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Abstract

We present a new asymptotic-preserving scheme for the semiconductor Boltzmann equation with
two-scale collisions — a leading-order elastic collision together with a lower-order interparticle collision.
When the mean free path is small, numerically solving this equation is prohibitively expensive due to
the stiff collision terms. Furthermore, since the equilibrium solution is a (zero-momentum) Fermi-Dirac
distribution resulting from joint action of both collisions, the simple BGK penalization designed for the
one-scale collision [10] cannot capture the correct energy-transport limit. This problem was addressed in
[13], where a thresholded BGK penalization was introduced. Here we propose an alternative based on
a splitting approach. It has the advantage of treating the collisions at different scales separately, hence
is free of choosing threshold and easier to implement. Formal asymptotic analysis and numerical results
validate the efficiency and accuracy of the proposed scheme.

Keywords: semiconductor Boltzmann equation, energy-transport system, asymptotic-preserving scheme,
splitting method.

1 Introduction

The semiconductor Boltzmann equation describes the transport of charge carriers (electrons or holes) in
semiconductor devices [20, 6, 18]. In this paper, we are interested in the following non-dimensionalized form
[2, 1, 7]:

∂tf+
1

α
(∇kε · ∇xf +∇xV · ∇kf) =

1

α2
Qel(f)+

1

α
Qee(f)+Qinel

ph (f), x ∈ Ω ⊂ Rd, k ∈ Rd, d = 2, 3, (1.1)

where f(x, k, t) of position x, wave vector k and time t, is the electron distribution function in the conduction
band of a semiconductor. The parameter α is the scaled mean-free path which can be either small (diffusive
regime) or large (kinetic regime) depending on the device structure. ε(k) is the energy-band diagram given
by (the parabolic band approximation is assumed for simplicity)

ε(k) =
1

2
|k|2.

V (x, t) is the electrostatic potential produced self-consistently through the Poisson equation:

D0∆xV (x, t) = ρ(x, t)− h(x), (1.2)

where D0 is the square of scaled Debye length, ρ(x, t) =
∫
Rd f(x, k, t) dk is the electron density, and h(x) is

the fixed doping profile that takes into account the impurities due to acceptor and donor ions in the device.
The right hand side of equation (1.1) models three different collision effects:
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1. Qel is the elastic collision combining interactions between electrons and lattice impurities, and the
elastic part of electron-phonon interactions;

2. Qee is the interactions between electrons themselves;

3. Qinel
ph is the remaining inelastic part of electron-phonon interactions.

Specifically, Qel and Qee are given as follows (the exact form of Qinel
ph will not be needed in the following

discussion and thus is omitted):

Qel(f)(k) =

∫
Rd

Φel(k, k
′)δ (ε′ − ε) (f ′ − f) dk′, (1.3)

Qee(f)(k) =

∫
R3d

Φee(k, k1, k
′, k′1)δ(ε′ + ε′1 − ε− ε1)δ(k′ + k′1 − k − k1)

×
[
f ′f ′1(1− ηf)(1− ηf1)− ff1(1− ηf ′)(1− ηf ′1)

]
dk1dk′dk′1, (1.4)

where δ is the Dirac measure, ε′, ε′1, ε1, f ′, f ′1, f1 are short notations for ε(k′), ε(k′1), ε(k1), f(x, k′, t),
and etc, η is the typical distribution function scale characterizing the degree of degeneracy of the system.
The scattering matrices Φel and Φee are determined by the underlying interaction laws. They satisfy the
symmetry conditions: Φel(k, k

′) = Φel(k
′, k), Φee(k, k1, k

′, k′1) = Φee(k1, k, k
′, k′1) = Φee(k′, k′1, k, k1).

To this date, there are numerous models describing the electron flow through a semiconductor device,
ranging from macroscopic equations to kinetic equations, or even microscopic ones [20, 6, 18]. The equation
(1.1) we consider here is especially useful to capture the hot-electron effects in nanoscale devices [19]. Since
the delta function is involved in the collision operator, it is more realistic than many commonly used kinetic
models that only deal with smoothed kernels [15, 8, 17, 9]. Furthermore, it includes the electron-electron
interaction which is usually neglected under a low-density assumption [4, 5] (not true in our case). Mathe-
matically, the two-scale collisions with delta kernels bring many interesting features: the leading-order elastic
collision does not have a unique null space; only when the electron-electron collision at next level takes into
effect, the solution can be driven to a fixed equilibrium — a (zero-momentum) Fermi-Dirac distribution. As
a result, the macroscopic asymptotic limit when the mean free path goes to zero is a system of conservation
laws for the electron mass and energy, the so-called energy-transport (ET) model [19].

Our goal in this paper is to design an efficient numerical scheme for the Boltzmann transport equation
(1.1). The emphasis will be put in the situation that the parameter α takes a wide range of values: from
α ∼ 1 (kinetic regime) to α � 1 (diffusive regime). While individual solvers for both regimes are available
(or possible), it is desirable to have a unified scheme working for different α, as in practice α may not be
uniformly small or large in the entire domain of interest. To make it precise, we want a numerical scheme that
is consistent to the kinetic equation (1.1), and when α approaches zero it automatically becomes a macroscopic
solver for the limiting ET system, i.e., it is asymptotic-preserving (AP) [14]. A natural thought is to use
implicit rather than explicit schemes on stiff terms, but this is impractical since the collision operators are
too complicated to invert (even forward computation is not an easy task). Inspired by [10], one can seek
simple BGK-like operators to penalize these integral operators. However, as the collision possesses three
different scales, a closer examination of the asymptotic behavior of the numerical solution reveals that the
penalization should be performed wisely, otherwise it won’t capture the correct asymptotic limit. The same
problem was considered in our recent work [13], where we provided a solution by introducing a threshold
on the penalization of the elastic collision. Here we propose an alternative based on a splitting approach.
By carefully separating the different scales in equation (1.1), we are able to recover the correct ET limit at
the discrete level. Moreover, compared to the previous idea, the new method is free of choosing threshold
and hence is easier to implement. Finally, we comment that most of the AP schemes were developed for
problems with two scales (the kinetic and the hydrodynamic ones, for example [14]). Here and in [13], the
problem contains an additional, intermediate scale, thus offers new features and challenges for AP schemes.

The rest of the paper is organized as follows. In the next section we briefly review the properties of the
collision operators and the energy-transport limit of equation (1.1). Section 3 describes our AP scheme: we
first consider the spatially homogeneous case with an emphasis on the two-scale collision terms, and then
include the spatial dependence to treat the full problem. In either case, the asymptotic property of the
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numerical solution is carefully analyzed. We present several numerical examples in Section 4 to illustrate
the efficiency, accuracy, and AP properties of the new scheme. The paper is concluded in Section 5.

2 The energy-transport limit of the semiconductor Boltzmann
equation

In this section, we give a brief review of the energy-transport limit of the semiconductor Boltzmann equation
(1.1). The (formal) derivation is a combined procedure of the Hilbert expansion and moment method which
mainly relies on the properties of the collision operators Qel and Qee. We only list here the basic elements
that are necessary to understand the numerical schemes. The complete treatment can be found in [7, 13].

Proposition 1.

1. For any “regular” test function g(ε(k)),
∫
Rd Qel(f)g(ε) dk = 0.

2. The null space of Qel(f) is given by N (Qel) = {f(ε(k)), ∀f}.

Proposition 2.

1. Conservation of mass and energy:
∫
Rd Qee(f) dk =

∫
Rd Qee(f)εdk = 0.

2. If f = f(ε(k)), then Qee(f) = 0⇐⇒ f = M(ε(k)), where

M(ε(k)) =
1

η

1

z−1e
ε(k)
T + 1

(2.1)

is the zero momentum Fermi-Dirac distribution function. The macroscopic variables z and T are the
fugacity and temperature.

Remark 3. The collision operator Qee also conserves momentum:
∫
Rd Qee(f)k dk = 0. Only when fixed to

ε-dependent functions, its null space is (2.1).

To derive the asymptotic limit of (1.1), one inserts the Hilbert expansion f = f0 + αf1 + α2f2 + . . . and
collects equal powers of α:

O(α−2) : Qel(f0) = 0, (2.2)

O(α−1) : Qel(f1) = ∇kε · ∇xf0 +∇xV · ∇kf0 −Qee(f0). (2.3)

Using the properties of Qel and Qee, one can show that

f0 = M, f1 = −Q−1
el (−∇kε) · (∇xM +∇xV ∂εM) . (2.4)

An important observation here: f0 = M is not completely determined by (2.2) since the null space of Qel is
not unique. It is the joint action of (2.2) and (2.3) that yields the above result. Now plugging f into (1.1),
and taking the moments

∫
· (1, ε)T dk on both sides, to the leading order we have

Theorem 4. In equation (1.1), when α → 0, the solution f formally tends to a Fermi-Dirac distribution
(2.1), with the position and time dependent fugacity z(x, t) and temperature T (x, t) satisfying the so-called
energy-transport (ET) model:

∂t

(
ρ
ρE

)
+

(
∇x · jρ
∇x · jE

)
−
(

0
∇xV · jρ

)
=

(
0

W inel
ph

)
, (2.5)

where the density ρ and energy E are defined as

ρ(z, T ) =

∫
Rd

f dk =

∫
Rd

M dk, E(z, T ) =
1

ρ

∫
Rd

fεdk =
1

ρ

∫
Rd

Mε dk;
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the fluxes jρ and jE are given by(
jρ(z, T )
jE(z, T )

)
= −

(
D11 D12

D21 D22

)( ∇xz
z −

∇xV
T

∇xT
T 2

)
with the diffusion matrices

Dij =

∫
Rd

∇kε⊗Q−1
el (−∇kε)M(1− ηM)εi+j−2 dk;

and the energy relaxation operator W inel
ph is

W inel
ph (z, T ) =

∫
Rd

Qinel
ph (M)εdk.

Remark 5. Unlike the classical statistics, given macroscopic quantities ρ and E , finding the corresponding
Fermi-Dirac distribution (2.1) is not trivial. In fact, ρ and E are related to z and T via ([11])

ρ =
(2πT )

d
2

η
F d

2
(z),

E =
d

2
T
F d

2 +1(z)

F d
2
(z)

,
(2.6)

where Fν(z) is the Fermi-Dirac function of order ν

Fν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1ex + 1
dx, 0 < z <∞, (2.7)

and Γ(ν) is the Gamma function.

3 Asymptotic-preserving schemes for the semiconductor Boltz-
mann equation based on operator splitting

Equation (1.1) contains three different scales, wherein explicit schemes become extremely expensive when α
is small (convection part requires CFL condition ∆t = O(α∆x); collision part requires at least ∆t = O(α2)).
To design a scheme whose stability is immune from the restriction induced by stiff terms, one usually expects
a fully implicit scheme. However, as mentioned in the Introduction, this may result in a large algebraic system
that is hard to invert. Our goal is to design an efficient numerical scheme that is uniformly stable regardless
of the magnitude of α: only requires parabolic CFL condition ∆t = O(∆x2), and the implicit terms can be
treated in an explicit manner. While the stiff convection term has been successfully handled via an even-odd
decomposition [15, 16], the two-scale collisions is treated recently in [13] using a thresholded-penalization.
There, a spatially dependent threshold is placed on the stiffer collision operator such that the evolution of the
numerical solution resembles the Hilbert expansion at the continuous level. However, the choice of threshold
depends on the accuracy of the elastic collision solver, so its optimal value is not easy to determine. Here we
propose a different scheme based on a splitting approach (free of threshold). We will start with the spatially
homogenous case whose splitting is somewhat straightforward. We then consider the inhomogeneous case,
where the splitting needs to be done carefully in order to capture the correct ET limit. This is indeed
inspired by [13]. To facilitate the presentation, we always make the following assumptions without further
notice:

1. The inelastic collision operator Qinel
ph in (1.1) is assumed to be zero, since it is the weakest effect and

its appearance won’t bring extra difficulties to temporal and spatial discretizations.

2. The scattering matrix Φel is rotationally invariant: Φel(k, k
′) = Φel(|k|, |k′|). Then the elastic collision

(1.3) can be written as
Qel(f)(k) = λel(ε)([f ](ε)− f(k)),
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where

λel(ε(k)) :=

∫
Rd

Φel(k, k
′)δ(ε′ − ε) dk′,

and [f ](ε(k)) is the mean value of f over sphere Sε = {k ∈ Rd, ε(k) = ε}. In particular, for any odd
function f(k),

Qel(f)(k) = −λel(ε)f(k), Q−1
el (f)(k) = − 1

λel(ε)
f(k).

3. The collision operators (1.3) and (1.4) can be written symbolically as

Qel(f)(k) = Q+
el(f)(ε)− λel(ε)f(k); Qee(f)(k) = Q+

ee(f)(k)−Q−ee(f)(k)f(k), (3.1)

where the forms of Q+
el, Q±ee should be clear from the definition.

3.1 The spatially homogeneous case

In the spatially homogeneous case, equation (1.1) reduces to

∂tf =
1

α2
Qel(f) +

1

α
Qee(f),

where f only depends on k and t. Following [13], we use a BGK-like penalization [10] to remove the stiffness
on collision terms:

∂tf =
Qel(f)− βel(M − f)

α2
+
βel(M − f)

α2
+
Qee(f)− βee(M − f)

α
+
βee(M − f)

α
, (3.2)

where M is simply chosen as the Fermi-Dirac distribution (2.1) since it belongs to the intersection of N (Qel)
and N (Qee). The essence of penalization is to choose β• such that Q•(f)− β•(M − f) as small as possible
so that it is non-stiff or less stiff. Viewing (3.1), we may choose

βel ≈ max
ε
λel(ε); βee ≈ max

k
Q−ee(f)(k). (3.3)

This choice is sufficient to guarantee AP property and stability as illustrated by our later analysis and
numerical results.

Now to handle the two-scale collisions, a direct separation of scales in (3.2) suggests the following first-order
splitting scheme:

f∗ − fn

∆t
=
Qel(f

n)− βel(M − fn)

α2
+
βel(M − f∗)

α2
; (3.4)

fn+1 − f∗

∆t
=
Qee(f∗)− βee(M − f∗)

α
+
βee(M − fn+1)

α
. (3.5)

Note in the spatially homogeneous case ρ and E are conserved, so M = M(ε) is an absolute Maxwellian and
can be obtained from the initial condition (first find ρ =

∫
Rd f

0 dk, E =
∫
Rd f

0ε dk, and then invert (2.6) to
get z and T so as to define M).

3.1.1 Asymptotic properties of the numerical solution for the BGK model

In this subsection, we study the asymptotic behavior of the numerical solution to the scheme (3.4–3.5). In
the BGK model,

Qee(f) = Mee(f)− f, (3.6)

where Mee is a general Fermi-Dirac distribution defined by (compare with (2.1))

Mee(k) =
1

η

1

z−1e
(k−u)2

2T + 1
,
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with z, u, T determined through the moments of f :

ρ =

∫
Rd

f dk, ρu =

∫
Rd

fk dk, ρe =
1

2

∫
Rd

f |k − u|2 dk.

Note that ρ, e are related to z, T via the same system (2.6) but with the energy E replaced by internal
energy e (in fact, e and E have the relation e = E − 1

2u
2, thus in the zero momentum case, E = e and we

have E rather than e in (2.6)).

Remark 6. The operator (3.6) is a simple, yet practical approximation to the complicated integral operator
(note the difference between the BGK model here and the one we used for penalization (3.2)). The AP
analysis for the full Boltzmann operator (1.4) is still lacking, but the analysis here sheds some light on the
behavior of the solution. We still use (1.4) in numerical simulations.

Now (3.4–3.5) can be rewritten as

f∗ = γ1f
n +

∆t

α2 + βel∆t
Q+

el(f
n), (3.7)

fn+1 −M = γ2(f∗ −M) +
∆t

α+ βee∆t
(M∗ee −M), (3.8)

where

γ1 =
α2 + (βel − λel)∆t

α2 + βel∆t
and γ2 =

α+ (βee − 1)∆t

α+ βee∆t
. (3.9)

Notice that Q+
el(f

n) only depends on ε, so when α is small, (3.7) drives f∗ toward a radially symmetric
function as long as |γ1| < 1, i.e. βel >

1
2λel; M

∗
ee computed from f∗ then has a decreasing momentum and

thus approaches M (M and M∗ee share the same density and energy); and (3.8) relaxes fn+1 to M under
the condition |γ2| < 1, i.e. βee >

1
2 . Therefore the loop containing these two stages resembles a Hilbert

expansion within one time step. To be more precise, we need the following Lemma (its proof is given in the
Appendix) characterizing the distance between M∗ee and M .

Lemma 7. Consider two Fermi-Dirac distribution functions Mee,1 and Mee,2 with the form

Mee,i(x, k, t) =
1

η

1

z−1
i e

(k−ui)
2

2Ti + 1

, i = 1, 2, x ∈ Ω ⊂ Rd, k ∈ Rd, t ∈ [0, tmax],

and assume T1,2(x, t), z1,2(x, t) > 0 and βee >
1
2 , βel >

1
2λel. If ρ1(x, t) = ρ2(x, t) and E1(x, t) = E2(x, t),

then we have

|Mee,1(x, k, t)−Mee,2(x, k, t)| ≤ C|u1(x, t)− u2(x, t)| for some constant C.

Here

ρi =

∫
Rd

Mee,i dk, ρiui =

∫
Rd

Mee,ik dk, ρiEi =
1

2

∫
Rd

Mee,i|k|2 dk.

Recall that the scheme (3.4–3.5) conserves mass and energy: ρn = ρ∗ = ρn+1, En = E∗ = En+1. If we take
the moments

∫
·k dk on both sides of (3.7–3.8), we have

u∗ = γ1u
n, un+1 = u∗,

where the moments of Q+
el and M vanish due to their radial symmetry. Therefore,

un+1 = γn+1
1 u0, and |Mn+1

ee −M | ≤ C|un+1| ≤ C|γ1|n+1
∣∣u0
∣∣ (3.10)

thanks to Lemma 7. Notice that a combination of (3.7–3.8) implies

fn+1 = γ2γ1f
n + γ2

∆t

α2 + βel∆t
Q+

el(f
n) + (1− γ2)M +

∆t

α+ βee∆t
(M∗ee −M). (3.11)
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Applying the linear operator Qel on both sides of (3.11) yields∣∣Qel(f
n+1)

∣∣ =

∣∣∣∣γ2γ1Qel(f
n) +

∆t

α+ βee∆t
Qel(M

∗
ee −M)

∣∣∣∣ ≤ |γ2γ1||Qel(f
n)|+ 2∆tλel

α+ βee∆t
max
k

∣∣Mn+1
ee −M

∣∣
≤ |γ2γ1| |Qel(f

n)|+ 2∆tλel

α+ βee∆t
C|γ1|n+1|u0|, (3.12)

where the first inequality is based on the facts M∗ee = Mn+1
ee and |Qel(f)(k)| ≤ |λel[f ]|+|λelf | ≤ 2λel maxk |f |,

and the second inequality is obtained using (3.10) since βee >
1
2 , βel >

1
2λel imply γ1 < 1, γ2 < 1. As a

result of (3.10) and (3.12), for any m > 0, there exists an integer N such that for all n > N we have

|Mn
ee −M | ≤ O(αm) and |Qel(f

n)| ≤ O(αm). (3.13)

On the other hand, (3.7–3.8) can be written as

fn+1 −M = γ2(fn −M) +
γ2∆t

α2 + βel∆t
Qel(f

n) +
∆t

α+ βee∆t
(M∗ee −M),

and thus ∣∣fn+1 −M
∣∣ ≤ |γ2| |fn −M |+O(αm), for n > N ,

because of (3.13) and |γ2| < 1. Therefore, no matter what the initial condition is, fn+1 will eventually be
driven to the desired Fermi-Dirac distribution M , and the convergence rate depends on the magnitude of γ2.

Remark 8. We would like to point out that in this splitting framework, the two stages in each time
step alternate, that is, the solution is driven closer to its radially symmetric counterpart (with momentum
decreased) in the first stage and then slightly to the Fermi-Dirac distribution (with momentum preserved)
in the second stage, which makes the relaxation toward the final (zero-momentum) Fermi-Dirac distribution
‘oscillatory’. This is different from the thresholded penalization scheme in [13] where the solution is driven all
the way to a radially symmetric function at the beginning, and then toward the final Fermi-Dirac distribution
after the onset of threshold.

3.2 The spatially inhomogeneous case

We now include the spatial dependence to treat the full equation (1.1). Following [13], we reformulate it into
a set of parity equations [15]. Denote f+ = f(x, k, t), f− = f(x,−k, t), then they solve

∂tf
+ +

1

α

(
∇kε · ∇xf+ +∇xV · ∇kf+

)
=

1

α2
Qel(f

+) +
1

α
Qee(f+),

∂tf
− − 1

α

(
∇kε · ∇xf− +∇xV · ∇kf−

)
=

1

α2
Qel(f

−) +
1

α
Qee(f−).

Now write

r(x, k, t) =
1

2
(f+ + f−), j(x, k, t) =

1

2α
(f+ − f−),

we have

∂tr +∇kε · ∇xj +∇xV · ∇kj =
Qel(r)

α2
+
Qee(f+) +Qee(f−)

2α
, (3.14)

∂tj +
1

α2
(∇kε · ∇xr +∇xV · ∇kr) = −λel

α2
j +
Qee(f+)−Qee(f−)

2α2
, (3.15)

where we have used the fact that j is an odd function in k, and thus Qel(j) = −λelj.

For (3.14–3.15), the same penalization as in the homogenous case suggests

∂tr +∇kε · ∇xj +∇xV · ∇kj =
Qel(r)− βel(M − r)

α2
+
βel(M − r)

α2

+
Qee(f+) +Qee(f−)− 2βee(M − r)

2α
+
βee(M − r)

α
,

∂tj +
1

α2
(∇kε · ∇xr +∇xV · ∇kr) = −λel

α2
j +
Qee(f+)−Qee(f−) + 2βeeαj

2α2
− βee

α
j.
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Note here M = M(x, ε, t) is the local Fermi-Dirac distribution. The coefficients βel and βee are chosen the
same as in (3.3) except that βee can also be made spatially dependent.

Rewrite the above equations into a diffusive relaxation system [16], we have

∂tr +∇kε · ∇xj +∇xV · ∇kj =
Qel(r)− βel(M − r)

α2
+
βel(M − r)

α2

+
Qee(f+) +Qee(f−)− 2βee(M − r)

2α
+
βee(M − r)

α
, (3.16)

∂tj + θ (∇kε · ∇xr +∇xV · ∇kr) =
Qee(f+)−Qee(f−) + 2βeeαj

2α2
− βee

α
j

− 1

α2

[
λelj + (1− α2θ)(∇kε · ∇xr +∇xV · ∇kr)

]
, (3.17)

where 0 ≤ θ(α) ≤ 1
α2 is a control parameter chosen as θ(α) = min

{
1, 1

α2

}
.

Unlike the simple separation of O( 1
α ) and O( 1

α2 ) terms in the spatially homogenous case, we propose the
following first-order splitting scheme for (3.16–3.17):

• stage 1

r∗ − rn

∆t
=
Qel(r

n)− βel(M
n − rn)

α2
+
βel(M

∗ − r∗)
α2

, (3.18)

j∗ − jn

∆t
= 0, (3.19)

where M∗ = Mn since Qel conserves mass and energy.

• stage 2

rn+1 − r∗

∆t
+∇kε · ∇xj∗ +∇xV ∗ · ∇kj∗ =

Qee(f∗,+) +Qee(f∗,−)− 2βee(M∗ − r∗)
2α

+
βee(Mn+1 − rn+1)

α
, (3.20)

jn+1 − j∗

∆t
+ θ (∇kε · ∇xr∗ +∇xV ∗ · ∇kr∗) =

Qee(f∗,+)−Qee(f∗,−) + 2βeeαj
∗

2α2
− βee

α
jn+1

− 1

α2

[
λelj

n+1 +
(
1− α2θ

) (
∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1

)]
, (3.21)

where Mn+1 is computed via (2.6). Here ρn+1 and En+1 are first computed by taking the moments∫
· (1, ε)T dk of (3.20), wherein the right hand side vanishes owing to the conservation of mass and

energy.

3.2.1 Asymptotic properties of the numerical solution for the BGK model

Let’s again assume that Qee(f) = Mee(f)− f . A reformulation of (3.18–3.19) leads to

r∗ = γ1r
n +

∆t

α2 + βel∆t
Q+

el(r
n), (3.22)

j∗ = jn. (3.23)
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Rearrange (3.20–3.21), we have

rn+1 −Mn+1 = γ2(r∗ −M∗)− α

α+ βee∆t
(Mn+1 −M∗)

− α∆t

α+ βee∆t
(∇kε · ∇xj∗ +∇xV ∗ · ∇kj∗) +

∆t

2α+ 2βee∆t

(
M∗,+ee +M∗,−ee − 2M∗

)
, (3.24)

jn+1 =
1 + ∆t

α (βee − 1)

1 + ∆t
α2 λel + ∆t

α βee

j∗ −
∆t
α2

1 + ∆t
α2 λel + ∆t

α βee

(∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1)

+
θ∆t

1 + ∆t
α2 λel + ∆t

α βee

[(
∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1

)
− (∇kε · ∇xr∗ +∇xV ∗ · ∇kr∗)

]
+

∆t
2α2

1 + ∆t
α2 λel + ∆t

α βee

(M∗,+ee −M∗,−ee ). (3.25)

Here M∗,±ee = Mee(f∗,±) = Mee(r∗ ± αj∗), γ1, γ2 are defined the same as in (3.9).

First we point out that jn+1 (n ≥ 0) has magnitude O(1) since from (3.23), (3.25)

jn+1 =
1 + ∆t

α (βee − 1)

1 + ∆t
α2 λel + ∆t

α βee

jn +O(1).

Notice that j∗ is an odd function in k, thus Mee(r∗) and Mee(r∗ ± αj∗) share the same mass and energy.
Since r∗ has zero momentum, we have Mee(r∗) = M∗, and therefore Lemma 7 implies∣∣M∗,±ee −M∗

∣∣ = |Mee(r∗ ± αj∗)−Mee(r∗)| ≤ Cα, and
∣∣M∗,+ee −M∗,−ee

∣∣ ≤ 2Cα. (3.26)

Henceforth, when α� 1 (so θ = 1), we have from (3.25)

jn+1 = − 1

λel
(∇kε · ∇xrn+1 +∇xV n+1 · ∇krn+1) +O(α), n ≥ 0,

if all functions are smooth. Similar to the homogenous case, apply operatorQel to (3.24) one seesQel(r
n+1) =

γ2Qel(r
∗) + O(α) thanks to (3.26), which combined with (3.22) leads to Qel(r

n+1) = γ1γ2Qel(r
n) + O(α).

Thus there exists N such that for all n > N , Qel(r
n) = O(α). On the other hand, a reformulation of (3.22)

and (3.24) yields

rn+1 −Mn+1 = γ2(rn −Mn) +
γ2∆t

α2 + βel∆t
Qel(r

n)

− α

α+ βee∆t
(Mn+1 −M∗)− α∆t

α+ βee∆t
(∇kε · ∇xj∗ +∇xV ∗ · ∇kj∗)

+
∆t

2α+ 2βee∆t

(
M∗,+ee +M∗,−ee − 2M∗

)
.

Therefore, we have ∣∣rn+1 −Mn+1
∣∣ ≤ |γ2| |rn −Mn|+O(α), for n > N .

From the above discussion, we know that when α→ 0, no matter what the initial condition is, immediately

jn → − 1

λel
(∇kε · ∇xrn +∇xV n · ∇krn),

and after an initial transient time
rn →Mn

thanks to |γ2| < 1. These are the desired AP property we want (compare with (2.4)): plugging them into
(3.18), (3.20) and taking the moments

∫
· (1, ε)T dk, we get exactly a first-order time discretization for the

ET system (2.5).
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4 Numerical examples

In this section, we present several numerical examples using our AP scheme (3.18–3.21). Here the space
discretization follows the upwind scheme with flux limiter and wave vector discretization uses the spectral
method. More details are refereed to [13].

In what follows, we always take k ∈ [−Lk, Lk]2 with Lk = 9.2, and x ∈ [0, Lx] with Lx = 1. Nk is the
number of points in each k direction, Nx is the number of points in x direction. We assume the periodic
boundary condition in x and choose Lk large enough so f ≈ 0 at |k| = Lk. The time step ∆t is chosen to
only satisfy the parabolic CFL condition: ∆t = O(∆x2) (independent of α).

4.1 AP property

Consider equation (1.1) with non-equilibrium initial data

f0(x, k1, k2) =
1

2π

(
e−80(x−Lx

2 )2 + 1
)(

e−[(k1−1)2+k22] + e−[(k1+1)2+k22]
)
. (4.1)

The electric field ∂xV is set to be one.

We check the asymptotic property by looking at the distance between r and M at each time step, i.e.,

errorAPnL∞ = max
x,k1,k2

|rn −Mn|. (4.2)

The results are gathered in Figure 1, where we observe that, unlike the thresholded penalization which expe-
riences a clear two-stage convergence, the solution by the splitting approach undergoes a faster convergence
during the first few steps, and smoothly transits to the final equilibrium. This is because the two collisions,
even though they are not in the same scaling, act together all along.
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Figure 1: Asymptotic error (4.2) for the splitting scheme and the thresholded penalization scheme in [13].
Here Nx = 40, ∆t = 0.2∆x2. Left: η = 0.01 (classical regime), Nk = 32. Right: η = 3 (quantum regime),
Nk = 64.

4.2 1-D n+–n–n+ ballistic silicon diode

We next simulate a 1-D n+–n–n+ ballistic silicon diode, which is a simple model of the channel of a MOS
transistor. The initial data is taken to be

f0(x, k1, k2) =

(
1.1 +

tanh
(
40(x− 5Lx

8 )
)
− tanh

(
40(x− 3Lx

8 )
)

2

)
×
(
e−[(k1−1)2+k22] + e−[(k1+1)2+k22]

)
.

For Poisson equation (1.2), we choose h(x) = ρ0(x) =
∫
f0 dk, C0 = 1/1000, with boundary condition

V (0) = 0, V (Lx) = 1. The doping profile h(x) is shown in Figure 2.
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We consider two regimes: one is the kinetic regime with α = 1, where we compare our solution with the
one obtained by the explicit scheme (forward Euler); the other is the diffusive regime with α = 1e−3, where
our solution is compared with that of the ET system using the kinetic solver [13]. Good agreements are
obtained in Figures 3, 4. Here the macroscopic quantities plotted are density ρ, energy E , temperature T ,
fugacity z, electric field E = −∂xV , and mean velocity ū defined as ū = jρ/ρ. This example is borrowed
directly from [13] and the results are very similar to those computed using the thresholded penalization.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

h
(x

)

Figure 2: Doping profile h(x) for 1-D n+–n–n+ ballistic silicon diode.

4.3 Mixing regime

We finally consider an example where the scaled mean free path α varies between different regimes. In
particular, α takes the form

α(x) =

{
α0 + 1

2 (tanh(25− 20x) + tanh(−5 + 20x)) , x ≤ 0.65;
α0, x > 0.65,

(4.3)

with α0 = 1e − 3, thus it increases smoothly from α0 to 1, and then suddenly drops back to α0. The plot
of α is shown in Figure 5, which involves both kinetic and diffusive regimes. The initial condition is taken
as in (4.1). We compare the solution using ∆x = 1/40 and ∆t = 0.2∆x2 with a more refined solution with
∆x = 1/160 and ∆t = 0.05∆x2 in Figures 6, 7 with η = 0.01 and 1, respectively.

5 Conclusion

We designed an asymptotic preserving scheme for a Boltzmann-Poisson system that characterize the trans-
port of charge carriers in the semiconductor. In a diffusive regime where the collisions are not in the same
scales, the system approaches an energy-transport system. Besides the stiff convection terms, the two-scale
collision operators pose new difficulties since the simple BGK penalization fails to capture the correct limit.
Inspired by the two stages in the convergence to the equilibrium, we propose a splitting setting such that the
relaxation of the numerical solution to the local equilibrium resembles the Hilbert expansion at the contin-
uous level at each time step. Therefore, the numerical solution experiences an alternating path towards the
equilibrium with one direction heading to the radially symmetric function and the other to the Fermi-Dirac
distribution. The main advantage compared to the thresholded penalization in [13] is that it is free from the
choice of threshold. We analyzed this asymptotic behavior using a simplified BGK model. Several numerical
results confirmed the asymptotic-preserving property for any non-equilibrium initial data, as well as the
uniform stability of the scheme with respect to the mean free path, from kinetic regime to diffusive regime.
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Figure 3: Density ρ, mean velocity ū, energy E , temperature T , fugacity z, and electric field E at time
t = 0.05. Here α = 1, η = 1, Nx = 40, Nk = 64, ∆t = 0.2∆x2. ‘—’ is the forward Euler scheme, ‘◦’ is the
AP scheme.

Appendix: Proof of Lemma 7

Proof. Denote e = E − 1
2u

2, then the macroscopic quantities (ρ, u, e) relate to (z, u, T ) through

ρ =
(2πT )

d
2

η
F d

2
(z), e =

d

2
T
F d

2 +1(z)

F d
2
(z)

,

where Fν is defined as (2.7). Writing Mee in differential form, we have (for complete derivation, see [12])

dMee = Mee(1− ηMee) [Adρ+Bde+ C · du] ,
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Figure 4: Density ρ, mean velocity ū, energy E , temperature T , fugacity z, and electric field E at time
t = 0.05. Here α = 1e− 3, η = 1, Nx = 40, Nk = 64. ‘—’ is the forward Euler scheme (for ET system) with
∆t = 0.2∆x2, ‘◦’ is the AP scheme with ∆t = 0.1∆x2.

where

A =
1

ρ

(
M(z) +

(k − u)2

dT
(1−N(z))

)
,

B =

(
(k − u)2

2eT
N(z)− d

2e
M(z)

)
,

C =
k − u
T

,
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Figure 6: Density ρ, total energy ρE , and fugacity z at time t = 0.01 in mixing regime with α in (4.3). Here
η = 0.01, Nk = 32. ‘◦’: ∆x = 1/40, ∆t = 0.2∆x2, ‘—’: reference solution with ∆x = 1/160, ∆t = 0.05∆x2.
Both are computed using AP scheme.
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Figure 7: Density ρ, total energy ρE , and fugacity z at time t = 0.004 in mixing regime with α in (4.3). Here
η = 1, Nk = 64. ‘◦’: ∆x = 1/40, ∆t = 0.2∆x2, ‘—’: reference solution with ∆x = 1/160, ∆t = 0.05∆x2.
Both are computed using AP scheme.

and M(z) and N(z) are defined by

M(z) =
F d

2
(z)F d

2 +1(z)(
d
2 + 1

)
F d

2−1(z)F d
2 +1(z)− d

2F
2
d
2

(z)
, N(z) =

F d
2−1(z)F d

2 +1(z)(
d
2 + 1

)
F d

2−1(z)F d
2 +1(z)− d

2F
2
d
2

(z)
.

Hence

∂eMee =
Mee(1− ηMee)(

d
2 + 1

)
F d

2−1(z)F d
2 +1(z)− d

2F
2
d
2

(z)

[
(k − u)2

dT 2
F d

2
(z)F d

2−1(z)− 1

T
F2

d
2
(z)

]
. (5.1)
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Notice that

Fν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1ex + 1
dx ≤ z

Γ(ν)

∫ ∞
0

xν−1e−x dx = z,

we have the following estimates for (5.1):

|∂eMee| ≤
Mee∣∣∣(d2 + 1

)
F d

2−1(z)F d
2 +1(z)− d

2F
2
d
2

(z)
∣∣∣
[

(k − u)2

dT 2
+

1

T

]
z2. (5.2)

Let Dmin = min{(z(x,t):x∈Ω,t∈[0,tmax]}
(
d
2 + 1

)
F d

2−1(z)F d
2 +1(z) − d

2F
2
d
2

(z) > 0 (this result is not trivial, and

one can refer to [3] for more details). Thus (5.2) can be bounded by

|∂eMee| ≤
1

Dmin

2 + d

dTη
z3.

Similarly, one has

|∂uMee| = Mee(1− ηMee)

∣∣∣∣k − uT
∣∣∣∣ ≤ z

η

√
2

T
.

Therefore,

|Mee,1(k)−Mee,2(k)| ≤ |∂ρMee| |ρ1 − ρ2|+ |∂eMee| |e1 − e2|+ |∂uMee| |u1 − u2|

=

[
|∂eMee|

|u1 + u2|
2

+ |∂uMee|
]
|u1 − u2|

≤

[
(2 + d)z3|u1 + u2|

2DmindTη
+
z

η

√
2

T

]
|u1 − u2|

≤C|u1 − u2|,

with

C = max
{(z(x,t),u(x,t),T (x,t)):x∈Ω,t∈[0,tmax]}

(2 + d)z3|u|
DmindTη

+
z

η

√
2

T
.
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