σ = 2).
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Figure 5. Graph of log |x1,1
t − x

2,1
t | for σ = 0, 1, 2.

5.2. Discrete algorithm. Recall the discrete algorithm:

(5.1)


Xi
n+1 = Xi

n + λh
N∑
k=1

ψkn(Xk
n −Xi

n) + σ
√
h

N∑
k=1

d∑
l=1

ψkn(xk,ln − xi,ln )Z lnel,

ψkn :=
e−βL(Xk

n)∑N
i=1 e

−βL(Xi
n)
, 1 ≤ k ≤ N, n = 0, 1, · · · .

In this subsection, we study the formation of global consensus for the discrete algorithm (5.1)

numerically. In Theorem 3.4, we have shown that if m := λ− σ2

2 −
λ2h

2 > 0 then the quantity ∆ij
n :=

|Xi
n −X

j
n| tends to zero almost surely, as n → ∞ with a decay rate approximately exp(−1

2mnh).

Figure 6 indicates that this result is not optimal. To compute E
[

log |x1,1
t −x

2,1
t |
]
, we simulated 100

sample paths and then took average of those paths. Although 2λ < σ2 for σ = 2, ∆ij
n converges

in this case. Moreover, although the decay rate obtained in Theorem 3.4 decreases, as σ increases,
one can see that the decay rate increases as σ increases.
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6. conclusion

In this paper, we have provided a rigorous convergence analysis for the first-order consensus-
based optimization algorithm. In [5], the convergence was understood using the corresponding
mean-field limit, the Fokker-Planck equation. Thus, the convergence of the original CBO algo-
rithm remains unresolved there. The main contribution of this work is to provide the convergence
analysis directly on the CBO algorithm model at the particle level. After rewriting the given con-
tinuous optimization algorithm into a first-order consensus form, we use the detailed structure of
the coupling term to derive an exact formula for the state differences. Our explicit formula shows
that global consensus will emerge for any initial data, whereas in order to prove the convergence
toward a global minimum, we need a sufficient condition–which is dimension independent– for
systems parameters and initial data to show that the global consensus state tends to a global min-
imum, as the reciprocal of temperature tends to infinity using Laplace’s principle. The emergence
of global consensus will emerge for continuous and discrete algorithms. However, we can obtain
the convergence analysis only for the continuous algorithm due to Ito’s stochastic analysis for twice
differentiable and bounded objective functions. In contrast, for discrete algorithm, we do not have
available mathematical tools to derive convergence analysis at present.
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There are several issues which we cannot deal with in this paper. To name a few, it will be
interesting to relax the regularity of the objective function to the less regular objective function, at
least continuous one. Finally, random batch methods were used to reduce the computational cost
of the N -term summation in [5, 14] in which convergence remains as an open question.

Moreover, it will be interesting to see whether our presented analysis can be applied to other
metaheuristic algorithms based on the swarm intelligence. These issues will be discussed in a future
work.

References
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