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Abstract

Symmetric hyperbolic systems include many physically relevant systems of partial differential equations
(PDEs) such as Maxwell’s equations, the elastic wave equations and the acoustic equations [26]. In this
paper we extend the Gaussian beam method to efficiently compute the high frequency solutions to such
systems with constant degeneracy that corresponds to polarized waves, in which the dispersion matrix of
the hyperbolic system has eigenvalues with constant degeneracy over the domain of computation. The
new results in this paper include new Gaussian beam equations in the presence of eigenvalue degeneracy,
improved error estimates for Gaussian beam summation and a new multi-directional Eulerian summation
formula which maintains accuracy after the formation of caustics.

1 Introduction
We will study the general symmetric hyperbolic system of the form1{

A(x)∂uε

∂t +Dj ∂uε

∂xj
= 0

uε(x, 0) = u0(x)eiS0(x)/ε
(1.1)

where u ∈ Cn, x ∈ Rd, A(x) is symmetric positive definite and the Dj are symmetric and independent of
x and t. Many physical problems such as Maxwell’s equations, the elastic wave equations and the acoustic
equations all may be written in such a form with the correct choices of A(x) and the Dj and these particular
three examples were discussed in [26]. In many physical applications ε, which characterizes the wave length,
is very small compared to the scale of the computational domain, and the numerical meshes and time steps
need to resolve this small scale, thus computing the high frequency solutions, in particular in high dimensions,
is prohibitively expensive.

One efficient way to deal with high frequency wave problems is to solve the limiting equation by finding
the asymptotic equation when ε→ 0. The Wigner transform, introduced in [30], is a powerful mathematical
tool to study this limit [7, 18, 26], since it is valid globally in time, even beyond caustic formation. The
limiting equation is the Liouville equation which does not depend on ε, permitting large time steps and mesh
sizes. In a previous paper [10], we developed a numerical method based on this approach for the problem
under study. One should note that the Liouville equation based classical or geometric optic limit approach,
derived via the limit ε→ 0, does not offer a good accuracy near the caustics.
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A more accurate approach is the Gaussian beam method, originally introduced in [9, 23]. The key idea
in all Gaussian beam methods is to take advantage of the fact that high frequency waves have particle
like properties. Specifically, one decomposes the initial wave function into localized wave packets (Gaussian
beams) which are then evolved individually along particle trajectories and finally summed up to construct
the solution at a later time. It was first studied rigorously in [25], and has seen many recent developments in
both Eulerian and Lagrangian frameworks [13, 14, 15, 17, 20, 21], error estimates [2, 19], and fast Gaussian
wave decompositions [1, 24]. A related approach, known as the Hagedorn wave packet method, was studied
in [8, 6]. For recent surveys for semiclassical computational methods for high frequency waves, see [5, 11].

The main difficulties for Gaussian beam methods in the degenerate Hyperbolic systems are threefold.
Firstly, the degenerate eigenvalues of the dispersion matrix combined with the complex valued phase intro-
duced in the Gaussian beam anzatz lead to analytic difficulties which must be delicately dealt with. Secondly,
one must determine a meaningful anzatz for Gaussian beam solutions which are to represent the degenerate
polarized waves. Thirdly, one must derive a meaningful coupling matrix (to represent polarized wave propa-
gation) with the correct analytic properties. In this paper, all these difficulties have been resolved. To handle
the complex phase of the Gaussian beam anzatz, we introduce a notion of spectrum preserving which any
system must satisfy in order for the Gaussian beam method to be applicable. We show, however, that many
physically relevant equations all satisfy this definition and are thus solvable by our method. The second
difficulty was overcome simply by making a careful choice and, by trial and error, showing that our chosen
anzatz gives meaningful results. To overcome the last difficulty, we derive a form for our coupling matrix
which matches the one discovered in [26] thereby showing a deep connection between this new Gaussian
beam method and our previous work [10].

In addition to developing a Gaussian beam method for degenerate symmetric hyperbolic systems, we also
obtain further supplementary results. Convergence results for the decomposition of the initial condition are
presented in [19, 28]; here we derive improved convergence results. The final summing process for Eulerian
Gaussian beams was shown to lose accuracy after the formation of caustics in [13]; here we introduce a
new Eulerian summation formula to solve this problem. Numerical results are also provided in one and two
dimensions to demonstrate the effectivness of our method; these results pave the way towards heftier three
dimensional simulations which could be well handled by our provided method.

We also like to point out the some of the difficulties faced in this system is shared in quantum dynamics
with band-crossings. One example is the surface hopping phenomena in which particles tunnel through
different electronic potential surfaces and the classical Bohn-Oppenheimer approximation breaks down [29,
16, 12], the other one being the crossing of Bloch bands in the Schrödinger equation with periodic potentials
[27, 3]. The method developed in this article sheds lights on these important physical and chemical problems.

The paper is outlined as follows. Section 2 introduces the Gaussian Beam method in the Lagrangian
frame as well as proving essential results pertaining to this method’s convergence and boundedness. Section
3 introduces the Gaussian beams in the Eulerian frame, introduces also a new Eulerian summation formula
and provides further simplifications to the method in the one-dimensional case. Section 4 contains numerical
results which include simulations in one and two dimensions as well as convergence tests. Finally Section 5
contains our conclusions.

2 A Gaussian Beam Method

2.1 The Lagrangian Gaussian Beam Method
The Gaussian beam anzatz for (1.1) is

φlaε (x, t) = [a0(x,q, t) + εa1(x,q, t) + · · · ]e i
εT (x,q,t) (2.1)

where
T (x,q, t) = S(q, t) + p(q, t) · (x− q) +

1

2
(x− q)TM(q, t)(x− q), (2.2)

q = q(q0, t) ∈ Rd, p(q, t) ∈ Rd andM ∈ Cd×d is assumed to be symmetric with a positive definite imaginary
part (so that (2.1) has a Gaussian profile). Define

J ≡ A(x)dt +Dj∂xj
. (2.3)
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where
dt ≡

∂

∂t
+ (∂tq) · ∇qT (2.4)

is our notation for the total time derivative which we distinguish from the symbol ∂
∂t (appearing in (1.1))

for clarity. Substituting (2.1) into (1.1) and keeping the first two orders in ε, one obtains

O(1/ε) : (J T )a0 = 0

O(1) : J a0 + i(J T )a1 = 0
(2.5)

By first multiplying by A−1 on the left side, the O(1/ε) equation of (2.5) may be written as

[dtT +A−1Dj∂xj
T ]a0 = 0 (2.6)

Define the dispersion matrix as
L(x,k) ≡ A−1(x)kiD

i (2.7)

so that we may write (2.6) as
[(dtT ) I + L(x,∇xT )] a0 = 0. (2.8)

We introduce the definition:

Definition 2.1. A system of the form (1.1) with dispersion matrix L(x,k) defined by (2.7) is degenerate
at some point (x,k) if L(x,k) has a repeated eigenvalue at that point. The system has constant degeneracy
on some domain D ⊂ R2d if the degeneracy (geometric and algebraic) of the eigenvalues of L(x,k) remains
constant over all points (x,k) ∈ D.

For the remainder of this paper we consider solutions on domains of constant degeneracy as defined in
Definition 2.1. Let 〈u,v〉 be the standard inner product on Cn, then define the new inner product

〈u,v〉A ≡ 〈Au,v〉 (2.9)

under which L(x,k) is self-adjoint when x and k are real. Let Hτ (x,k) be an r times degenerate eigenvalue
of L(x,k) and note that by our assumption in Definition 2.1, the degeneracy does not change within the
domain of computation. Let bτ,s(x,k) for s = 1, ..., r be the eigenvectors corresponding to Hτ (x,k) so that

〈bτ,i,bτ,j〉A = δij . (2.10)

The intuitive next step is to observe that (2.8) implies that

dtT +Hτ (x, p̃) = 0, and a0 =
∑r
s=1 cs(q, t)b

τ,s(x, p̃), (2.11)

where
p̃ ≡ ∇xT. (2.12)

However, it is only when x and k are real that L(x,k) is self adjoint in 〈·, ·〉A and since p̃ = ∇xT is complex,
the dispersion matrix L(x, p̃) has no guaranteed nice structure of its spectrum. Thus for (2.11) to be well
defined, we must assume that we have an expression for our complex eigenvalues and eigenvectors which is
valid at least when p̃ has a small imaginary part. We formalize this assumption with a definition:

Definition 2.2. A system (1.1) with dispersion matrix L(x,k) given by (2.7) is spectrum preserving on
some domain D ⊂ R2d if in addition to having constant degeneracy on D (see Definition 2.1), the degeneracy
(algebraic and geometric) is also preserved when Im(ki) < δ for all i for some fixed δ > 0.

Remark 2.3. We have conjectured that a dispersion matrix L(x,k) which has constant degeneracy in the
sense of Definition 2.1 on some domain D ⊂ R2d is automatically spectrum preserving in the sense of
Definition 2.2 on the same domain D. This is easy to show in the d = 1 case (it follows easily from the
observations about one-dimensional systems presented in Section 3.1), but the general d > 1 case is not so
simple. How to prove or disprove this conjecture remains an open question. Nevertheless, in Appendix A we
prove that Definition 2.2 holds in the case of the three-dimensional acoustic equations, Maxwell’s equations
and the elastic wave equations respectively. Definition 2.2 also holds for the model problems considered in
Section 4, but we omit the relatively simple proofs.
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From this point forward we will assume that the system (1.1) is spectrum preserving (Definition 2.2) on
the domain where we are interested in solving. With this assumption, the expansion shown in (2.11) is now
valid. Taking derivatives of the first equation of (2.11) with respect to x, one obtains

0th : ∂tT + (∂tq) · ∇qT +Hτ = 0,

1st : ∂t∇xT + (∂tq) · ∇xqT +∇xHτ +∇p̃Hτ · ∇xxT = 0,

2nd : ∂t∇xxT + (∂tq) · ∇xxqT +∇xxHτ +∇xp̃Hτ∇xxT,

+∇xxT∇p̃xHτ +∇xxT∇p̃p̃Hτ∇xxT +∇p̃Hτ∇xxxT = 0I

(2.13)

where in the above Hτ = Hτ (q, p̃). Evaluating (2.13) at x = q gives

∂tS + (∂tq) · (∇qS − p) +Hτ = 0,

∂tp + (∂tq) · (∂qp−M) +∇qHτ + (∇pHτ )M = 0,

∂tM + (∂tq) · (∇qM) +∇qqHτ + (∇qpHτ )M +M(∇pqHτ ) +M(∇ppHτ )M = 0I,

(2.14)

where now, Hτ = Hτ (q,p). Finally set (∂tq) = ∇pHτ to obtain

dtq = ∇pHτ ,

dtp = −∇qHτ ,

dtS = ∇pHτ · p−Hτ ,

dtM = −∇qqHτ −∇qpHτM −M∇pqHτ −M∇ppHτM.

(2.15)

The first two equations of (2.15) are the ray tracing equations or bi-characteristic equations which track the
center of the Gaussian beam and form a Hamiltonian system. For now, we assume that the matrix M is
symmetric for all time (proven in Section 2.2).

The solvability conditions for the O(1) equation of (2.5) are

〈b̄τ,i(x, p̃),J a0〉 = 0 for i = 1, ..., r, (2.16)

where we note that the conjugate b̄τ,i(x, p̃) is used in place of bτ,i(x, p̃) since the adjoint of J T is not itself
but J T . Substituting our assumed form for a0 given in (2.11) into (2.16) gives, after some simplifications,

r∑
s=1

{
[dtcs(q, t)] 〈b̄τ,i(x, p̃),bτ,s(x, p̃)〉A + cs(q, t)〈b̄τ,i(x, p̃),Jbτ,s(x, p̃)〉

}
= 0. (2.17)

Next, observe that
Adtb

τ,s = [(dtp)n − (Mdtq)n]A∂p̃nbτ,s,

Djdxjb
τ,s = Dj [∂xjb

τ,s + {(∇p̃bτ,s)M}ej ],
(2.18)

where ej is the jth coordinate vector. Letting x = q, using (2.15) and rearranging terms gives that

Jbτ,s|x=q = Dj {∇qbτ,s + (∇pbτ,s)M} ej −A∇pbτ,s[∇qHτ +M∇pHτ ]. (2.19)

Define the matrix Eτ as

Eτis = 〈Abτ,i, A−1Dj{∇qbτ,s + (∇pbτ,s)M}ej −∇pbτ,s[∇qHτ +M∇pHτ ]〉. (2.20)

Letting x = q in (2.17) gives

dtc(q, t) = −Eτc(q, t) with c(q, t)s = cs(q, t). (2.21)
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The matrix Eτ defined by (2.20) may be written in a more useful form by first defining the skew symmetric
coupling matrix Nτ as

Nτ
is = 〈Abτ,i, A−1Dj∇qbτ,sej −∇pbτ,s∇qHτ 〉 −

1

2
∇q · ∇pHτδis, (2.22)

where we observe that this coupling matrix matches the one which appears in [26]. Then (2.20) may be
written as

Eτis =
1

2
Tr [∇qpHτ +M∇ppHτ ] δis +Nτ

is. (2.23)

The justification for (2.23), which relies on the symmetry of M , is non-trivial and appears in Appendix B.
From (2.23) one may observe a few important properties of the matrix Eτ . Firstly when the eigenvalueHτ

is not degenerate, the skew symmetricNτ vanishes and Eτ becomes the scalar given by 1
2Tr [∇qpHτ +M∇ppHτ ].

Consequently, from (2.23) we observe that in the degenerate case, all amplitudes cs(q, t) given in (2.21) evolve
as they would in the non-degenerate case except for coupling between them determined by Nτ . Further-
more, this coupling is a pure coupling since Nτ is skew symmetric and therefore has purely imaginary
eigenvalues. Secondly the eigenvalues of Eτ may be explicitly written in terms of the eigenvalues of Nτ .
In particular, if the eigenvalues of Nτ are given by λi for i = 1, ..., r, then the eigenvalues of Eτ are given
by 1

2Tr [∇qpH
τ +M∇ppH

τ ] + λi. Lastly, this result shows a deep connection between the herein derived
Gaussian beam method and the work in [26]. That the matrix Nτ appears in both these places is perhaps
surprising given the very different routes taken to derive it.

In summary, the evolution equations for the degenerate Lagrangian Gaussian beams are

dtq = ∇pHτ ,

dtp = −∇qHτ ,

dtS = ∇pHτ · p−Hτ ,

dtM = −∇qqHτ −∇qpHτM −M∇pqHτ −M∇ppHτM,

dtc = −
{

1
2Tr [∇qpHτ +M∇ppHτ ] I +Nτ

}
c,

(2.24)

with Nτ given by (2.22). As will be explained in Section 2.4, the initial conditions for (2.24) are given by

q(q0, 0) = q0,

p(q0, 0) = ∇xS0(q0),

S(q0, 0) = S0(q0),

M(q0, 0) = ∇xxS0(q0) + i
ω I,

cs(q0, 0) = u0(q0) · [A(q0)bτ,s(q0,p(q0, 0))],

(2.25)

where ω > 0 is a real constant.

Remark 2.4. Note that the inclusion of ω in (2.25) differs from previous Gaussian beam formulations (see
[13], for example). Including this parameter is useful in numerical simulations as seen in Section 2.3 but it
cannot be chosen arbitrarily. Please see the end of Section 2.3 for a complete description of the use of ω.

Remark 2.5. For the sake of computing, it may be preferable to write Eτ in the equivalent form

Eτis =
1

2
Tr [M∇ppHτ ] δis + 〈bτ,i, Dj∇qbτ,sej −A∇pbτ,s∇qHτ 〉 (2.26)

only because it has fewer terms when expressed this way.

At this stage, we have formulated exactly one Gaussian beam solution to (1.1) but in practice one needs
to sum over many Gaussian beam solutions. The details of how to perform this summation is deferred to
Section 2.4 and we now turn to more pressing theoretical matters.
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2.2 Conservation of Gaussian Profiles
The matrix M , whose governing equation appears in (2.24) and has initial condition given by (2.25), rep-
resents the Hessian of the phase of a Gaussian beam as can be seen from (2.2). In order for the Gaussian
beam to have bounded Gaussian profile, M must have positive definite imaginary part. The Gaussian beam
can be initialized with positive definite imaginary part (2.25) but further proof is required to show that it
remains positive definite for all time. Theorem 2.6 below establishes this fact and is very similar to that
which appears in [25].

Theorem 2.6. Let P (t,q(t,q0)) and R(t,q(t,q0)) be the (global) solutions of the equations

dtP = (∇pqH)P + (∇ppH)R,

dtR = −(∇qqH)P − (∇qpH)R,
(2.27)

with the initial conditions
P (0,q0) = I,

R(0,q0) = M(0,q0),
(2.28)

where the matrix I is the identity matrix and Im(M(0,q0)) is positive definite. Assuming that M(0,q0) is
symmetric, then for each initial position q0 the following hold:

1. P (t,q(t,q0)) is invertible for all t>0.

2. The solution to the differential equation for M given in (2.24) is given by

M(t,q(t,q0)) = R(t,q(t,q0))P−1(t,q(t,q0)). (2.29)

3. M(t,q(t,q0)) is symmetric and Im[M(t,q(t,q0))] is positive definite for all t > 0.

Proof. Since q(t,q0) is not directly involved in the proof, simply write M(t), P (t), R(t) to represent the
three matrices introduced in the Theorem statement.
1. From (2.27), if we let n ∈ Cn, then z1 = P (t)n and z2 = R(t)n satisfy

dtz1 = (∇pqH)z1 + (∇ppH)z2,

dtz2 = −(∇qqH)z1 − (∇qpH)z2.
(2.30)

Define
σ(P,R,n) = z̄1 · z2 − z1 · z̄2. (2.31)

Noting that H(p,q) is real, differentiate (2.31) to get

dtσ(P,R,n) = (dtz̄1) · z2 + z̄1 · dtz2 − (dtz1) · z̄2 − z1 · dtz̄2

= [−(∇pqH)z̄1 − (∇ppH)z̄2] · z2 + z̄1 · [(∇qqH)z1 − (∇qpH)z2]

−[(∇pqH)z1 + (∇ppH)z2] · z̄2 − z1 · [−(∇qqH)z̄1 − (∇qpH)z̄2]

= 0,

(2.32)

where we use (in the last step) that ∇ppH and ∇qqH are both symmetric and that ∇pqH = (∇qpH)T .
Next assume that P (t) is singular at time t > 0. Then let n ∈ Cn be non-zero so that P (t)n = 0. Then

one has
0 = P (t)n ·R(t)n− P (t)n ·R(t)n

= σ(P (t), R(t),n) = σ(P (0), R(0),n)

= P (0)n ·R(0)n− P (0)n ·R(0)n

= n̄ ·M(0)n− n ·M(0)n = 2in̄ · Im[M(0)]n,

(2.33)
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which contradicts the fact that Im[M(0)] is positive definite. Thus P (t) is invertible for all t ≥ 0.
2. Let M = RP−1. By differentiating one obtains

dtM = dt(RP
−1)

= (dtR)P−1 +RdtP
−1

= (dtR)P−1 −RP−1(dtP )P−1

= [−(∇qqH)P − (∇qpH)R]P−1 −RP−1[(∇pqH)P + (∇ppH)R]P−1

= −∇qqH −∇qpHM −M∇pqH −M∇ppHM,

(2.34)

which agrees with (2.24).
3. Since both M(t) and its transpose M(t)T satisfy exactly the same equation, the uniqueness of the
solution (see, for example, [4]) implies that M(t) = M(t)T for all t > 0 provided the initial condition M(0)
is symmetric. Next, since P (t) is invertible, take a n′ ∈ Cn and define n = P (t)−1n′ so that

2in′ · Im[M(t)]n′ = 2iP (t)n · Im[M(t)]P (t)n

= P (t)n ·M(t)P (t)n− P (t)n ·M(t)P (t)n

= P (t)n ·R(t)n− P (t)n ·R(t)n

= σ(P (t), R(t),n) = σ(P (0), R(0),n)

= P (0)n ·R(0)n− P (0)n ·R(0)n

= n̄ ·M(0)n− n ·M(0)n

= 2in̄ · Im[M(0)]n.

(2.35)

Thus, since M(0) is positive definite, M(t) is also. This completes the proof.

Theorem 2.6 now guarantees that our Gaussian beams solutions of (1.1) remain with a Gaussian profile
for all time provided they are initialized that way.

2.3 Convergence and Gaussian Decomposition
Up until this point, we have constructed just one Gaussian beam solution to (1.1). Here we will prove a
few results that show how an arbitrary initial condition of the form shown in (1.1) may be approximated by
a sum of many Gaussian beams. Results of this nature have been proven in, for example, [28, 19] but the
analysis therein makes use of a smooth cutoff function to obtain the desired result. Here, we dispense with
the cutoff function and generalize our results to the case of symmetric hyperbolic systems. The theoretical
results are presented in this section and the summing process itself is presented in Section 2.4.

Lemma 2.7. Let f ∈ Cj+1
0 (Rd → R) and define

v(x,y) =

(
1

2πε

) d
2

T yj [f ](x)e−|x−y|
2/2ε (2.36)

where T yj [f ](x) =
∑
|a|≤j

(x−y)a

a! ∂af(y) is the jth order Taylor polynomial of f(x) centered at y. Then for
p ≥ 1, ∥∥∥∥ˆ

Rd

v(x,y)dy − f(x)

∥∥∥∥
Lp

≤ cε(j+1)/2. (2.37)
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Proof. We introduce the standard multi-index notation wherein if a = (a1, a2, ..., ad) is an d-tuple of non-
negative integers then define

|a| ≡ a1 + a2 + · · ·+ ad,

a! ≡ a1!a2! · · · ad!,

∂a ≡ ∂a11 ∂a22 · · · ∂
ad
d ,

xa ≡ xa11 xa22 · · ·x
ad
d .

(2.38)

For the above f , Taylor’s theorem reads

f(x) = T yj [f ](x) +Ryj [f ](x)

=
∑
|a|≤j

(x−y)a

a! ∂af(y) +
∑
|a|=j+1

(x−y)a

a! ∂af(y + c(x− y)), for some c ∈ (0, 1),
(2.39)

where we define the remainder term as Ryj [f ](x) =
∑
|a|=j+1

(x−y)a

a! ∂af(y + c(x − y)). First one can prove
a simple upper bound for the remainder:

|Ryj [f ](x)| ≤
∑
|a|=j+1

∣∣∣ (x−y)a

a! ∂af(y + c(x− y))
∣∣∣

= |x− y||a|
∑
|a|=j+1

∣∣∣ (x−y)a

|x−y||a|
1
a!∂

af(y + c(x− y))
∣∣∣

≤ |x− y|j+1
∑
|a|=j+1

∣∣ 1
a!∂

af(y + c(x− y))
∣∣

≤ c0|x− y|j+1,

(2.40)

where c0 > 0 is a constant and the last step holds because all of ∂af are bounded. Also note that in the
above we exclude the point x = y where the bound holds trivially. Next we define g =

(
1

2πε

) d
2 e−|x−y|

2/2ε

and then write ∥∥´
Rd v(x,y)dy − f(x)

∥∥
Lp =

∥∥´
Rd g[T yj [f ](x)− f(x)]dy

∥∥
Lp

=
∥∥´

Rd gR
y
j [f ](x)dy

∥∥
Lp
.

(2.41)

Since f(x) has compact support, assume that its support is contained in |x| < A and then note that when
both |x| > A and |y| > A, Ryj [f ](x) = 0. Define characteristic functions χ1(x,y) = χ{|x|<A}∪{|y|<A},
χ2(x) = χ{|x|<2A} and χ3(x) = χ{|x|≥2A}. Then write∥∥´

Rd gR
y
j [f ](x)dy

∥∥
Lp

=
∥∥∥´Rd gχ1{χ2 + |x−y|d+1

|x−y|d+1χ3}Ryj [f ](x)dy
∥∥∥
Lp

≤
∥∥∥´Rd gχ1χ2

∣∣Ryj [f ](x)
∣∣ dy +

´
Rd gχ1

|x−y|d+1

|x−y|d+1χ3

∣∣Ryj [f ](x)
∣∣ dy∥∥∥

Lp

≤
∥∥∥´Rd gχ1χ2c0|x− y|j+1dy +

´
Rd gχ1

|x−y|d+1

|x−y|d+1χ3c0|x− y|j+1dy
∥∥∥
Lp

≤
∥∥∥c0χ2

´
Rd g|x− y|j+1dy +

´
Rd gχ1

|x−y|d+1

||x|−A|d+1χ3c0|x− y|j+1dy
∥∥∥
Lp

≤
∥∥∥c0χ2

´
Rd g|x− y|j+1dy + c0

||x|−A|d+1

´
Rd gχ1χ3|x− y|j+d+2dy

∥∥∥
Lp

≤ c0 ‖χ2‖Lp

´
Rd

(
1

2πε

) d
2 e−|y|

2/2ε|y|j+1dy

+c0

∥∥∥ χ3

||x|−A|d+1

∥∥∥
Lp

´
Rd

(
1

2πε

) d
2 e−|y|

2/2ε|y|j+d+2dy

≤ c1ε
j+1
2 + c2ε

j+d+2
2 ,

(2.42)

where c1 and c2 are constants. In the fourth line of (2.42), we have used that |y| < A together with the
triangle inequality to get

|x− y| ≥ ||x| − |y|| > ||x| −A|. (2.43)

Also, in the sixth line of (2.42) we have used Minkowski’s inequality. Finally, for ε < 1 one may redefine the
constants to obtain ∥∥∥∥ˆ

Rd

gRyj [f ](x)dy

∥∥∥∥
Lp

≤ cε
j+1
2 . (2.44)

This proves the Lemma.
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Theorem 2.8. Let a ∈ Cj+1
0 (Rd → R) and φ ∈ Cj+3

0 (Rd → R). Define

u(x) = a(x)eiφ(x)/ε,

v(x,y) =
(

1
2πεω

) d
2 T yj [a](x)eiT

y
j+2[φ](x)/ε−|x−y|2/2ωε.

(2.45)

Then for p ≥ 1, ∥∥∥∥ˆ
Rd

v(x,y)dy − u(x)

∥∥∥∥
Lp

≤ c1ε−1(ωε)(j+3)/2 + c2(ωε)(j+1)/2. (2.46)

Proof. As in Lemma 2.7, define g(x,y) =
(

1
2πωε

) d
2 e−|x−y|

2/2ωε and use the notation that f(x) = T yj [f ](x) +
Ryj [f ](x) where Ryj [f ](x) is the Lagrangian remainder term from Taylor’s theorem given by (2.39). Then one
has ∥∥´

Rd v(x,y)dy − u(x)
∥∥
Lp =

∥∥∥´Rd g
[
T yj [a]eiT

y
j+2[φ]/ε − aeiφ/ε

]
dy
∥∥∥
Lp

=
∥∥∥´Rd ge

iTy
j+2[φ]/ε

[
a
(

1− eiR
y
j+2[φ]/ε

)
−Ryj [a]

]
dy
∥∥∥
Lp

≤
∥∥∥´Rd

∣∣∣g [a(1− eiR
y
j+2[φ]/ε

)
−Ryj [a]

]∣∣∣ dy∥∥∥
Lp

≤
∥∥∥´Rd g

[
|a|
∣∣∣(1− eiR

y
j+2[φ]/ε

)∣∣∣+
∣∣Ryj [a]

∣∣] dy∥∥∥
Lp

=
∥∥´

Rd g
[
M2

∣∣sin(Ryj+2[φ]/2ε)
∣∣+
∣∣Ryj [a]

∣∣] dy∥∥
Lp

≤
∥∥´

Rd g
[
M/ε

∣∣Ryj+2[φ]
∣∣+
∣∣Ryj [a]

∣∣] dy∥∥
Lp
,

(2.47)

where |a(x)| < M ∈ R+. Finally, we apply Minkowski’s inequality and Lemma 2.7 to obtain that for ε < 1,∥∥´
Rd v(x,y)dy − u(x)

∥∥
Lp ≤

∥∥´
Rd g

[
M/ε

∣∣Ryj+2[φ]
∣∣+
∣∣Ryj [a]

∣∣] dy∥∥
Lp

≤ M/ε
∥∥´

Rd g
∣∣Ryj+2[φ]

∣∣ dy∥∥
Lp

+
∥∥´

Rd g
∣∣Ryj [a]

∣∣ dy∥∥
Lp

≤ c1ε
−1(ωε)(j+3)/2 + c2(ωε)(j+1)/2,

(2.48)

which completes the proof.

Corollary 2.9. Let a(x) ∈ Cj+1
0 (Rd → Rn) and φ ∈ Cj+3

0 (Rd → R). Define

u(x) = a(x)eiφ(x)/ε,

v(x,y) =
(

1
2πωε

) d
2 T yj [a](x)eiT

y
j+2[φ](x)/ε−|x−y|2/2ωε.

(2.49)

Then for p, q ≥ 1, ∥∥∥∥∥∥∥∥ˆ
Rd

v(x,y)dy − u(x)

∥∥∥∥
lq

∥∥∥∥
Lp

≤ c1ε−1(ωε)(j+3)/2 + c2(ωε)(j+1)/2 (2.50)

where ‖x‖lq ≡ (
∑
i |xi|

q
)
1/q.

Proof. For any vector r ∈ Rn, ‖r‖lq ≤ ‖r‖l1 =
∑
i |ri|. Thus by Minkowski’s inequality,∥∥∥∥´

Rd v(x,y)dy − u(x)
∥∥
lq

∥∥
Lp

≤
∥∥∑

i

∣∣´
Rd vi(x,y)dy − ui(x)

∣∣∥∥
Lp

≤
∑
i

∥∥´
Rd vi(x,y)dy − ui(x)

∥∥
Lp .

(2.51)

The result now follows by repeated use of Theorem 2.8.

These results fundamentally differ from those in [28, 19] because here we do not require a “cutoff”
function and we include the additional constant ω. The parameter ω plays a similar functional role to the
cutoff function in that it controls the initial beam width. Even though we have avoided the cutoff function
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for the above convergence results, one is still free to use it as a post processing tool (see [13]). In addition
to these differences, our results are also generalized to the symmetric hyperbolic system case.

In order for our Gaussian beam method to have the correct asymptotic convergence, ω must be bounded
above and away from zero as ε→ 0. In other words,

ω = Ω(1) as ε→ 0 (2.52)

where Ω(1) means “bounded below by a constant multiple of 1”. This restriction is necessary since if ω = O(ε),
the asymptotic expansion which yielded (2.5) would be invalid. The usefulness of ω is implied by Corollary 2.9
namely ω should be decreased to better resolve the initial condition and then left constant as ε→ 0. After all,
once the initial condition is well approximated, the approximation will only get better as ε→ 0 (also implied
by Corollary 2.9). But if the initial condition is not well resolved by the Gaussian beam decomposition one
cannot expect good numerical results. In our numerical simulations, we found that decreasing ω to about
1/20 was sufficient to resolve the initial condition well for the range of ε values used for those simulations.
As a final note, we wish to stress that setting ω = 1 and taking ε → 0 is perfectly valid, but in some cases
one my have to take ε quite small before the initial condition is well resolved and the numerical solution
converges.

2.4 Lagrangian Gaussian Beam Summation
Using Corollary 2.9 with j = 0 and initial conditions given by (2.25), define

ulaε (x, 0) ≡
ˆ
Rd

(
1

2πεω

)d/2(∑
τ,s

cs(q0, 0)bτ,s(q0,p(q0, 0))

)
e

1
εT (x,q0,0)dq0, (2.53)

where T is given by (2.2). Then∥∥∥∥ulaε (x, 0)− uε(x, 0)
∥∥
lq

∥∥
Lp
≤ c1ε−1(ωε)3/2 + c2(ωε)1/2. (2.54)

Using the evolution equations for q,p, S,M and c given by (2.24) along with initial conditions given by
(2.25), the discrete version of (2.53) at a time t > 0 then reads

ulaε (x, t) =
∑
qi
0

(
1

2πεω

)d/2(∑
τ,s

cs(q
i, t)bτ,s(qi,p(qi, t))

)
e

1
εT (x,qi,t)

∣∣∆qi0
∣∣ , (2.55)

where qi ≡ q(qi0, t) and qi0 is an equidistant mesh of points in the domain. Equation (2.55) is the summation
formula for Lagrangian Gaussian beams and may be performed at any time t > 0 to obtain an approximate
solution to (1.1). This completes the Lagrangian formulation of Gaussian beams and we proceed to the
Eulerian formulation in the next section.

Remark 2.10. The values s = 1, ..., r differ for each τ . Though implied, this is not indicated explicitly in
the notation

∑
τ,s which appears in equations (2.53) and (2.55) as well as in similar summations equations

which follow.

3 The Eulerian Formulation
One disadvantage of the Lagrangian formulation of Gaussian beams is that the individual beams, which may
be evenly spaced over the domain when initialized, tend to spread apart over time which compromises the
overall accuracy of the solution. To fix this problem, we introduce the Eulerian formulation of Gaussian
beams.

Start by forming a vector function Φ(t,p,q) on phase space whose real part tracks the evolution of each
component of p and q by taking

LΦ = 0 with Φ(0,p,q) = [p−∇qS0(q)]− i
ωq, (3.1)
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where

L ≡ ∂t +∇pHτ · ∇q −∇qHτ · ∇p. (3.2)

With the above vector function, a quick derivation gives the evolution equations and initial conditions for
the matrices −∇qΦ and ∇pΦ as

L(−∇qΦ) = −(∇pqHτ )(−∇qΦ)− (∇qqHτ )(∇pΦ) with −∇qΦ(0,p,q) = ∇qqS0(q) + i
ω I,

L(∇pΦ) = (∇ppHτ )(−∇qΦ) + (∇qpHτ )(∇pΦ) with ∇pΦ(0,p,q) = I,
(3.3)

which are, by construction, the phase space equivalents to (2.27). As noticed in [13] one may compute
M(t,q,p) using the formula

M = (−∇qΦ)(∇pΦ)−1 (3.4)

where the initial condition for M given in (2.25) is satisfied by our choice of initial condition for Φ shown in
(3.1). It is important to note that one could just as well solve the phase space equation for M which follows
directly from (2.24), but by using (3.1) instead, we trade solving a matrix of coupled Liouville equations for
instead solving a vector of homogeneous (uncoupled) Liouville equations.

Finally, the phase space equations for S and c follow directly from (2.24) so that, in summary, we obtain
the following collection of Liouville equations which defines the Eulerian Gaussian beams formulation:

LΦ = 0 with Φ(0,q,p) = [p−∇qS0(q)]− i
ωq,

LS = ∇pHτ · p−Hτ with S(0,q,p) = S0(q),

Lc = −
{

1
2Tr [∇qpHτ +M∇ppHτ ] I +Nτ

}
c with cs(0,q,p) = u0(q) · [A(q)bτ,s(q,p)],

(3.5)

where N is the matrix given by (2.20) with M replaced by (−∇qΦ)(∇pΦ)−1 wherever it appears in accor-
dance with (3.4).

Finally the Eulerian summation formula follows from (2.53) in the same way as it did in [13] and reads

ueuε (x, t) =

ˆ
Rd

ˆ
Rd

(
1

2πεω

) d
2 ∑
τ,s

cs(t,q,p)bτ,s(q,p)e
i
εT (t,x,q,p)δ(Re[Φ(t,q,p)])dpdq. (3.6)

Note that using (3.6) correctly is a subtle matter which we will discuss in Section 3.2.

3.1 One-dimensional Simplifications for Eulerian Gaussian Beams
In general, the disadvantage of the Eulerian formulation as compared to the Lagrangian formulation is that
it requires solving the Liouville equations (3.5) on 2d-dimensional phase space. In general, one may take
advantage of optimized numerical solvers to help mitigate this computational cost (see, for example, [22]).
However, when d = 1, we may take advantage of the following simplifications.

For one-dimensional systems of the form (1.1), it is straightforward to show that the eigenvalues of the
dispersion matrix (2.7) will always be of the form H(q, p) = pf(q) for some function f(q). As a consequence,
the eigenvectors are independent of p. With the help of the following simple theorem, we can make use of
these facts to reduce the system (3.5) to one-dimensional computations. This trick was first used in [10].

Theorem 3.1. The solution to {
[∂t + f(q)∂q − pf ′(q)∂p]g = 0

g(q, p, 0) = p− ∂qS0(q)
(3.7)

may be written as g(t, q, p) = pΓ1(t, q) + Γ0(t, q) with Γ0 and Γ1 governed by{
[∂t + f(q)∂q]Γ0 = 0,

Γ0(q, 0) = −∂qS0(q),
(3.8)
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and {
[∂t + f(q)∂q − f ′(q)]Γ1 = 0,

Γ1(q, 0) = 1.
(3.9)

Proof. The proof is a simple substitution of the assumed form for g into (3.7).

With the above theorem, we may write the evolution equations for Eulerian Gaussian beams as

[∂t + f(q)∂q]Γ0 = 0, with Γ0(0, q) = −∂qS0(q)− i
ω q,

[∂t + f(q)∂q]Γ1 = f ′(q)Γ1, with Γ1(0, q) = 1,

[∂t + f(q)∂q]S = 0 with , S(0, q) = S0(q),

[∂t + f(q)∂q]c = −Eτc, with ci(0, q, p) = u0(q) · [A(q)bτ,i(q)],

(3.10)

where Φ(t, q, p) = pΓ1 + Γ0 and where Eτ simplifies to

Eτis = 〈bτ,i(q), D∂qbτ,s(q)〉. (3.11)

Solving (3.10) is now a one-dimensional computation which greatly increases efficiency. The existence of an
extension of the decomposition in Theorem 3.1 to higher-dimensional space remains an open question.

3.2 New Eulerian Summation Formula
An Eulerian formulation for Gaussian beams is not a new idea, but in such papers as [13], the Eulerian
formulation lost accuracy after the formation of caustics and a semi-Lagrangian computation is used there
to avoid this problem. Here we introduce a new fully Eulerian summation formula that also avoids this
problem.

Observe that we may remove the delta function from (3.6) by integrating over any of the d coordinates
out of the total 2d coordinates on phase space (since Re[Φ(t,q,p)] is a d dimensional vector) and the proper
choice is the one which is least singular. To illustrate this point, examine the one-dimensional case which
has two-dimensional phase space wherein one obtains:

ueuε (x, t) =
∑
τ,s

ˆ
R

ˆ
R

(
1

2πεω

) d
2

c(t, q, p)bτ,s(q, p)e
i
εT (t,x,q,p)δ(Re[Φ(t, q, p)])dqdp. (3.12)

This may be written as

ueuε (x, t) =
∑
τ,s

∑
pk(q)

ˆ
R

(
1

2πεω

) d
2

c(t, q, pk(q))bτ,s(q, pk(q))
e

i
εT (t,x,q,pk(q))

|Re[∂pΦ(t, q, pk(q))]|
dq (3.13)

or

ueuε (x, t) =
∑
τ,s

∑
qk(p)

ˆ
R

(
1

2πεω

) d
2

c(t, qk(p), p)bτ,s(qk(p), p)
e

i
εT (t,x,qk(p),p)

|Re[∂qΦ(t, qk(p), p)]|
dp (3.14)

where pk(q) and qk(p) are the points where Re [Φ(t, q, p)] vanishes. Note that the points pk(q) and qk(p)
may be found by interpolation of the surface Re [Φ(t, q, p)] ( see Remark 3.3). Either summation formula,
(3.13) or (3.14), is valid but it makes sense to locally choose the less singular of the two. To this end define

Γq(a, b) = |Re[∂qΦ(t, q, p)]| and Γp(a, b) = |Re[∂pΦ(t, q, p)]| (3.15)
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and let (qi, pj) be a rectangular grid on phase space with spacing hq and hp in the q and p coordinates
respectively. Then take

ueuε (x, t) = hp
∑
τ,s

∑
qi

∑
{pk(qi)|Γp(qi,pk(qi))>Γq(qi,pk(qi))}[(

1
2πεω

) d
2 c(t, qi, pk(qi))b

τ,s(qi, pk(qi))
e

i
ε
T (t,x,qi,pk(qi))

Γp(qi,pk(qi))

]
+hq

∑
τ,s

∑
pi

∑
{qk(pi)|Γp(qk(pi),pi)<Γq(qk(qi),pi)}[(

1
2πεω

) d
2 c(t, qk(pi), pi)b

τ,s(qk(pi), pi)
e

i
ε
T (t,x,qk(pi),pi)

Γq(qk(pi),pi)

]
.

(3.16)

This approach naturally avoids the lack of resolution near caustics, is fully Eulerian, and though appears
complicated when written out, is actually quite intuitive and easy to implement in code. It may also be easily
extended to higher dimensions (see Section 3.4) and requires no manual tracking of the caustics. Notice that
one could also change coordinates in (3.12) and remove the δ-function using arbitrary coordinates, but since
we will be solving our Liouville equations on rectangularly gridded phase space, our proposed approach is
the easiest. As far as we are aware, a fully Eulerian method such as this has not been introduced before. In
the next section we recreate the experiment in [13] to demonstrate the usefulness of this new approach.

3.3 New Summation Formula for the Schrödinger Equation
In this section, we present an illustrative example to demonstrate the effectiveness of our new summation
formula. One can show that Theorem 2.8 together with the initial conditions for Γ1 specified by (3.10)
implies that Γ1 > 0 for all t ≥ 0 which implies that caustics will not form in the one dimensional hyperbolic
system. Because it is precisely when caustics form that our new summation formula (3.16) is most effective,
we would need at least a two-dimensional hyperbolic system with four-dimensional phase space which is hard
to visualize and serves as a poor illustration of our method. Thus, instead we present the following example
involving the Schrödinger equation which demonstrates not only how the method works but also that it
may be applied to Eulerian Gaussian beams for a wide class of problems beyond the symmetric hyperbolic
systems studied in this paper.

The example we take is Example 3 from [13]. Referring to [13] for the background, take all parameters to
be identical except instead of using ε = 1/10000, we will use ε = 1/5000 because the images are more clear.
Just as in [13], we use the time splitting spectral method for the reference solution. After adjusting our
new summation formula (3.16) for the Schrödinger equation case, we compare the old and new summation
formulas in Figure 3.1. The new method clearly fares much better.

Remark 3.2. Each solution shown in Figure 3.1 was computed with exactly the same data on phase space
with the difference being entirely in the post processing. Also [13] did present a solution for the errors seen
in Figure 3.1. However the idea there was to find the caustics manually, add beams near the caustics, and
solve for them using a semi-Lagrangian technique. Thus the method there was not truly Eulerian whereas
our proposed method is.

To better understand the difference between (3.13) and (3.16), we note that the two parts of (3.16)
correspond to points in phase space which are evenly distributed along the q-axis (“vertically” summed) and
points evenly space along the p-axis (“horizontally” summed). The difference becomes evident when we look
at the actual points along the zero set of the real part of Φ that each method is using. This is depicted in
Figure 3.2. Observe that the zero contour is well resolved even at the caustic which are near q = ±.18.

Remark 3.3. In order to apply (3.16) one must numerically detect the zero set of Re [Φ(t, q, p)]. In order to
get any kind of reasonable results for the simulations which resulted in Figure 3.1 one must use a method to
find zero set which is at least second order in the step size. Our implementation used use linear interpolation
of the surface Re [Φ(t, q, p)] to approximate points on the zero set.

3.4 New Summation Formula in Higher Dimension
The idea used in the new summation formula (3.16) may be extended to higher dimensions. Because writing
out the details is a mess and not informative, we present the idea.
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Figure 3.1: Top: Comparison of the Eulerian Gaussian beam (EGB) solution using the old summing method
(3.13) with the reference solution computed with the time splitting spectral method (TSS). Middle: Compar-
ison of the solution using the new summing method (3.16) with the reference solution. Bottom: Comparison
of the errors of each method.
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Figure 3.2: Left: The zero set along with the points selected by the new summation method (3.16) separated
by “vertical” summing and “horizontal” summing. Right Top: This is a zoomed in plot of the left hand plot.
Right Bottom: This is the same zoomed in plot as the right top plot but using the points selected from the
old summation method (3.13). In all images, the caustics appear near q = ±.18 and as is seen, with the old
method (right bottom plot) the caustics are not well resolved by the selected points.
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In 2d-dimensional phase space we have the 2d coordinates (q,p) and we denote the subsets of d coordinates
as Sj = (sj1, ..., s

j
n) where each sji equals some coordinate in (q,p). Noting that there are

(
2d
d

)
of these subsets,

we then compute the following volumes at each point on the zero set

V j =
√

det(∇SjRe(Φ)) (3.17)

where ∇Sj is the gradient with respect to the coordinates (sj1, ..., s
j
n). For points where V m ≤ V j for all

j = 1, ..., d we perform the Eulerian sum in the coordinates Sm. This way, the zero set of Re(Φ) is naturally
divided into regions where each set of coordinates Sj is used for the summation. This approach avoids any
singularities in the summation.

Finding the zero set of higher dimensional can seem difficult, but in order to explain how it is done,
consider the d = 2 case where we want to find the intersection of the zero sets of Re [φ1(t,q,p)] and
Re [φ2(t,q,p)]. Without loss of generality, assume our subset of coordinates is q so our goal is, given a q, to
find all p where both Re [φ1(t,q,p)] and Re [φ2(t,q,p)] are zero. Given q, we fix p1 and then vary p2 to find
all values p2 where Re [φ1(t,q,p)] = 0. Finding these points is just a matter of looking for where the sign of
Re [φ1(t,q,p)] changes as we vary p2 over the Eulerian grid. Thus we can formulate a possibly multi-valued
function p2(p1) which returns all values of p2 found in (for example) increasing order. Then for each branch of
this multi-valued function, we recursively use the same process on the function Re [φ2(t,q, (p1, p2(p1)))] which
is now a one dimensional function in p1. We can now vary p1 to find the zeros of Re [φ2(t,q, (p1, p2(p1)))]
which will give all the points on the intersection of the zero sets of Re [φ1(t,q,p)] and Re [φ2(t,q,p)] for each
q. For d > 2 dimensions, we can use the same idea where each recursive step drops the dimension of the
search by one until points are identified. Although this description is quite involved, an algorithm to perform
the above may be relatively easily implemented in any programming language using recursive function calls.

4 Numerical Results
In this section we present our numerical results. These examples include solutions to one and two dimensional
systems, both Lagrangian and Eulerian formulations as well as convergence results. As was discussed at the
end of Section 2.3, the parameter ω should be chosen so that the initial Gaussian beam decomposition is
sufficiently accurate. This step was performed for all the following numerical examples before the simulations
were performed with various decreasing values ε. The values chosen for ω are indicated in the parameters
for each experiment.

4.1 One-Dimensional Degenerate System
This numerical experiment will test the degenerate eigenvalue case in one dimension. We use the following
one-dimensional system which we also used in [10].

In reference to (1.1) define D1 = I and A(x) by

A−1 = RKRT (4.1)

with

K =


a b b

b a b

b b a

 and R =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 , (4.2)

where 0 < b < a and a, b, θ are functions of x. The eigenvalues and eigenvectors of the dispersion matrix L
which are orthonormal with respect to 〈·, ·〉A (defined by (2.9)) are

H1 = k(a− b) b1,1 =
√
a− bRv1,1,

b1,2 =
√
a− bRv1,2,

H2 = k(a+ 2b) b2 =
√
a+ 2bRv2,

where


v1,1 = 1√

2
(1, 0,−1),

v1,2 = 1√
6
(1,−2, 1),

v2 = 1√
3
(1, 1, 1).

(4.3)
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Figure 4.1: Comparison of Lagrangian Gaussian beams method with a reference solution for Parameters 4.1.
Plotted is absolute value of the first two components of the one-dimensional system with constant a and b.

The coupling matrix (2.22) for H1 is

N1 =

 0 (a−b)θ′√
3

− (a−b)θ′√
3

0

 . (4.4)

First we perform a simulation with the following:

Parameters 4.1
Take a(x) = 2, b(x) = 1 and θ(x) = 10 sin(2πx). The domain is x ∈ [−.5, .5]. The initial conditions are
u0(x) = (e−40 tan(πx)2 , 0, 0), S0(x) = x. Take ε = 1/(500π), ω = 1/20 the final time tf = .05. Number of
beams is 150 evenly spaced over the domain.

The result is shown in Figure 4.1 and shows good agreement.
For the above case when both a and b are constant in the matrix (4.2), many terms of the Gaussian beam

ODE system given by (2.24) vanish. Thus for a numerical test with a set of parameters where these terms
don’t vanish, we take the following:

Parameters 4.2
Take a = 2(.5 + .4 sin(4πx)), b = (.5 + .4 sin(4πx)) and θ(x) = sin(2πx). The domain is x ∈ [−.5, .5]. The
initial conditions are u0(x) = (e−40 tan(πx)2 , 0, 0), S0(x) = x. Let ε = 1/(500π) and ω = 1/20. The final time
is tf = .05. Number of beams is 150 evenly spaced over the domain.

The result is shown in Figure 4.2 and the agreement is again good.
We now verify numerically the Eulerian formulation using our new summation method discussed in

Section 3.2. For this example, we use the same one-dimensional system (4.2) with the following parameters:

Parameters 4.3
Take a = 2(.5 + .4 sin(4πx)), b = (.5 + .4 sin(4πx)) and θ(x) = sin(2πx). The domain is x ∈ [−.5, .5]. The
initial conditions are u0(x) = (e−40 tan(πx)2 , 0, 0), S0(x) = x. Let ε = 1/(500π) and ω = 1/20. The final time
is tf = .05. The step size is h = 1/400.
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Figure 4.2: Comparison of Lagrangian Gaussian beams method with a reference solution for Parameters 4.2.
Plotted are the real parts of the first two components of the one-dimensional system with non-constant a(x)
and b(x).

Remark 4.1. Even though this computation is Eulerian, we need not perform a simulation on phase space
because of the simplifications presented in Section 3.1. Thus the domain listed in the above parameters is
only one-dimensional.

The result is shown in Figure 4.3 and shows good agreement.

4.2 Convergence Tests
To check convergence of the Lagrangian Gaussian beams, we return one-dimensional problem of Section 4.1
along with the following.

Parameters 4.4
Take a = 2(.5 + .4 sin(4πx)), b = (.5 + .4 sin(4πx)) and θ(x) = sin(2πx). The domain is x ∈ [−.5, .5]. The
initial conditions are u0(x) = e−40 tan(πx)2 , S0(x) = x. Let ω = 1/15. The final time is tf = .05.

The values for ε, the number of beams and the errors in the L1, L2 and L∞ norms for each numerical run
are shown in the Table 4.1. The reference solutions were computed using a large number of points in the
Lax-Wendroff solver. Note that the number of beams used was taken to be proportional to ε−1/2. Figure
4.4 shows the converging sequence of Lagrangian Gaussian beam solutions by displaying one component of
the solution for each ε used in Table 4.1.

To check convergence of the Eulerian Gaussian beams a second test was performed with the same pa-
rameters as listed above. The results are recorded in Table 4.2. As can been seen from Tables 4.1 and 4.2,
the convergence rates are all larger than .5 but none reach or exceed 1. This is expected because Corollary
2.9 implies that convergence should be at least O

(
ε1/2

)
as indicated by (2.54).

Remark 4.2. Although not explicitly indicated in Parameters 4.4, ∆x and ∆t for these numerical tests where
chosen so that the Gaussian beam method had converged for each chosen value for ε. This was done to ensure
that the convergence rates shown in Tables 4.1 and 4.2 are strictly in terms of the decreasing ε and nothing
else.
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Figure 4.3: Comparison of Eulerian Gaussian beams with the exact solution for Parameters 4.3. Plotted are
the real parts of first two components of the one-dimensional system with non-constant a(x) and b(x).

ε 1
32π

1
64π

1
128π

1
256π

beam count 60 80 110 160 Convergence Rate:

L1 Error 0.0286396 0.0186261 0.0111086 0.0061078 0.743

L2 Error 0.0352813 0.0235541 0.0145400 0.0079232 0.716

L∞ Error 0.0819148 0.0502886 0.0331277 0.0195358 0.681

Table 4.1: Convergence data for Lagrangian Gaussian beams method

ε 1
16π

1
32π

1
64π

1
128π

beam count 300 400 550 800 Convergence Rate:

L1 Error 0.1302495 0.0650149 0.0476501 0.0323120 0.648

L2 Error 0.1423553 0.0743704 0.0557626 0.0378547 0.615

L∞ Error 0.2793297 0.2037504 0.1317435 0.0814930 0.596

Table 4.2: Convergence data for Eulerian Gaussian beams method
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Figure 4.4: Convergence of Lagrangian Gaussian beams method for Parameters 4.4. The plots show the
real part of second component of the solution for successively smaller ε. The solid line was computed using
a converged Lax-Wendroff scheme. The dotted line was computed using Lagrangian Gaussian beams. The
errors are reported in Table 4.1.
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4.3 Two-Dimensional Lagrangian
Next consider a two-dimensional system with degenerate eigenvalues. This test is important since the one-
dimensional case has many simplifications that do not hold in general for higher-dimensional systems (see
Section 3.1). In particular, in one dimension, the Hessian matrix M term does not appear in the matrix Eτ
given by (2.20). Thus a two-dimensional test is essential.

In reference to (1.1) define

A =


1/a 0 0 0

0 1/a 0 0

0 0 1/b 0

0 0 0 1/b

 , D1 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , D2 =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 (4.5)

where a, b > 0 are functions of x. The dispersion matrix is

L(x,k) =


0 0 ak1 ak2

0 0 −ak2 ak1

bk1 −bk2 0 0

bk2 bk1 0 0

 . (4.6)

The eigenvalues and eigenvectors of the dispersion matrix orthonormal with respect to 〈·, ·〉A are

H1(x,k) = −
√
ab
√
k2

1 + k2
2, b1,1(x,k) =

(
−
√

a
2

k2√
k21+k22

,−
√

a
2

k1√
k21+k22

, 0,
√

b
2

)
,

b1,2(x,k) =

(
−
√

a
2

k1√
k21+k22

,
√

a
2

k2√
k21+k22

,
√

b
2 , 0

)
,

H2(x,k) =
√
ab
√
k2

1 + k2
2, b2,1(x,k) =

(√
a
2

k2√
k21+k22

,
√

a
2

k1√
k21+k22

, 0,
√

b
2

)
,

b2,2(x,k) =

(√
a
2

k1√
k21+k22

,−
√

a
2

k2√
k21+k22

,
√

b
2 , 0

)
.

(4.7)

The coupling matrix for H1 is

N1 =

 0 1
2

√
b
a

1√
k21+k22

((∂x1
a) k2 − (∂x2

a) k1)

− 1
2

√
b
a

1√
k21+k22

((∂x1
a) k2 − (∂x2

a) k1) 0

 (4.8)

and N2 = −N1.
For our simulation we take the following:

Parameters 4.5
Take a(x1, x2) = .5 + .4 cos(4πx1) sin(4πx2), b(x1, x2) = 1. The domain is (x1, x2) ∈ [−.5, .5] × [−.5, .5]

periodic in x1 and x2. The initial conditions are u0(x1, x2) = (e−10(tan(πx1)2+tan(πx2)2), 0, 0, 0), S0(x1, x2) =
x1 + x2. Let ε = 1/(100π) and ω = 1/20. The final time is tf = .1. The number of beams is 60 × 60
concentrated near the initial conditions.

The result is plotted in Figure 4.5 and is compared to a reference solution computed using a full dimension
splitting Lax-Wendroff scheme.

5 Conclusion
We have introduced a Gaussian beam method which solves the high frequency solutions to the linear hy-
perbolic system (1.1) in the degenerate and non-degenerate cases provided that the system is spectrum

21



−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
1

x
2

real(U
1
)

 

 

−0.4

−0.2

0

0.2

0.4

0.6

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
1

x
2

real(U
1
)

 

 

−0.4

−0.2

0

0.2

0.4

0.6

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
1

x
2

real(U
4
)

 

 

−0.4

−0.2

0

0.2

0.4

0.6

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x
1

x
2

real(U
4
)

 

 

−0.4

−0.2

0

0.2

0.4

0.6

Figure 4.5: Comparison of the real part of the first and fourth components of the Lagrangian Gaussian beam
solution for Parameters 4.5. The left column is the reference solution and the right column is the Lagrangian
Gaussian beams solution.
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preserving in the sense of Definition 2.2. In addition, we have provided convergence results that are indepen-
dent of a “cutoff” function and an Eulerian summation formula that preserves solution accuracy even after
the formulation of caustics. Finally, we have provided numerical verification of all methods and formulations
introduced. In addition, our derivation for the coupling which occurs in symmetric hyperbolic systems be-
tween Gaussian beams within a degenerate eigen-space of the dispersion matrix lays out the groundwork for
developing Gaussian beam methods for dealing with cases of non-constant degeneracies. This, in turn, leads
the way towards developing Gaussian beams methods for other equations with non-constant degeneracies
as well. Non-constant degeneracies will be the subject of a future paper. As a final note, we point out
that within this paper we have provided only an asymptotic justification that our Gaussian beam method
converges to the exact solution of (1.1). An elegant rigorous proof of convergence, however, is possible and
will appear shortly in a paper to follow.

Appendix A: Gaussian Beams for Three Fundamental Examples
The critical step in our derived Gaussian beam method is in assuming the following form for a0 in our
Gaussian beam expansion:

dtT +Hτ (x, p̃) = 0 and a0 =
∑r
s=1 cs(q, t)b

τ,s(x, p̃) (5.1)

Since p̃ can be complex, it is critical that we are guaranteed a linearly independent set of eigenvectors
bτ,s(x, p̃) to use in such an expansion. Furthermore, in the subsequent steps in the derivation of our
Gaussian beams method which involve taking derivatives of Hτ (x, p̃) and bτ,s(x, p̃), one must verify that
these functions are well defined for complex p̃ so that using the chain rule is justified. In particular, we
need to show that for a given real point p, there exists some complex neighborhood around p wherein both
Hτ (x, p̃) and bτ,s(x, p̃) are holomorphic.

Since we can not prove, in general, that the above required details hold, one must check them for each
particular symmetric hyperbolic system being considered. To establish the usefulness of our method, we
present verification for the three important three-dimensional physical equations considered in [26], namely
the acoustic equations, Maxwell’s equations and the elastic wave equations. To this end we begin with some
preliminaries.

Preliminaries
Central to the work to follow is a complete understanding of the matrix

P (k) =


0 −k3 k2

k3 0 −k1

−k2 k1 0

 . (5.2)

The three eigenvalues of (5.2) may be calculated as λ = 0,±i
√
k2

1 + k2
2 + k2

3. Define

ζ(k) =
√
k2

1 + k2
2 + k2

3 =
√

k · k (5.3)

where we note that ζ(k) may be complex if k is complex. In this form, the three eigenvalues are written as
λ = 0,±iζ. We now prove a Lemma that establishes that in some neighborhood in C3 about a real point
k0 6= 0, ζ(k) defined by (5.3) is holomorphic.

Lemma 5.1. Suppose k0 ∈ Rd where |k0| > 0, then the function ζ(k) =
√
k2

1 + k2
2 + k2

3 is holomorphic
inside the ball Bδ(k0) =

{
k ∈ Cd : |k− k0| < δ

}
provided that δ < (−1 +

√
2)|k0|.

Proof. We will show that we may choose an appropriate branch cut for the square root function. We begin
by starting with an arbitrary element of the ball Bδ(k0) represented by k̃ = k0 + δk where |k| = 1. Then

k̃ · k̃ = |k0|2 + 2δk0 · k + δ2k · k. (5.4)
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Next
Re(k̃ · k̃) = |k0|2 + 2δk0 · Re(k) + δ2(|Re(k)|2 − |Im(k)|2)

≥ |k0|2 − 2δ|k0| − δ2

> 0,

(5.5)

where the final inequality follows from δ < (−1 +
√

2)|k0|. Thus since Re(k̃ · k̃) > 0 we may choose the
branch cut of the square root part of ζ(k) to be along the negative real axis. Thus on Bδ(k0), ζ(k) =

√
k · k

is a composition of holomorphic functions so is itself holomorphic.

Next we establish that in some neighborhood in C3 about a real point k0 6= 0, the eigenvectors of (5.2)
are linearly independent and holomorphic. To do this, we simply present the eigenvectors as follows:

For λ = 0 the holomorphic eigen-vector is

v0(k) = k̂ ≡ k/ζ(k) (5.6)

For λ = ±iζ(k) we write the holomorphic eigenvectors in two separate regimes. First, assuming that
k1 6= 0 or k2 6= 0 we may write

v±(k) =
1

ζ(k)
√

2 (k2
1 + k2

2)

(
−k1k3 ∓ ik2ζ(k),−k2k3 ± ik1ζ(k), k2

1 + k2
2

)
. (5.7)

Second, assuming that k1 6= 0 or k3 6= 0, we may write

v±(k) =
1

ζ(k)
√

2 (k2
1 + k2

3)

(
−k1k2 ± ik3ζ(k), k2

1 + k2
3,−k2k3 ∓ ik1ζ(k)

)
. (5.8)

We remark that in the neighborhood Bδ(k0) of any real point k0 6= 0 defined by Lemma 5.1, the vector
v0(k) is a holomorphic function of k. By again using Lemma 5.1 with d = 2, we may conclude that v±(k)

given by (5.7) are holomorphic inside Bδ(k0) when δ < (−1 +
√

2)
√
k2

0,1 + k2
0,2 and v±(k) given by (5.8) are

holomorphic inside Bδ(k0) when δ < (−1 +
√

2)
√
k2

0,1 + k2
0,3. Finally, we observe that all three eigenvectors

are linearly independent provided k remains within Bδ(k0) simply because the eigenvalues are all distinct
in this neighborhood. Note that when k0 6= 0 is real, then the vectors v0(k0),v±(k0) are orthonormal.
However, orthonormality does not hold inside of the complex ball Bδ(k0) no mater which δ is chosen.

We now have a relatively complete understanding of the eigen-structure of the matrix (5.2) so we finish
this section by introducing two new vectors which will become useful in the following sections:

z1(k) =
1√
2

(v+(k) + v−(k)) and z2(k) =
i√
2

(v+(k)− v−(k)) . (5.9)

One may easily show that for these vectors,

P (k)z1(k) = ζ(k)z2(k) and P (k)z2(k) = −ζ(k)z1(k) (5.10)

and also that they are linearly independent provided v±(k) are linearly independent. Finally note that when
k is real, z1(k) and z2(k) in (5.9) are also orthonormal.

Acoustic Equations
Referring to [26] for reference on the setup for the acoustic equations, we summarize as follows. The dispersion
matrix in block form is given by

L =

 0 k/ρ

kT /κ 0

 (5.11)
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where ρ(x) is the density and κ(x) is the compressibility. The eigenvalues of the dispersion matrix are λ0 = 0
twice repeated and λ± = ±v(x)ζ(k) each once repeated. The eigenvectors are

b(0,1)(x,k) =
(
z1(k)/

√
ρ, 0
)
,

b(0,2)(x,k) =
(
z2(k)/

√
ρ, 0
)
,

b+(x,k) =
(
k̂/
√

2ρ, 1/
√

2κ
)
,

b−(x,k) =
(
k̂/
√

2ρ,−1/
√

2κ
)
.

(5.12)

From these explicit forms for the eigenvalues and eigenvectors, it is clear that they are holomorphic for
k ∈ Bδ(k0) for any real point k0 6= 0 (as discussed in Section 5). Linear independence of the eigenvectors
inside Bδ(k0) follows from the linear independence of k̂, z1 and z2. Finally note that (5.12) are orthonormal
in 〈·, ·〉A when k is real.

Maxwell’s Equations
Referring to [26] for reference on the setup for Maxwell’s equations, we summarize as follows. The dispersion
matrix for this problem is given by

L =

 0 − 1
εP (k)

1
µP (k) 0

 (5.13)

where P (k) is given by (5.2), ε(x) is the dielectric permittivity and µ(x) is the relative magnetic permeability.
We will use z1 and z2, defined by (5.9), to construct the eigenvectors of the dispersion matrix (5.13).
The three eigenvalues of L which are each twice repeated are given by λ0 = 0, λ+(x,k) = v(x)ζ(k),
λ−(x,k) = −v(x)ζ(k) with

v(x) =
1√

ε(x)µ(x)
(5.14)

and ζ(k) defined by (5.9). Proving that these are the eigenvalues is a matter of writing down the eigenvectors.
For λ0 = 0 one has

b(0,1) =
1√
ε
(k̂, 0), b(0,2) =

1
√
µ

(0, k̂). (5.15)

For λ+ = vζ one has

b(+,1) =

(√
1

2ε
z1,

√
1

2µ
z2

)
, b(+,2) =

(√
1

2ε
z2,−

√
1

2µ
z1

)
. (5.16)

For λ− = −vζ one has

b(−,1) =

(√
1

2ε
z1,−

√
1

2µ
z2

)
, b(−,2) =

(√
1

2ε
z2,

√
1

2µ
z1

)
. (5.17)

We note that all of these eigenvectors will be linearly independent provided that z± are linearly independent.
However, when k is complex, these vectors may not be orthogonal. Finally note that these eigenvectors are
orthonormal in 〈·, ·〉A when k is real.

Elastic Equations
Referring to [26] for reference on the setup for the elastic equations we summarize as follows. The dispersion
matrix for this problem is given in block form by

L = −


0 K(k)/ρ M(k)/ρ k/ρ

2µK(k) 0 0 0

µM(k) 0 0 0

λkT 0 0 0

 , (5.18)
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where K(k) = diag(k1, k2, k3) and

M(k) =


0 k3 k2

k3 0 k1

k2 k1 0

 . (5.19)

By writing down the appropriate eigenvectors we will show that the eigenvalues of the above dispersion
matrix for k ∈ Bδ(k0) about a real point k0 6= 0 (as discussed in Section 5) are given by

λ0 = 0 with multiplicity four,

λP± = ±vP (x)ζ(k) with multiplicity one, and

λS± = ±vS(x)ζ(k) with multiplicity two.

(5.20)

Note that the velocities are given by

vP (x) =
√

(2µ(x) + λ(x))/ρ(x), vS(x) =
√
µ(x)/ρ(x) (5.21)

where µ(x) and λ(x) are the Lame parameters and ρ(x) is the density (See [26] for details). Then the
eigenvectors are

bP±(x,k) =
(
k/
√

2ρ,∓2µK(k)k/
√

2(2µ+ λ),∓µM(k)k/
√

2(2µ+ λ),∓λ/
√

2(2µ+ λ)
)
,

b
Sj

± (x,k) =
(
zj/
√

2ρ,∓2
√
µ/2K(k)zj ,∓

√
µ/2M(k)zj , 0

)
, j = 1, 2,

b(0,j)(x,k) =
(

0,
√

2µK(zj)zj ,
√
µ/2M(zj)zj , 0

)
, j = 1, 2,

b(0,3)(x,k) =
(
0, 2
√
µK(z1)z2,

√
µM(z1)z2, 0

)
,

b(0,4)(x,k) =
(

0, 2
√
λµK(k̂)k̂/

√
2(2µ+ λ),

√
λµM(k̂)k̂/

√
2(2µ+ λ),−2

√
λµ/

√
2(2µ+ λ)

)
,

(5.22)

where z1 and z2 are given by (5.9) and k̂ is defined by (5.6). That (5.22) are truly the eigenvectors relies on
a couple of facts: Firstly

2K(k)2 +M(k)2 = kkT + k · kI. (5.23)

Secondly
k · z1 = −(kTP (k))z2/ζ(k) = 0,

k · z2 = (kTP (k))z1/ζ(k) = 0,
(5.24)

provided that ζ(k) 6= 0. That functions in (5.22) are holomorphic functions of k inside some neighborhood
Bδ(k0) of a real point k0 6= 0 follows from Lemma 5.1 and the linear independence of these vectors inside
Bδ(k0) follows from the linear independence of k, z1 and z2. Finally note that (5.22) are orthonormal in
〈·, ·〉A when k is real.

Appendix B: Simplification of the matrix Eτ

The purpose of this appendix is to justify the simplification of the matrix Eτ given by (2.20) to the form
shown by (2.23). Since τ does not effect the following computation in any way, it will be dropped from the
notation for the sake of clean presentation.

Begin by restating (2.20):

Eis = 〈Abi, A−1Dj{∇qbs + (∇pbs)M}ej −∇pbs[∇qH +M∇pH]〉. (5.25)

Consider for now only the terms involving the matrix M(t,q) which we recall is symmetric (see Theorem
2.6). In particular we wish to rewrite the expression

A−1Dj(∇pbs)Mej −∇pbsM∇pH. (5.26)

26



Using Einstein summation notation begin with the statement that the vector bs is in the null space of
A−1Djkj −HI which reads [

A−1
mlD

n
ljpn −Hδmj

]
bsj = 0. (5.27)

Taking the partial derivative with respect to p gives[
A−1
mlD

f
lj −

(
∂pfH

)
δmj

]
bsj +

[
A−1
mlD

n
ljpn −Hδmj

] (
∂pf b

s
j

)
= 0. (5.28)

Multiplying by the matrix M gives[
A−1
mlD

f
ljMfg −

(
∂pfHMfg

)
δmj

]
bsj +

[
A−1
mlD

n
ljpn −Hδmj

] (
∂pf b

s
jMfg

)
= 0. (5.29)

Taking the partial with respect to p again and summing over the index g gives

−
(
∂pf∂pgH

)
Mfgδmjb

s
j

+A−1
mlD

f
ljMfg

(
∂pgb

s
j

)
+A−1

mlD
g
ljMfg

(
∂pf b

s
j

)
−
(
∂pfH

)
Mfgδmj

(
∂pgb

s
j

)
−
(
∂pgH

)
Mfgδmj

(
∂pf b

s
j

)
+
[
A−1
mlD

n
ljpn −Hδmj

] (
Mfg∂pg∂pf b

s
j

)
= 0.

(5.30)

Because of the symmetry of M the two terms on the second line of (5.30) are the same and the two terms
on the third line of (5.30) are also the same. Thus (5.30) may be written as

A−1
mlD

g
ljMfg

(
∂pf b

s
j

)
−
(
∂pfH

)
Mfgδmj

(
∂pgb

s
j

)
= 1

2

{(
∂pf∂pgH

)
Mfgδmjb

s
j −

[
A−1
mlD

n
ljpn −Hδmj

] (
Mfg∂pg∂pf b

s
j

)}
.

(5.31)

Note that the expression on the left side of (5.31) is exactly (5.26). Additionally recall that the dispersion
matrix is self-adjoint in 〈·, ·〉A so that the term A−1

mlD
n
ljpn −Hδmj is also self-adjoint in 〈·, ·〉A. Using these

facts, one has

〈Abi, A−1Dj(∇pbs)Mej −∇pbsM∇pH〉

= Amhb
i
h

1
2

{(
∂pf∂pgH

)
Mfgδmjb

s
j −

[
A−1
mlD

n
ljpn −Hδmj

] (
Mfg∂pg∂pf b

s
j

)}
= 1

2

[(
∂pf∂pgH

)
Mfg

]
δis − 1

2

[
A−1
mlD

n
ljpn −Hδmj

]
bijAmh

(
Mfg∂pg∂pf b

s
h

)
= 1

2

[(
∂pf∂pgH

)
Mfg

]
δis

= 1
2Tr [M∇ppH] δis.

(5.32)

This result shows that the off-diagonal terms (5.25) are not influenced by the matrix M .
Next derive the contribution to the diagonal of (5.25) from the terms not involving M . One gets

〈Abs, A−1Dj∇qbsej −∇pbs∇qH〉 = 〈bs, Dj∇qbsej〉 − 〈Abs,∇pbs∇qH〉

= 〈bs, Dj∂qjb
s〉 −

(
∂qjH

)
〈Abs, ∂pjb

s〉

= 1
2∂qj 〈b

s, Djbs〉 − 1
2

(
∂qjH

)
∂pj 〈Abs,bs〉

= 1
2∂qj∂pjH −

1
2

(
∂qjH

)
∂pj1

= 1
2∂qj∂pjH.

(5.33)

In keeping with [26], define the skew symmetric matrix

Nis = 〈Abi, A−1Dj∇qbsej −∇pbs∇qH〉 −
1

2
∇q · ∇pHδis. (5.34)
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Finally (5.25) may be written as

Eis = 1
2 {∇q · ∇pH + Tr [M∇ppH]} δis +Nis

= 1
2Tr [∇qpH +M∇ppH] δis +Nis.

(5.35)

This is what we set out to show.
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