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Abstract. In this paper, we are interested in an integro-differential model with a non-
linear competition term that describes the evolution of a population structured with
respect to a continuous trait. Under some assumption, the steady solution is shown
unique and strictly positive, and also globally stable. The exponential convergence rate
to the steady state is also established.

1. Introduction

1.1. The model and its basic properties. We are interested in the dynamics of a
population of individuals with a quantitative trait. The reproduction rate of each indi-
vidual is determined by its trait and the environment, leading therefore to selection. On
the other hand, the influx of mutations into a population over time can counteract the
underlying selection forces.

There are different models featuring balance between two evolutionary forces. In this
work, we are concerned with the problem governed by

∂tf(t, x) = ∆f(t, x) +
1

2
f(t, x)

(
a(x)−

∫
X

b(x, y)f 2(t, y)dy

)
, for t > 0, x ∈ X,(1.1a)

f(0, x) = f0(x) ≥ 0, x ∈ X,(1.1b)

∂f

∂ν
= 0, x ∈ ∂X,(1.1c)

where f(t, x) denotes the density of individuals with trait x, X is a subdomain of Rd, ν
is the unit outward normal at a point x on the boundary ∂X.

With some effort, the theory presented here could even be generalized to a complete
metric set X endowed with a measure satisfying adequate regularity properties.

In the model, coefficient a(x) is the intrinsic growth rate of individuals with trait x, and
b(x, y) > 0 represents the competitive interaction between individuals, while the diffusion
term plays certain role of mutations in the population dynamics. The trait dependent
competition as such appears in many population balance models of Lotka-Volterra type,
see e.g., [3, 11, 13, 14]. In particular, the nonlinear competition effect does appear in the
model for fish species introduced in [25] in the study of the effect of exploitation on these
species. Their model when the number of fish species tend to infinity formally leads to a
continuous model of the form

∂tf(t, x) =
1

2
f(t, x)

(
a(x)−

∫
X

b(x, y)(f(t, y)− d(x, y))2dy

)
.
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This equation with d = 0 when augmented with a mutation term ∆f is exactly (1.1a).
The main difference between (1.1) and more classical models is its non-linear competi-

tion term

−
∫
b(x, y) f 2(t, y) dy,

compared to the more usual
∫
b(x, y) f(t, y) dy. Such a non-linear term significantly

changes the effect of competition in particular by increasing the effect of large popu-
lations. This may reflect a stricter constraint on resources for instance as in the fish
species model above.

Non-linear competitions have seldom been studied from a mathematical point of view
and the main goal of the present article is to introduce the required tools and explain
how the classical approach for linear competition should be modified. While the analysis
is performed for this particular model, we believe it could easily be carried over to other
non-linear terms.

Note that from a mathematical point of view, an attractive feature of model (1.1a) is
its gradient flow structure in the sense that (1.1a) can be written as

(1.2) ∂tf = −1

2

δF

δf
,

where the corresponding energy functional is

(1.3) F [f ] =
1

4

∫ ∫
b(x, y)f 2(t, x)f 2(t, y)dxdy− 1

2

∫
a(x)f 2(t, x)dx+

∫
|∇xf(t, x)|2dx,

so that the energy dissipation law d
dt
F [f ] = −2

∫
|∂tf |2dx ≤ 0 holds for all t > 0, at least

for classical solutions.
Such a gradient flow structure is preserved by the finite volume scheme recently pro-

posed in [7], in which the authors show that both semi-discrete and fully discrete schemes
satisfy the two desired properties: positivity of numerical solutions and energy dissipa-
tion. These ensure that the positive steady state is asymptotically stable. In addition, the
numerical solutions of the model with small mutation are shown to be close to those of
the corresponding model with linear competition (1.5). Numerical schemes with similar
methodology have been proposed and analyzed for the linear selection dynamics governed
by (1.5) in [17, 18]. The objective of this paper is to provide a rigorous analysis on
global existence of (1.1), and time-asymptotic convergence to the positive steady state,
complementing with the numerical results in [7].

Let us remark as well that under the transformation u = f 2, the resulting equation
from model (1.1a) becomes

(1.4) ∂tu(t, x) = ∆u− |∇u|
2

2u
+ u(t, x)

(
a(x)−

∫
X

b(x, y)u(t, y)dy

)
.

While the competition term is now linear, the original non-linearity was transfer-ed to
the diffusion with a new Hamilton-Jacobi like term. Therefore there does not seem to be
any simple way to reduce (1.1a) to an already studied case.

Of course for rare mutation, the diffusion term may be dropped from model (1.1a). The
resulting equation then becomes the well-known

(1.5) ∂tu(t, x) = u(t, x)

(
a(x)−

∫
X

b(x, y)u(t, y)dy

)
.
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Such a simplified model with the usual mutation has been derived from random stochastic
models of finite populations (see [8, 9]). This competition model or its variation arises
not only in evolution theory but also in ecology for non-local resources (and x denotes the
location there, see e.g. [4, 12, 15]). The model without mutation is interesting from the
point of view of asymptotic behavior; one expects that the population density concentrates
at large times, see, e.g., [1, 6, 11, 16, 24]. The singular steady-state solutions of the
competition model correspond to highly concentrated population densities of the form of
well separated Dirac masses, which have been shown to happen only asymptotically in
models with mutation [2, 10, 19, 20, 21, 22, 23].

The equation (1.5) admits many generalizations, the most popular of which is

∂tu(t, x) =

∫
K(x, y)u(t, y)dy − k(x)u(t, x) + u(t, x)

(
a(x)−

∫
X

b(x, y)u(t, y)dy

)
,

(1.6)

whereK(x, y) ≥ 0 is a mutation kernel satisfying
∫
K(x, y)dy = k(x). Such a competition-

mutation model has been derived from random stochastic models of finite populations (see
[8, 9]). The added term has zero integral, and plays certain role of diffusion, so one also
adopts

∂tu(t, x) = ∆u+ u(t, x)

(
a(x)−

∫
X

b(x, y)u(t, y)dy

)
,(1.7)

as a competition-mutation model. However, the large time solution behavior of this model
remains a challenging issue. Nevertheless, for b(x, y) = η(y) > 0, the asymptotic solution
behavior when mutation tends to vanish has been well studied, see e.g., [2, 21, 23].

Note that the direct competition model (1.5) is a gradient flow ∂tu = −gradH under
the metric 〈g, h〉u =

∫
g·h
u
dx, where

H[u] =
1

2

∫ ∫
b(x, y)u(x)u(y)dxdy −

∫
a(x)u(x)dx.

It is possible to modify the energy to obtain (1.4) directly as a gradient flow. Consider
an augmented energy of the form

H[u] =
1

2

∫ ∫
b(x, y)u(x)u(y)dxdy −

∫
a(x)u(x)dx+

1

2

∫
|∇xu|2

u
dx.

By a direct calculation we have

δH

δu
=

∫
b(x, y)u(y)dy − a− ∆u

u
+
|∇xu|2

2u2
.

By the metric 〈g, h〉u =
∫

g·h
u

and 〈 δH
δu
, g〉 = 〈gradH, g〉u, we have

−gradH = −uδH
δu

= u

(
a−

∫
b(x, y)u(y)dy

)
+ ∆u− |∇xu|2

2u
.

Hence the gradient flow of H is governed by (1.4) which when transformed with f =
√
u

leads to (1.1a).
In Sect. 1.2, we present the main results of this article, namely positivity and uniqueness

of steady solutions in Theorem 1.2, convergence to the steady solution in Theorem 1.2, as
well as the exponential convergence rate in Theorem 1.3. In Sect. 2, we prove the results
presented in Sect. 1.2.
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1.2. Main results. The purpose of this paper is to analyze the solution behavior of
selection-mutation dynamics (1.1) with the gradient flow structure (1.2) with (1.3). To
this end, we make the following assumptions:

a ∈ L∞(X), |{x; a(x) > 0}| 6= 0;(1.8a)

b ∈ L∞(X ×X), bm = inf
x,x′∈X

b(x, x′) > 0.(1.8b)

b(x, y) = b(y, x),∀g ∈ L1(X)\{0},
∫ ∫

b(x, y)g(x)g(y)dxdy > 0.(1.8c)

One can check that b defines then a scalar product over L1(X),

〈g, h〉b =

∫ ∫
b(x, y)g(x)h(y)dxdy

with corresponding norm

‖g‖b =

(∫ ∫
b(x, y)g(x)g(y)dxdy

)1/2

.

In what follows we also use the notation

R[h] =
1

2
h

(
a−

∫
b(x, y)h2(y)dy

)
.(1.9)

We work with solutions which are continuous functions of time having values in L2(X);
denoted by C([0, T ];L2(X)), and normed by

‖w‖ = sup
0≤t≤T

‖w(t, ·)‖L2(X).

Existence of such solutions can be obtained through a standard fixed point and extension
argument leading to

Theorem 1.1. Let f0 ∈ L2(X), and both a and b satisfy the first two assumptions of
(1.8). Then (1.1) admits a global weak solution

f ∈ L∞(R+;L2(X)).

Moreover, we have
(a) supt>0 ‖f(t, ·)‖L2(X) ≤M, (t, x) ∈ R+ ×X.
(b) f is stable and depends continuously on f0 in the following sense: if f̃ is another

solution with initial data f̃0, then for every t > 0,∫
|f − f̃ |2dx ≤ eλt

∫
|f0 − f̃0|2dx,

where λ depends only on a, b and ‖f0‖.

Given that the proof of Theorem 1.1 is rather classical, we only give it in appendix
B. The strong competition assumption (1.8c) is directly connected to the stability of
the steady solution. In fact, under assumption (1.8), the steady solution g is unique and
upper-bounded.
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If
∫
adx ≥ 0, the steady state is strictly positive. The case

∫
adx < 0 is less obvious.

Recalling [5, Theorem 3.13(b)] which claims that there exists a unique positive λ1 and
the positive function ψ ∈ D(L1) such that

∫
aψ2dx > 0 and

λ1 =

∫
|∇xψ|2dx∫
aψ2dx

= inf

{∫
|∇xv|2dx∫
av2dx

: v ∈ D(L1) and

∫
av2dx > 0

}
,(1.10)

where D(L1) = {u ∈ H2(X) : ∂nu|∂X = 0} is the domain of the Laplace operator
L1u = −∆u, we can show the steady state is still strictly positive if λ1 < 1/2. More
precisely, we have the following result.

Theorem 1.2. There exists g ≥ 0 solution in the sense of distribution to

∆g +R[g] = 0, x ∈ X ∂νg = 0, on ∂X.(1.11)

Moreover,
(i) If

∫
adx ≥ 0 or

∫
adx < 0 with λ1 < 1/2, then there exists a unique positive solution

such that 0 < gmin ≤ g ≤ gmax <∞ in X.
(ii) If

∫
adx < 0 with λ1 ≥ 1/2, there is no positive steady solution.

Thanks to this result we can show the convergence of f(t, ·) towards g:

Theorem 1.3. Assume both a and b satisfy (1.8). Consider any non-negative f 0 ∈
L1(X) ∩ L∞(X). Then the corresponding solution f(t, ·) of (1.1) is such that

(1.12)
d

dt
F [f(t, ·)] < 0 as long as f is not a steady solution.

As a consequence

(1.13) lim
t→∞
‖f(t, ·)− g(·)‖L2(X) = 0.

And moreover, there exists C depending on initial data f0 and g ≥ 0 such that∫
|f(t, x)− g(x)|2dx ≤ Ce−rt ∀t > 0,

for
∫
adx ≥ 0 or

∫
adx < 0 with λ1 6= 1

2
, where of course g = 0 if λ1 > 1/2.

For
∫
adx < 0 and λ1 = 1

2
,∫
|f(t, x)|2dx ≤ C

1 + t
∀t > 0.

The proofs of theorems 1.2 and 1.3 rely on a careful use of the competition assumption
and is given in the next section.

2. Proofs of the results

2.1. Proof of Theorem 1.2. The existence of a non-negative steady state follows a
rather classical variational argument which, for the sake of completeness, is given in
appendix A.

Consider a non-negative and non 0 steady state g. Multiplying (1.11) by g and then
integrating over the domain X, we have∫

g2(a− b ∗ g2)dx = −2

∫
g∆gdx = 2

∫
|∇g|2dx ≥ 0.
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This implies that
‖a‖∞‖g‖2L2 − bm‖g‖4L2 ≥ 0,

leading to the upper bound

‖g‖2L2 ≤
‖a‖∞
bm

<∞.

This directly implies that ∆g ∈ L2. By Sobolev embedding, g ∈ Lp for some p > 2 and we
can iterate to find ∆g ∈ Lp. Iterating a finite number of times, this finally gives ∆g ∈ L∞
since a ∈ L∞ which is the optimal smoothness on g.

We hence have the elliptic problem ∆g + c(x)g = 0 with bounded c(x) and g. By the
standard Harnack inequality we have

sup g ≤ C inf g

in any small ball within X. Hence g > 0 and bounded from above unless it is identical
zero.

We next prove the uniqueness. Let g1 and g2 be two positive solutions of (1.11), then
using the positivity of b, third assumption in (1.8)

0 ≤
∫ ∫

(g21 − g22)(x)b(x, y)(g21 − g22)(y)dydx

=

∫
(g1 − g22/g1)g1(x)

∫
b(x, y)g21(y)dydx−

∫
(g21/g2 − g2)g2(x)

∫
b(x, y)g22(y)dydx

=

∫
(g1 − g22/g1)(2∆g1(x) + a(x)g1(x))dx+

∫
(g2 − g21/g2)(2∆g2(x) + a(x)g2(x))dx

= 2

∫
(g1 − g22/g1) ∆g1(x) + 2

∫
(g2 − g21/g2) ∆g2(x),

by using the equation (1.11). Hence by integrating by part

0 ≤ −2

∫ (
∇xg1 −

2g1g2∇xg2 − g22∇xg1
g21

)
· ∇xg1dx

− 2

∫ (
∇xg2 −

2g1g2∇xg1 − g21∇xg2
g22

)
· ∇xg2dx

= −2

∫ (∣∣∣∣∇xg1 −
g1
g2
∇xg2

∣∣∣∣2 +

∣∣∣∣∇xg2 −
g2
g1
∇xg1

∣∣∣∣2
)
dx ≤ 0.

As a conclusion g21 = g22, leading to g1 = g2.

2.2. Proof of Theorem 1.3: Convergence. Let us first prove (1.12). A direct calcu-
lation shows that

d

dt
F = −2

∫
|∂tf |2dx ≤ 0.

Thus it only remains to show that for some t0 ≥ 0, if ∂tf(t0, x) ≡ 0 for all x ∈ X, then
∂tf(t, x) ≡ 0 for all x ∈ X and t ≥ 0.

i) For t > t0. Since ∂tf(t0, x) ≡ 0 for all x ∈ X, then f(t0, x) is a steady solution. By
the uniqueness implied by (b) in Theorem 1.1, we have

f(t, x) = f(t0, x), x ∈ X
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for all t > t0.

ii) For 0 ≤ t ≤ t0, we denote w(t, x) = f(t, x) − f(t0, x) for x ∈ X and 0 < t < t0, so
that w is a solution to

∂tw = ∆w + S(t, x), in (t, x) ∈ (0, t0)×X,
∂νw = 0, x ∈ ∂X,
w(t0, x) = 0, x ∈ X,

where

S(t, x) = R[f(t, ·)]−R[f(t0, ·)].

A direct estimate using (B.1) gives

‖S(t, ·)‖ ≤ λ‖w(t, ·)‖(2.1)

for λ = 1
2
(‖a‖∞ + 3‖b‖∞M2).

Suppose for some t1 ∈ (0, t0), w(t1, x) 6= 0 in X, then

Λ(t) =

∫
X
|∇xw|2dx∫
X
w2dx

is well defined in a neighborhood of t1. By a direct calculation we have

d

dt
Λ(t) =

2
∫
∇xw · ∂t∇xwdx∫

w2dx
−

2
∫
w∂twdx(∫
w2dx

)2 ∫ |∇xw|2dx

= − 2∫
w2dx

[∫
∆w∂twdx+

∫
|∇xw|2∫
w2dx

∫
w∂twdx

]
= − 2∫

w2dx

[∫
(∆w + Λw)(∆w + S)dx

]
,

since ∂tw = ∆w + S. This gives

d

dt
Λ(t) = − 2∫

w2dx

[∫
(∆w + Λw)2 +

∫
S(∆w + Λw)dx

]
≤ − 2∫

w2dx

∫ (
−1

4
S2

)
dx

≤
∫
S2dx

2
∫
w2dx

≤ 1

2
λ2.

Hence, Λ(t) must be bounded in [t1, t̃0), where t̃0 ≤ t0 is the first instant in (t1, t0] at
which w(t, ·) ≡ 0 in Ω.
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On the other hand,

d

dt

(
log

1∫
w2dx

)
= − 2∫

w2dx

∫
w∂twdx

= − 2∫
w2dx

∫
w(∆w + S)dx

= 2Λ(t)− 2

∫
Swdx∫
w2dx

≤ 2Λ(t) + 2λ.

Thus
∫
w2dx 6= 0 as long as Λ(t) is bounded, contradicting to the assumption that

w(t̃0, ·) ≡ 0 in Ω. Hence w ≡ 0 in Ω× [0, t0], and our proof of (1.12) is now complete.

Define, for any initial data f 0, the usual ω-limit set as

ω(f 0) = ∩s>0{f(t, ·), t ≥ s}.
The previous analysis shows that if f ∗ ∈ ω(f 0), then f ∗ must be a steady solution. Results
in Theorem 1.2 and (1.12) then imply that the ω-limit set contains only g as the unique
point, hence (1.13).

2.3. Proof of Theorem 1.3: Exponential convergence. In the case g > 0, we intro-
duce the auxiliary functional

G =

∫ [
f 2 − g2

2
− g2 log

(
f

g

)]
dx,

which is bounded from below

G ≥
∫ [

f 2 − g2

2
− g2

(
f

g
− 1

)]
dx =

1

2

∫
(f − g)2dx.

A direct calculation gives

d

dt
G =

∫
(f 2 − g2)ft

f
dx

=

∫
(f 2 − g2)

[
∆f

f
− ∆g

g
− 1

2

∫
b(x, y)(f 2(y)− g2(y))dy

]
dx

= −
∫ (∣∣∣∣∇xf −

f

g
∇xg

∣∣∣∣2 +

∣∣∣∣∇xg −
g

f
∇xf

∣∣∣∣2
)
dx

− 1

2

∫ ∫
(f 2 − g2)(x)b(x, y)(f 2 − g2)(y)dydx

≤ −D(f, g),

where

D(f, g) =

∫
g2
∣∣∣∣∇x

(
f

g

)∣∣∣∣2 dx+
1

2

∫ ∫
(f 2 − g2)(x)b(x, y)(f 2 − g2)(y)dydx.

We claim that there exists µ > 0 such that

D(f, g) ≥ µ‖f/g − 1‖2L2 .(2.2)
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Assuming that this is correct for the time being, this gives

d

dt
G ≤ −µ

∫ (
f

g
− 1

)2

dx ≤ − 2µ

g2max
G.

By Gronwall lemma, we have

G(t) ≤ G(0) exp

(
− 2µ

g2max
t

)
.

Hence

‖f(t, ·)− g(·)‖L2 ≤
√

2G(t) ≤
√

2G(0)

(
− µ

g2max
t

)
.

We are thus left to prove (2.2). Using the lower bound and the usual Poincaré’s inequality
we have ∫

g2
∣∣∣∣∇x

(
f

g

)∣∣∣∣2 dx ≥ g2minCX inf
c

∫ ∣∣∣∣fg − c
∣∣∣∣2 dx,

where CX is a constant depending only on X. As usual the minimum is achieved at

c∗ = 1
|X|

∫
X

(
f
g

)
dx.

As a consequence it suffices to find µ independent of c ≥ 0 such that

CXg
2
min

∫ ∣∣∣∣fg − c
∣∣∣∣2 dx+

1

2
‖f 2 − g2‖2b ≥ µ‖f

g
− 1‖2L2 .

If c = 1, the inequality is obvious for µ ≤ µ1 = CXg
2
min.

For c 6= 1, we first estimate

‖f 2 − g2‖2b = ‖f 2 − c2g2 + (c2 − 1)g2‖2b
= (c2 − 1)2‖g2‖2b + 2(c2 − 1)〈f 2 − c2g2, g2〉b + ‖f 2 − c2g2‖2b
≥ ε(c2 − 1)2‖g2‖2b −

ε

1− ε
‖f 2 − c2g2‖2b ,

for any 0 < ε < 1 by using Young’s inequality.
Note that we have

‖f 2 − c2g2‖2b ≤ b∞‖f − cg‖2L2‖f + cg‖2L2

≤ b∞g
2
max(‖f‖+ c‖g‖)2‖f/g − c‖2L2

≤ b∞g
2
maxM̃

2(c+ 1)2‖f/g − c‖2L2 ; M̃ = max{M, ‖g‖}.
Hence

‖f 2 − g2‖2b ≥ ε(c2 − 1)2‖g2‖2b −
ε

1− ε
b∞g

2
maxM̃

2(c+ 1)2‖f/g − c‖2L2 .

Therefore

CXg
2
min

∫ ∣∣∣∣fg − c
∣∣∣∣2 dx+

1

2
‖f 2 − g2‖2b

≥
(
CX g

2
min −

ε

1− ε
b∞ g

2
max M̃

2(c+ 1)2
)
‖f/g − c‖2 + ε (c2 − 1)2 ‖g‖2b

≥ 1

2
CX g

2
min ‖f/g − c‖2 + ε (c2 − 1)2 ‖g‖2b ,
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by taking ε =
CX g2min

CX g2min+2 b∞ g2max M̃
2 (c+1)2

.

On the other hand still using the Young inequality that for any 0 < η < 1

|a+ b|2 ≥ η |a|2 − η

1− η
|b|2,

one has that∫ ∣∣∣∣fg − c
∣∣∣∣2 dx =

∫ ∣∣∣∣fg − 1 + 1− c
∣∣∣∣2 dx ≥ η

∫ ∣∣∣∣fg − 1

∣∣∣∣2 dx− η|X|
1− η

|c− 1|2.

This finally gives

CXg
2
min

∫ ∣∣∣∣fg − c
∣∣∣∣2 dx+

1

2
‖f 2 − g2‖2b

≥ η

2
CX g2min

∫ ∣∣∣∣fg − 1

∣∣∣∣2 dx+ |c− 1|2
(
ε (c+ 1)2 ‖g‖2b −

η|X|
1− η

)
.

Therefore it is enough to take η such that

ε (c+ 1)2 ‖g‖2b −
η|X|
1− η

≥ 0,

giving us

CXg
2
min

∫ ∣∣∣∣fg − c
∣∣∣∣2 dx+

1

2
‖f 2 − g2‖2b ≥ µ

∫ ∣∣∣∣fg − 1

∣∣∣∣2 dx,
for µ = η

2
CX g2min.

Finally we investigate the case when 0 is the only non-negative steady solution, which
is the case when λ1 ≥ 1

2
and

∫
adx < 0. In such case, the convergence rate can also be

established, by introducing instead

G =
1

2

∫
f 2dx.

A direct calculation by integration by parts gives

d

dt
G =

∫
fftdx = −

∫
|∇xf |2dx+

1

2

∫
af 2dx− 1

2
‖f 2‖2b .

If λ1 >
1
2
, then from [5, Theorem 3.11] it follows that there exists ν > 0 such that∫

|∇xv|2dx−
1

2

∫
av2dx ≥ ν‖v‖2(2.3)

for any v ∈ D(L1). Hence we have

d

dt
G ≤ −ν‖f‖2 − 1

2
‖f 2‖2b ≤ −2νG.

This leads to G ≤ G(0)e−2νt, hence ‖f(t, ·)‖2 ≤ ‖f0‖2e−rt with r = 2ν.
If λ1 = 1

2
, we have

d

dt
G = −

∫
|∇xf |2dx+ λ1

∫
af 2dx− 1

2
‖f 2‖2b ≤ −

1

2
‖f 2‖2b ,
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where we have used the definition for λ1 when
∫
af 2 > 0, and the inequality remains valid

when
∫
af 2 ≤ 0. Hence

d

dt
G ≤ −bm

2
‖f‖4 = −2bmG

2.

This upon integration over [0, t] using ‖f‖2 = 2G gives

‖f(t, ·)‖2 ≤ ‖f0‖2(1 + bm‖f0‖2t)−1, ∀t > 0.

This completes the proof of Theorem 1.3.

Appendix A. Existence of a stationary solution

There are several ways to construct a non-negative solution of (1.11). We give here an
example of a variational construction. Let g ∈ H1(X) be a weak solution to (1.11) in the
sense that

−
∫
∇xg∇xwdx+

∫
R[g]wdx = 0 ∀w ∈ H1(X)(A.1)

and g ≥ 0, g 6≡ 0. We claim that this weak solution is equivalent to the nonzero critical
point of the functional

F [w] =

∫ [
1

4
(b ∗ w2)w2 − 1

2
aw2

+ + |∇xw|2
]
dx,

where w+ = max(w, 0). Indeed, a weak solution of (A.1) is obviously a critical point of
F [w]. Conversely, if g ∈ H1(X) is a critical point of F [w], then

0 = 〈F ′[g], g−〉 = 2

∫
[|∂xg−|2 +

1

2
g2−(b ∗ g2))dx = 0,

where g− = min(g, 0). We see that g− = 0, which implies g ≥ 0. Hence g is a weak
solution of (A.1).

We next prove the existence of a minimizer for the variational problem F .

Proposition A.1. There exists g ∈ A := {g ∈ H1(X), g ≥ 0}, such that

F (g) = inf
w∈H1(X)

F [w].

Moreover,
(i) If

∫
adx ≥ 0 or

∫
adx < 0 with λ1 < 1/2, then g is not identically 0;

(ii) If
∫
adx < 0 with λ1 ≥ 1/2, g ≡ 0.

Proof. By Young’s inequality, we have

F [w] =
1

4

∫
(b ∗ w2)w2dx− 1

2

∫
aw2

+ dx+

∫
|∇xw|2dx

≥ 1

4
bm‖w‖4L2 −

1

2
a∞‖w‖2L2 +

∫
|∇xw|2dx

≥
∫
|∇xw|2dx−

a2∞
4bm

,
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so that F is bounded from below. In fact set m = infw∈H1 F [w], then − a2∞
4bm
≤ m < ∞.

Select a minimizing sequence {gk}∞k=1 so that

lim
k→∞

F [gk] = m.

Then we have supk ‖∂xgk‖L2 <∞, and denoting C = supk F (gk)

1

4
bm‖gk‖4L2 ≤

1

2
a∞ ‖gk‖2L2 + C,

which implies that ‖gk‖L2 ≤ |a|∞
bm

+ 1
bm

√
|a|2∞ + 2bmC <∞.

Hence {gk} is a bounded sequence inH1(X). There exists g ∈ H1(X) and a subsequence
of {gk} (still denoted gk) such that

gk ⇀ g weakly in H1(X), gk −→ g strongly in L2(X).

On the other hand, note that
|∇w+| ≤ |∇w|.

Therefore
F (g+) ≤ F (g),

clearly one may always replace gk by its positive part and as a consequence we may assume
that gk ≥ 0. Hence g ≥ 0 as well by strong convergence in L2.

A direct calculation shows that∫
|∂ixgk|2dx−

∫
|∂ixg|2dx−

∫
|∂ixg− ∂ixgk|2dx = 2

∫
2∂ixg · (∂ixgk− ∂ixg)dx→ 0, i = 0, 1

as k →∞. Note also that∫
b ∗ |gk|2|gk|2dx−

∫
b ∗ |gk − g|2|gk − g|2dx

=

∫
b ∗ (|gk|2 − |gk − g|2)(|gk|2 − |gk − g|2)dx

+ 2

∫
b ∗ (|gk|2 − |gk − g|2)|gk − g|2dx

→
∫
b ∗ |g|2|g|2dx as k →∞.

These together with limk→∞
∫
a|gk|2dx =

∫
a|g|2dx, ensure that

m = lim
k→∞

F [gk] ≥ F [g].

But by g ∈ A, it follows that

F [g] = m = min
w∈A

F [w].

This proves the existence of a non negative minimizer.
To prove that g is not identically 0, when

∫
adx ≥ 0 or

∫
adx < 0 yet λ1 < 1/2, we

discuss case by case, keeping in mind that F (0) = 0.
(i) If

∫
adx > 0, one considers the function identically equal to ε with ε small

F (ε) =
ε4

4
|X|

∫
b− ε2

2

∫
a < 0,

for ε small enough;
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(ii) If
∫
adx = 0, one takes instead w = ε(1 + δv) with v satisfying

∫
avdx > 0 and

∂nv = 0 on ∂X, so that

F (w) =
ε2

2

[
ε2

2

∫
(b ∗ (1 + δv)2)(1 + δv)2dx

+δ2(2

∫
|∇xv|2dx−

∫
av2dx)− 2δ

∫
avdx

]
< 0

for ε, δ suitable small.
(iii) If

∫
adx < 0 and λ1 <

1
2
, we take w = τψ with τ > 0 so that

F [τψ] =
τ 4

4

∫
(b ∗ ψ2)ψ2dx+ τ 2

(
λ1 −

1

2

)∫
aψ2dx

≤ τ 2

4
‖ψ2‖2b‖

(
τ 2 − 4

(
1

2
− λ1

) ∫
aψ2dx

‖ψ2‖2b

)
< 0

for τ sufficient small. Hence, in all these three cases the minimizer cannot be 0.
Finally we show 0 is the only minimizer if

∫
adx < 0 and λ1 ≥ 1

2
. Note that for any v

satisfying
∫
av2dx ≤ 0 we have

F [v] =
1

4

∫
(b ∗ v2)v2dx− 1

2

∫
av2dx+

∫
|∇xv|2dx

≥ 1

4
‖v2‖2b + ‖∇xv‖2;

otherwise if
∫
av2dx > 0, then

F [v] ≥ 1

4
‖v2‖2b +

(
λ1 −

1

2

)∫
av2dx ≥ 1

4
‖v2‖2b .

That is we have F [v] ≥ 0 = F [0], in such case 0 is the only minimizer.
Finally note that if a and b are not constant then the Euler-Lagrange equation for the

variational problem, which is (1.11), does not admit constants as solution. Thus in that
case the minimizer cannot be constant either. �

Appendix B. Proof of Theorem 1.1

We begin with a formal a priori estimate, then we indicate how to make the argument
rigorous.

(a) The existence theory is based on the following a priori estimate for solutions to
(1.1). It is obtained after multiplying the equation by 2f .

d

dt

∫
f 2dx+ 2

∫
|∇f |2dx =

∫
f 2

(
a−

∫
b(x, y)f 2(y)dy

)
≤ ‖a‖∞

∫
f 2dx− bm

(∫
f 2dx

)2

≤ bm

∫
f 2dx

(
γ −

∫
f 2dx

)
.
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Here bm = infx,y∈X b(x, y) > 0 and γ := ‖a‖∞
bm

. A direct Gronwall lemma then gives∫
f 2(t, x)dx ≤ γ

1 + (γ‖f0‖−2L2 − 1)e−‖a‖∞t
≤ max

{∫
f 2
0dx, γ

}
=: M2.

In addition, ∫ t

0

∫
|∇f |2dxdτ ≤ 1

2

∫
f 2
0dx+

‖a‖2∞
8bm

t, t > 0.

(b) In order to prove the existence of a solution with the above properties, we consider
a standard fixed point and extension argument. For T > 0, let

Γ := {f ∈ C([0, T ];L2(X)), ‖f‖ ≤M, 0 ≤ t ≤ T},
where we recall that

‖f‖ = sup
t∈[0, T ]

‖f(t, .)‖L2(X).

The set Γ is not empty (since 0 ∈ Γ), and Γ is closed. If f ∈ Γ, then ‖f‖ ≤ M . If
f1, f2 ∈ Γ, then

R[f1]−R[f2] =
1

2
a (f1 − f2)−

1

2
f1 b ∗ f 2

1 +
1

2
f2 b ∗ f 2

2

=
1

2
a (f1 − f2)−

1

2
(f1 − f2) b ∗ f 2

1 +
1

2
f2 b ∗ (f 2

2 − f 2
1 ).

It follows that

‖R[f1]−R[f2]‖ ≤
1

2
‖a‖∞‖f1 − f2‖+

1

2
‖f1 − f2‖‖b‖∞‖f1‖2 +

1

2
‖b‖∞‖f2‖‖f1 − f2‖‖f1 + f2‖

(B.1)

≤ λ‖f1 − f2‖,

for λ = 1
2
(‖a‖∞ + 3‖b‖∞M2).

Let T = 1
2λ

and observe that T depends only on ‖f0‖, a and b. Define a mapping Φ on
C([0, T ];L2(X)) onto itself by

w = Φ[f ],

where w is the unique solution in C([0, T ];L2(X)) to

∂tw = ∆w +R[f ], ∂νw|∂X = 0,

where obviously R[f ] ∈ C([0, T ];L2(X)). Observe that a fixed point of Φ is a solution of
(1.1).

We claim that Φ maps Γ onto itself. To see this, let f ∈ Γ, then

‖R[f ]‖ ≤ λ‖f‖.
Therefore

d

dt

∫
w2dx+ 2

∫
|∇w|2dx = 2

∫
wR[f ]dx ≤ 2λ‖w‖‖f‖.

Hence ‖w‖ ≤ Tλ‖f‖ ≤ TλM = 1
2
M which proves our claim.

Next, we show that Φ is a contraction on Γ. If f1, f2 ∈ Γ, we have wi = Φ[fi], and
v = w1 − w2 solves

∂tv = ∆v +R[f1]−R[f2].
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Hence
d

dt

∫
v2dx+ 2

∫
|∇xv|2 = 2

∫
v(R[f1]−R[f2])dx

≤ 2‖v‖‖R[f1]−R[f2]‖,
which thanks to (B.1) leads to

(B.2)
d

dt
‖v‖ ≤ λ‖f1 − f2‖.

which upon integration gives

‖v‖ ≤ λT‖f1 − f2‖ ≤
1

2
‖f1 − f2‖,

and so Φ is a contraction on Γ. We may apply Banach’s fixed point theorem to conclude
that Φ has a unique fixed point in Γ.

Note that we have also proved that if f0 ∈ L2(X), then for any solution f we have
‖f(t, ·)‖L2(X) ≤M . This allows us to conclude that the solution of the problem exists for
all time. To see this, we apply the above local existence result repeatedly on T + nσ ≤
t ≤ T + (n+ 1)σ, where σ = σ(‖f(t, ·)‖L2(X)), and eventually we obtain a solution for all
time.

Moreover, we have from (B.2) that if f1 and f2 are two solutions

‖(f1 − f2)(t, ·)‖ ≤ eλt‖(f1 − f2)(0, ·)‖, ∀t > 0.
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