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Abstract

Kinetic equations contain uncertainties in their collision kernels or scattering coefficients,

initial or boundary data, forcing terms, geometry, etc. Quantifying the uncertainties in

kinetic models have important engineering and industrial applications. In this article we

survey recent efforts in the study of kinetic equations with random inputs, including their

mathematical properties such as regularity and long-time behavior in the random space,

construction of efficient stochastic Galerkin methods, and handling of multiple scales by

stochastic asymptotic-preserving schemes. The examples used to illustrate the main ideas

include the random linear and nonlinear Boltzmann equations, linear transport equation

and the Vlasov-Poisson-Fokker-Planck equations.
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1 Introduction

Kinetic equations describe the non-equilibrium dynamics of a gas or system comprised of a

large number of particles using a probability density function. In multiscale modeling hierarchy,

they serve as a basic building block that bridges atomistic and continuum models. On one

hand, they are more efficient (requiring fewer degrees of freedom) than molecular dynamics; on

the other hand, they provide reliable information at the mesoscopic level when the macroscopic

fluid mechanics laws of Navier-Stokes and Fourier become inadequate. The most fundamental

(and the very first) kinetic equation is the Boltzmann equation, an integro-differential equation

describing particle transport and binary collisions [16, 11]. Proposed by Ludwig Boltzmann in

1872, the equation is considered as the basis of the modern kinetic theory. During the past

decades, there have been enormous studies on the Boltzmann and related kinetic models, both

theoretically and numerically (cf. [13, 74, 20]). This trend is ever-growing as the application

of the kinetic theory has already gone beyond traditional fields like rarefied gas dynamics [12],

radiative transfer [15], and branched out to microfabrication technology [61, 48], biological and

even social sciences [63].

In spite of the vast amount of existing research, the study of kinetic equations has mostly

remained deterministic and ignored uncertainty. In reality, however, there are many sources of

uncertainties that can arise in these equations. They may be due to

• Incomplete knowledge of the interaction mechanism between particles. Kinetic equations

typically contain an integral operator modeling particle interactions. Inside this integral,
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there is a term called collision or scattering kernel describing the transition rate during

particle collisions. Ideally, the collision kernel should be calculated from first principles

using scattering theory [11]. This, if not impossible, is extremely complicated for complex

particle systems. Therefore, empirical collision kernels are often used in practice with

the aim to reproduce correct viscosity and diffusion coefficients [9, 33, 8, 50]. Specifically,

these kernels contain adjustable parameters whose values are determined by matching with

available experimental data for various kinds of particles.

• Imprecise measurement of the boundary data. A commonly used boundary for kinetic

equations is the so-called Maxwell boundary condition [11, 12], which assumes part of the

particles are bounced back specularly and part of them are absorbed by the wall and re-

emitted according to a special Gaussian distribution. This distribution depends on the

(measured) macroscopic properties of the wall such as temperature and bulk velocity.

The uncertainties are of course not limited to the aforementioned examples: they may also

come from inaccurate measurement of the initial data, our lack of knowledge of gas-surface

interactions, forcing and geometry, etc. Understanding the impact of these uncertainties is

critical to the simulations of the complex kinetic systems to validate the kinetic models, and

will allow scientists and engineers to obtain more reliable predictions and perform better risk

assessment.

Despite tremendous amount of research activities in uncertainty quantification (UQ) in recent

decades in many areas of sciences and engineering, the study of uncertainty in kinetic models,

albeit important and necessary, has remained mostly untouched territory until very recently.

It is the goal of this survey to review recent development of UQ for kinetic equations. Here

the uncertainty is introduced through random inputs, and we adopt the generalized polynomial

chaos based stochastic Galerkin (gPC-sG) approximation, which has been successfully applied to

many physical and engineering problems, see for instance, the overviews in [27, 77, 60, 66]. Due

to the high-dimensionality and intrinsic physical properties of kinetic equations, the construc-

tion of stochastic methods represents a great challenge. We will use some prototype equations

including the classical Boltzmann equation, linear Boltzmann equations, and Vlasov-Poisson-

Fokker-Planck system to illustrate the main strategy.

It is well-known that the gPC-sG approach is intrusive, requiring more coding efforts com-

pared with non-intrusive methods such as the stochastic collocation [32, 78]. The reason of our

choice is two-fold: 1) Due to its Galerkin formulation, mathematical analysis of these methods

can be conducted more conveniently. Indeed many of the analytical methods well-established in

kinetic theory can be conveniently adopted or extended to study the stochastic Galerkin system

of the random kinetic equations; 2) Kinetic equations often contain small parameters such as the

mean free path/time which asymptotically lead to hyperbolic/diffusion equations. We are inter-

ested in developing the stochastic analogue of the asymptotic-preserving (AP) scheme, a scheme

designed to capture the asymptotic limit at the discrete level. The stochastic Galerkin method

yields systems of deterministic equations that resemble the deterministic kinetic equations, al-

though in vector forms. Thus it allows one to easily use the deterministic AP framework for the

random problems, and allowing minimum “intrusivity” to the legacy deterministic codes. The

stochastic Galerkin method can ensure the desired convergence in the weak sense. The resulting

stochastic Asymptotic-Preserving (sAP) [46] sG methods will allow all numerical parameters,
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such as mesh size, time-step and the number of gPC modes independent of the (possibly small)

mean free path/time.

On the other hand, the study of regularity, coercivity and hypocoercivity on the random

kinetic equations, which will be reviewed in this article as well, provides theoretical foundation

for not only the stochastic Galerkin methods, but also the stochastic collocation methods.

The rest of this paper is organized as follows. In the next section, we give a brief review

of some kinetic equations with random inputs and their basic properties. Section 3 discusses

the theoretical issues such as coercivity, hypocoercivity, regularity, and long-time behavior for

random kinetic equations. We then introduce in Section 4 the gPC-sG method. Special em-

phasis is given to the unique issues arising in kinetic equations such as property of the collision

operator under gPC-sG approximation and efficient treatment of the nonlinear collision integral.

Spectral accuracy of the gPC-sG method is also established. In Section 5, we consider the kinetic

equations in diffusive scalings and construct the stochastic AP scheme following its deterministic

counterpart. We conclude in Section 6 and list a few open problems in this field.

2 Preliminaries on kinetic equations with random inputs

In this section, we review some kinetic equations and their basic properties that will be used

in this article. Due to the large variety of kinetic models, it is impossible to give a thorough

description of all of them. Therefore, we will concentrate on several prototype models: the linear

neutron transport equation, the semiconductor Boltzmann equation, the Vlasov-Poisson-Fokker-

Planck equation, and the classical nonlinear Boltzmann equation. Other related kinetic models

will be briefly mentioned at the end of the section.

As mentioned in the Introduction, for real-world problems, the collision/scattering kernel,

initial/boundary data, source, or other physical parameters in the kinetic equations may contain

uncertainties that propagate into the solution and affect its property substantially. To charac-

terize these random inputs, we assume certain quantities depend on a random vector z ∈ Rn

in a properly defined probability space (Σ,A,P), whose event space is Σ and is equipped with

σ-algebra A and probability measure P. We also assume the components of z are mutually inde-

pendent random variables with known probability ω(z) : Iz −→ R+, obtained already through

some dimension reduction technique, e.g., Karhunen-Loève (KL) expansion [59], and do not

pursue further the issue of random input parameterization. We treat z as a parameter and the

properties given in this section hold for every given z.

2.1 The linear transport equation with isotropic scattering

We first introduce the linear transport equation in one dimensional slab geometry:

ε∂tf + v∂xf =
σ

ε
Lf − εσaf + εS, t > 0, x ∈ [0, 1], v ∈ [−1, 1], z ∈ Iz, (2.1)

Lf(t, x, v, z) =
1

2

∫ 1

−1

f(t, x, v′, z) dv′ − f(t, x, v, z) , (2.2)

with the initial condition

f(0, x, v, z) = f0(x, v, z). (2.3)
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This equation arises in neutron transport, radiative transfer, etc. and describes particles (for

example neutrons) transport in a background media (for example nuclei). f(t, x, v, z) is the

density distribution of particles at time t, position x, and v = Ω · ex = cos θ where θ is the angle

between the moving direction and x-axis. σ(x, z), σa(x, z) are total and absorption cross-sections

respectively. S(x, z) is the source term. For σ(x, z), we assume

σ(x, z) ≥ σmin > 0. (2.4)

ε is the dimensionless Knudsen number, the ratio between particle mean free path and the

characteristic length (such as the length of the domain). The equation is scaled in long time

with strong scattering.

We are interested in problems that contain uncertainties in the collision cross-section, source,

initial or boundary data. Thus in our problem f , σ, σa and S all depend on z.

Denote

[φ] =
1

2

∫ 1

−1

φ(v) dv (2.5)

as the average of a velocity dependent function φ.

Define in the Hilbert space L2
(
[−1, 1]; φ−1 dv

)
the inner product and norm

〈f, g〉φ =

∫ 1

−1

f(v)g(v)φ−1 dv, ‖f‖2φ = 〈f, f〉φ. (2.6)

The linear operator L satisfies the following properties [6]:

• [Lf ] = 0, for every f ∈ L2([−1, 1]);

• The null space of f is N (L) = Span {φ | φ = [φ] };

• The range of f is R(L) = N (L)⊥ = { f | [f ] = 0 };

• Coercivity: L is non-positive self-adjoint in L2([−1, 1];φ−1 dv), i.e., there is a positive

constant sm such that

〈f,Lf〉φ ≤ −2sm‖f‖2φ, ∀ f ∈ N (L)⊥; (2.7)

• L admits a pseudo-inverse, denoted by L−1, from R(L) to R(L).

Let ρ = [f ]. For each fixed z, the classical diffusion limit theory of linear transport equa-

tion [52, 7, 6] gives that, as ε→ 0, ρ solves the following diffusion equation:

∂tρ = ∂x(κ(x, z)∂xρ)− σa(x, z)ρ+ S(x, z), (2.8)

where the diffusion coefficient

κ(x, z) =
1

3
σ(x, z)−1 . (2.9)

When z is random, (2.8) is a random diffusion equation.
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2.2 The semiconductor Boltzmann equation

The semiconductor Boltzmann equation describes the electron transport in a semiconductor

device [61]:

ε∂tf + v · ∇xf +∇xφ · ∇vf =
1

ε
Qs(f), t > 0, x ∈ Ω ⊂ Rd, v ∈ Rd, z ∈ Iz, (2.10)

where f(t,x,v, z) is again the particle distribution function, φ(t,x, z) is the electric potential

given a priori or produced self-consistently by f through the Poisson equation:

∆xφ = ρ− h,

where ρ(t,x, z) =
∫
f dv, and h(x, z) is the doping profile (some physical parameters such as

the material permittivity are omitted for brevity). The collision operator Qs(f) is a linear

approximation of the electron-phonon interaction:

Qs(f)(v, z) =

∫
Rd

[s(v∗,v, z)f(v∗, z)− s(v,v∗, z)f(v, z)] dv∗, (2.11)

where s(v,v∗, z) describes the transition rate from v to v∗ and may take various forms depending

on the approximation. Here we assume

s(v,v∗, z) = σ(v,v∗, z)Ms(v∗),

with Ms being the normalized Maxwellian:

Ms(v) =
1

πd/2
e−|v|

2

;

the scattering kernel σ being rotationally invariant, symmetric and bounded:

σ(v,v∗, z) = σ(|v|, |v∗|, z), 0 < σmin ≤ σ(v,v∗, z) = σ(v∗,v, z) ≤ σmax.

Define the collision frequency

λ(v, z) =

∫
Rd
σ(v,v∗, z)Ms(v∗) dv∗, (2.12)

then it is easy to see σ0 ≤ λ(v, z) ≤ σ1. Therefore, (2.11) can be written as

Qs(f)(v, z) =

∫
Rd
σ(v,v∗, z) [Ms(v)f(v∗, z)−Ms(v∗)f(v, z)] dv∗

= Ms(v)

∫
Rd
σ(v,v∗, z)f(v∗, z) dv∗ − λ(v, z)f(v, z). (2.13)

It can be shown that the collision operator (2.13) satisfies∫
Rd
Qs(f)(v, z)f(v, z)/Ms(v) dv

= −1

2

∫
Rd

∫
Rd
σ(v,v∗, z)Ms(v)Ms(v∗)

(
f(v)

Ms(v)
− f(v∗)

Ms(v∗)

)2

dv∗dv ≤ 0. (2.14)

Furthermore, the followings are equivalent∫
Rd
Qs(f)

f

M
dv = 0⇐⇒ Qs(f) = 0⇐⇒ f = ρ(t,x, z)Ms(v). (2.15)
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Then, as ε→ 0, (2.10) leads to the following drift-diffusion limit ([67]):

∂tρ = ∇x · (D (∇xρ+ 2ρE)) , (2.16)

where E = −∇xφ is the electric field, D is the diffusion coefficient matrix defined by

D =

∫
Rd

v ⊗ vMs(v)

λ(v, z)
dv.

2.3 The Vlasov-Poisson-Fokker-Planck system

The Vlasov-Poisson-Fokker-Planck (VPFP) system arises in the kinetic modeling of the Brow-

nian motion of a large system of particles in a surrounding bath [14]. One application of such

system is the electrostatic plasma, in which one considers the interactions between the electrons

and a surrounding bath via the Coulomb force. In the dimensionless VPFP system with uncer-

tainty, the time evolution of particle density distribution function f(t,x,v, z) under the action

of an electrical potential φ(t,x, z) satisfies ∂tf + 1
δv · ∇xf − 1

ε∇xφ · ∇vf = 1
δεFf,

−∆xφ = ρ− 1, t > 0, x ∈ Ω ⊂ Rd, v ∈ Rd, z ∈ Iz,
(2.17)

with initial condition

f(0,x,v, z) = f0(x,v, z). (2.18)

Here, F is a collision operator describing the Brownian motion of the particles, which reads,

Ff = ∇v ·
(
Mv∇v

(
f

Mv

))
, (2.19)

where Mv is the global equilibrium or global Maxwellian,

Mv =
1

(2π)
d
2

e−
|v|2
2 . (2.20)

δ is the reciprocal of the scaled thermal velocity, ε represents the scaled thermal mean free path.

There are two different regimes for this system. One is the high field regime, where δ = 1. As

ε→ 0, f goes to the local Maxwellian Mv
l = 1

(2π)
d
2
e−
|v−∇xφ|2

2 , and the VPFP system converges

to a hyperbolic limit [2, 31, 65]:  ∂tρ+∇x · (ρ∇xφ) = 0,

−∆xφ = ρ− 1.
(2.21)

Another regime is the parabolic regime, where δ = ε. When ε → 0, f goes to the global

Maxwellian Mv, and the VPFP system converges to a parabolic limit [68]: ∂tρ−∇x · (∇xρ− ρ∇xφ) = 0,

−∆xφ = ρ− 1.
(2.22)
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2.4 The classical nonlinear Boltzmann equation

We finally introduce the classical Boltzmann equation that describes the time evolution of a

rarefied gas [11]:

∂tf + v · ∇xf = Qb(f, f), t > 0, x ∈ Ω ⊂ Rd, v ∈ Rd, z ∈ Iz, (2.23)

where Qb(f, f) is the bilinear collision operator modeling the binary interaction among particles:

Qb(f, f)(v, z) =

∫
Rd

∫
Sd−1

B(v,v∗, η, z) [f(v′, z)f(v′∗, z)− f(v, z)f(v∗, z)] dη dv∗. (2.24)

Here (v,v∗) and (v′,v′∗) are the velocity pairs before and after a collision, during which the

momentum and energy are conserved; hence (v′,v′∗) can be represented in terms of (v,v∗) as
v′ =

v + v∗
2

+
|v − v∗|

2
η,

v′∗ =
v + v∗

2
− |v − v∗|

2
η,

with the parameter η varying on the unit sphere Sd−1. The collision kernel B(v,v∗, η, z) is a

non-negative function depending on |v − v∗| and cosine of the deviation angle θ:

B(v,v∗, η, z) = B(|v − v∗|, cos θ, z), cos θ =
η · (v − v∗)

|v − v∗|
.

The specific form of B is determined from the intermolecular potential via the scattering the-

ory. For numerical purpose, a commonly used model is the variable hard-sphere (VHS) model

introduced by Bird [9]:

B(|v − v∗|, cos θ, z) = bλ(z)|v − v∗|λ, −d < λ ≤ 1, (2.25)

where λ > 0 corresponds to the hard potentials, and λ < 0 to the soft potentials.

The collision operator (2.24) conserves mass, momentum, and energy:∫
Rd
Qb(f, f) dv =

∫
Rd
Qb(f, f)v dv =

∫
Rd
Qb(f, f)|v|2 dv = 0. (2.26)

It satisfies the celebrated Boltzmann’s H-theorem:

−
∫
Rd
Qb(f, f) ln f dv ≥ 0,

which implies that the entropy is always non-decreasing. Furthermore, the following statements

are equivalent∫
Rd
Qb(f, f) ln f dv = 0⇐⇒ Qb(f, f) = 0⇐⇒ f =Mb(v)(ρ(t,x,z),u(t,x,z),T (t,x,z)),

where Mb is the local equilibrium/Maxwellian defined by

Mb =
ρ

(2πT )d/2
e−

(v−u)2

2T ,

with ρ, u, T being, respectively, the density, bulk velocity, and temperature:

ρ =

∫
Rd
f dv, u =

1

ρ

∫
Rd
fv dv, T =

1

dρ

∫
Rd
f |v − u|2 dv. (2.27)
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A widely used boundary condition for Boltzmann-like kinetic equations is the Maxwell bound-

ary condition which is a linear combination of specular reflection and diffusion (particles are

absorbed by the wall and then re-emitted according to a Maxwellian distribution of the wall).

Specifically, for any boundary point x ∈ ∂Ω, let n(x) be the unit normal vector to the boundary,

pointed to the domain, then the in-flow boundary condition is given by

f(t,x,v, z) = g(t,x,v, z), (v − uw) · n > 0,

with

g(t,x,v, z) =(1− α)f(t,x,v − 2[(v − uw) · n]n, z)

+
α

(2π)
d−1
2 T

d+1
2

w

e−
|v−uw|2

2Tw

∫
(v−uw)·n<0

f(t,x,v, z)|(v − uw) · n|dv, (2.28)

where uw = uw(t,x, z), Tw = Tw(t,x, z) are the velocity and temperature of the wall (boundary).

The constant α (0 ≤ α ≤ 1), which may depend on z as well, is the accommodation coefficient

with α = 1 corresponding to the purely diffusive boundary, and α = 0 the purely specular

reflective boundary.

2.5 Other related kinetic models — a glance

In addition to the above introduced equations, we mention a few related kinetic models.

Interested readers may consult the survey papers [11, 74, 20] for details. First of all, the collision

operator does not have to be the aforementioned forms: when the deviation angle θ is small, the

Boltzmann collision integral (2.24) diverges and one has to consider its grazing collision limit —

the Fokker-Planck-Landau operator [51], which is a diffusive operator relevant in the study of

Coulomb interactions. When the quantum effect is non-negligible (particles behave as Bosons or

Fermions), (2.11) or (2.24) needs to be modified to include an extra factor like (1± f), resulting

in the so-called quantum or degenerate collision operators [73, 19]. Other generalizations such

as the multi-species model [71] (system consists of more than one type of particles), inelastic

model [75] (during collisions only the mass and momentum are conserved whereas the energy is

dissipative, for example, in granular materials) are also possible. Secondly, the forcing term on

the left hand side is not necessary as that shown in (2.10): generally one can couple the kinetic

equation with the Maxwell equation where both electric and magnetic effects are present [72].

3 Coercivity, hypocoercivity, regularity and long time be-

havior

Coercivity, or more generally hypocoercivity, describing the dissipative nature of the kinetic

collision operators, plays important roles in the study of the solution of kinetic equations toward

the local or global Maxwellian [74, 76]. For uncertain problems, one can extend such behavior to

the random space, thus gives rise to regularity or long-time estimates in the random space of the

solution, allowing one to quantify the long-time impact of the uncertainties for some statistical

quantities of interest. In this section, we will review some of recent results in this direction,

in particular, how such analysis can be used to understand the regularity and propagation of

uncertainty for random kinetic equations.

9



In this section we will restrict our discussion to the one-dimensional random variable z with

finite support Iz (e.g., uniform and beta distributions). Generalization to multi-dimensional

random variables with finite support can be carried out in a similar fashion.

3.1 The linear transport equation

To study the regularity and long-time behavior in the random space of the linear transport

equation (2.1)-(2.3), we first recall the Hilbert space of the random variable

H(Iz; ω dz) =
{
f | Iz → R+,

∫
Iz

f2(z)ω(z) dz < +∞
}
, (3.1)

equipped with the inner product and norm defined as

〈f, g〉ω =

∫
Iz

fg ω(z) dz, ‖f‖2ω = 〈f, f〉ω . (3.2)

We also define the kth order differential operator with respect to z as

Dkf(t, x, v, z) := ∂kz f(t, x, v, z), (3.3)

and the Sobolev norm in H as

‖f(t, x, v, ·)‖2Hk :=
∑
α≤k

‖Dαf(t, x, v, ·)‖2ω. (3.4)

Finally, we introduce norms in space and velocity as follows,

‖f(t, ·, ·, ·)‖2Γ :=

∫
Q

‖f(t, x, v, ·)‖2ω dx dv, t ≥ 0, (3.5)

‖f(t, ·, ·, ·)‖2Γk :=

∫
Q

‖f(t, x, v, ·)‖2Hk dxdv, t ≥ 0, (3.6)

where Q = [0, 1]× [−1, 1] denotes the domain in the phase space. For simplicity, we will suppress

the dependence of t and just use ‖f‖Γ, ‖f‖Γk in the following proof.

An important property of L is its coercivity, given in (2.7), based on which the following

results were established in [40].

Theorem 3.1 (Uniform regularity). If for some integer m ≥ 0,

‖Dkσ(z)‖L∞ ≤ Cσ, ‖Dkf0‖Γ ≤ C0, k = 0, . . . ,m, (3.7)

then the solution f to the linear transport equation (2.1)–(2.3), with σa = S = 0 and periodic

boundary condition in x, satisfies,

‖Dkf‖Γ ≤ C, k = 0, · · · ,m, ∀t > 0, (3.8)

where Cσ, C0 and C are constants independent of ε.

The above theorem shows that, under some smoothness assumption on σ, the regularity of

the initial data is preserved in time and the Sobolev norm of the solution is bounded uniformly

in ε.
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Theorem 3.2 (ε2-estimate on [f ] − f). With all the assumptions in Theorem 3.1 and fur-

thermore, σ ∈ W k,∞ = {σ ∈ L∞([0, 1]× Iz)|Djσ ∈ L∞([0, 1]× Iz) for all j ≤ k}. For a given

time T > 0, the following regularity result of [f ]− f holds:

‖Dk([f ]− f)‖2Γ ≤ e−σmint/2ε
2

‖Dk([f0]− f0)‖2Γ + C ′ε2 (3.9)

for any t ∈ (0, T ] and 0 ≤ k ≤ m,, where C ′ and C are constants independent of ε.

The first term on the right hand side of (3.9) is the behavior of the initial layer, which

is damped exponentially in t/ε. After the initial layer, the high order derivatives in z of the

difference between f and its local equilibrium [f ] is of O(ε).

3.2 The semiconductor Boltzmann equation

The results in the previous subsection can be extended to the (linear) semiconductor Boltz-

mann equation by assuming φ = 0 in (2.10).

Introduce the Hilbert space of the velocity variable L2
M := L2

(
Rd;

dv

Ms(v)

)
, with the cor-

responding inner product 〈·, ·〉L2
M

and norm || · ||L2
M

. First, the collision operator Qs has the

following coercivity property for any f ∈ L2
M ([69]),

〈Q(f), f〉L2
M
≤ −σmin||f − ρMs||2L2

M
, (3.10)

Introduce the following norms

||f(t, ·, ·, ·)||2Γ :=

∫
Ω

∫
Rd

||f ||2ω
M(v)

dv dx,

||f(t, ·, ·, ·)||2Γk :=

∫
Ω

∫
Rd

||f ||2Hk
M(v)

dv dx.

We assume a periodic boundary condition in space. The following results were proved in [58].

Theorem 3.3. (Uniform Regularity) Assume for some integer m ≥ 0,

||Dkσ||L∞(x,v,z) ≤ Cσ, ||Dkf0||Γ ≤ C0, k = 0, · · · ,m,

then the solution f to (2.10) satisfies

||Dkf ||Γ ≤ C, k = 0, · · · ,m, ∀t > 0,

where Cσ, C0 and C are constants independent of ε.

Theorem 3.4. (Estimate on f − ρMs) With all the assumptions in Theorem 3.3 then

||Dk(f − ρMs)||2Γ ≤ e−σmint/2ε
2

||Dk(f0 − ρ0M
s
0 )||2Γ + C ′ε2 ≤ Cε2, (3.11)

for any t ∈ (0, T ] and 0 ≤ k ≤ m, where C ′ and C are constants independent of ε.

Differing from the isotropic scattering, for the anisotropic collision kernel, to obtain the decay

rate of f − ρMs, an exponential decay estimate on v · ∇xf is needed [58].
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3.3 General linear kinetic equations

While the previous analysis gave decay estimates on the deviation between f and its local

equilibrium, which can be difficult for more general kinetic equations, the use of hypocoercivity to

estimate the deviation of f from the global equilibrium which is independent of t and x, helps one

to deal with more general and even nonlinear equations. For general linear transport equation

with one conserved quantity:

∂tf +
1

ε
v · ∇xf +

1

ε
∇xφ · ∇vf =

1

δε
Ql(f), (3.12)

where the collision Ql includes

• BGK operator Ql = σ(x, z)(Πf − f), where Π is a projection operator onto the local

equilibrium;

• Anisotropic scattering operator Ql =
∫

[σ(v → v∗, z)f(v∗)− σ(v∗ → v, z)f(v)] dv∗, σ > 0.

Two regimes will be considered: the high-field regime (δ = 1) ad the parabolic regime (δ = ε).

In [56] the following regularity result was established:

Theorem 3.5. Let f be the solution to the kinetic equation (3.12), and assume the initial data

has sufficient regularity with respect to z: ‖∂lzf0‖ ≤ H l, then:

(1) ‖∂lzf‖ ≤ Cl! min{e−λztC(t)l, e(C−λz)t2l−1(1 +H)l+1}, where C is a constant, C(t) is an

algebraic function of t, and λz > 0 is uniformly bounded below from zero;

(2) f is analytic with uniform convergence radius 1
2(1+H) ;

(3) Both the exponential convergence in time and convergence radius are uniform with respect

to ε.

The proof of the results is based on the hypocoercivity property for deterministic equation

[21], which gives the exponential decay in time, and a careful analysis of ε-independent decay

rate.

3.4 The Vlasov-Poisson-Fokker-Planck system

We now discuss the (nonlinear) VPFP system (2.17)-(2.18). For simplicity, we only consider

x = x ∈ (0, l) and v = v ∈ R in one dimension. Define the L2 space in the measure of

dµ = dµ(x, v, z) = ω(z) dxdv dz. (3.13)

With this measure, one has the corresponding Hilbert space with the following inner product

and norms:

< f, g >=

∫
Ω

∫
R

∫
Iz

fg dµ(x, v, z), or, < ρ, j >=

∫
Ω

∫
Iz

ρj dµ(x, z), (3.14)

with norm

‖f‖2 =< f, f > .

In order to get the convergence rate of the solution to the global equilibrium, define,

h =
f −Mv

√
Mv

, σ =

∫
R
h
√
M dv, u =

∫
R
h v
√
M dv, (3.15)
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where h is the (microscopic) fluctuation around the equilibrium, σ is the (macroscopic) density

fluctuation, and u is the (macroscopic) velocity fluctuation. Then the microscopic quantity h

satisfies,

εδ∂th+ βv∂xh− δ∂xφ∂vh+ δ
v

2
∂xφh+ δv

√
M∂xφ = LFh, (3.16)

∂2
xφ = −σ, (3.17)

while the macroscopic quantities σ and u satisfy

δ∂tσ + ∂xu = 0, (3.18)

εδ∂tu+ ε∂xσ + ε

∫
v2
√
M(1−Π)∂xhdv + δ∂xφσ + u+ δ∂xφ = 0 , (3.19)

where LF is the so-called linearized Fokker-Planck operator,

LFh =
1√
Mv
F
(
Mv +

√
Mvh

)
=

1√
Mv

∂v

(
Mv∂v

(
h√
Mv

))
. (3.20)

Introduce projections onto
√
Mv and v

√
Mv,

Π1h = σ
√
Mv, Π2h = vu

√
Mv, Πh = Π1h+ Π2h. (3.21)

Furthermore, we also define the following norms and energies,

• Norms:

– ‖h‖2L2(v) =
∫
R h

2 dv,

– ‖f‖2Hm =
∑m
l=0 ‖∂lzf‖2, ‖f‖2H1(x,z) = ‖f‖2 + ‖∂xf‖2 + ‖∂zf‖2,

– ‖h‖2v =
∫

(0,l)×R×Iz (∂vh)2 + (1 + |v|2)h2 dµ(x, v, z), ‖h‖2Hmv =
∑m
l=0 ‖∂lzh‖2v;

• Energy terms:

– Emh = ‖h‖2Hm + ‖∂xh‖2Hm−1 , Emφ = ‖∂xφ‖2Hm + ‖∂2
xφ‖2Hm−1 ;

• Dissipation terms:

– Dm
h = ‖(1−Π)h‖2Hm + ‖(1−Π)∂xh‖2Hm−1 , Dm

φ v = Emφ v,

– Dm
u = ‖u‖2Hm + ‖∂xu‖2Hm−1 , Dm

σ = ‖σ‖2Hm + ‖∂xσ‖2Hm−1 .

To get the regularity of the solution in the Hilbert space, one usually uses energy estimates.

In order to balance the nonlinear term ∂xφ∂vf , and get a regularity independent of the small

parameter ε (or depending on ε in a good way), one needs the hypocoercivity property from the

collision operator. The hypocoercivity property one uses most commonly is

−〈LFh, h〉 ≥ C‖(1−Π1)h‖2, (3.22)

see [21, 76]. However, this is not enough for the non-linear case. We need the following stronger

hypocoercivity (see [22]):

Proposition 3.6. For LF defined in (3.20),
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(a) −〈LFh, h〉 = −〈L(1−Π)h, (1−Π)h〉+ ‖u‖2;

(b) −〈LF (1−Π)h, (1−Π)h〉 = ‖∂v(1−Π)h‖2 + 1
4‖v(1−Π)h‖2 − 1

2‖(1−Π)h‖2;

(c) −〈LF (1−Π)h, (1−Π)h〉 ≥ ‖(1−Π)h‖2;

(d) There exists a constant λ0 > 0, such that the following hypocoercivity holds,

−〈LFh, h〉 ≥ l0‖(1−Π)h‖2v + ‖u‖2, (3.23)

and the largest λ0 = 1
7 in one dimension.

The following results were obtained in [47].

Theorem 3.7. For the high field regime (δ = 1), if

Emh (0) +
1

ε2
Emφ (0) ≤ C0

ε
, (3.24)

then,

Emh (t) ≤ 3

λ0
e−

t
ε2

(
Emh (0) +

1

ε2
Emφ (0)

)
, Emφ (t) ≤ 3

λ0
e−t

(
ε2Emh (0) + Emφ (0)

)
; (3.25)

For the parabolic regime (δ = ε), if

Emh (0) +
1

ε2
Emφ (0) ≤ C0

ε2
, (3.26)

then,

Emh (t) ≤ 3

λ0
e−

t
ε

(
Emh (0) +

1

ε2
Emφ (0)

)
, Emφ (t) ≤ 3

λ0
e−t

(
ε2Emh (0) + Emφ (0)

)
. (3.27)

Here C0 = 2λ0/(32BC2
1

√
ε)2, B = 48

√
m
(
m
[m/2]

)
is a constant only depending on m, [m/2] is

the smallest integer larger or equal to m
2 , and C1 is the Sobolev constant in one dimension, and

m ≥ 1.

These results show that the solution will converge to the global Maxwellian Mv. Since Mv

is independent of z, one sees that the impact of the randomness dies out exponentially in time,

in both asymptotic regimes.

The above theorem also leads to the following regularity result for the solution to VPFP

system:

Theorem 3.8. Under the same condition given in Theorem 3.7, for x ∈ [0, l], one has

‖f(t)‖2Hmz ≤
3

λ0
Em(0) + 2l2, (3.28)

where Em(0) = Emh (0) + 1
ε2E

m
φ .

This Theorem shows that the regularity of the initial data in the random space is preserved

in time. Furthermore, the bound of the Sobolev norm of the solution is independent of the small

parameter ε.
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3.5 The classical nonlinear Boltzmann equation

In this subsection, we consider the spatially homogeneous classical Boltzmann equation

∂tf = Qb(f, f) (3.29)

subject to random initial data and random collision kernel

f(0,v, z) = f0(v, z), B = B(v,v∗, η, z), z ∈ Iz.

We define the norms and operators:

‖f(t, ·, z)‖Lpv =

(∫
Rd
|f(t,v, z)|p dv

)1/p

, ‖f(t,v, ·)‖L2
z

=

(∫
Iz

f(t,v, z)2π(z) dz

)1/2

,

‖|f(t, ·, ·)‖|k = sup
z∈Iz

(
k∑
l=0

‖∂lzf(t,v, z)‖2L2
v

)1/2

.

Qb(g, h)(v) =

∫
Rd

∫
Sd−1

B(v,v∗, η, z) [g(v′)h(v′∗)− g(v)h(v∗)] dη dv∗,

Qb1(g, h)(v) =

∫
Rd

∫
Sd−1

∂zB(v,v∗, η, z) [g(v′)h(v′∗)− g(v)h(v∗)] dη dv∗.

The regularity, studied in [34], relies on the following estimates ofQb(g, h) andQb1(g, h), which are

standard results in the deterministic case [57, 10] and straightforward extension to the uncertain

case:

Lemma 3.9. Assume the collision kernel B depends on z linearly, B and ∂zB are locally

integrable and bounded in z. If g, h ∈ L1
v ∩ L2

v, then

‖Qb(g, h)‖L2
v
, ‖Qb1(g, h)‖L2

v
≤ CB‖g‖L1

v
‖h‖L2

v
, (3.30)

‖Qb(g, h)‖L2
v
, ‖Qb1(g, h)‖L2

v
≤ CB‖g‖L2

v
‖h‖L2

v
, (3.31)

where the constant CB > 0 depends only on B and ∂zB.

We state the following theorem proved in [34].

Theorem 3.10. Assume that B satisfies the assumption in Lemma 3.9, and supz∈Iz ‖f
0‖L1

v
≤

M , ‖|f0‖|k < ∞ for some integer k ≥ 0. Then there exists a constant Ck > 0, depending only

on CB, M , T , and ‖|f0‖|k such that

‖|f‖|k ≤ Ck, for any t ∈ [0, T ] . (3.32)

This result shows that, even for the nonlinear Boltzmann equation, the regularity of the

initial data is preserved in time in the random space.

This result can be easily generalized to the full Boltzmann equation (2.23) with periodic or

vanishing boundary condition in space, we omit the detail. Linear dependence of the collision

kernel on the random variable can also be relaxed. See [34] for a general proof.

One should notice that if one considers the Euler regime (by putting an ε−1 in front of Qb,
then Ck in (3.32) will depend on the reciprocal of ε, in addition to being a large k-dependet

constant (which is already the case for the deterministic problem [24]). This estimate breaks

down in the Euler limit when ε→ 0.
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4 Generalized polynomial chaos based stochastic Galerkin

(gPC-sG) methods for random kinetic equations

In the last two decades, a large variety of numerical methods have been developed in the field

of uncertainty quantification (UQ) [27, 32, 60, 77]. Among these methods, the most popular ones

are Monte-Carlo methods [64], stochastic collocation methods [3, 5, 78] and stochastic Galerkin

methods [5, 4]. The idea of Monte-Carlo methods is to sample randomly in the random space,

which results in halfth order convergence. Stochastic collocation methods use sample points on

a well-designed grid, and one can evaluate the statistical moments by numerical quadratures.

Stochastic Galerkin methods start from an orthonormal basis in the random space, and ap-

proximate functions by truncated polynomial chaos expansions. By the Galerkin projection, a

deterministic system of the expansion coefficients can be obtained. While Monte-Carlo meth-

ods have advantage in very high dimensional random space, the other two methods can achieve

spectral accuracy if one adopts the generalized polynomial chaos (gPC) basis [79], which is a

great advantage if the dimension of the random space is not too high. In this paper we focus on

low dimensional random space, and adopt the stochastic Galerkin (sG) approach.

In the gPC expansion, one approximates the solution of a stochastic problem via an orthog-

onal polynomial series [79] by seeking an expansion in the following form:

f(t,x,v, z) ≈
M∑
|k|=0

fk(t,x,v)Φk(z) := fM (t,x,v, z), (4.1)

where k = (k1, . . . , kn) is a multi-index with |k| = k1 + · · ·+ kn. {Φk(z)} are from PnM , the set

of all n-variate polynomials of degree up to M and satisfy

< Φk,Φj >ω=

∫
Iz

Φk(z)Φj(z)ω(z) dz = δkj, 0 ≤ |k|, |j| ≤M.

Here δkj is the Kronecker delta function. The orthogonality with respect to ω(z), the probabil-

ity density function of z, then defines the orthogonal polynomials. For example, the Gaussian

distribution defines the Hermite polynomials; the uniform distribution defines the Legendre

polynomials, etc. Note that when the random dimension n > 1, an ordering scheme for mul-

tiple index can be used to re-order the polynomials {Φk(z), 0 ≤ |k| ≤ M} into a single index

{Φk(z), 1 ≤ k ≤ NM = dim(PnM ) =
(
M+n
M

)
}. Typically, the graded lexicographic order is used,

see, for example, Section 5.2 of [77].

Now inserting (4.1) into a general kinetic equation
∂tf + v · ∇xf +∇xφ · ∇vf = Q(f), t > 0, x ∈ Ω, v ∈ Rd, z ∈ Iz,

f(0,x,v) = f0(x,v), x ∈ Ω, v ∈ Rd, z ∈ Iz,

f(t,x,v) = g(t,x,v), t ≥ 0, x ∈ ∂Ω, v ∈ Rd, z ∈ Iz.

(4.2)

Upon a standard Galerkin projection, one obtains for each 0 ≤ |k| ≤M ,
∂tfk + v · ∇xfk +

M∑
|j|=0

∇xφkj · ∇vfj = Qk(fM ), t > 0, x ∈ Ω, v ∈ Rd,

fk(0,x,v) = f0
k(x,v), x ∈ Ω, v ∈ Rd,

fk(t,x,v) = gk(t,x,v), t ≥ 0, x ∈ ∂Ω, v ∈ Rd,

(4.3)
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with

Qk(fM ) :=

∫
Iz

Q(fM )(t,x,v, z)Φk(z)ω(z) dz, φkj :=

∫
Iz

φ(t,x, z)Φk(z)Φj(z)ω(z) dz,

f0
k :=

∫
Iz

f0(x,v, z)Φk(z)ω(z) dz, gk :=

∫
Iz

g(t,x,v, z)Φk(z)ω(z) dz.

Here the collision operator Q(fM ) could be either linear or nonlinear depending on the specific

problem. We also assume that the potential φ(t,x, z) is given a priori for simplicity (the case

that it is coupled to a Poisson equation can be treated similarly).

Therefore, one has a system of deterministic equations to solve and the unknowns are gPC

coefficients fk, which are independent of z. Mostly importantly, the resulting gPC-sG system is

just a vector analogue of its deterministic counterpart, thus allowing straightforward extension

of the existing deterministic kinetic solvers (of course special attention is needed for the collision

operator which will be discussed later). Once the coefficients fk are obtained through some

numerical procedure, the statistical information such as the mean, covariance, standard deviation

of the true solution f can be approximated as

E[f ] ≈ f0, Var[f ] ≈
M∑
|k|=1

f2
k, Cov[f ] ≈

M∑
|i|,|j|=1

fifj.

4.1 Property of the collision operator under the gPC-sG approxima-

tion

Due to the truncated approximation (4.1), the positivity of f is immediately lost. Thus some

properties such as the H-theorem no longer holds under the gPC-sG approximation. Yet the

conservation of the collision operator, for instance (2.26), is still valid (whose proof does not

require the positivity of f). Normally these need to be analyzed based on the specific collision

operator. We give a simple example here (see [41] for the proof).

Lemma 4.1. For the semiconductor Boltzmann collision operator (2.13) with random scattering

kernel σ = σ(v,v∗, z), if its gPC-sG approximation Qsk = 0 for every 0 ≤ |k| ≤M , then it admits

a unique solution fk = ρkM
s(v), 0 ≤ |k| ≤M , where ρk :=

∫
Rd fk dv.

This lemma is just a vector analogue of the property (2.15).

4.2 An efficient treatment of the Boltzmann collision operator under

the gPC-sG approximation

As mentioned previously, numerical discretization of the gPC-sG system (4.3) for most kinetic

equations does not present essential difficulties. In principle, any time and spatial discretization

used for the deterministic, scalar kinetic equations can be generalized easily to the vectorized

form. However, this is not the case for the collision operator, especially when it is nonlinear. To

illustrate the idea, we use the classical Boltzmann collision operator as an example.

Under the gPC-sG approximation, the kth-mode of the classical Boltzmann collision operator
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(2.24) is given by

Qbk(t,x,v) =

∫
Iz

Qb(fM , fM )(t,x,v, z)Φk(z)ω(z) dz

=

M∑
|i|,|j|=0

Skij

∫
Rd

∫
Sd−1

|v − v∗|λ [fi(v
′)fj(v

′
∗)− fi(v)fj(v∗)] dηdv∗, (4.4)

with

Skij :=

∫
Iz

bλ(z)Φk(z)Φi(z)Φj(z)ω(z) dz, (4.5)

where we assumed that the collision kernel takes the form (2.25) with uncertainty in bλ.

Note that the tensor Skij does not depend on the solution fk, so it can be precomputed

and stored for repeated use. But even so, the evaluation of Qbk still presents a challenge. A

naive, direct computation for each t, x, and k would result in O(N2
MN

d−1
η N2d

v ) complexity,

where NM =
(
M+n
M

)
is the dimension of PnM , Nη is the number of discrete points in each angular

direction, and Nv is the number of points in each velocity dimension. This is, if not impossible,

prohibitively expensive.

In [34], we constructed a fast algorithm for evaluating (4.4). It was shown that the above

direct cost O(N2
MN

d−1
η N2d

v ) can be reduced to max{O(RkN
d−1
η Nd

v logNv), O(RkNMN
d
v)} with

Rk ≤ NM by leveraging the singular value decomposition (SVD) and the fast spectral method

for the deterministic collision operator [62]. This is achieved in two steps.

First, for each fixed k, decompose the symmetric matrix (Skij)NM×NM as (via a truncated

SVD with desired accuracy)

Skij =

Rk∑
r=1

Uk
irV

k
rj.

Substituting it into (4.4) and rearranging terms, one gets

Qbk(v) =

Rk∑
r=1

∫
Rd

∫
Sd−1

|v − v∗|λ
[
gkr (v′)hkr (v′∗)− gkr (v)hkr (v∗)

]
dηdv∗, (4.6)

with

gkr (v) :=

M∑
|i|=0

Uk
irfi(v), hkr (v) :=

M∑
|i|=0

V k
rifi(v).

Hence one readily reduce the cost fromO(N2
MN

d−1
η N2d

v ) to max{O(RkN
d−1
η N2d

v ), O(RkNMN
d
v)},

where Rk ≤ NM is the numerical rank of matrix (Skij)NM×NM .

Next, note that (4.6) can be formally written as

Qbk(v) =

Rk∑
r=1

Qb(gkr , hkr ), (4.7)

and Qb is the deterministic collision operator (2.24) with kernel B = |v − v∗|λ. In [62], a fast

Fourier-spectral method in velocity variable v was developed for (2.24) in the case of 2D Maxwell

molecule (λ = 0) and 3D hard-sphere molecule (λ = 1). Applying this method to (4.7) with

slight modification, one can further reduce the cost from max{O(RkN
d−1
η N2d

v ), O(RkNMN
d
v)}

to max{O(RkN
d−1
η Nd

v logNv), O(RkNMN
d
v)}, see appendix of [34] for a detailed description (in

practice, typically Nη‖Nv [25, 23]).
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The above method has been extended to the Fokker-Planck-Landau collision operator in [36].

When the random variable is in high dimension, the problem suffers from the dimension curse.

A wavelet based sparse grid method was introduced in [70], in which the matrix (Skij)NM×NM
is very sparse, and the computational cost can be significantly reduced.

4.3 A spectral accuracy analysis

The regularity results presented previously can be used to establish the spectral convergence

of the gPC-sG method. As in section 3.5, we will restrict to the spatially homogeneous Boltzmann

equation (3.29).

Using the orthonormal basis {Φk(z)}, the solution f to (3.29) can be represented as

f(t,v, z) =

∞∑
k=0

f̂k(t,v)Φk(z), where f̂k(t,v) =

∫
Iz

f(t,v, z)Φk(z)ω(z) dz . (4.8)

Let PM be the projection operator defined as

PMf(t,v, z) =

M∑
k=0

f̂k(t,v)Φk(z).

Define the norms

‖f(t,v, ·)‖Hkz =

(
k∑
l=0

‖∂lzf(t,v, z)‖2L2
z

)1/2

, ‖f(t, ·, ·)‖L2
v,z

=

(∫
Iz

∫
Rd
f(t,v, z)2 dvω(z) dz

)1/2

,

(4.9)

then one has the following projection error.

Lemma 4.2. Assume z obeys uniform distribution, i.e., z ∈ Iz = [−1, 1] and ω(z) = 1/2 (so

Φk(z) are Legendre polynomials). If ‖|f0‖|m is bounded, then

‖f − PMf‖L2
v,z
≤ C

Mm
, (4.10)

where C is a constant.

Given the gPC approximation of f :

fM (t,v, z) =

M∑
k=0

fk(t,x,v)Φk(z), (4.11)

define the error function

eM (t,v, z) = PMf(t,v, z)− fM (t,v, z) :=

M∑
k=0

ek(t,v)Φk(z),

where ek = f̂k − fk. Then we have

Theorem 4.3. ([34]) Assume the random variable z and initial data f0 satisfy the assumption

in Lemma 4.2, and the gPC approximation fM is uniformly bounded in M , then

‖f − fM‖L2
v,z
≤ C(t)

{
1

Mm
+ ‖eM (0)‖L2

v,z

}
,

where C is a constant depending on t.

Remark 4.4. Clearly for spectral accuracy, one needs ‖eM (0)‖L2
v,z
≤ C/Mm. In practice, one

chooses fk(0,v) = f̂k(0,v), for all k = 0, · · · ,M , then eM (0) = 0.

19



4.4 Numerical examples

We now show two typical examples of the kinetic equations subject to random inputs. The

first one is the classical Boltzmann equation with random boundary condition and the second

one is the semiconductor Boltzmann equation with random force field. For simplicity, we assume

the random variable z is one-dimensional and obeys uniform distribution.

Example 1. Consider the classical Boltzmann equation (2.23) with the following boundary

condition: the gas is initially in a constant state

f0(x,v) =
1

2πT 0
e−

v2

2T0 , T 0 = 1, x ∈ [0, 1].

At time t = 0, suddenly increase the wall temperature at left boundary by a factor of 2 with a

small random perturbation:

Tw(z) = 2(T0 + sz), s = 0.2.

The purely diffusive Maxwell boundary condition is assumed at x = 0. For other implementation

details, see [34].

The deterministic version of this problem has been considered by many authors [1, 26, 23],

where they all observed that with the sudden rise of wall temperature, the gas close to the wall

is heated and accordingly the pressure there rises sharply, which pushes the gas away from the

wall and a shock wave propagates into the domain. The mean of our solution also exhibits a

similar behavior, see Figure 1. Meanwhile, the standard deviation of the solution allows us to

predict the propagation of uncertainties quantitatively.

Example 2. Consider the semiconductor Boltzmann equation (2.10) coupled with a Poisson

equation:

β(z)∂xxφ = ρ− h(x, z), φ(0) = 0, φ(1) = 5, x ∈ [0, 1],

where we assume the scaled Debye length β(z) and the doping profile h(x, z) are subject to

uncertainty:

β(z) = 0.002(1 + 0.2z),

c(x, z) =

(
1− (1− s0)ρ(0, t = 0)

[
tanh

(
x− x1

s

)
− tanh

(
x− x2

s

)])
(1 + 0.5z),

with s = 0.02, s0 = (1− 0.001)/2, x1 = 0.3, x2 = 0.7. For other implementation details, see [41].

The 4-th order gPC solutions and the reference solutions obtained by stochastic collocation

are shown in Figure 2, and they are in good agreement.

5 Stochastic asymptotic-preserving (sAP) schemes for ran-

dom kinetic equations in diffusive scalings

Kinetic equations often have scaling parameters (such as the Knudsen number ε) that asymp-

totically lead kinetic equations to their hydrodynamic or diffusion limit equations. When ε is

small, numerically solving the kinetic equations is challenging since time and spatial discretiza-

tions need to resolve ε. Asymptotic-preserving (AP) schemes are those that mimic the asymptotic
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Figure 1: Example 1. Left column: mean of density, bulk velocity (first component), and

temperature. Right column: standard deviation of density, bulk velocity (first component), and

temperature. Solid line: stochastic collocation with Nz = 20, Nv = 64, Nη = 8, Nx = 200.

Other legends are the 7-th order gPC-sG solutions at different time with Nv = 32, Nη = 4,

Nx = 100.
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Figure 2: Example 2. First row: mean and variance of ρ. Second row: mean of velocity u

and potential φ. Time t = 0.05, ∆x = 0.01, ∆t = 10−5, ε = 0.001. Star: 4-th order gPC-sG

solutions. Solid line: the reference solutions obtained by stochastic collocation.
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transitions from kinetic equations to their hydrodynamic/diffusion limits in the discrete setting

[54, 53, 37, 38, 35]. Starting from the mid-1990’s, the development of AP schemes for such

problems has generated many interests, see, for example, [39, 43, 44, 29, 49, 30, 55]. The AP

strategy has been proved to be a powerful and robust technique to address multiscale problems

in many kinetic problems. The main advantage of AP schemes is that they are very efficient even

when ε is small, since they do not need to resolve the small scales numerically, and yet can still

capture the macroscopic behavior governed by the limiting macroscopic equations. Indeed, it

was proved, in the case of linear transport with a diffusive scaling, an AP scheme converges uni-

formly with respect to the scaling parameter [29]. This is expected to be true for all AP schemes

[38], although specific proofs are needed for specific problems. AP schemes avoid the difficulty of

coupling a microscopic solver with a macroscopic one, as the micro solver automatically becomes

a macro solver as ε→ 0.

Here we are interested in the scenario when the uncertainty (random inputs) and small scaling

both present in a kinetic equation. Since the sG method makes the random kinetic equations

into deterministic systems which are vector analogue of the original scalar deterministic kinetic

equations, one can naturally utilize the deterministic AP machinary to solve the sG system

to achieve the desired AP goals. To this aim, the notion of stochastic asymptotic preserving

(sAP) was introduced in [46]. A scheme is sAP if a sG method for the random kinetic equation

becomes a sG approximation for the limiting macroscopic, random (hydrodynamic or diffusion)

equation as ε→ 0, with highest gPC degree, mesh size and time step all held fixed. Such schemes

guarantee that even for ε → 0, all numerical parameters, including the number of gPC modes,

can be chosen only for accuracy requirement and independent of ε.

Next we use the linear transport equation (2.1) as an example to derive a sAP scheme. It

has the merit that rigorous convergence and sAP theory can be established, see [40].

5.1 A sAP-sG method for the linear transport equation

We assume the complete orthogonal polynomial basis in the Hilbert space H(Iz;ω(z) dz)

corresponding to the weight ω(z) is {φi(z), i = 0, 1, · · · , }, where φi(z) is a polynomial of degree

i and satisfies the orthonormal condition:

〈φi, φj〉ω =

∫
φi(z)φj(z)ω(z) dz = δij .

Here φ0(z) = 1, and δij is the Kronecker delta function. Since the solution f(t, ·, ·, ·) is defined

in L2
(
[0, 1]× [−1, 1]× Iz; dµ), one has the gPC expansion

f(t, x, v, z) =

∞∑
i=0

fi(t, x, v)φi(z), f̂ =
(
fi
)∞
i=0

:=
(
f̄ , f̂1

)
.

The mean and variance of f can be obtained from the expansion coefficients as

f̄ = E(f) =

∫
Iz

fω(z) dz = f0, var (f) = |f̂1|2 .

Denote the sG solution by

fM =

M∑
i=0

fi φi, f̂M =
(
fi
)M
i=0

:=
(
f̄ , f̂M1

)
, (5.1)
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from which one can extract the mean and variance of fM from the expansion coefficients as

E(fM ) = f̄ , var (fM ) = |f̂M1 |2 ≤ var (f) .

Furthermore, we define

σij =
〈
φi, σφj

〉
ω
, Σ =

(
σij
)
M+1,M+1

,

σaij =
〈
φi, σ

aφj
〉
ω
, Σa =

(
σaij
)
M+1,M+1

,

for 0 ≤ i, j ≤ M . Let Id be the (M + 1) × (M + 1) identity matrix. Σ,Σa are symmetric

positive-definite matrices satisfying ([77])

Σ ≥ σmin Id .

If one applies the gPC ansatz (5.1) into the transport equation (2.1), and conduct the Galerkin

projection, one obtains

ε∂tf̂ + v∂xf̂ = −1

ε
(I − [·])Σf̂ − εΣaf̂ − Ŝ, (5.2)

where Ŝ is defined similarly as (5.1).

We now use the micro-macro decomposition ([55]):

f̂(t, x, v, z) = ρ̂(t, x, z) + εĝ(t, x, v, z), (5.3)

where ρ̂ = [f̂ ] and [ĝ] = 0, in (5.2) to get

∂tρ̂+ ∂x [vĝ] = −Σaρ̂+ Ŝ, (5.4a)

∂tĝ +
1

ε
(I − [.])(v∂xĝ) = − 1

ε2
Σĝ − Σaĝ − 1

ε2
v∂xρ̂, (5.4b)

with initial data

ρ̂(0, x, z) = ρ̂0(x, z), ĝ(0, x, v, z) = ĝ0(x, v, z) .

It is easy to see that system (5.4) formally has the diffusion limit as ε→ 0:

∂tρ̂ = ∂x(K∂xρ̂)− Σaρ̂+ Ŝ , (5.5)

where

K =
1

3
Σ−1 . (5.6)

This is the sG approximation to the random diffusion equation (2.8)-(2.9). Thus the gPC

approximation is sAP in the sense of [46].

One can easily derive the following energy estimate for system (5.4)∫ 1

0

ρ̂(t, x)2 dx+
ε2

2

∫ 1

0

∫ 1

−1

ĝ(t, x, v)2 dv dx

≤
∫ 1

0

ρ̂(0, x)2 dx+
ε2

2

∫ 1

0

∫ 1

−1

ĝ(0, x, v)2 dv dx .

Let f be the solution to the linear transport equation (2.1)–(2.2). Use the Mth order pro-

jection operator PM , the error arisen from the gPC-sG can be split into two parts rN and eN ,

f − fM = f − PMf + PMf − fM := rM + eM , (5.7)

where rM = f − PMf is the truncation error, and eM = PMf − fM is the projection error.

Here we summarize the results of [40].

24



Lemma 5.1 (Truncation error). Under all the assumption in Theorem 3.1 and Theorem 3.2,

we have for t ∈ (0, T ] and any integer k = 0, . . . ,m,

‖rM‖Γ ≤
C1

Mk
. (5.8)

Moreover, ∥∥ [rM ]− rM
∥∥

Γ
≤ C2

Mk
ε, (5.9)

where C1 and C2 are independent of ε.

Lemma 5.2 (Projection error). Under all the assumptions in Theorem 3.1 and Theorem 3.2,

we have for t ∈ (0, T ] and any integer k = 0, . . . ,m,

‖eM‖Γ ≤
C(T )

Mk
, (5.10)

where C(T ) is a constant independent of ε.

Combining the above lemmas gives the uniform (in ε) convergence theorem:

Theorem 5.3. If for some integer m ≥ 0,

‖σ(z)‖Hk ≤ Cσ, ‖Dkf0‖Γ ≤ C0, ‖Dk(∂xf0)‖Γ ≤ Cx, k = 0, . . . ,m, (5.11)

then the error of the sG method is

‖f − fM‖Γ ≤
C(T )

Mk
, (5.12)

where C(T ) is a constant independent of ε.

Theorem 5.3 gives a uniformly in ε spectral convergence rate, thus one can choose M inde-

pendent of ε, a very strong sAP property. Such a result is also obtained with the anisotropic

scattering case, for the linear semiconductor Boltzmann equation (2.10) [58].

5.2 A full discretization

As pointed out in [46], and also seen in Section 4, by using the gPC-sG formulation, one

obtains a vector version of the original deterministic transport equation. This enables one to

use the deterministic AP methodology. In this paper, we adopt the micro-macro decomposition

based AP scheme developed in [55] for the gPC-sG system (5.4).

We take a uniform grid xi = ih, i = 0, 1, · · ·N , where h = 1/N is the grid size, and time

steps tn = n∆t. ρni is the approximation of ρ at the grid point (xi, t
n) while gn+1

i+ 1
2

is defined at

a staggered grid xi+1/2 = (i+ 1/2)h, i = 0, · · ·N − 1.

The fully discrete scheme for the gPC system (5.4) is

ρ̂n+1
i − ρ̂ni

∆t
+

v ĝn+1
i+ 1

2

− ĝn+1
i− 1

2

∆x

 = −Σai ρ̂
n+1
i + Ŝi, (5.13a)

ĝn+1
i+ 1

2

− ĝn
i+ 1

2

∆t
+

1

ε∆x
(I − [.])

(
v+(ĝni+ 1

2
− ĝni− 1

2
) + v−(ĝni+ 3

2
− ĝni+ 1

2
)
)

(5.13b)

= − 1

ε2
Σiĝ

n+1
i+ 1

2

− Σaĝn+1
i+ 1

2

− 1

ε2
v
ρ̂ni+1 − ρ̂ni

∆x
.
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It has the formal diffusion limit when ε→ 0 given by

ρ̂n+1
i − ρ̂ni

∆t
−K

ρ̂ni+1 − 2ρ̂ni + ρ̂ni−1

∆x2
= −Σai ρ̂

n+1
i + Ŝi, (5.14)

where K = 1
3Σ−1. This is the fully discrete sG scheme for (5.5). Thus the fully discrete scheme

is sAP.

One important property for an AP scheme is to have a stability condition independent of ε,

so one can take ∆t� O(ε). The next theorem from [40] answers this question.

Theorem 5.4. Assume σa = S = 0. If ∆t satisfies the following CFL condition

∆t ≤ σmin

3
∆x2 +

2ε

3
∆x, (5.15)

then the sequences ρ̂n and ĝn defined by scheme (5.13) satisfy the energy estimate

∆x

N−1∑
i=0

(
(ρ̂ni )

2
+
ε2

2

∫ 1

−1

(
ĝni+ 1

2

)2

dv

)
≤ ∆x

N−1∑
i=0

((
ρ̂0
i

)2
+
ε2

2

∫ 1

−1

(
ĝ0
i+ 1

2

)2

dv

)
for every n, and hence the scheme (5.13) is stable.

Since the right hand side of (5.15) has a lower bound when ε→ 0 (and the lower bound being

that of a stability condition of the discrete diffusion equation (5.14)), the scheme is asymptotically

stable and ∆t remains finite even if ε→ 0.

A discontinuous Galerkin method based sAP scheme for the same problem was developed in

[17], where uniform stability and rigirous sAP property were also proven.

5.3 Numerical examples

We now show one example from [40] to illustrate the sAP properties of the scheme. For

simplicity, we again assume the random variable z is one-dimensional and obeys uniform distri-

bution.

Example 3. Consider the linear transport equation (2.1) with σa = S = 0 and random

coefficient

σ(z) = 2 + z,

subject to zero initial condition f(0, x, v, z) = 0 and boundary condition

f(t, 0, v, z) = 1, v ≥ 0; f(t, 1, v, z) = 0, v ≤ 0.

When ε→ 0, the limiting random diffusion equation is

∂tρ =
1

3σ(z)
∂xxρ , (5.16)

with initial and boundary conditions:

ρ(0, x, z) = 0, ρ(t, 0, z) = 1, ρ(t, 1, z) = 0.

The analytical solution for (5.16) with the given initial and boundary conditions is

ρ(t, x, z) = 1− erf

 x√
4

3σ(z)
t

 . (5.17)
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When ε is small, we use this as the reference solution, as it is accurate with an error of O(ε2).

For other implementation details, see [40].

In Figure 3, we plot the errors in mean and standard deviation of the gPC numerical solutions

at t = 0.01 with different gPC orders M . Three sets of results are included: solutions with

∆x = 0.04 (squares), ∆x = 0.02 (circles), ∆x = 0.01 (stars). We always use ∆t = 0.0002/3.

One observes that the errors become smaller with finer mesh. One can see that the solutions

decay rapidly in M and then saturate where spatial discretization error dominates. It is then

obvious that the errors due to gPC expansion can be neglected at order M = 4 even for ε = 10−8.

From this simple example, we can see that using the properly designed sAP scheme, the time,

spatial, and random domain discretizations can be chosen independently of the small parameter

ε.

0 1 2 3 4
10-5

10-4

10-3

10-2

10-1

Figure 3: Example 3. Errors of the mean (solid line) and standard deviation (dash line) of ρ with

respect to the gPC order M at ε = 10−8: ∆x = 0.04 (squares), ∆x = 0.02 (circles), ∆x = 0.01

(stars). ∆t = 0.0002/3.

In Figure 4, we examine the difference between the solution at t = 0.01 obtained by the 4th-

order gPC method with ∆x = 0.01, ∆t = ∆x2/12 and the limiting analytical solution (5.17).

As expected, we observe the differences become smaller as ε is smaller in a quadratic fashion,

before the numerical errors become dominant. This, on the other hand, shows the sAP scheme

works uniformly for different ε.

6 Conclusion and open problems

Using the classical Boltzmann equation, linear Boltzmann equations and Vlasov-Poisson-

Fokker-Planck system as prototype examples, we have surveyed recent development of uncer-

tainty quantification (UQ) for kinetic equations. The uncertainties for such equations typically

come from collision/scattering kernels, boundary data, initial data, forcing terms, among others.
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Figure 4: Example 3. Differences in the mean (solid line) and standard deviation (dash line)

of ρ with respect to ε2, between the limiting analytical solution (5.17) and the 4th-order gPC

solution with ∆x = 0.04 (squares), ∆x = 0.02 (circles) and ∆x = 0.01 (stars).

We proved the regularity in the random space and then adopted the generalized polynomial

chaos based stochastic Galerkin (gPC-sG) approach to handle the random inputs which could

yield spectral accuracy, under some regularity assumption on the initial data and ramdom co-

efficients. Various theoretical and computational issues with respect to the collision operator

were studied. When the kinetic equation has diffusive scaling that asymptotically leads to a

diffusion equation, we constructed the stochastic Asymptotic-Preserving (sAP) scheme which

allows numerical discretization including the gPC order to be chosen independently of the small

parameter, hence is highly efficient in diffusive regime.

UQ for kinetic equations is a fairly recent research field, and many interesting problems

remain open. We list a few such problems here:

• Nonlinear kinetic equations. Although sG or sAP schemes have been introduced for some

nonlinear kinetic equations, for example the Boltzmann equation [34], the Landau equation

[36], the radiative heat transfer equations [42], disperse two-phase kinetic-fluid model [45],

rigorous analysis — such as regularity, long-time and small ε behavior, spectral conver-

gence, etc. — has been lacking. In particular, for the Boltzmann equation, the behavior

of the sG scheme in the Euler regime is not understood.

• High dimensional random space. When the dimension of the random parameter z is moder-

ate, sparse grids have been introduced [70, 36] using wavelet approximations. Since wavelet

basis does not have high order accuracy, it remains to construct sparse grids with high (or

spectral) order of accuracy in the random space. When the random dimension is much

higher, new methods need to be introduced to reduce the dimension.

• Study of sampling based methods such as collocation and multi-level Monte-Carlo methods.

28



In practice, sampling based non-intrusive methods are attractive since they are based

on the deterministic, or legacy codes. So far there has been no analysis done for the

stochastic collocation methods for random kinetic equations. Moreover, multi-level Monte-

Carlo method could significantly reduce the cost of sampling based methods [28]. Its

application to kinetic equations with uncertainty remains to be investigated.

Despite at its infancy, due to the good regularity and asymptotic behavior in the random

space for kinetic equations with uncertain random inputs, the UQ for kinetic equations is a

promising research direction that deserves more development in their mathematical theory, effi-

cient numerical methods, and applications. Moreover, since the random parameters in uncertain

kinetic equations share some properties of the velocity variable for a kinetic equation, the ideas

from kinetic theory can be very useful for UQ [18], and vice versa, thus the marrige of the two

fields can be very fruitful.
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