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Abstract. Models involving branched structures are employed to describe several
supply-demand systems such as the structure of the nerves of a leaf, the system
of roots of a tree and the nervous or cardiovascular systems. Given a flow (traffic
path) that transports a given measure µ− onto a target measure µ+, along a 1-
dimensional network, the transportation cost per unit length is supposed in these
models to be proportional to a concave power α ∈ (0, 1) of the intensity of the
flow.
In this paper we address an open problem in the book Optimal transportation
networks by Bernot, Caselles and Morel and we improve the stability for optimal
traffic paths in the Euclidean space Rd, with respect to variations of the given
measures (µ−, µ+), which was known up to now only for α > 1− 1

d
. We prove it

for exponents α > 1 − 1
d−1

(in particular, for every α ∈ (0, 1) when d = 2), for a

fairly large class of measures µ+ and µ−.
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1. Introduction

The branched transport problem is a variant of the classical Monge-Kantorovich
problem, where the cost of the transportation does not depend only on the initial
and the final spatial distribution of the mass that one wants to transfer, but also
on the paths along which the mass particles move. It was introduced to model
systems which naturally show ramifications, such as roots systems of trees and
leaf ribs, the nervous, the bronchial and the cardiovascular systems, but also
to describe other supply-demand distribution networks, like irrigation networks,
electric power supply, water distribution, etc. In all of the many different for-
mulations of the problem, the main feature is the fact that the cost functional
is designed in order to privilege large flows and to prevent diffusion; indeed the
transport actually happens on a 1-dimensional network.

To translate this principle in mathematical terms, one can consider costs which
are proportional to a power α ∈ (0, 1) of the flow. Roughly speaking, it is
preferable to transport two positive masses m1 and m2 together, rather than
separately, because (m1 +m2)α < mα

1 +mα
2 . Obviously the smaller is α and the

stronger is the grouping effect.
Different costs and descriptions have been introduced in order to model such

problem: one of the first proposals came by Gilbert in [Gil67], who considered
finite directed weighted graphs G with straight edges e ∈ E(G) “connecting” two
discrete measures, and a weight function w : E(G) → (0,∞). The cost of G is
defined to be: ∑

e∈E(G)

w(e)αH 1(e), (1.1)

where we denoted by H 1 the 1-dimensional Hausdorff measure. Later Xia has
extended this model to a continuous framework using Radon vector-valued mea-
sures, or, equivalantly, 1-dimensional currents, called in this context “traffic
paths” (see [Xia03]).

In [MSM03, BCM05], new objects called “traffic plans” have been introduced
and studied. Roughly speaking, a traffic plan is a measure on the set of Lipschitz
paths, where each path represents the trajectory of a single particle. All these
formulations were proved to be equivalent (see [BCM09] and references therein)
and in particular the link between the last two of them is encoded in a deep result,
due to Smirnov, on the structure of acyclic, normal 1-dimensional currents (see
Theorem 3.5).

A rich variety of branched transportation problems can be described through
these objects: in all of them existence [Xia03, MSM03, BCM05, BCM08, BBS11,
Peg] and (partially) regularity theory [Xia04, BBS06, DS07b, DS07a, MS10,
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Xia11, BS14] are well-established. It is, instead, a challenging problem to perform
numerical simulations.

The main reference on the topic is the book [BCM09], which is an almost
up-to-date overview on the results in the field. To witness the current research
activity on this topic we refer also to the recent works [MM16a], where currents
with coefficients in a normed group are used to propose a rephrasing of the
discrete problem which could be considered as a convex problem, to [BW16],
which proves the equivalence of several formulations of the urban planning model,
including two different regimes of transportation and to [BRW], which provides
a new convexification of the 2-dimensional problem, used to perform numerical
simulations.

Other techniques have been recently introduced, with the aim to tackle this and
similar problems numerically. For instance [OS11] provides a Modica-Mortola-
type approximation of the branched transportation problem and in [CMF16] the
authors introduce a family of approximating energies, modeled on the Ambrosio-
Tortorelli functional (see also [BLS15]). Numerical simulations with a different
aim are implemented in the recent works [MOV16] and [BOO16]. Here the novel
formulations of the Steiner-tree problem and the Gilbert-Steiner problem, intro-
duced in [MM16b] and [MM16a], are exploited to find numerical calibrations:
functional-analytic tools which can be used to prove the minimality of a given
configuration.

A natural question of special relevance in view of numerical simulations, is
whether the optima are stable with respect to variations of the initial and final
distribution of mass. In order to introduce this question more precisely and to
state our main result, let us give some informal definitions. More technical def-
initions will be introduced in Section 2 and used along the paper. Nevertheless,
the simplified notation introduced here suffices to formulate the question and our
main result.

Given two finite positive measures µ−, µ+ on the set X := BR(0) ⊂ Rd with
µ−(X) = µ+(X), a traffic path connecting µ− to µ+ is a vector-valued measure

T = ~T (H 1 E), supported on a set E ⊂ X, which is contained in a countable
union of curves of class C1, having distributional divergence

div T = µ+ − µ−.

The α-mass of T is defined as the quantity

Mα(T ) :=

∫
E
|~T (x)|αdH 1(x).

We say that T is an optimal traffic path, and we write T ∈ OTP(µ−, µ+) if

Mα(T ) ≤Mα(S), for every traffic path S with div S = µ+ − µ−.

We address the following question about the stability of optimal traffic paths,
raised in [BCM09, Problem 15.1].
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1.1. Question. Let α ≤ 1− 1
d . Let (µ−n )n∈N, (µ

+
n )n∈N be finite measures on X

and for every n let Tn ∈ OTP(µ−n , µ
+
n ), with Mα(Tn) uniformly bounded. Assume

that Tn converges to a vector-valued measure T where div T = µ+ − µ− and µ±

are finite measures. Is it true that T ∈ OTP(µ−, µ+)?

The threshold

α = 1− 1

d
(1.2)

appears in several contexts in the literature. Firstly, when α is above this value
any two probability measures with compact support in Rd can be connected with
finite cost (see Proposition 3.2). Secondly, above this value the answer to the
previous question is positive and the minimum cost between two given measures
is continuous with respect to the weak∗ convergence of measures (see [BCM09,
Lemma 6.11 and Proposition 6.12]). Finally, above the threshold interior regular-
ity holds (see [BCM09, Theorem 8.14]) and actually the stability property plays
an important role in the proof of such result. The finiteness of the cost, as well
as the continuity of the minimum cost, fails for values of α smaller or equal to
the value (1.2) (see [CDRM] for an example of failure of continuity). Surprisingly
enough, the stability of optimal plans still holds, at least under mild additional
assumptions. The main result of our paper provides a positive answer to the
stability question for α below the critical threshold (1.2), when the supports of
the limit measures µ± are disjoint and “not too big”; nothing is instead assumed
on the approximating sequence (µ±n )n∈N.

1.2. Theorem. Let α > 1 − 1
d−1 . Let A−, A+ ⊂ X be measurable sets and

µ−, µ+ be finite measures on X with µ−(X) = µ+(X), supp(µ+)∩ supp(µ−) = ∅,

H 1(A− ∪A+) = 0 and µ−(X \A−) = µ+(X \A+) = 0. (1.3)

Let (µ−n )n∈N, (µ
+
n )n∈N be finite measures on X such that µ−n (X) = µ+

n (X) and

µ±n ⇀ µ±. (1.4)

For every n ∈ N let Tn ∈ OTP(µ−n , µ
+
n ) be an optimal traffic path and assume

that there exists a traffic path T and a constant C > 0 such that

Tn ⇀ T and Mα(Tn) ≤ C.

Then T is optimal, namely

T ∈ OTP(µ−, µ+).

1.3. Remark. (1) Notice that in the plane (namely, for d = 2) our result
cover all possible exponents α ∈ (0, 1).

(2) The actual notion of traffic path as well as the notion of convergence
mentioned in Question 1.1 and denoted in Theorem 1.2 by Tn ⇀ T , are
slightly different from those used in this introduction (see Subsection 2.2).
For our purposes, it is important to observe that the convergence of traffic
paths Tn to T implies the convergence of div Tn to div T , weakly in the
sense of measures.
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(3) The assumptions that the supports of µ− and µ+ are disjoint is recur-
rent in the literature. For example it is assumed in the proof of interior
regularity properties of optimal traffic plans (see [BCM09, Chapter 8]).
Moreover such hypothesis could be dropped if we assume that either µ−

or µ+ are finite atomic measures. However we will not pursue this in the
present paper.

(4) The restriction that µ± are supported on H 1-null sets is essential for
our proof (even though we can relax such assumption in some special
case, see [CDRM]). On the other hand, restrictions on the “size” of sets
supporting the measures µ± are recurrent assumptions in previous works
(see [BCM09, Chapter 10] and [DS07b]). Requiring (1.3) for supporting
Borel sets A+ and A− rather than for the (closed) supports of µ±, allows
one to apply the theorem to more cases; for instance, as soon as the limit
measures are supported on any countable set (possibly dense in an open
subset of X).

(5) There is a subtle reason for our choice to use traffic paths, rather than
traffic plans, which is related to a known issue about the definition of
the cost for traffic plans (see the discussion at the beginning of [BCM09,
Chapter 4]). Nevertheless we are able to prove a weaker version of our
main result also for traffic plans: roughly speaking one should assume
additionally the Hausdorff convergence of the supports of µ±n to the sup-
ports of µ±. This problem and other versions of the stability results
with weaker assumptions on µ± in some special settings are addressed in
[CDRM].

On the structure of the paper. A few words are worthwhile concerning the
organization of the paper. In Section 2 we introduce the main notation and
in Section 3 we collect some properties of optimal traffic paths which we use
extensively through the paper. In particular, in Proposition 3.6 we prove a result
about the representation of optimal traffic paths as weighted collections of curves,
which paves the way for several new operations on traffic paths introduced in this
paper. We conclude Section 3 raising the main question on the stability of optimal
traffic paths and recalling the results which are already available in the literature.
Section 4 requires some explanation: there we prove a result on the lower semi-
continuity of the transportation cost. Clearly such property is already used by
many other authors. The reason for our attention on that issue is twofold: firstly
we want to throw light on a point that is partially overlooked in some previous
works (see Remark 2.7), secondly we need a stronger (localized) version of the
usual semi-continuity. Section 5 deserves particular attention at a first reading,
since it gives a heuristic presentation of the proof of Theorem 1.2 and sheds
light on several lemmas used therein. We kept the presentation as informal as
possible, so that the reader can follow the fundamental ideas of the paper even
without being used to the notions and definitions of Section 2. Section 6 contains
several preliminary lemmas, covering results and new techniques which are the
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ingredients of the proof of the main theorem. Eventually, in Section 7, we prove
Theorem 1.2.

2. Notation and preliminaries

2.1. Measures and rectifiable sets. Given a locally compact separable metric
space Y , we denote by M (Y ) the set of Radon measures in Y , namely the set
of (possibly signed) measures on the σ-algebra of Borel sets of Y that are locally
finite and inner regular. We denote also by M+(Y ) the subset of positive measures
and by P(Y ) the subset of probability measures, i.e. those poitive measures µ
such that µ(Y ) = 1.

We denote by |µ| the total variation measure associated to µ. The negative
and positive part of µ are the positive measures defined respectively by

|µ| − µ
2

and
|µ|+ µ

2
.

For µ, ν ∈ M+(Y ), we write µ ≤ ν in case µ(A) ≤ ν(A) for every Borel set A.
Given a measure µ we denote by

supp(µ) :=
⋂
{C ⊂ Y : C is closed and |µ|(Y \ C) = 0}

its support. We say that µ is supported on a Borel set E if |µ|(Y \E) = 0. For a
Borel set E, µ E is the restriction of µ to E, i.e. the measure defined by

[µ E](A) = µ(E ∩A) for every Borel set A.

We say that two measures µ and ν are mutually singular if there exists a Borel
set E such that µ = µ E and ν = ν Ec.

For a measure µ ∈ M (Y ) and a Borel map η : Y → Z between two metric
spaces we let η]µ ∈M (Z) be the push-forward measure, namely

η]µ(A) := µ(η−1(A)), for every Borel set A ⊂ Z.

We use L d and H k to denote respectively the d-dimensional Lebesgue measure
on Rd and the k-dimensional Hausdorff measure, see [Sim83].

A set K ⊂ Rd is said to be countably k-rectifiable (or simply k-rectifiable) if
it can be covered, up to an H k-negligible set, by countably many k-dimensional
submanifolds of class C1. At H k-a.e. point x of a k-rectifiable set E, a notion
of (unoriented) tangent k-plane is well-defined: we denote it by Tan(E, x).

2.2. Rectifiable currents. We recall here the basic terminology related to k-
dimensional rectifiable currents. We refer the reader to the introductory presen-
tation given in the standard textbooks [Sim83], [KP08] for further details. The
most complete reference remains the treatise [Fed69].

A k-dimensional current T in Rd is a continuous linear functional on the space
Dk(Rd) of smooth and compactly supported differential k-forms on Rd. Hence
the space Dk(Rd) of k-dimensional currents in Rd is endowed with the natural
notion of weak∗ convergence. For a sequence (Tn)n∈N of k-dimensional currents
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converging to a current T , we use the standard notation Tn ⇀ T . With ∂T we
denote the boundary of T , that is the (k − 1)-dimensional current defined via

〈∂T, ω〉 := 〈T, dω〉 for every ω ∈ Dk−1(Rd).

The mass of T , denoted by M(T ), is the supremum of 〈T, ω〉 over all k-forms ω
such that |ω| ≤ 1 everywhere (here with |ω| we denoted the comass norm of ω).

By the Radon–Nikodým Theorem, a k-dimensional current T with finite mass

can be identified with the vector-valued measure T = ~T‖T‖ where ‖T‖ is a finite

positive measure and ~T is a unit k-vector field. Hence, the action of T on a
k-form ω is given by

〈T, ω〉 =

∫
Rd

〈ω(x), ~T (x)〉d‖T‖(x) .

In particular a 0-current with finite mass can be identified with a real-valued
Radon measure and the mass of the current coincides with the total variation
(or mass) of the corresponding measure. We will tacitly use such identification
several times through the paper.

For a current T with finite mass, we will denote by supp(T ) its support, defined
as the support of the associated measure ‖T‖. A current T is called normal if
both T and ∂T have finite mass; we denote the set of normal k-currents in Rd by
Nk(Rd). Given a normal 1-current T , we denote by ∂+T and ∂−T respectively
the positive and the negative part of the (finite) measure ∂T . It is well-known
that, if T is a normal current with compact support and ∂T = µ+ − µ−, (where
not necessarily µ+ and µ− are mutually singular) it holds

M(µ+) = M(µ−). (2.1)

In particular:

M(∂T ) = 2M(∂−T ) = 2M(∂+T ). (2.2)

Given a Borel set A ⊆ Rd, we define the restriction of a current T with finite
mass to A as

〈T A, ω〉 :=

∫
A
〈ω(x), ~T (x)〉d‖T‖(x) .

Notice that the restriction of a normal current to a Borel set is a current with
finite mass, but it might fail to be normal.

On the space of k-dimensional currents one can define the flat norm as

F(T ) := inf{M(R) + M(S) : T = R+ ∂S, R ∈ Dk(Rd), S ∈ Dk+1(Rd)}. (2.3)

The main reason for our interest on this notion is the fact that the flat norm
metrizes the weak∗ convergence of normal currents in a compact set with equi-
bounded masses and masses of the boundaries. This fact can be easily deduced
from [Fed69, Theorem 4.2.17(1)].

A k-dimensional rectifiable current is a current T = T [E, τ, θ], which can be
represented as

〈T, ω〉 =

∫
E
〈ω(x), τ(x)〉 θ(x)dH k(x) ,
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where E is a k-rectifiable set, τ(x) is a unit simple k-vector field defined on E
which at H k-a.e x ∈ E spans the approximate tangent space Tan(E, x) and
θ : E → R is a function such that

∫
E |θ|dH

k < ∞. We denote by Rk(Rd) the

space of k-dimensional rectifiable currents in Rd. Modulo changing sign to the
orientation τ , we can always assume that θ takes non-negative values. We will
tacitly make such assumption through the paper, unless we specify elsewhere. It
is easy to see that for T ∈ Rk(Rd) it holds

M(T ) =

∫
E
θ(x)dH k(x); (2.4)

in particular, any rectifiable current has finite mass.

2.3. α-mass. For fixed α ∈ [0, 1), we define also the α-mass of a current T ∈
Rk(Rd) ∪Nk(Rd) by

Mα(T ) :=

{∫
E θ

α(x)dH k(x) if T ∈ Rk(Rd),
+∞ otherwise.

(2.5)

One elementary property of this functional is its sub-additivity, namely

Mα(T1 +T2) ≤Mα(T1) +Mα(T2) for every T1, T2 ∈ Rk(Rd)∪Nk(Rd). (2.6)

Indeed, the inequality is trivial if T1 or T2 is not rectifiable. In turn, if Ti =
T [Ei, τi, θi], i = 1, 2, the multiplicity θ of T1 + T2 is obtained as the sum of the
multiplicities of T1 and T2 with possible signs, so that θ ≤ θ1 +θ2. Since moreover
the inequality (θ1 +θ2)α ≤ θα1 +θα2 holds for every θ1, θ2 ∈ [0,∞), we deduce that

Mα(T1+T2) ≤
∫
E1∪E2

(θ1+θ2)α dH k ≤
∫
E1∪E2

θα1 +θα2 dH
k = Mα(T1)+Mα(T2).

2.4. Traffic paths. Fix R > 0. From now on, by X we denote the closed ball
of radius R in Rd centered at the origin. Following [Xia03] and [BCM09], given
two positive measures µ−, µ+ ∈M+(X) with the same total variation, we define
the set TP(µ−, µ+) of the traffic paths connecting µ− to µ+ as

TP(µ−, µ+) := {T ∈ N1(Rd) : supp(T ) ⊂ X, ∂T = µ+ − µ−},
and the minimal transport energy associated to µ−, µ+ as

Mα(µ−, µ+) := inf{Mα(T ) : T ∈ TP(µ−, µ+)}.
Moreover we define the set of optimal traffic paths connecting µ− to µ+ by

OTP(µ−, µ+) := {T ∈ TP(µ−, µ+) : Mα(T ) = Mα(µ−, µ+)}. (2.7)

Given a rectifiable current T with compact support in Rd and a Lipschitz map
f : Rd → Rm, we denote by f]T the push-forward of T according to f , i.e the
rectifiable current in Rm defined by

〈f]T, ω〉 := 〈T, f ]ω〉, for every ω ∈ Dk(Rm)

where f ]ω is the pull-back of the form ω.
A consequence of the following proposition is that, in order to minimize the

α-mass among currents with boundary in X, it is not restrictive to consider only
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currents supported in X. Indeed the projection onto X reduces the α-mass. See
also [DH03, Lemma 3.2.4 (2)].

2.5. Proposition. Let T ∈ R1(Rd) and let f : Rd → Rm be an L-Lipschitz
map. Then Mα(f]T ) ≤ LMα(T ).

Proof. If T = T [E, τ, θ], combining the Area Formula (see [Sim83, (8.5)]) and
the fact that (a+ b)α ≤ aα + bα for every a, b > 0, we get

Mα(f]T ) ≤
∫
f(E)

(∫
f−1(y)

θ(x)dH 0(x)

)α
dH 1(y)

≤
∫
f(E)

∫
f−1(y)

θα(x)dH 0(x)dH 1(y)

=

∫
E
Jf (x)θα(x)dH 1(x) ≤ L

∫
E
θα(x)dH 1(x) = LMα(T ).

(2.8)

�

2.6. Remark. We notice that, given two measures µ−, µ+ ∈M+(X) with the
same total variation and a rectifiable current R ∈ R1(Rd) with Mα(R) <∞ and
∂R = µ+ − µ−, there exists R′ ∈ R1(X) with ∂R′ = µ+ − µ− and

Mα(R′) ≤Mα(R).

More precisely, if R is not supported on X, then one can find R′ such that

Mα(R′) <Mα(R).

The proof of this fact is easily obtained by choosing R′ as the push-forward of
the current R according to the closest-point projection π onto X and applying
Proposition 2.5, observing that π has local Lipschitz constant strictly smaller
than 1 at all points of Rd \X.

2.7. Remark (Comparison with costs studied in the literature). The
original definition of “cost” of a traffic path slightly differs from the α-mass
defined above. Indeed in [Xia03, Definition 3.1] the author defines the cost of
a traffic path as the lower semi-continuous relaxation on the space of normal
currents of the functional (1.1) defined on a class of objects called polyhedral
currents. In [Xia04, Section 3], the author notices that, in the class of rectifiable
currents, his definition of cost coincides with the α-mass defined in (2.5). The
proof of this fact is only sketched in [Whi99a, Section 6] and will be discussed
in more detail in [CDRMS]. To keep the present paper self-contained, in our
exposition we prefer not to rely on this fact, but we stick to the notion of cost
given by our definition of α-mass. We will prove independently in Section 4 that
the α-mass is lower semi-continuous, together with a localized version of this
result that does not appear in the literature. Since several results in previous
works (see for instance Theorem 3.2) are first proven for polyhedral chains and
then extended by lower semi-continuity, their validity in our setting does not rely
on the equivalence between the two costs.
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3. Known results on optimal traffic paths

In this section we collect some of the known properties of optimal traffic paths.
The presentation does not aim to be exhaustive, but we only recall the facts used
in the proof of our main result.

3.1. Existence of traffic paths with finite cost. We begin with the obser-
vation that the existence of elements with finite α-mass in TP(µ−, µ+) is not
guaranteed in general. For example in [DS07b, Theorem 1.2] it is proved that
there exists no traffic path with finite α-mass connecting a Dirac delta to the
Lebesgue measure on a ball if α ≤ 1 − 1

d . On the other hand, if the exponent α
is larger than such critical threshold, then not only the existence of traffic paths
with finite α-mass is guaranteed, but one also has a quantitative upper bound on
the minimal transport energy.

3.2. Theorem [Xia03, Proposition 3.1]. Let α > 1− 1
d and µ−, µ+ ∈M+(Rd)

be two measures with equal mass M supported on a set of diameter L. Then

Mα(µ−, µ+) ≤ Cα,dMαL,

where Cα,d is a constant depending only on α and d.

3.3. Structure of optimal traffic paths. An important information about
the structure of optimal traffic paths (more in general, about traffic paths of finite
α-mass) is their rectifiability, which follows immediately from the definition of α-
mass. Some further piece of information comes from the fact that optimal traffic
paths do not “contain cycles”. A current T with finite mass is called acyclic if
there exists no non-trivial current S such that

∂S = 0 and M(T ) = M(T − S) + M(S).

The following theorem states that optimal traffic paths with finite cost are
acyclic. Even though in [PS06] several definitions of cost are considered, the
proof of such theorem is given exactly for our cost (2.5).

3.4. Theorem [PS06, Theorem 10.1]. Let µ−, µ+ ∈ M+(Rd) and T ∈
OTP(µ−, µ+) with finite α-mass. Then T is acyclic.

The power of this result relies in the possibility to represent acyclic normal
1-currents as weighted collections of Lipschitz paths. Before stating this result,
we introduce some notation.

We denote by Lip the space of 1-Lipschitz curves γ : [0,∞)→ Rd. For γ ∈ Lip
we denote by T0(γ), the value

T0(γ) := sup{t : γ is constant on [0, t]}
and by T∞(γ) the (possibly infinite) value

T∞(γ) := inf{t : γ is constant on [t,∞)}.
Given a Lipschitz curve with finite length γ : [0,∞) → Rd, we call γ(∞) :=
limt→∞ γ(t). We say that a curve γ ∈ Lip of finite length is simple if γ(s) 6= γ(t)
for every T0(γ) ≤ s < t ≤ T∞(γ) such that γ is non-constant in the interval [s, t].
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To a Lipschitz simple curve with finite length γ : [0,∞) → Rd, we associate
canonically the rectifiable 1-dimensional current

Rγ := [Im(γ),
γ′

|γ′|
, 1].

It follows immediately from (2.4) that

M(Rγ) = H 1(Im(γ)) (3.1)

and it is easy to verify that

∂Rγ = δγ(∞) − δγ(0). (3.2)

Since γ is simple, if it is also non-constant, then γ(∞) 6= γ(0) and M(∂Rγ) = 2.
In the following definition, we consider a class of normal currents that can be

written as a weighted superposition of Lipschitz simple curves with finite length.

3.4.1. Definition (Good decomposition). Let T ∈ N1(Rd) and let π ∈
M+(Lip) be a finite nonnegative measure, supported on the set of curves with
finite length, such that

T =

∫
Lip

Rγdπ(γ), (3.3)

in the sense of [AM16, Section 2.3].
We say that π is a good decomposition of T if π is supported on non-constant,

simple curves and satisfies the equalities

M(T ) =

∫
Lip

M(Rγ)dπ(γ) =

∫
Lip

H 1(Im(γ))dπ(γ) ; (3.4)

M(∂T ) =

∫
Lip

M(∂Rγ)dπ(γ) = 2π(Lip) . (3.5)

Concretely, (3.3) means that, representing T as a vector-valued measure ~T‖T‖,
for every smooth compactly supported vector field ϕ : Rd → Rd it holds∫

Rd

ϕ · ~T d‖T‖ =

∫
Lip

∫ ∞
0

ϕ(γ(t)) · γ′(t) dt dπ(γ) (3.6)

The following theorem, due to Smirnov ([Smi93]), shows that any acyclic, normal,
1-dimensional current has a good decomposition.

3.5. Theorem [PS12, Theorem 5.1]. Let T = ~T‖T‖ ∈ N1(Rd) be an acyclic
normal 1-current. Then there is a Borel finite measure π on Lip such that T can
be decomposed as

T =

∫
Lip

Rγdπ(γ)

and π is a good decomposition of T .

In the following proposition we collect some useful properties of good decom-
positions. Further properties will be given in Proposition 6.2.
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3.6. Proposition (Properties of good decompositions). If T ∈ N1(Rd)
has a good decomposition π as in (3.3), the following statements hold:

(1) The positive and the negative parts of the signed measure ∂T are

∂−T =

∫
Lip

δγ(0)dπ(γ) and ∂+T =

∫
Lip

δγ(∞)dπ(γ). (3.7)

(2) If T = T [E, τ, θ] is rectifiable, then

θ(x) = π({γ : x ∈ Im(γ)}) for H 1-a.e. x ∈ E. (3.8)

(3) For every π′ ≤ π the representation

T ′ :=

∫
Lip

Rγdπ
′(γ) (3.9)

is a good decomposition of T ′; moreover, if T = T [E, τ, θ] is rectifiable,
then T ′ can be written as T ′ = T [E, θ′, τ ] with θ′ ≤ min{θ, π′(Lip)}.

(4) If Mα(T ) <∞, for every ε > 0 there exists δ := δ(T, ε) > 0 such that for
every π′ ≤ π with π′(Lip) ≤ δ we have

Mα(T ′) ≤ ε, (3.10)

where T ′ is defined by (3.9).

Proof. Proof of (1). It follows from the expression in (3.3), from the linearity
of the boundary operator and from (3.2) that

∂T =

∫
Lip

∂Rγdπ(γ) =

∫
Lip

δγ(∞) dπ(γ)−
∫

Lip
δγ(0) dπ(γ) =: S∞ − S0.

By the subadditivity of the mass and by (3.5)

M(S∞) + M(S0) ≤
∫

Lip
M(δγ(∞))dπ(γ) +

∫
Lip

M(δγ(0))dπ(γ)

=

∫
Lip

M(∂Rγ)dπ(γ) = M(∂T ) = M(S∞ − S0)

From this, we deduce that equality holds in the previous chain of inequalities
and that there is no cancellation between S∞ and S0, namely, they are mutually
singular measures. This, in turn, implies that they represent the positive and
negative part of the measure ∂T = S∞ − S0.

Proof of (2). We compute, for every smooth compactly supported test function
φ : Rd → R,∫
Rd

φθdH 1 E =

∫
Lip

(∫
Rd

φ1ImγdH
1 E

)
dπ =

∫
Rd

φ

(∫
Lip

1Imγdπ

)
dH 1 E,

where in the first equality we used [AM16, Theorem 5.5 (iii)], which states that
(3.3) induces an analogous equality between the associated positive measures,
and the fact that π-a.e. γ is simple.
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Proof of (3). We write T = T ′ + (T − T ′) and, since T − T ′ is “parametrized”
by π − π′, we have that

M(T ′) ≤
∫

Lip
M(Rγ)dπ′(γ), and M(T−T ′) ≤

∫
Lip

M(Rγ)d(π−π′)(γ). (3.11)

We conclude that

M(T ) ≤M(T ′) + M(T − T ′)

≤
∫

Lip
M(Rγ)dπ′(γ) +

∫
Lip

M(Rγ)d(π − π′)(γ) =

∫
Lip

M(Rγ)dπ(γ).

(3.12)

Since π represents a good decomposition of T , by (3.4) it follows that equality
must hold at each step in the previous inequality. In particular, from (3.11), we
deduce that

M(T ′) =

∫
Lip

M(Rγ)dπ′(γ).

The same argument applied to the current ∂T ′ leads to the proof that the prop-
erty (3.5) holds for the good decomposition of T ′.

Since the decomposition (3.9) is good, then, by the formula (3.8), we get that
for H 1-a.e. x ∈ E

θ′(x) = π′({γ : x ∈ Im(γ)})
≤ min

{
π({γ : x ∈ Im(γ)}), π′(Lip)

}
= min

{
θ(x), π′(Lip)}.

This concludes the proof of (3).
Proof of (4). By the previous point, applied to the good decomposition of T ′

given in (3.9), it follows that

θ′(x) ≤ min{θ, δ}.

Therefore

Mα(T ′) ≤
∫
E

min{θ(x), δ}α dH 1(x)

and the right-hand side converges to 0 as δ → 0 by the Lebesgue dominated
convergence Theorem. �

3.7. Stability of optimal traffic paths. The present paper addresses Ques-
tion 1.1, which we can now rephrase in rigorous terms as follows.

For every n ∈ N, let µ−n , µ
+
n ∈ M+(X) with the same mass and let Tn ∈

OTP(µ−n , µ
+
n ), with Mα(Tn) uniformly bounded. Assume

Tn ⇀ T, and µ±n ⇀ µ±

where ∂T = µ+ − µ− and µ± ∈M+(X). Is it true that T ∈ OTP(µ−, µ+)?
The answer is relatively simple for α ∈ (1−1/d, 1], relying on the fact that the

minimal transport energy Mα(νn, ν) metrizes the weak∗-convergence of probabil-
ity measures νn ⇀ ν, as stated in the following lemma.
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3.8. Lemma [BCM09, Lemma 6.11]. Let α > 1− 1
d and (νn)n∈N ⊂P(X) be a

sequence of probability measures weakly converging to ν ∈P(X). Then we have
that

lim
n→∞

Mα(νn, ν) = 0.

From Lemma 3.8 one can easily deduce the following stability result for optimal
traffic paths.

3.9. Theorem [BCM09, Proposition 6.12]. Let α > 1 − 1
d . Assume that

(µ−n )n∈N, (µ
+
n )n∈N ⊂ P(X) converge (weakly in the sense of measures) respec-

tively to µ−, µ+ ∈P(X). Let Tn ∈ OTP(µ−n , µ
+
n ) satisfying

sup
n∈N

Mα(Tn) <∞.

If Tn ⇀ T for some current T , then T ∈ OTP(µ−, µ+).

Indeed, assuming by contradiction that Theorem 3.9 does not hold for a se-
quence Tn ⇀ T , we find a contradiction by considering an energy competitor for
Tn (n large enough) as follows. We take the optimal transport Topt for the limit
problem and we add two traffic paths of arbitrarily small energy that connect
respectively µ−n to µ−, and µ+ to µ+

n . This strategy fails for α ≤ 1 − 1
d , since

Lemma 3.8 does not hold below the critical threshold (an example of such phe-
nomenon is provided in [CDRM]). For this reason, we develop in the following
sections a more involved strategy to prove the stability of optimal traffic paths.

4. Lower semi-continuity of the α-mass

This section is devoted to the proof of a lower semi-continuity result for the
α-mass. The statement will be split in two parts. On one side, we prove the
lower semi-continuity for normal currents, which for example allows one to prove
the classical existence of optimal traffic paths in (2.7) (see [BCM09, Proposition
3.41]). On the other side, our strategy of proof of Theorem 1.2 requires to work
with rectifiable currents with boundary of possibly infinite mass, obtained as
restriction of normal rectifiable currents to Borel sets. Therefore for rectifiable
currents we prove a localized version of the usual lower semi-continuity.

4.1. Theorem. Let k ≥ 0, α ∈ (0, 1], (Tn)n∈N be a sequence of k-dimensional
currents in X, and T be a k-dimensional current with

lim
n→∞

F(Tn − T ) = 0.

(1) If the Tn’s and T are rectifiable and A is an open subset of X, then

Mα(T A) ≤ lim inf
n→∞

Mα(Tn A). (4.1)

(2) If Tn and T are normal and

sup
n∈N

{
M(Tn) + M(∂Tn)

}
< +∞,
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then

Mα(T ) ≤ lim inf
n→∞

Mα(Tn). (4.2)

Using Theorem 4.1(2) and the compactness of normal currents (see [Fed69,
4.2.17(1)]), the existence of optimal transport paths in (2.7) follows via the direct
method of the Calculus of Variations.

4.2. Corollary. Let α ∈ (0, 1]. Given two measures µ−, µ+ ∈ M+(X) such
that Mα(µ−, µ+) < +∞, there exists a current T ∈ OTP(µ−, µ+).

The proof of the first part of Theorem 4.1 employs a characterization of rec-
tifiability by slicing. The proof of the second point is carried out by slicing our
rectifiable currents and reducing the theorem to the lower semi-continuity of 0-
dimensional currents, following some ideas in [DH03, Lemma 3.2.14]. For this
reason, we need to recall some further preliminaries on the slicing of currents.
Let k ≤ d, let I(d, k) be the set of multi-indices of order k in Rd, i.e. the set of
k-tuples (i1, . . . , ik) with

1 ≤ i1 < . . . < ik ≤ d,
let {e1, . . . , ed} be the standard orthonormal basis of Rd, and let VI be the k-plane
spanned by {ei1 , . . . , eik} for every I = (i1, . . . , ik) ∈ I(d, k). Given a k-plane V ,
we denote pV the orthogonal projection on V . If V = VI for some I, we simply
write pI instead of pVI . Given a current T ∈ Nk(Rd) with compact support,
a Lipschitz function p : Rd → Rk and y ∈ Rk, we denote by 〈T, p, y〉 the 0-
dimensional slice of T in p−1(y) (see [Fed69, Section 4.3] or [Sim83, Section 28]
for the case k = 1). In this paper, we will employ the notion of slicing only to
apply two deep known results (contained in Theorem 4.3 and Lemma 4.4). The
following theorem shows that the rectifiability of a current is equivalent to the
rectifiability of a suitable family of slices.

4.3. Theorem [Whi99b]. Let T ∈ Nk(Rd). Then T ∈ Rk(Rd) if and only if

〈T, pI , y〉 is rectifiable for every I ∈ I(d, k) and for H k-a.e. y ∈ VI .

By Gr(d, k) we denote the Grassmannian of k-dimensional planes in Rd and by
γd,k we denote the Haar measure on Gr(d, k), i.e. the unique probability measure
on Gr(d, k) which is invariant under the action of orthogonal transformations (see
[KP08, Section 2.1.4]).

In the following lemma, we collect some known properties of slices and their
behaviour with respect to the α-mass and the flat norm. The bounds (4.3)
and (4.4) below are proved in [DH03, Corollary 3.2.5(5) and Remark 3.2.11]
respectively. The integral-geometric equality is a consequence of [Fed69, 3.2.26;
2.10.15; 4.3.8] (see also [DH03, (21)]).

4.4. Lemma. Let R ∈ Rk(Rd) and N ∈ Nk(Rd). Then for every V ∈ Gr(d, k)
we have ∫

Rk

Mα(〈R, pV , y〉) dy ≤Mα(R), (4.3)
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Rk

F(〈N, pV , y〉) dy ≤ F(N). (4.4)

Moreover, there exists c = c(d, k) such that the following integral-geometric equal-
ity holds:

Mα(R) = c

∫
Gr(d,k)×Rk

Mα
(
〈R, pV , y〉

)
d(γd,k ⊗H k)(V, y). (4.5)

Proof of Theorem 4.1(1). Step 1: the case k = 0. Since a 0-dimensional
rectifiable current T = T [E, 1, θ] is a signed, atomic measure, we write

T A =
∑
i∈N

θiδxi

for (xi)i∈N ⊆ Rd distinct and for (θi)i∈N ⊆ R (with possible signs). Fix ε > 0 and
let I ⊆ N be a finite set such that

Mα(T A)−
∑
i∈I
|θi|α ≤ ε if Mα(T A) <∞ (4.6)

and ∑
i∈I
|θi|α ≥

1

ε
otherwise. (4.7)

Up to reordering the sequences (xi)i∈N and (θi)i∈N, we may assume that I =
{1, ..., N} for some N := N(ε). Set

r :=
1

4
min

{
min{d(xi, xj) : 1 ≤ i < j ≤ N},min{d(xi, A

c) : 1 ≤ i ≤ N}
}
.

Since limn→∞ F(Tn − T ) = 0, then Tn ⇀ T weakly in the sense of measures.
Hence for every i ∈ {1, ..., N}

M(T B(xi, r)) ≤ lim inf
n→∞

M(Tn B(xi, r)), for every i ∈ {1, ..., N}. (4.8)

By (4.8) and the elementary inequality
(∑

i∈N |ai|
)α ≤ ∑

i∈N |ai|α for any
(ai)i∈N ⊆ R, we deduce that for every i ∈ {1, ..., N}

|θi|α ≤
(
M(T B(xi, r)

)α ≤ lim inf
n→∞

(
M(Tn B(xi, r))

)α
≤ lim inf

n→∞
Mα(Tn B(xi, r)).

(4.9)

Adding over i and observing that the balls B(xi, r) are disjoint by the choice of
r, we find that∑

i∈I
|θi|α ≤ lim inf

n→∞

N∑
i=1

Mα(Tn B(xi, r)) ≤ lim inf
n→∞

N∑
i=1

Mα(Tn A).

By (4.6) (or (4.7) in the case that Mα(T A) = ∞) and since ε is arbitrary, we
find (4.1).

Step 2 (Reduction to k = 0 through integral-geometric equality). We prove now
Theorem 4.1(1) for k > 0. Up to subsequences, we can assume

lim
n→∞

Mα(Tn A) = lim inf
n→∞

Mα(Tn A).
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Integrating in V ∈ Gr(d, k) the second inequality in Lemma 4.4 we get

lim
n→∞

∫
Gr(d,k)×Rk

F(〈Tn − T, pV , y〉)d(γd,k ⊗H k)(V, y) ≤ lim
n→∞

F(Tn − T ) = 0.

Since the integrand F(〈Tn−T, pV , y〉) is converging to 0 in L1, up to subsequences,
we get

lim
n→∞

F(〈Tn − T, pV , y〉) = 0 for γd,k ⊗H k-a.e. (V, y) ∈ Gr(d, k)× Rk.

We conclude from Step 1 that

Mα(〈T, p, y〉 A) ≤ lim inf
n→∞

Mα(〈Tn, p, y〉 A).

By [AK00, (5.15)], for H k-a.e. y

〈T A, pV , y〉 = 〈T, pV , y〉 A. (4.10)

By (4.10), we get the inequality

Mα(〈T A, pV , y〉) ≤ lim inf
n→∞

Mα(〈Tn A, pV , y〉). (4.11)

The conclusion follows applying twice the integral-geometric equality (4.5). In-
deed, using the semi-continuity proved for k = 0 and Fatou’s lemma, we get

Mα(T A) = c

∫
Gr(d,k)×Rk

Mα
(
〈T A, pV , y〉

)
d(γd,k ⊗H k)(V, y)

(4.11)

≤ c

∫
Gr(d,k)×Rk

lim inf
n→∞

Mα
(
〈Tn A, pV , y〉

)
d(γd,k ⊗H k)(V, y)

≤ c lim inf
n→∞

∫
Gr(d,k)×Rk

Mα
(
〈Tn A, pV , y〉

)
d(γd,k ⊗H k)(V, y)

= lim inf
n→∞

Mα(Tn A).

(4.12)

This concludes the proof of Step 2, so the proof of Theorem 4.1(1) is complete. �

In order to prove Theorem 4.1(2), the only property which is missing at this
stage is the fact that a normal, non-rectifiable k-current cannot be approximated
with rectifiable currents with uniformly bounded mass, α-mass, and mass of the
boundary. This is proved in the following lemma.

4.5. Lemma. Let (Tn) ⊂ Rk(Rd) and let us assume that

sup
n∈N
{M(Tn) + M(∂Tn) + Mα(Tn)} ≤ C < +∞.

If limn→∞ F(Tn − T ) = 0 for some T ∈ Nk(Rd), then T is in fact rectifiable.

Proof. Step 1: the case k = 0. We prove the lemma for k = 0, recalling that
a 0-dimensional rectifiable current T = T [E, τ, θ], with τ(x) = ±1, is an atomic
signed measure (i.e. a measure supported on a countable set). More precisely,
we prove the following claim: let (Tn)n∈N be a sequence of 0-rectifiable currents
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Tn = T [En, τn, θn] such that limn→∞ F(Tn − T ) = 0 for some T ∈ N0(Rd) and
Mα(Tn) ≤ C for some C > 0; then T is 0-rectifiable.

Indeed, fix δ > 0. For any n ∈ N

M(Tn {x : θn(x) < δ}) =

∫
En∩{θn<δ}

θn(x) dH k(x)

≤ δ1−α
∫
En∩{θn<δ}

θn(x)α dH k(x) ≤Mα(Tn)δ1−α ≤ Cδ1−α.

Therefore, up to subsequences the measure Tn {x : θn(x) ≥ δ} converges to a
discrete measure T1 (indeed the support of the measures Tn {x : θn(x) ≥ δ}
consists of a finite number of points, which is uniformly bounded with respect
to n, due to the bound on Mα(Tn)), and the sequence (Tn {x : θn(x) < δ})n∈N
converges to a signed measure T2 of mass less or equal than Cδ1−α.

By the arbitrariness of δ, we conclude that the measure T2 has arbitrarily small
mass and that the measure T1 is purely atomic. Since T = T1 +T2, the statement
follows.

Step 2. We prove the claim for k > 0.
We apply the inequalities in Lemma 4.4 to our sequence (Tn)n∈N to deduce

that ∫
Rk

Mα(〈Tn, pI , y〉) dy ≤Mα(Tn) ≤ C. (4.13)

lim
n→∞

∫
Rk

F(〈Tn − T, pI , y〉) dy ≤ C lim
n→∞

F(Tn − T ) = 0.

Since the sequence of non-negative functions (F(〈Tn − T, pI , ·〉))n∈N converges in
L1(Rk) to 0, up to a (not relabelled) subsequence, we get the pointwise conver-
gence

lim
n→∞

F(〈Tn − T, pI , y〉) = 0 for H k-a.e. y ∈ Rk.

Moreover, by Fatou lemma and (4.13) we know that for every I ∈ I(d, k)∫
Rk

lim inf
n→∞

Mα(〈Tn, pI , y〉) dy ≤ lim inf
n→∞

∫
Rk

Mα(〈Tn, pI , y〉) dy <∞.

Therefore, we have that

lim inf
n→∞

Mα(〈Tn, pI , y〉) <∞ for H k-a.e. y ∈ Rk.

Hence we are in the position to apply Step 1 to a.e. slice 〈Tn, pI , y〉 to a y-
dependent subsequence and deduce that

〈T, pI , y〉 is 0-rectifiable for H k-a.e. y ∈ Rk, I ∈ I(d, k).

Finally, we employ Theorem 4.3 to infer that this property of the slices implies
that T is rectifiable. �

Proof of Theorem 4.1(2). Let (Tn) ⊂ Nk(Rd) and T ∈ Nk(Rd) be such
that limn→∞ F(Tn − T ) = 0. If T is rectifiable, then (4.2) follows by Theorem
4.1(1) and the fact that non-rectifiable currents have infinite α-mass. Otherwise
if T is non-rectifiable, then (4.2) follows from Lemma 4.5. �
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5. Ideas for the proof of Theorem 1.2

Since the proof of Theorem 1.2 develops some new geometric ideas in order
to construct a suitable competitor for a minimization problem, we introduce
informally the strategy in this section, assuming some significant simplifications,
before entering the technical details of the actual argument. At the end of this
section of heuristics we give some hints on how to remove the further assumptions.

We can easily reduce to the case that µ±, µ±n ∈ P(X). By contradiction, we
assume that there exists a sequence Tn ⇀ T of optimizers such that T is not an
optimizer, namely there exists Topt and ∆ > 0 with

Mα(Topt) ≤Mα(T )−∆, ∂Topt = ∂T = µ+ − µ−.

We aim to find a contradiction by defining a suitable competitor T̃n for Tn for
some n large enough, that “almost follows” Topt instead of T , and satisfies the
estimates

Mα(T̃n) ≤Mα(Tn)− ∆

8
, ∂T̃n = ∂Tn = µ+

n − µ−n .

(1) Covering of A±. First, we choose a countable covering of the sets A±

supporting µ±, denoted by {B±i = B±(xi, ri)}i∈N (see Figure (1a)) such that

∞∑
i=1

ri, Mα
(
T

∞⋃
i=1

B±i

)
, and Mα

(
Topt

∞⋃
i=1

B±i

)
are arbitrarily small. (5.1)

This choice is made possible by the assumption that the measures µ± are sup-
ported on sets of H 1-measure 0 and by the fact that Mα is absolutely continuous
with respect to H 1. We also select a finite number N± such that

µ±
((N±⋃

i=1

B±i

)c)
is small. (5.2)

For simplicity, in this section we make the assumption that the balls B±i are
pairwise disjoint and that the coverings are finite, namely the quantity in (5.2)
is 0.

(2) Representation of Tn. Using Theorem 3.5, we represent each Tn and Topt
by a collection of curves weighted by the probability measures πn and πopt in
P(Lip), namely

Tn =

∫
Lip

Rγ dπn(γ), Topt =

∫
Lip

Rγ dπopt(γ).

This representation is essential in order to build an energy competitor for the
traffic path Tn.

Intuitively, in the competitor that we want to construct, the mass particles,
whose original spatial distribution is represented by µ−n , will move for an initial
stretch along the curves in the support of πn, as long as these curves remain in the
balls where they begin. Then, they will be connected to the curves in the support
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Figure 1. Figure (1a) shows the supports of µ+ and µ− and the
covering introduced in (1). In Figure (1b) we represented the traf-
fic path Tn and the selection of its curves that begin (respectively
end) in the first N− (respectively N+) balls.

of πopt via a “cheap” transport supported on the spheres ∂B−i . Subsequently the
particles will move along the curves in the support of πopt, until they reach the
spheres ∂B+

i . From there, another cheap transport supported on the spheres will
connect them back to the curves in the support of πn and finally they will be
transported to their final destination along the curves of πn. Observe that in the
process we may have changed the final destination of each single particle, but we
preserved the global final particle distribution.

Let us describe now the strategy more in detail. First, we define πseln as the

restriction of πn to curves that start in ∪N−i=1B
−
i and end in ∪N+

i=1B
+
i . We associate

to this πseln a new current T seln , as represented in Figure (1b), and we notice that
the remaining πn−πseln carries little mass, by (5.2) and by the fact that ∂Tn ⇀ ∂T .
We make the further simplifying assumption that

Tn − T seln = 0, (5.3)

even though this is a big simplification since this term cannot be seen as an error
in energy.

(3) Construction of a competitor T̃ seln for T seln . We follow the curves repre-
senting T seln from their starting point, which, by (5.3) is assumed to be in some
B−i with i ∈ {1, ..., N−}, up to the first time when they touch ∂B−i . In this way,

we define T sel,−n as in Figure (2a). Similarly, we define T sel,+n as the restriction
of the curves in T seln from the last time when they touch ∂B+

i up to their final

point in B+
i (see again Figure (2a)).

In a similar way, we define T restropt restricting the curves representing Topt from

the first time they exit ∪N−i=1B
−
i up to the last time they enter ∪N+

i=1B
+
i (see

Figure (2b)).
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Figure 2. In Figure (2a) we mark T sel,±n and in Figure (2b) we
mark T restropt .

We make the further simplifying assumption that µ±n and µ± have the same
quantity of mass in each of the balls B±i , i = 1, ..., N±, namely

µ±n (B±i ) = µ±(B±i ) for every i = 1, ..., N±, (5.4)

or, in other words, that

∂±T
sel
n (B±i ) = ∂±Tn(B±i ) = ∂±Topt(B

±
i ) for every i = 1, ..., N±. (5.5)

We notice that this also implies that

∂+T
sel,−
n (∂B−i ) = ∂−T

sel,−
n (B−i ) = ∂−T

sel
n (B−i ) = ∂−Topt(B

−
i ) = ∂−T

restr
opt (∂B−i )

(5.6)

(and a similar equality holds for ∂−T
sel,+
n (∂B+

i )). Indeed, the first equality holds

because the traffic path T sel,−n transports all the mass inside B−i on the boundary

of B−i ; the last inequality holds because πopt-a.e. curve exit from ∪N−i=1B
−
i , since

it has to end in ∪N+

i=1B
+
i .

Next, we consider a traffic path T conn,−n that connects ∂+T
sel,−
n to ∂−T

restr
opt

on ∪i∂B−i . By (5.6), these two measures can be connected since they have the
same mass. Moreover, by a modification of Theorem 3.2 (see Lemma 6.5), the
two measures can be connected with finite (and actually small) cost, since they
are supported on the union of the (d − 1)-dimensional spheres ∂B−i , and since

by assumption in our theorem we required that α > 1 − 1
d−1 . The cost of this

transport is estimated through Lemma 6.5 by

Mα(T conn,−n ) ≤
N−∑
i=1

Cα,dr
−
i , (5.7)

which is small by (5.1).

In a similar way we define a traffic path T conn,+n that connects ∂−T
sel,+
n to

∂+T
restr
opt on ∪i∂B+

i and enjoys the estimate

Mα(T conn,+n ) ≤
N+∑
i=1

Cα,dr
+
i . (5.8)
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Finally, we define (see Figure (3))

T̃ seln := T sel,−n + T conn,−n + T restropt + T conn,+n + T sel,+n .

Figure 3. The energy competitor T̃ seln .

(4) Energy estimate for T̃ seln and contradiction. We show finally that the

competitor T̃ seln has strictly less energy than Tn. Since by construction it has
the same marginals, then we reach a contradiction. Indeed, by the subadditivity
of the α-mass, we have

Mα(T̃ seln ) ≤Mα(T sel,−n ) +Mα(T conn,−n ) +Mα(T restropt ) +Mα(T conn,+n ) +Mα(T sel,+n )
(5.9)

By the estimates on the energy of the connections in (5.7) and (5.8) and by the
smallness assumptions on the rays, we estimate two terms in the right-hand side
of (5.9)

Mα(T conn,−n ) + Mα(T conn,+n ) ≤ ∆

4
. (5.10)

Regarding the first and last terms in the right-hand side of (5.9), we estimate
them with the full energy of Tn inside the balls of the coverings

Mα(T sel,±n ) ≤Mα
(
Tn

(
∪N±i=1 B

±
i

))
. (5.11)

To bound the energy of T restropt , we first estimate it with the energy of the whole
Topt. Thanks to the energy gap between Topt and T and (5.1), the latter can be
estimated choosing the energy of T inside the coverings below ∆/4:

Mα(T restropt ) ≤Mα(Topt) ≤Mα(T )−∆ ≤Mα
(
T
((
∪N−i=1B

−
i

)
∪
(
∪N+

i=1B
+
i

))c)
− 3∆

4

By the lower semi-continuity of the α-mass on open sets (see Theorem 4.1(1)) we
deduce that for n large enough

Mα(T restropt ) ≤Mα
(
T seln

((
∪N−i=1 B

−
i

)
∪
(
∪N+

i=1 B
+
i

))c)
− ∆

2
(5.12)

Using (5.10), (5.11), (5.12) to estimate each term in the right-hand side of (5.9)
and noticing that the α-mass is additive on traffic paths supported on disjoint
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sets, we find that

Mα(T̃ seln ) ≤Mα
(
T sel,−n

(
∪N−i=1 B

−
i

))
+ Mα

(
T seln

((
∪N−i=1 B

−
i

)
∪
(
∪N+

i=1 B
+
i

))c)
+ Mα(T sel,+n

(
∪N+

i=1 B
+
i

)
)− ∆

4
= Mα(T seln )− ∆

4
.

This gives a contradiction to the optimality of the energy of Tn.

Removing some of the simplifying assumptions that we made in the sketch
above is a delicate task and requires new ideas. We briefly describe our strategy.

In (1), we assumed that the balls B±i are mutually disjoint. If this is not the
case, we consider the sets

C±i := B±i \
(
∪i−1
j=1 B

±
j

)
as a disjoint cover of the sets A±. Then we modify the definition of T sel,−n : for
every = 1, ..., N−, we stop every curve starting in C−i as soon as it touches ∂B−i .

The choice to let these curves arrive up to ∂B−i (and not only up to ∂C−i ) is

related to the fact that ∂B−i has a nicer geometry than ∂C−i and in particular

ensures that the estimate (5.7) holds. Similarly, we modify T sel,+n .

To remove the assumption Tn − T seln = 0 in (5.3), we consider T̃ seln + Tn − T seln

as an energy competitor for Tn. To make an energy estimate on this object, we
notice first that Tn−T seln has small pointwise multiplicity (intensity of flow), since
its boundary has small mass and it is made by simple paths (see Proposition
3.6(2)). Secondly, we prove that the α-mass, which in general is sub-additive,
is “almost additive” between currents which have multiplicities of very different
magnitude at every point (Lemma 6.11) and that a suitable lower semi-continuity
result holds, involving the restriction of the energy to points with sufficiently large
multiplicity (Lemma 6.8).

Finally, we need to remove the assumption (5.4) : this is another delicate point.
Given any ε > 0, by choosing n large enough, we may assume that

∂±T
sel,±
n (B±i ) ≤ (1 + ε)∂±Topt(B

±
i ). (5.13)

Then we use the whole (1 + ε)Topt as a transport outside the balls ∪N±i=1B
±
i .

In view of (5.13), this transport might move too much mass from ∪N−i=1∂B
−
i to

∪N+

i=1∂B
+
i ; however, the amount of mass in excess is small. Hence, we build

another transport with small energy which brings back the mass in excess thanks
to Proposition 6.13.

6. Preliminaries for the proof of Theorem 1.2

6.1. Restriction of curves to open sets. Let A ⊆ Rd be a measurable set.
For every γ ∈ Lip, we define the first time OA in which a curve leaves a set A

OA(γ) := inf{t : γ(t) /∈ A},
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and the last time EA in which a curve enters in a set A

EA(γ) := sup{t : γ(t) ∈ Ac}.

We define the restriction of curves on an interval as a map res : Lip × {(s, t) ∈
[0,∞]2 : s ≤ t} → Lip

[res(a, b)(γ)](t) =


γ(a) for t ≤ a
γ(t) for a < t < b

γ(b) for t ≥ b.
(6.1)

In the following, we will often consider the restriction of a curve gamma on
a certain set, or more in general, the restriction of γ from an initial time de-
pending on γ itself I(γ) up to a final time F (γ). In this case, we will shorten
res(I, F )(γ) := res(I(γ), F (γ))(γ).

The previous definition allows us to state an additional property of good de-
compositions.

6.2. Proposition. Let T ∈ N1(Rd) have a good decomposition π as in (3.3),
and consider two measurable functions I, F : Lip → R with I ≤ F . Let us
assume that

∫
Lip δγ(I(γ))dπ(γ) and

∫
Lip δγ(F (γ))dπ(γ) are mutually singular. Then

the current

T̃ :=

∫
Lip

Rres(I,F )(γ)dπ(γ) (6.2)

has the good decomposition

T̃ :=

∫
Lip

Rγdπ̃(γ), with π̃ = (res(I, F ))]π.

Moreover, if T = T [E, τ, θ] is rectifiable, then T̃ can be written as T̃ = T [E, τ, θ̃],

with θ̃ ≤ θ.

6.3. Remark. With the notation of the previous proposition, we notice
that the assumptions that

∫
Lip δγ(I(γ))dπ(γ) and

∫
Lip δγ(F (γ))dπ(γ) are mutually

singular in Proposition 6.2 is equivalent to the existence of two disjoint sets
E−, E+ ⊆ Rd such that γ(I(γ)) ∈ E− and γ(F (γ)) ∈ E+ for π-a.e. γ.

Proof of Proposition 6.2. Proof of the good decomposition property. By Re-
mark 6.3, it is easy to see that

γ(I(γ)) 6= γ(F (γ)) for π − a.e. γ, (6.3)

and so Rres(I,F )(γ) is a non-constant simple curve, for π-a.e γ. Moreover, setting

T = T̃ + T resid with

T resid :=

∫
Lip

Rres(0,I)(γ) +Rres(F,∞)(γ)dπ(γ),
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we have, by the sub-additivity of the mass

M(T ) ≤M(T̃ ) + M(T resid)

≤
∫

Lip

(
M(Rres(0,I)(γ)) + M(Rres(I,F )(γ)) + M(Rres(F,∞)(γ))

)
dπ(γ)

=

∫
Lip

M(Rγ)dπ(γ),

(6.4)

where in the last line we use that π-a.e. curve γ is simple. Since, by (3.4), equality
holds between the first and the last term, every inequality should be an equality
and in particular

M(T̃ ) =

∫
Lip

M(Rres(I,F )(γ))dπ(γ) =

∫
Lip

M(Rγ)dπ̃(γ).

In order to obtain the same equality for ∂T̃ , we first notice that, by (3.7), it holds

∂T̃ =

∫
Lip

∂Rres(I,F )(γ)dπ(γ) =

∫
Lip

(
δγ(F (γ)) − δγ(I(γ))

)
dπ(γ).

By assumption, the measures
∫

Lip δγ(I(γ))dπ(γ) and
∫

Lip δγ(F (γ))dπ(γ) are mutu-

ally singular. Hence,

∂−T̃ =

∫
Lip

δγ(I(γ))dπ(γ) and ∂+T̃ =

∫
Lip

δγ(F (γ))dπ(γ),

which yields, by (2.2),

M(∂T̃ ) = 2M(∂−T̃ ) = 2π(Lip) =

∫
Lip

M(∂Rγ)dπ̃(γ).

This concludes the proof that (6.2) is a good decomposition.

Proof of the estimate on the multiplicity. By the good decomposition property
proved above and the formula (3.8), we get that for H 1-a.e. x ∈ E

0 ≤ θ̃(x) = π̃({γ : x ∈ Im(γ)}) = π({γ : x ∈ Im(res(I, F )(γ))})
≤ π({γ : x ∈ Im(γ)}) = θ(x),

(6.5)

where in the inequality we used that if x ∈ Im(res(I, F )(γ)) then x ∈ Im(γ).
This concludes the proof of the claim. �

6.4. Dimension reduction. The next lemma is a fundamental tool for the
proof of our main result. Indeed it allows us to transport measures which are
supported on (d − 1)-dimensional spheres, decreasing the critical threshold for
which we have quantitative upper bounds on the minimal transport energy (see
Theorem 3.2). Its proof is a simple combination of Theorem 3.2 and Proposition
2.5.

6.5. Lemma. Let α > 1− 1
d−1 . Given two measures µ− and µ+ with mass M

in Rd supported on ∂B(x, r), there exists a current T ∈ TP(µ−, µ+) such that

Mα(T ) ≤ Cα,dMαr,
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where Cα,d is a constant depending only on α and d.

Proof. In this proof we denote by Bd−1(0, r) the open ball in Rd−1 centred at
0 with radius r. Let p ∈ ∂B(x, r) such that µ±({p}) = 0. It is easy to see that

there exists a constant C := C(d) and a 1-Lipschitz function f : Bd−1(0, Cr) →
∂B(x, r) ⊂ Rd which “wraps” Bd−1(0, Cr) onto ∂B(x, r) \ {p}. More precisely,
we can require that

f−1({p}) = ∂Bd−1(0, Cr) and f is injective on Bd−1(0, Cr).

Let ν± := [(f |∂B(x,r)\{p})
−1]]µ

± and observe that f]ν
± = µ±. By Theorem 3.2,

there exists S ∈ TP(ν−, ν+) with Mα(S) ≤ Cα,dMα2r.
We observe that T := f]S belongs to TP(µ−, µ+), indeed

∂(f]S) = f]∂S = f]((f |∂B(x,r)\{p})
−1
] µ+ − (f |∂B(x,r)\{p})

−1
] µ−) = µ+ − µ− = ∂S,

and trivially T is supported on ∂B(x, r). The estimate on the α-mass of T follows
immediately from Proposition 2.5. �

6.6. Covering results. In this subsection we prove two elementary covering
results. Referring to the notation introduced in Section 5, Lemma 6.7 allows
us to cover the sets A± with balls satisfying (5.1) such that for every n ∈ N
almost no curve in the representation of Tn begins or ends on the corresponding
spheres. With Lemma 6.8 we want to guarantee that it is possible to cover the
sets supp(µ−) and supp(µ+), which by assumption are disjoint, with two disjoint
families of small balls. This time we do not require any smallness assumption on
the sum of the radii, but we want to control the number of balls in each family.

6.7. Lemma. Consider a family of 1-currents T, T ′, (Tn)n∈N ∈ N1(Rd) ∩
R1(Rd), such that Mα(T ),Mα(T ′) < +∞ and ∂±T = ∂±T

′. Given a set A
such that H 1(A) = 0, and ε > 0, there exists a covering of A with open balls
(B(xi, ri))i∈N such that

∂±T (∂B(xi, ri)) = ∂±Tn(∂B(xi, ri)) = 0 for every i, n ∈ N,

Mα(T
⋃
i∈N

B(xi, ri)) < ε and Mα(T ′
⋃
i∈N

B(xi, ri)) < ε, (6.6)

and
∞∑
i=1

ri < ε. (6.7)

Proof. We define on Rd the finite measure ν by

ν(E) = Mα(T E) + Mα(T ′ E) for every Borel set E

and we observe that ν vanishes on H 1-null sets.
Since H 1(A) = 0, for every j ∈ N we can find a covering of A with balls

{B(x
(j)
i , r

(j)
i )}i∈N such that ∑

i∈N
r

(j)
i <

1

2j+1
,
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and moreover, since for every point x there are only countably many radii r such
that ∂±T (∂B(x, r)) 6= 0 or ∂±Tn(∂B(x, r)) 6= 0 for some n, then we can also
assume (possibly enlarging slightly the previous radii) that

∂±T (∂B(x
(j)
i , r

(j)
i )) = ∂±Tn(∂B(x

(j)
i , r

(j)
i )) = 0 for every i, n ∈ N.

We define

A(j) =
⋃
i∈N

B(x
(j)
i , 2r

(j)
i ).

We consider the decreasing sequence of sets and their intersection

(B(j))j∈N :=
⋃
j′≥j

A(j′), B =
⋂
j∈N

B(j).

We notice that A(j) ⊆ B(j) for every j ∈ N and that H 1(B) = 0, because B can

be covered with each B(j), which in turn is made by balls whose radii satisfy the
estimate ∑

j′≥j

∑
i∈N

r
(j′)
i <

∑
j′≥j

1

2j′+1
=

1

2j
.

We consequently have on the decreasing sequence of sets (B(j))j∈N:

lim
j→∞

ν(B(j)) = ν(∩jB(j)) = ν(B)

and we conclude that ν(B) = 0 and that

lim
j→∞

ν(A(j)) ≤ lim
j→∞

ν(B(j)) = 0.

Therefore, choosing j large enough, the covering (B(x
(j)
i , r

(j)
i ))i∈N satisfies the

conditions in (6.6), (6.7). �

6.8. Lemma. Given r > 0 and K ⊂ X, with K compact. There exists a finite
number M := M(X, r) and a family of balls {B(xi, ri)}Mi=1, covering K, such that

ri <
r

3
, xi ∈ K.

Proof. We cover K with balls B(x, r/4), x ∈ K and, by Vitali’s covering
theorem, we can extract a finite sub-covering, indexed by {1, ...,M} such that the
balls {B(xj , r/20)}j=1,...,M are disjoint and the balls {B(xj , r/4)}j=1,...,M cover
K. By the disjointness of {B(xj , r/20)}j=1,...,M and since these balls are all

contained in Ur(X) := {y ∈ Rd : dist(y,X) < r}, it follows that

M |B(0, r/20)| ≤ |Ur(X)|,

which completes the proof of the lemma. �
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6.9. A semi-continuity and a quasi-additivity result. In this subsection
we collect two results which allow us to get rid of the simplifying assumption
(5.3) in the sketch of Section 5. Lemma 6.10 improves Theorem 4.1(1), allowing
us to consider in the right hand side of the inequality (4.1) only the portion of
the currents Tn which have sufficiently high multiplicity. Lemma 6.11 states that
the α-mass is “quasi-additive” if the two addenda have multiplicities of different
orders of magnitude.

6.10. Lemma. Let C > 0, A ⊆ Rd an open set, and let T ′ = T [E′, τ ′, θ′] ∈
R1(Rd) and T := T [E, τ, θ] ∈ R1(Rd) be rectifiable 1-currents with

Mα(T ′),Mα(T ) ≤ C. (6.8)

Then, for every ε > 0 there exists δ := δ(d, α, ε, C,A, T ) > 0 (independent of T ′)
such that, if F(T − T ′) ≤ δ,

Mα(T ′ {x ∈ A : θ′(x) > δ}) ≥Mα(T A)− ε. (6.9)

Proof. For every δ > 0, by (6.8) it holds

M(T ′ {θ′ ≤ δ}) < δ1−αMα(T ′ {θ′ ≤ δ}) < δ1−αC. (6.10)

Hence,

F(T − T ′ {θ′ > δ}) ≤ F(T − T ′) + F(T ′ − T ′ {θ′ > δ})
= F(T − T ′) + F(T ′ {θ′ ≤ δ})
≤ F(T − T ′) + M(T ′ {θ′ ≤ δ})
≤ F(T − T ′) + Cδ1−α ≤ δ + Cδ1−α.

(6.11)

By the lower semi-continuity of the α-mass with respect to the flat convergence
(as stated in Theorem 4.1(1)), there exists δ0 := δ0(d, α, ε, A, T ) such that for any

rectifiable 1-current T̃ satisfying F(T̃−T ) ≤ δ0 we have Mα(T̃ A) ≥Mα(T A)−ε.
We conclude the proof choosing δ sufficiently small so that δ + Cδ1−α ≤ δ0. �

6.11. Lemma. Let ε ∈ (0, 1/4), T1 = T [E1, τ1, θ1], T2 = T [E2, τ2, θ2] ∈ R1(Rd)
be rectifiable 1-currents with θ1 < εθ2, H 1-a.e. on E1 ∩ E2. Then

(1 + 4εα)Mα(T1 + T2) ≥Mα(T1) + Mα(T2). (6.12)

Proof. Firstly we observe that on E1 ∩ E2 we have

2ε(θ2 − θ1) ≥ θ1; (1 + 2ε)(θ2 − θ1) ≥ θ2. (6.13)

Now we compute

(1+4εα)Mα(T1 + T2) = (1 + 4εα)Mα(T1 (E1 \ E2))

+ (1 + 4εα)Mα(T2 (E2 \ E1)) + (1 + 4εα)Mα((T1 + T2) (E1 ∩ E2))

≥Mα(T1 (E1 \ E2)) + Mα(T2 (E2 \ E1))

+
(
(2ε)α + (1 + 2ε)α

)
Mα((T1 + T2) (E1 ∩ E2)).
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We estimate the last term thanks to (6.13) to get(
(2ε)α + (1 + 2ε)α

)
Mα((T1 + T2) (E1 ∩ E2))

≥Mα(T1 (E1 ∩ E2)) + Mα(T2 (E1 ∩ E2)).

Putting together the previous two inequalities, we get (6.12). �

6.12. Absolute continuity of the transportation cost. The next proposi-
tion is the fundamental tool to get rid of the simplifying assumption (5.5) in the
sketch of Section 5. It ensures that if there exists a traffic path of finite cost
transporting a measure µ− onto a measure µ+, then a transportation between
two “small” sub-measures of µ− and µ+ of equal mass is cheap.

6.13. Proposition. Let µ−, µ+ ∈ M+(X), be non-trivial measures with
µ−(X) = µ+(X) <∞. Assume

supp(µ−) ∩ supp(µ+) = ∅,

with Mα(µ−, µ+) < ∞. Then for every ε > 0 there exists δ > 0 such that for
every pair of measures ν− ≤ µ− and ν+ ≤ µ+ verifying

ν−(X) = ν+(X) ≤ δ,

then Mα(ν−, ν+) ≤ ε.

Proof. Without loss of generality, we may assume µ−, µ+ ∈ P(X). By as-
sumption, there exists T ∈ OTP(µ−, µ+), such that Mα(T ) < +∞.

Let T =
∫

LipRγ dπ(γ) be a good decomposition of T and define the finite

measure π± ∈M+(Lip), prescribing their Radon–Nikodým densities w.r.t. π, as

dπ−(γ) :=
dν−

dµ−
(γ(0))dπ(γ), dπ+(γ) :=

dν+

dµ+
(γ(∞))dπ(γ).

We denote

T± = T [E±, τ±, θ±] :=

∫
Lip

Rγdπ
±(γ). (6.14)

Let us consider δ > 0 as fixed. For the moment we only require that δ <
δ0 := δ(ε/4) of Proposition 3.6(4). Further restrictions will be given later. Since
π±(Lip) = ν±(X) ≤ δ, from Proposition 3.6 (3) and (4) we deduce that the
decompositions in (6.14) are good and that

Mα(T±) ≤ ε

4
. (6.15)

By (3.7) we can write the boundaries of T± in terms of the decomposition as

∂−T
± =

∫
Lip

δγ(0)dπ
±(γ) and ∂+T

± =

∫
Lip

δγ(∞)dπ
±(γ). (6.16)

We apply Lemma 6.8 twice toK := supp(µ±) and r := 1
3dist(supp(µ−), supp(µ+))

to find a finite covering of supp(µ±) made by at most M(X, r) open balls

B±i := B(x±i , r
±
i ) i = 1, ...,M±.
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For every i = 1, ...,M± let us define

C± :=
⋃
i

B±i .

By the choice of r, the sets C+ and C− are disjoint. Hence, since supp(∂±T ) ⊆ C±
and since (6.16) is in force, then π±-a.e. γ ∈ Lip verifies

γ(0) ∈ C− and γ(∞) ∈ C+. (6.17)

We define the rectifiable 1-currents

T cut,− = T [Ecut,−, τ cut,−, θcut,−] :=

∫
Lip

Rres(0,OC− )(γ)dπ
−(γ),

T cut,+ = T [Ecut,+, τ cut,+, θcut,+] :=

∫
Lip

Rres(EC+ ,∞)(γ)dπ
+(γ).

(6.18)

By Proposition 6.2, (6.18) are good decompositions. Here we use a little abuse
of notation, since the good decomposition of T cut,− would be the push-forward
measure (

res(0, OC−)(·)
)
]
π−

and similarly for T cut,+. In particular, by point (1) of Proposition 3.6 it holds

∂−T
cut,− =

∫
Lip

δγ(0)dπ
−(γ), ∂+T

cut,− =

∫
Lip

δγ(OC− )dπ
−(γ) (6.19)

Hence we deduce

supp(∂+T
cut,−) ⊆ ∂C− and supp(∂−T

cut,+) ⊆ ∂C+.

By the good decomposition property of T cut,− and of T− and by Proposition 6.2
for H 1-a.e. x ∈ E− ∩ Ecut,− we have that

θcut,−(x) ≤ θ−(x). (6.20)

Thanks to (6.15), we deduce that T cut,± have small energy

Mα(T cut,−) =

∫
Ecut,−

(θcut,−)αdH 1 ≤
∫
E−

(θ−)αdH 1 = Mα(T−) ≤ ε

4
. (6.21)

With similar computations we can prove the same energy estimate for T cut,+.

Let {y−1 , ..., y
−
M−}i=1,...,M− ⊆ Rd and {y+

1 , ..., y
+
M+}i=1,...,M+ ⊆ Rd be two sets

of distinct points such that y±i ∈ ∂B±i for every i = 1, ...,M±. For every i =

1, ...,M− we define the weight w±i ∈ (0,∞) as

w−i := (∂+T
cut,−)

(
∂B−i \

i−1⋃
j=1

∂B−j

)
and

w+
i := (∂−T

cut,+)
(
∂B+

i \
i−1⋃
j=1

∂B+
j

)
.



Stability of optimal traffic paths 31

We consider the measures σ± :=
∑M±

i=1 w
±
i δy±i

, whose total mass is equal to

ν±(X) ≤ δ. Indeed we proved in (6.19), that ∂−T
cut,− = ∂−T− and consequently

σ−(X) = ∂+T
cut,−(X) = ∂−T

cut,−(X) = ∂−T−(X) = ν−(X) ≤ δ
and analogously

σ+(X) = ∂−T
cut,+(X) = ∂+T

cut,+(X) = ∂+T (X) = ν+(X) ≤ δ.
We claim that there exists T conn,− ∈ TP(∂+T

cut,−, σ−) with

Mα(T conn,−) ≤ C(d, α,X, r)δ.

Similarly, we claim that there exists T conn,+ ∈ TP(∂−T
cut,+, σ+) with

Mα(T conn,+) ≤ C(d, α,X, r)δ.

Indeed let us consider for every i = 1, ...,M− an optimal traffic path

T conn,−i ∈ OTP
(
(∂+T

cut,−)
(
∂B−i \ ∪

i−1
j=1∂B

−
j

)
, wiδy−i

)
and observe that, by Lemma 6.5

Mα(T conn,−i ) ≤ C(d, α)δr.

If we consider now

T conn,− :=
M−∑
i=1

T conn,−i ,

we notice that T conn,− ∈ TP(∂+T
cut,−, σ−) and by the sub-additivity of the

α-mass (2.6) we obtain that

Mα(T conn,−) ≤
M−∑
i=1

Mα(T conn,−i ) ≤M−(X, r)C(d, α)δr ≤ C(d, α,X, r)δ

and this proves the claim.

Finally we observe that there exists T graph ∈ TP
(
σ−, σ+

)
with

Mα(T graph) ≤ δαC(d,X).

The simplest way to find such traffic path is to connect all the points in the
support of σ± to a fixed point in X. The estimate of its α-mass is trivial. Overall,
we find that

Tnew := T cut,− + T conn,− + T graph + T conn,+ + T cut,+ ∈ TP(ν−, ν+)

and its energy is estimated using the sub-additivity (2.6) and the previous esti-
mates (observing that δ ≤ δα for δ ≤ 1)

Mα(Tnew) ≤ C(d, α,X, r)δα +
ε

2
.

By choosing δ sufficiently small, we obtain that the last quantity is less than or
equal to ε. This concludes the proof of the lemma.

�
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6.14. Corollary. Let µ−, µ+ ∈P(X). Assume

supp(µ−) ∩ supp(µ+) = ∅,

with Mα(µ−, µ+) < ∞. Then for every pair of sequences (µ−n )n∈N and (µ+
n )n∈N

with µ−n (Rd) = µ+
n (Rd), µ−n ≤ µ−, µ+

n ≤ µ+ for every n ∈ N and with

lim
n→∞

µ−(X)− µ−n (X) = 0,

we have that

lim
n→∞

Mα(µ−n , µ
+
n ) = Mα(µ−, µ+).

Proof. By the lower semi-continuity of the α-mass (Theorem 4.1(1)), we only
need to show that

lim sup
n→∞

Mα(µ−n , µ
+
n ) ≤Mα(µ−, µ+). (6.22)

Indeed, if we assume (6.22), by Corollary 4.2, and by the compactness of nor-
mal currents (see [Fed69, 4.2.17(1)]) we can consider a sequence of optimizers
(Tnk

)k∈N, where Tnk
∈ OTP(µ−nk

, µ+
nk

) converge to a traffic path T ∈ TP(µ−, µ+)
with finite cost and

lim
k→∞

Mα(Tnk
) = lim inf

n→∞
Mα(Tn).

Hence we compute

Mα(µ−, µ+) ≤Mα(T )
(4.1)

≤ lim inf
k→∞

Mα(Tnk
) = lim inf

n→∞
Mα(Tn).

In order to prove (6.22), we let T ∈ OTP(µ−, µ+). Since by assumption the
measures µ− − µ−n and µ+ − µ+

n are non-negative, are converging to 0 and, for
each fixed n, they have the same mass, we deduce by point (4) of Proposition 3.6
that, denoting by T ′n any optimal path in OTP(µ− − µ−n , µ+ − µ+

n ),

lim
n→∞

Mα(T ′n) = 0.

Let Tn = T − T ′n ∈ TP(µ−n , µ
+
n ). By the sub-additivity of the α-mass (2.6)

Mα(Tn) ≤Mα(T ) + Mα(T ′n).

Letting n→∞ we obtain (6.22). �

6.15. Remark. From this observation the stability follows as in the case α >
1− 1/d as soon as the approximating sequences are sub-measures of µ− and µ+

respectively. In particular, if µ− is a Dirac delta and µ+ is an atomic measure,
then an optimal traffic path connecting µ− to µ+ can be obtained as the limit of
the optimal traffic paths connecting the correct “rescaled” measure of µ− to the
discrete measure obtained restricting µ+ to suitable sets of finitely many points.
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7. Proof of Theorem 1.2

Up to rescaling, we can assume that µ− and µ+ are probability measures.
Moreover, without loss of generality we can assume that µ−n and µ+

n are also
probability measures and they are mutually singular. Indeed, assuming the va-
lidity of Theorem 1.2 in this special case, it is easy to deduce its validity in general,
using the following argument. Denoting ν−n and ν+

n respectively the negative and
the positive part of the measure µ+

n − µ−n , since the supports of µ− and µ+ are
disjoint, we have that ν−n ⇀ µ− and ν+

n ⇀ µ+. Moreover, since the ambient is
a compact set, ν±n (X) → µ±(X) = 1. Now, denoting ηn := ν−n (X) = ν+

n (X), we
are in the poisiton to apply Theorem 1.2 in the special case above for the ap-
proximating measures η−1

n ν±n , the limiting measures µ±, the optimal traffic paths
η−1
n Tn and the limit traffic path T . Since ηn → 1 and Tn ⇀ T is in force, then
η−1
n Tn ⇀ T is satisfied.

By contradiction, we assume T is not optimal, i.e.

Mα(T ) ≥Mα(Topt) + ∆, (7.1)

for some ∆ > 0 and for some Topt with ∂±Topt = ∂±T .

Step 1: construction of the coverings of A− and A+. Let Cα,d be the constant
in Lemma 6.5. We claim that there exists a (finite or countable) family of balls
{B±i = B(x±i , r

±
i )}i∈I± covering respectively A− ∩ supp(µ−) and A+ ∩ supp(µ+),

such that ( ⋃
i∈I−

B−i

)
∩
( ⋃
i∈I+

B+
i

)
= ∅, (7.2)

∑
i∈I±

r±i <
∆

128Cα,d
, (7.3)

Mα
(
T

⋃
i∈I±

B±i

)
≤ ∆

128
, Mα

(
Topt

⋃
i∈I±

B±i

)
≤ ∆

128
, (7.4)

µ±(∂B±i ) = 0, µ±n (∂B±i ) = 0 ∀i ∈ I±, n ∈ N. (7.5)

For simplicity, we assume I± to be either N or a set of the form {1, ...,M±}.
Finally, up to removing certain balls, we can assume the two coverings to be not
redundant, namely, we can assume that

µ±
(
B±i \

⋃
1≤j<i

B±j

)
6= 0, ∀i ∈ I±. (7.6)

Since we have removed only balls that do not carry measure, the new set of balls
still covers A− ∩ supp(µ−) and A+ ∩ supp(µ+) up to a set of µ±-measure 0.

We now prove the claim of this Step 1. Let d0 be the distance be-
tween supp(µ−) and supp(µ+), which is positive since the supports supp(µ−)
and supp(µ+) are compact and disjoint. Applying Lemma 6.7 with ε =
min{∆/(128Cα,d),∆/128, d0/4} and T ′ = Topt, we can find two finite coverings
satisfying (7.2), (7.3), (7.4), and (7.5).



34 Maria Colombo, Antonio De Rosa and Andrea Marchese

Step 2: choice of N±. Let ε1 > 0 to be chosen later. We choose N± satisfying

µ±
( N±⋃
j=1

B±j

)
> 1− ε1

4
.

Step 3: choice of n. Let ε2 > 0 to be chosen later. For every i ∈ I± we define

C±i = B±i \
(
∪i−1
j=1 B

±
j

)
.

By (7.6) the coverings are not redundant, that is, for every i ∈ I±,

µ±(C±i ) > 0. (7.7)

We claim that we can fix n large enough so that the following properties hold:

F(Tn − T ) ≤ ε2, (7.8)

µ±n (C±i ) ≤ (1 + ε2)µ±(C±i ), ∀i = 1, · · · , N±, (7.9)

µ±n

(
Rd \

N±⋃
i=1

C±i

)
≤ ε1

2
. (7.10)

Indeed, since Tn ∈ OTP(µ−n , µ
+
n ), by Theorem 3.4, Theorem 3.5 and Proposi-

tion 3.6(2), Tn = Tn[En, τn, θn] admits a good decomposition πn ∈ P(Lip) and
its multiplicity θn verifies θn ≤ 1. Consequently we get

M(Tn) =

∫
En

θn(x)dH 1(x) ≤
∫
En

θαn(x)dH 1(x) ≤Mα(Tn) ≤ C.

Moreover

M(∂Tn) = µ−n (Rd) + µ+
n (Rd) = 2 < +∞.

By the discussion after the definition of flat norm (2.3), the uniform bounds on
the mass of the currents Tn and on the mass of their boundaries guarantees that
the weak∗ convergence implies (7.8), for n sufficiently large. By (7.5) and since
µ±n = ∂±Tn weakly converges to µ± = ∂±T , we observe that

µ±(∂Ci) = 0, ∀i = 1, · · · , N±

and therefore

lim
n→∞

µ±n (C±i ) = µ±(C±i ), ∀i = 1, · · · , N±.

Since the right-hand side in the previous equality is non-zero thanks to (7.7), we
obtain (7.9) for n large enough.

We fix n large enough to satisfy the conditions in this step. Up to the end of
the proof, we will always refer to this choice of n.

Step 4: good decomposition of Tn and selection. Let us define

πseln := πn

{
γ : γ(0) ∈

N−⋃
i=1

C−i and γ(∞) ∈
N+⋃
i=1

C+
i

}
. (7.11)
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Let us consider T seln to be the 1-dimensional current obtained from Tn selecting
only those curves that begin inside the first N− balls and end inside the first N+

balls, i.e.

T seln :=

∫
Lip

Rγ dπ
sel
n (γ).

Notice that, by Proposition 3.6(3), πseln is a good decomposition of T seln ; in par-
ticular by Proposition 3.6(1)

∂−T
sel
n =

∫
Lip

δγ(0) dπ
sel
n (γ)

is supported on
⋃N−

i=1 C
−
i and it satisfies ∂−T

sel
n ≤ ∂−Tn = µ−n .

For the same reason, πn − πseln is a good decomposition of Tn − T seln and,

denoting by θ̃n the multiplicity of Tn − T seln , we have the bound

θ̃n ≤ min{θn, (πn − πseln )(Lip)}. (7.12)

Next we estimate

(πn − πseln )(Lip) = πn

({
γ : γ(0) 6∈

N−⋃
i=1

C−i or γ(∞) 6∈
N+⋃
i=1

C+
i

})

≤ πn
({
γ : γ(0) 6∈

N−⋃
i=1

C−i

})
+ πn

({
γ : γ(∞) 6∈

N+⋃
i=1

C+
i

})
.

(7.13)

By the good decomposition of Tn (and in particular by (3.7)) for every Borel set
A ⊆ Rd

πn
(
{γ : γ(0) ∈ A}

)
= ∂−Tn(A) = µ−n (A);

hence, by (7.10)

πn

({
γ : γ(0) 6∈

N−⋃
i=1

C−i

})
= µ−n

((N−⋃
i=1

C−i

)c)
≤ ε1/2.

A similar inequality holds for the second term in the right-hand side of (7.13).
Overall, it follows

(πn − πseln )(Lip) ≤ ε1. (7.14)

We also notice that Tn and T seln are close in flat norm by (7.12) and (7.14)

F(Tn − T seln ) ≤M(Tn − T seln ) =

∫
En

θ̃ndH
1

≤ ε1−α
1

∫
En

θ̃αndH
1 ≤ ε1−α

1

∫
En

θαndH
1 ≤ Cε1−α

1 .

(7.15)

Step 5: restriction of Tn inside the covering. We decompose πseln into the

sum of finitely many, pairwise singular measures πsel,−n,i , according to the starting

points of the associated curves, i.e. for every i = 1, ..., N− we denote

πsel,−n,i := πseln

{
γ : γ(0) ∈ C−i

}
, (7.16)
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and we notice that, using (7.11),

N−∑
i=1

πsel,−n,i = πseln . (7.17)

We “cut” the current T seln considering the curves in its decomposition only up to
the first time when they leave the ball where they begin, i.e. we define

T sel,−n,i :=

∫
Lip

Rres(0,O
B−
i

)(γ) dπ
sel,−
n,i (γ), T sel,−n :=

N−∑
i=1

T sel,−n,i . (7.18)

The measure
N−∑
i=1

(res(0, OB−i
)(·))]πsel,−n,i

is a good decomposition of T sel,−n : this is a consequence of Remark 6.3 applied
to I(γ) := γ(0),

F (γ) :=

{
OB−i

(γ), if γ(0) ∈ C−i , for some i = 1, · · · , N−

0, otherwise
,

E− := (∪N−i=1B
−
i ) \ (∪N−i=1∂B

−
i ) and E+ := ∪N−i=1∂B

−
i . Notice that the assumption

of the Remark are satisfied in view of (7.5).
Using this fact, by (3.7), (7.17) and (7.18), we get

∂−T
sel,−
n = ∂−T

sel
n . (7.19)

Analogously we define

πsel,+n,j := πseln

{
γ : γ(∞) ∈ C+

j

}
for every j = 1, ..., N+, (7.20)

and we “cut” the current T seln considering the curves in its decomposition only
from the last time when they enter in the ball where they end, i.e. we define

T sel,+n,j :=

∫
Lip

Rres(E
B+
j
,∞)(γ) dπ

sel,+
n,j (γ), T sel,+n =

N+∑
j=1

T sel,+n,j . (7.21)

Arguing as for (7.19), we get

∂+T
sel,+
n = ∂+T

sel
n , (7.22)

and combining (7.19) and (7.22), we derive

∂T sel,−n + ∂T sel,+n = ∂T seln + ∂+T
sel,−
n − ∂−T sel,+n . (7.23)

Step 6: good decomposition of Topt and restriction outside the covering. Let
πopt be a good decomposition of Topt. Let us decompose πopt into the sum of
countably many, mutually singular measures πopt,i,j , according to the starting
and the ending points of the associated curves, i.e., for every i ∈ I− and j ∈ I+

we denote

πopt,i,j := π
{
γ : γ(0) ∈ C−i and γ(∞) ∈ C+

j

}
.
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We denote by Topt,i,j the traffic path associated to πopt,i,j . Now we “cut” the
current Topt considering the curves in its decomposition only from the first time
when they leave the ball where they begin, up to the last time when they enter
in the ball where they end, i.e. we define (see §6.1)

T restropt,i,j :=

∫
Lip

Rres(O
B−
i
,E

B+
j

)(γ) dπopt,i,j(γ), T restropt :=
∑

i∈I−,j∈I+
T restropt,i,j .

Notice that, by Remark 6.3 and (7.2), this formula gives a good decomposition of
T restropt . Here we use the same abuse of notation, as in (6.18). By Proposition 6.2,

we have that the multiplicity of T restropt is pointwise bounded by the multiplicity
of Topt, so that

Mα
(
T restropt

((
∪N−i=1 B

−
i

)
∪
(
∪N+

i=1 B
+
i

))c)
≤Mα(Topt), (7.24)

and by (7.4)

Mα
(
T restropt

(
∪N±i=1 B

±
i

))
≤Mα

(
Topt

(
∪N±i=1 B

±
i

))
≤ ∆

128
. (7.25)

We observe that:∑
j∈I+

∂−T
restr
opt,i,j(∂B

−
i ) =

∑
j∈I+

∂−Topt,i,j(C
−
i ) = ∂−Topt(C

−
i ) = µ−(C−i ), (7.26)

where the first equality follows because the first (resp. second) term can be seen
as the total mass of the positive (resp. negative) part of the boundary of∑

j∈I+

∫
Lip

R(0,res(O
B−
i

))(γ) dπopt,i,j(γ).

This is true because, by Remark 6.3 and (7.5), this formula gives a good decom-
position (with the usual abuse of notation).

Step 7: connection along the spheres. By Proposition 3.6(1) we have ∂±T
sel
n ≤

∂±Tn = µ±n . We deduce that

µ−n (C−i ) ≥ ∂−T seln (C−i )
(7.19)

= ∂−T
sel,−
n (C−i )

(7.16)
= ∂−T

sel,−
n,i (Rd) (2.2)

= ∂+T
sel,−
n,i (Rd) = ∂+T

sel,−
n,i (∂B−i )

(7.27)

and similarly

µ+
n (C+

j ) ≥ ∂−T sel,+n,j (∂B+
j ). (7.28)

Combining this with (7.9), it follows that, for every i ∈ I−,

∂+T
sel,−
n,i (∂B−i ) ≤ (1 + ε2)µ−(C−i )

(7.26)
= (1 + ε2)

∑
j∈I+

∂−T
restr
opt,i,j(∂B

−
i )

and analogously, for every j ∈ I+,

∂−T
sel,+
n,j (∂B+

j ) ≤ (1 + ε2)µ+(C+
j ) = (1 + ε2)

∑
i∈I−

∂+T
restr
opt,i,j(∂B

+
j ).
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Hence, for every i ∈ I−, we denote

α−i :=
∂+T

sel,−
n,i (∂B−i )

(1 + ε2)
∑

j∈I+ ∂−T
restr
opt,i,j(∂B

−
i )
∈ [0, 1] (7.29)

and, for every j ∈ I+,

α+
j :=

∂−T
sel,+
n,j (∂B+

j )

(1 + ε2)
∑

i∈I− ∂+T restropt,i,j(∂B
+
j )
∈ [0, 1]. (7.30)

We define

T conn,−n,i ∈ TP
(
∂+T

sel,−
n,i , α−i (1 + ε2)

∑
j∈I+

∂−T
restr
opt,i,j

)
(7.31)

to be the traffic path given by Lemma 6.5 (supported on ∂B−i ). The lemma can

be applied since the two marginals in (7.31) are supported on ∂B−i and they have
same total mass, as a consequence of (7.29). Its cost is estimated by

Mα
(
T conn,−n,i

)
≤ Cα,d

(
∂+T

sel,−
n,i (∂B−i )

)α
r−i ≤ Cα,dr

−
i . (7.32)

Analogously, we define a traffic path

T conn,+n,j ∈ TP
(
α+
j (1 + ε2)

∑
i∈I−

∂+T
restr
opt,i,j , ∂−T

sel,+
n,j

)
, (7.33)

supported on ∂B+
j , whose cost is again estimated by

Mα
(
T conn,+n,j

)
≤ Cα,d

(
∂−T

sel,+
n,j (∂B+

j )
)α
r+
j ≤ Cα,dr

+
j . (7.34)

Finally, we define the traffic paths

T conn,−n :=
N−∑
i=1

T conn,−n,i and T conn,+n :=
N+∑
j=1

T conn,+n,j .

We denote

σ+
n := (1 + ε2)

N−∑
i=1

α−i
∑
j∈I+

∂−T
restr
opt,i,j , (7.35)

σ−n := (1 + ε2)
N+∑
j=1

α+
j

∑
i∈I−

∂+T
restr
opt,i,j , (7.36)

from (7.31), (7.33), (7.18) and (7.21), we infer

T conn,−n ∈ TP(∂+T
sel,−
n , σ+

n ), and T conn,+n ∈ TP(σ−n , ∂−T
sel,+
n ). (7.37)

Using the fact that πn ∈P(Lip), one gets

σ+
n (Rd) (7.37),(2.1)

= ∂+T
sel,−
n (Rd) (2.2)

= ∂−T
sel,−
n (Rd)

(7.19)
= ∂−T

sel
n (Rd) (3.7)

= πseln (Lip)
(7.14)

≥ 1− ε1.

(7.38)
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Using the sub-additivity of the α-mass, we get the energy estimate

Mα
(
T conn,±n

) (7.32),(7.34)

≤
N±∑
i=1

Cα,dr
±
i

(7.3)

≤ ∆

128
. (7.39)

Step 8: bringing back the mass in excess. Denoting

ν− := (1 + ε2)
∑

i∈I−,j∈I+
∂−T

restr
opt,i,j , and ν+ := (1 + ε2)

∑
i∈I−,j∈I+

∂+T
restr
opt,i,j ,

(7.40)
we get that

(1 + ε2)T restropt ∈ TP(ν−, ν+). (7.41)

We define the two non-negative measures

ν−n := ν− − σ+
n , ν+

n := ν+ − σ−n . (7.42)

Since by (7.29), (7.30) α−i , α
+
j ∈ [0, 1], comparing (7.37) with (7.40), we get

σ+
n ≤ ν−, σ−n ≤ ν+, ν−n ≤ ν−, and ν+

n ≤ ν+. (7.43)

We claim that

ν−n (Rd) = ν+
n (Rd) ≤ ε1 + ε2. (7.44)

Indeed we can compute

σ+
n (Rd) (7.37),(2.1)

= ∂+T
sel,−
n (Rd) (2.2)

= ∂−T
sel,−
n (Rd) (7.19)

= ∂−T
sel
n (Rd)

(2.2)
= ∂+T

sel
n (Rd) (7.22)

= ∂+T
sel,+
n (Rd) (2.2)

= ∂−T
sel,+
n (Rd) (7.37),(2.1)

= σ−n (Rd),

which, together with (7.42) and the fact that ν−(Rd) = ν+(Rd), implies ν−n (Rd) =
ν+
n (Rd). Since σ+

n ≤ ν−, we can estimate

ν−n (Rd) = ν−(Rd)− σ+
n (Rd)

(7.40),(7.26)

≤ (1 + ε2)µ−(Rd)− σ+
n (Rd)

(7.38)

≤ (1 + ε2)− (1− ε1) = ε1 + ε2,

getting the claim (7.44).
Therefore, by (7.43), (7.44) and (7.41), we can apply Proposition 6.13 to prove

the existence of a path

T back ∈ TP(ν+
n , ν

−
n ) (7.45)

with

Mα(T back) ≤ ∆

128
, (7.46)

provided ε1 and ε2 are chosen small enough.
From (7.37), (7.41), (7.45), and (7.42) we compute

∂T conn,−n + (1 + ε2)∂T restropt + ∂T back + ∂T conn,+n

= σ+
n − ∂+T

sel,−
n + ν+ − ν− + ν−n − ν+

n + ∂−T
sel,+
n − σ−n

= ∂−T
sel,+
n − ∂+T

sel,−
n .

(7.47)
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Step 9: definition of a competitor for T seln . Eventually we define

T̃ seln := T sel,−n + T conn,−n + (1 + ε2)T restropt + T back + T conn,+n + T sel,+n .

We show that it has the same boundary of T seln

∂T̃ seln = ∂T seln . (7.48)

Indeed, using (7.23) and (7.47), we get

∂T̃ seln = ∂T sel,−n + ∂T conn,−n + (1 + ε2)∂T restropt + ∂T back + ∂T conn,+n + ∂T sel,+n

(7.23),(7.47)
= ∂T seln + ∂+T

sel,−
n − ∂−T sel,+n + ∂−T

sel,+
n − ∂+T

sel,−
n = ∂T seln .

(7.49)

Step 10: estimates on the energy of the competitor. In the following we denote
by U the union of our two closed coverings

U± := ∪N±i=1B
±
i U := U+ ∪ U−.

We claim that the competitor T̃ seln for T seln enjoys the following estimate

Mα
(
T̃ seln U c

)
≤Mα(Topt) +

∆

4
(7.50)

and that

Mα
((
T̃ seln − T sel,±n

)
U±
)
≤ ∆

32
. (7.51)

We first focus on (7.50). By their definition, the currents T conn,±n , T sel,±n are
supported on the sets U±; hence, they are supported on sets disjoint from U c.
Using (7.24) and Cε2 ≤ ∆

8 , we can compute

Mα
(
T̃ seln U c

)
= Mα(

(
(1 + ε2)T restropt + T back

)
U c)

≤ (1 + ε2)αMα(T restropt U c) + Mα(T back)

≤Mα(Topt) + Cε2 +
∆

128
≤Mα(Topt) +

∆

4
.

(7.52)

To prove (7.51) (we show it for the choice ± = −), it is enough to show that

Mα
((
T̃ seln − T sel,−n

)
U−
)
≤ ∆

32
. (7.53)

Using again that the currents T conn,+n , T sel,+n are supported on the set U+, we
estimate, by the subadditivity of the α-mass,

Mα
((
T̃ seln − T sel,−n

)
U−
)
≤Mα

(
T conn,−n U− + (1 + ε2)T restropt U− + T back U−

)
≤Mα

(
T conn,−n

)
+ (1 + ε2)αMα

(
T restropt U−) + Mα

(
T back

)
≤ ∆

32
,

where in the last inequality we used ε2 ≤ 1/4, (7.25), (7.39), (7.46). This con-
cludes the proof of (7.51).
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Step 11: definition of a competitor for Tn. We define Tn := T̃ seln +Tn−T seln as
a competitor for the α-mass optimizer Tn, with the aim to prove that the former
has less α-mass than the latter. Indeed, by (7.49), ∂Tn = ∂Tn and consequently

T̃ seln + Tn − T seln ∈ TP(µ−n , µ
+
n ).

We split its energy as

Mα(Tn) = Mα
(
Tn U

)
+ Mα

(
Tn U c

)
(7.54)

For the first term, the additivity of the α-mass on disjoint sets gives

Mα
(
Tn U

)
= Mα

((
T̃ seln +Tn−T seln

)
U+
)

+Mα
((
T̃ seln +Tn−T seln

)
U−
)
. (7.55)

We estimate each term by means of (7.51); since the proof is the same, we do it
for the first term in the right-hand side

Mα
((
T̃ seln + Tn − T seln

)
U−
)

≤Mα
((
T̃ seln − T sel,−n

)
U−
)

+ Mα
((
T sel,−n + Tn − T seln

)
U−
)

≤ ∆

32
+ Mα

((
T sel,−n + Tn − T seln

)
U−
) (7.56)

The latter can be estimated by noticing that it is a “part of an optimum” with

Mα
((
T sel,−n + Tn − T seln

)
U−
)
≤Mα

(
Tn U−

)
. (7.57)

Indeed we apply Proposition 6.2 with T = T seln and T̃ = T sel,−n , to obtain that

T seln − T sel,−n = βT seln , where β : Rd → [0, 1],

and Proposition 3.6(3) with T = Tn and T ′ = T seln , to obtain that T seln = ϕTn,
where ϕ : Rd → [0, 1], and therefore

Tn− (T seln − T sel,−n ) = Tn− βT seln = (1−ϕβ)Tn, where [1−ϕβ] : Rd → [0, 1].

We can conclude that

Mα
((
T sel,−n +Tn−T seln

)
U−
)
≤ sup

x∈Rd

{1−β(x)ϕ(x)}αMα
(
Tn U−

)
≤Mα

(
Tn U−

)
,

which is exactly (7.57).
Putting together (7.55), (7.56), (7.57), we get an estimate for the first term in

the right-hand side of (7.54)

Mα
(
Tn U

)
≤ ∆

16
+ Mα

(
Tn U

)
. (7.58)

The second term in (7.54) can be instead estimated through the sub-additivity

of the α-mass, the energy bound on the competitor T̃ seln in (7.50), and the energy
gap in (7.1)

Mα
(
Tn U c

)
≤Mα

(
T̃ seln U c

)
+ Mα

((
Tn − T seln

)
U c
)

≤Mα(Topt) +
∆

4
+ Mα

((
Tn − T seln

)
U c
)

≤Mα(T )− 3∆

4
+ Mα

((
Tn − T seln

)
U c
)
.

(7.59)



42 Maria Colombo, Antonio De Rosa and Andrea Marchese

We fix δ obtained from Lemma 6.10 with the choices A = U c and ε = ∆/8.
The conclusion of the lemma holds for T ′ = T seln , provided we add the following
further constraints on ε1 and ε2:

ε2 ≤
δ

2
, Cε1−α

1 ≤ δ

2
, ε1 ≤

δ

4
, 16εα1C ≤ δα∆. (7.60)

By sub-additivity of flat norm, (7.8) and (7.15), we find that

F(T seln − T ) ≤ F(Tn − T ) + F(T seln − Tn) ≤ ε2 + Cε1−α
1 ≤ δ.

Using the previous inequality and Lemma 6.10,

Mα(T ) = Mα(T U c) + Mα(T U)

≤Mα
(
T seln

(
U c ∩ {θseln > δ}

))
+ Mα(T U) +

∆

8
(7.4)

≤ Mα
(
T seln

(
U c ∩ {θseln > δ}

))
+

∆

4
.

Substituting the previous inequality in (7.59), we find

Mα
(
Tn U c

)
≤Mα

(
T seln

(
U c ∩ {θseln > δ}

))
− ∆

2
+ Mα

((
Tn − T seln

)
U c
)
.

(7.61)

We claim that it is possible to apply Lemma 6.11 with T1 =
(
Tn − T seln

)
U c,

T2 = T seln

(
U c ∩ {θseln > δ}

)
, and ε = ε1/δ. Indeed, by (7.12) Tn − T seln has

multiplicity less than or equal to ε1 and by (7.60) we have δ ≥ 4ε1. Consequently,
by (7.61)

Mα
(
Tn U c

)
≤
(

1 + 4
(ε1

δ

)α)
Mα
(
T seln

(
U c ∩ {θseln > δ}

)
+
(
Tn − T seln

)
U c
)
− ∆

2

=
(

1 + 4
(ε1

δ

)α)
Mα
(
βTn U c

)
− ∆

2
,

(7.62)

where β : Rd → [0, 1]. Since by hypothesis Mα
(
Tn
)
≤ C, using (7.60), we find

that

Mα
(
Tn U c

)
≤Mα

(
Tn U c

)
+ 4
(ε1

δ

)α
C − ∆

2

(7.60)

≤ Mα
(
Tn U c

)
− ∆

4
. (7.63)

Putting together (7.58) and (7.63), we find that

Mα(Tn) ≤Mα
(
Tn U

)
+ Mα

(
Tn U c

)
− ∆

8
<Mα(Tn),

which is a contradiction to the optimality of Tn.
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