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Abstract

We develop computational methods for high frequency solutions of general symmetric hyperbolic systems
with eigenvalue degeneracies (multiple eigenvalues with constant multiplicities) in the dispersion matrices
that correspond to polarized waves. Physical examples of such systems include the three dimensional
elastic waves and Maxwell equations. The computational methods are based on solving a coupled system
of inhomogeneous Liouville equations which is the high frequency limit of the underlying hyperbolic
systems by using the Wigner transform [12]. We first extend the level set methods developed in [5]
for the homogeneous Liouville equation to the coupled inhomogeneous system, and find an efficient
simplification in one space dimension for the Eulerian formulation which reduces the computational cost
of two-dimesnional phase space Liouville equations into that of two one-dimensional equations. For the
Lagrangian formulation, we introduce a geometric method which allows a significant simplification in the
numerical evaluation of the energy density and flux. Numerical examples are presented in both one and
two space dimensions to demonstrate the validity of the methods in the high frequency regime.

1 Introduction

We will study the general symmetric hyperbolic system of the form®

A(x) % + DI G2 =0

u. (x,0) = ug(x)eSox)/e, (1)
where u € C", x € R%, A(x) is a n x n symmetric positive definite matrix, and the D7 are n x n symmetric
constant matrices. Many physical systems such as Maxwell’s equations, the elastic wave equations and the
acoustic equations all may be put into the symmetric hyperbolic form with the correct choices of A(x) and
D7. Here we are interested in high frequency solutions, where the high frequency is introduced by the wave
length ¢ in the initial data in (1.1). In many physical applications ¢ is very small compared to the scale of
the computational domain, and the numerical meshes and time steps need to resolve this small scale, thus
computing the high frequency solutions, in particular in high dimensions, is prohibitively expensive.

One efficient way to deal with high frequency wave problems is to solve the limiting equation by finding
the asymptotic equation when e — 0. The Wigner transform, introduced in [16], is a powerful mathematical
tool to study this limit [3], since it is valid global in time, even beyond caustic formation. The limiting
equation is the Liouville equation which does not depend on €, permitting large time steps and mesh sizes.
However, it encounters two major difficulties. First, the Liouville equation is defined in the phase space,
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thus doubling the computational dimension. Second, for the WKB kind of initial data given in (1.1), the
solution is a superposition of Dirac Delta functions [4, 13] which are difficult to resolve numerically with a
high order accuracy. The first difficulty can be dealt with by local level set methods [10, 11] in the Eulerian
formulation, or using Lagrangian formulation which is just the particle method. The second difficulty, the
numerical resolution of Delta function, was elegantly handled by a singularity decomposition method, first
introduced in [6] for the semiclassical limit of the Schrodinger equation, and then extended to symmetric
hyperbolic systems in [5]. The method is based on the observation that the solution to the linear Liouville
equation of the form of the Delta functions can be decomposed into two solutions of the Liouville equations
which are both bounded, one, roughly speaking, corresponding to strength (or amplitude of the wave) while
the other one the kernel of the Delta function. The final solution is the combination of these two quantities
involving the Delta function, but the Delta function needs to be computed only at the final output time, not
during the time evolution! This significantly enhances the numerical resolution of the singular solutions to
the Liouville equation. See [2, 7] for reviews of computational high frequency waves or semiclassical limit of
quantum waves.

In this paper, we extend the singular decomposition method of [6, 5] to (1.1). Different from the problem
studied in [5], here the dispersion matrix will have multiple eigenvalues while in [5] only simple eigenvalues
are allowed. By assuming constant multiplicities of the multiple eigenvalues, the high frequency limit of
(1.1), using the Wigner transform, becomes coupled systems of inhomogeneous Liouville equations (while in
[5] they are decoupled homogeneous Liouville equations for different eigenvalues) [12]. The inhomogeneities
arise due to the degeneracy of the eigenvalues, which describe the cross-polarization effects. We first show
that the singular decomposition method developed in [6, 5] still applies here except that one needs to
solve inhomogeneous Liouville system. We also found an efficient simplification in one space dimension for
the Eulerian formulation which reduces the computational cost of two-dimensional phase space Liouville
equations into that of two one-dimensional equations. For the Lagrangian formulation, we introduce a
geometric method which allows a significant simplification in the numerical evaluation of the energy density
and flux.

While the polarization effects usually appear in three dimensional space for elastic waves and electro-
magnetic waves, our method, developed for one and two dimensional hyperbolic systems, is the first of its
kind to deal with polarized waves thus provides a foundation for three dimensional simulation which will be
developed in the near future. Furthermore, similar effects also appear in molecular dynamics with quantum
transitions [15] and mixing of Bloch bands in solid state physics [14] where the multiplicity is a variable thus
more elaborate numerical methods along the line of this paper are desirable.

This paper is organized as follows. In Section 2, we will introduce and then use the Wigner transform
to obtain, in the limit that ¢ — 0, a coupled system of Liouville equations which govern the evolution of
this high frequency limit, as shown in [12]. In Section 3 we will prove the singularity decomposition result.
In Section 4 we will discuss simplifications which occur in the one space dimension case. In Section 5 we
will discuss d-dimensional implementation of our method in the Eulerian and Lagrangian frames as well as
introduce a geometric reduction of computational complexity for the evaluation of energy and energy flux in
the Lagrangian framework. In Section 6 we will show some illustrative numerical examples in one and two
dimensions. Finally, Section 7 will contain our conclusions.

2 The Wigner Transform of Hyperbolic Systems

This section is based primarily on the derivation which appears in [12].
The energy density and d components of flux for a solution of (1.1) are given by

E(t,x) = %(A(x)ug(t, x), uc(t,x)) (2.1)

Filt,x) = %(Diug(t,x),ug(t,x» (2.2)

respectively where (-, ) is the standard Euclidian inner product on C™. By taking an inner product of (1.1)



with u.(¢,x) one gets the energy conservation law

o€
S HV-F=0. (2.3)

Integration of (2.3) shows conservation of total energy:

%/E(t,x)dx =0. (2.4)

Next define the scaled Wigner transform

d
We(t,x, k)dk = (21) /eik'yug(t7 x —ey/2)ul(t,x +ey/2)dy (2.5)
7r

where u* = @’ is the conjugate transpose of u. The matrix W (t,x,k) is Hermitian but only becomes
positive definite in the limit as ¢ — 0 [12]. It has the useful property that

/We(t,x7 k)dk = u.(t,x)ul(t,x). (2.6)
The energy density and flux may be recovered from W (t,x,k) via

S(t,x) = % / Tr(A(x)We (¢, x, k))dk, (2.7)

1 4
Fi(t,x) = 3 /Tr(DJWE(t,x, k))dk. (2.8)

Introduce a natural inner product for the system (1.1) as
(u,v)4 = (Au,v) (2.9)

and note that with this definition the energy (2.1) may be written as & = %(u, u) 4. Define the dispersion matriz
as the sum _
L(x,k) = A~ (x)k; D" (2.10)

and note that L(x,k) is self-adjoint with respect to (2.9):
(Lu,v)q = (u, Lv) 4. (2.11)

Therefore, all eigenvalues w, of L(x, k) are real and the corresponding eigenvectors b” can be chosen to be
orthogonal with respect to (-, ) 4:

L(x,k)b7(x,k) = w.(x,k)b7(x,k), (b",b%)4 =6,5. (2.12)

We assume that the eigenvalues have constant multiplicity independent of x, k. This assumption is valid for
many physical examples including all those studied in this paper.
In general the eigenvalues of L(x, k) are multiple eigenvalues so let w, (x, k) be an eigenvalue of multiplicity
r and let the corresponding eigenvectors b™¢, i = 1,...,r be orthonormal with respect to (-,-)4. Define the
n X n matrices
BT = pTipTI*, (2.13)
with 4,5 = 1,...,7. In the limit that £ — 0, the Wigner matrix W (¢, x, k) is approximated by W) (¢,x, k)
which may be written as
WO, x,k) = > w];(t,x, k)B" (x,k). (2.14)
)

We define the r x r coherence matrices as

W7 (t,x,k) = (w];(t,x,k)) (2.15)

rxr



Note that the multiplicity r of the eigenvalues w, depends on 7 but this is not indicated explicitly. The

entries of the coherence matrix W;; can be recovered via

Wi(tx, k) = (WO(t,x,k), B™(x,k))) (2.16)

where ((X,Y)) = Tr(AX*AY) is a matrix inner product. From here we can deduce that each of the coherence
matrices (2.16) satisfies the coupled system of Liouville equations

OW™ + Viws - VoW = Vyw, - VieWT = NTWT — W™N” (2.17)

where the skew-symmetric coupling matriz N7 (x,k) is given by

.Ob™™ Ow, ob™™ 1 S%w,
N k)y=(b™", D’ - b™" — ———um- 2.1
mn (%, k) < " o, > oz, < ' ok, >A 2 D, O, (2.18)
In the sense of distributions, the weak limit of W¢(0,x,k) as ¢ — 0 gives the initial condition
WO (0,x,k) = up(x)uf(x)d(k — VSy(x)). (2.19)
Using (2.16) this implies that
W7;(0,x,k) = Tr(Augus AB™)6(k — VSp(x)). (2.20)

In summary, W7 is computed via (2.17) with initial condition given by (2.20). Next W follows from W7
via (2.14) from which one may compute the approximate energy density and flux using

EO(t,x) = % / Tr(A(x)W O (¢, x, k))dk, (2.21)

(0) _ 1 (0
F;(t,x) = §/I&c(DJW< )(t,x,k))dk (2.22)

respectively. In the next section we show how to solve (2.17) with singular initial conditions of the form
(2.20).

3 A Singularity Decomposition Method

From the previous section we wish to solve the Liouville equation (2.17) together with the initial condition
(2.20). Since accuracy is reduced when an initial condition containing a delta function is evolved numerically,
it is desirable to decompose the original Liouville equation into two separate equations which have bounded
initial conditions [5, 6]. To this end we have the following theorem.

Theorem 3.1. Define the Liouville operator
L =0+ Vyw; - Vyx — Vyxw; - Vi (3.1)
and the coupling matrix N7 as in (2.18). Then the solution W7 (t,x,k) to the system

(3.2)

LWT = NTWT — WTNT
W7(0,x,k) = Ug (x, k)4 (g (x, k))

for a smooth function gl (x,k) may be written as U7 (t,x,k)d(g" (¢, x,k)) where the matric function U™ and
vector function g7 are governed by

{EUT — N"UT —U'N" 53)
U™ (0,x,k) = UJ (x,k)
and
{£ g =0 (3.4)
g"(0,x,k) = gj(x,k)
respectively.



Proof. (We drop the 7 superscript notation for the duration of the proof) We begin by defining the weak
equivalent to

LW =NW —-WN (3.5)
W(vavk) = WO(X7 k) .
as requiring that for any d x d matrix ¢(t,x,k) where ¢; ; € C5°(RT x R™ x R"), the following holds
(oo} o0
Te(Wod|e—o)dxdk — / Te(W L) dxdkdt = / Te(NW — WN)¢)dxdkdt.  (3.6)
R2n 0 R2n R2n

Note that we use the trace of the matrix product here to represent ), j ¢;,:W; ; for ease of notation. Simple
integration by parts shows that for smooth W, (3.5) and (3.6) are equivalent. Define the Hamiltonian flow
H,(x0,ko) which evolves any point (x0,kp) in phase space forward to time ¢ according the Hamiltonian

system
i =
Lfitx(t) Viwr - (3.7)
Ek(t) = fvqu-

We change coordinates to (t,xo,ko) defined by (¢,x,k) = (¢, H¢(x0,ko)). Since the determinant of the
Jacobian of this transform is 1 we rewrite (3.6) as

/ Tr(Wo(b‘t o)dXOdko — / / TI' ¢)dX0dk0dt / / TI‘ NW WN)¢)dX0dk0dt (3 8)
R2n R2n R2n

where we have taken advantage of the fact that Lo(t,x, k) = dtgb(t Hy(x0,ko)). Note that in this paper %
always represents the full derivative in time and that one also has

EU(t,X, k) = %U(t, Ht(Xo, ko)) = N(Ht(XO, ko))U(t, Ht(Xo, ko)) - [](t7 Ht(Xo, ko))N(Ht(Xo, ko)) (39)

and J
Lg(t,x,k) = %g(t,Ht(xo,ko)) =0. (3.10)

Substituting the anzats U(t,x, k)d(g(t,x,k)) into the left hand side of (3.8) we obtain

/lézn TI‘ (UO(X07kO)(S(gO(X07kO))¢|t 0) dX()dkO / /

o (U(tht(Xoa ko))d(g(t, Hi (%o, ko)));Zt(b) dxodkodt.

(3.11)
Noting first that (3.10) implies g(t, H;(x0, ko)) = g(0,x0, ko), observe that the above space integrals are
weighted surface integrals in 2d-dimensional phase space over a d-dimensional sub-manifold defined by the
zero set of g(0, %o, ko) and that the weight given in terms of the inverse volume of Vg(0, xg, ko). Denoting
this zero-set manifold as S, (3.11) may be written as

1 i d 1
/S T (Udl=0) g7 /0 /S U 59 soirg ot (3.12)

vol(Vg) = v/det(G) (3.13)

Where

and G is the Gramian matriz defined as G;; = Vg; - Vg; with the gradients taken over the 2n space
coordinates. (3.12) is an application of the smooth Coarea formula and vol(g(0, %, ko)) is non-zero because
the initial conditions given to g. Further note that vol(g(0,xg, ko)) is independent of time as is the surface
S over which the integrals are performed. Also since S is fixed in time, %qb is still the full derivative in time.
Thus integrate by parts in time so that (3.12) becomes

/om /s B ( [th} ¢) v01(1Vg) dordt. (3.14)




Then using (3.9),

/ / Tr({ o } )Vol(vg)dodt / / Tr(NU — UN)¢)mdadt. (3.15)

Finally,

/ /Tﬁr ((NU—-UN)g) I(V )dadt

/ i . TH((NUS(g) — Us(@)N)6)dxodkodt

TI‘((NW — WN)(b)dXodkodt
0 R2n

(3.16)

and this completes the proof. O

Remark. In our application of Theorem 3.1 to (2.17) and (2.19), the initial amplitude UJ(x,k) for U is
independent of k though the proof above does not require this to be the case. Also, when the eigenvalues of
the dispersion matrix (2.10) are simple, the coupling matrix (2.18) is zero and the Theorem 3.1 reduces to
ones proven in [5, 6] for homogeneous Liouville equations. For now, V.Sy(x) is assumed to be differentiable.
A discussion of some cases where V.Sp(x) is discontinuous may be found in [5, 6].

Using Theorem 3.1, the computation of delta functions during time evolution is avoided and delta func-
tions only appear in post processing steps when one wishes to evaluate energy density (2.21) and flux (2.22).
In particular, our method uses the decomposition in Theorem 3.1 to replace solving

{atWT + Vigw, - VW7 — wa? VW™ =N"WT™ —WT™N" (3.17)
W75 (0,x, k) = Tr(Auguf AB™)d(k — VSp(x))
with instead solving both

{ésj(o, xﬁi)g = TEJ(A]YlouSABT’ij ) (3.18)

and

Lg™ =0
{gT(Ov x,k) =k — VSp(x). (3.19)

Next one obtains W7 (¢, x, k) using
W7(t,x,k) =U"(t,x,k)d(g" (¢t,%,k)), (3.20)

obtains W (¢,x, k) using (2.14) and then finally obtains energy density and flux using (2.21) and (2.22)
respectively. A method which solves the Liouville equations (3.18) and (3.19) directly is called Eulerian
whereas a method which solves them along their respective characteristics is Lagrangian. Which approach is
preferable, Eulerian or Lagrangian, depends greatly on the individual problem and in the following sections
we discuss both.

4 The Eulerian Formulation

4.1 d Dimensions

The Eulerian formulation of our method starts by solving (3.18) and (3.19) in 2d dimensions. For a given w;
we denote the solutions to (3.18) and (3.19) by U7 (¢,x,k) and g” (¢, x, k) respectively. Once these solutions
are obtained, we recover W7 (t,x,k) via (3.20) and W (¢, x,k) via (2.14). After this, energy density and
flux follow from (2.21) and (2.22) respectively which requires detecting the zero set of g”. At the initial
time, the zero set of g7 is given by the initial condition in (3.19) and so for each x there is exactly one k
where g” = 0. We call g7 is single valued when this property holds. At some later time, it may be the
case that for some x there are multiple k where g™ = 0 and we call g" multiple valued in this case [4, 13]
(see Figure 4.1 for an example of a multiple valued solution). A point (x,k) where g"(¢,x,k) = 0 and
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Figure 4.1: In reference to evaluating (5.10) and (5.11), if # = a then s, = 3 and if © = b then s, = 5 (note
that 7 notation has been dropped for simplicity). In reference to evaluating (5.20) and (5.21), the simplices
here are simply the z intervals delineated by the dots along the curve g(T,z,k) = 0. If x = a then z falls
into 3 distinct intervals and if x = b then x falls into 5 distinct intervals. x = ¢ is an example of a point
where g(T, x, k) has a caustic.

vol (Vg™ (¢,x,k)) = 0 is called a caustic and at these points, the energy density (2.21) and flux (2.22) are
not well defined (the point 2 = ¢ in Figure 4.1 is an example of such a point). Away from caustics, however,
if we define K7 (t,x) = {k : g7 (¢,x,k) = 0} then the energy density and flux may be evaluated at final time

t=1T as
T =1 ¥ );Tr (A(x) — [Ié:{(;(’;”l;), k)]> (4.1)

T |kekT(Tx

and

1 . UT Ta X, k
.FJ(O) (Tv X) = Z Z iTr (DJ vol [vk(gT (T7 X)7 k)] > (42)

T | keK7(T,x)

respectively where
T(t,x, k) = ZUT t,x,k)B™ (x, k) (4.3)

is a partially summed version of (2.14).

K7™ could be approximated numerically in many ways one of which is the following. Define the fixed
square grid in the phase variables by k, = hz where z; € Z and h > 0 is the step size. Then for a given x
and g7 (¢,x, k), define the sets S; with i =1, ...,d by

Si =1{kz : 9] (t,%,kz)g7 (t, X, Kzte;) < 0} (4.4)
where e; is i'" unit vector in R?. Then for sufficiently small h, we have
K7(t,x) ~ N, S,;. (4.5)

Alternately, one could evaluate (2.21) and (2.22) by introducing numerical delta function in (3.20) as is in
[5, 6]. This alternate approach avoids the need to find K7 (¢t,x) = {k : g7 (¢,x,k) = 0} explicitly but may
introduce more error depending on the numerical delta function used.



To reduce the computational cost of solving the Liouville equations on 2d dimensions, one may take
advantage of optimized techniques for solving Liouville equations found in, for example, [1, 5, 6, 8, 10, 11].
In particular, the local level set approach allows for computation only around the zero set of g7 (¢, x, k) [10].
Beyond this, in one dimension the computations on two-dimensional phase space can be reduced to just one
dimension as seen in Section 4.2.

4.2 One Dimension

In one dimension, x,k and g” are all scalars so will be denoted z,k and ¢” respectively. Since in one
dimension k appears as a scalar multiple in the dispersion matrix L given by (2.10), the eigenvalues of L will
always be of the form w” (z, k) = kA" (z) and the corresponding eigenvectors b™ will always be &k independent.
Consequently, the coupling matrix N7 given in (2.18) is also k independent. Finally, from (2.20) it follows
that the initial conditions of (3.18) are k independent so that (3.18) reduces to

[0 + M(x)0,]U" = NTU™ —UTNT" (4.6)
U (0,z) = A" (z). ’
For g7 of (3.4) we have the following simple Theorem:
Theorem 4.1. The solution to
[0r + ()0 — kN (2)0k]g™ =0 (47)
gT(x7k7O):k_8xSO(x) ’
may be written as g7 (t,x, k) = kI'1(¢t,z) + To(t, z) with Ty and T'y governed by
[(% + A(:c)@m]Fo =0 (4 8)
FO(ZE,O) = —89350(33) '
and
[0y + AM(2)0y — N (2)]T1 =0 (4.9)
Iy(z,0)=1 '
respectively.
Proof. The proof is a simple substitution of the assumed form for ¢” into (4.7). O

Already, the computation has been reduced from one on two-dimensional phase space to one dimension but
further simplification comes in the post processing steps for finding energy density or flux by noting that

; 1
[ 867 @k )k = [ 80T .0) + Dol )k = s
so that Ty needs not be computed. Also note that the function Sp(z) is no longer used in the computation.
This suggests that in 1D at least, the high frequency limit (¢ — 0) of the energy density and flux is
independent of Sp(x). But higher moments of W7 clearly depend on Sy(x).
In summary, in one dimension, the equations (3.18) and (3.19) reduce to (4.6) and (4.7) respectively. Then
(4.7) may be solved by instead solving both (4.8) and (4.9) and then using ¢ (¢, x, k) = kI'1 (¢, z) + Lo (¢, x).
Thus all computations to acquire U7 (¢, z, k) and g7 (¢, z, k) are performed in one dimension.

(4.10)

Remark. The existence of an extension of the decomposition in Theorem 4.1 to higher dimensional space
remains an open question.

5 The Lagrangian Formulation

For the Lagrangian formulation, we solve (3.18) and (3.19) by the method of characteristics. Since Theorem
3.1 implies that the only values of g7 (¢,x,k) and Jk,g" (¢,x,k) needed for computing energy density and
flux are those along the zero level set of g7 (¢,x,k), we present two possible methods both of which reduce
a computation on 2d-dimensional phase space to d dimensions. Then we discuss the numerical treatment of
caustics using the Lagrangian approach.



5.1 The Method of Characteristics

For a given eigenvalue w, the Hamiltonian system defining the bicharacteristics of the Liouville equations
(2.17) is (3.7) with initial conditions given by

(x(0),k(0)) = (%0, VxSo(x0)). (5.1)

Note that even though the trajectory of x(t) and k(¢) depends on the eigenvalue w”, we don’t indicate this
explicitly. From (3.18), U™ along the characteristics is governed by

%UWt,x(t%k(t)) =N"(t)UT —U" N7 (t) (5.2)
with the initial conditions
U5 (0,%(0), k(0))i; = Tr[A(x(0))uo (x(0))uj(x(0)) A(x(0)) B™ (x(0), k(0))] (5.3)

and where N7(t) = N7(x(t),k(t)) is the coupling matrix given by (2.18). From (3.19), g” along the
bicharacteristics is governed by

{ig%t,xux k(1)) = 0 (5.4)

g7(0,x(0),k(0)) =0
For evaluation of the energy density and flux, as shown in (4.1) and (4.2), we also need approximations

to Ok,g" at points along the zero set of g7 at the final time. To obtain these, start from (3.19) and take
gradients with respect to x and separately k to derive, for each component g7,

L(Vxg]) = —(Vikwr)(Vg]) + (Vixwr) (Vieg]) (5.5)
L(Vig]) = (Vixwr)(Vig]) = (Vikwr)(Vxg] )
where L is given by (3.1). Then along the characteristics, the above becomes
%(ngf) = —(Vakwr)(Vxg]) + (Vaxwr ) (Vig]) (5.6)
2 (Vigl) = (Viewr) (Vig]) = (Viawr ) (Vxg7),
with initial conditions given by
ng;r(OvX(O)?k(O)) = —6wivxSO(X) (57)
Vg7 (0,x(0),k(0)) = e

where e; is the i*® unit vector in R¢. Note that even though we only desire V9!, the fact that (5.6) are
coupled requires one to solve for Vyg7 as well. Now, by solving (3.7), (5.2), and (5.6) for points along the
zero set of g7, one can define the phase space energy density and phase space flur corresponding to eigenvalue
wr at x(¢) as

E7(t,x(t), k(1)) = %Tr (A(X(t” vol [%1(;;)((15( t>)<’(lt{>(tl)<)(t>ﬂ ) -
and
sy - o (g )

respectively with U7 defined by (4.3). Note that with the initial condition (5.1), the final point (x(t), k(t)) is
different for each w; so that summing (5.8) and (5.9) over 7 is not straight forward as it was in the Eulerian
case and may be done analytically via the following construction.

For a given point x, define (x7(¢),k7(t)) with s = 1, ..., sT for some positive integer s as all points with
the following properties:



1. The evolution of (x7(t),kZ(¢)) is governed by (3.7) with eigenvalue w,
2. k{(0) = VSo(x{(0))
3. At final time T, x7(T) = x

Note that s denotes the number of branches in the context of multiple valued solutions so that s = 1 before
caustic formation and sl > 0 after caustic formation (see Figure 4.1 for an illustration in one dimension).
Now the energy density and flux at time 7" may be expressed in terms of phase space energy density and
phase space flux ((5.17) and (5.18) respectively) as

EO(T,x) ZZH T,x,k7(T)) (5.10)

T s=1

and
o

FOT,x) =33 FI(T, %X (T)) (5.11)
T s=1

respectively. Finding all the points (x7(t), k7 (¢)) which satisfy the above three conditions is not necessarily
easy. Because of this, in Section 5.3 we will introduce a more practical method to obtain energy density and
flux from these so called phase space energy density and phase space flux before and after g™ forms caustics.
Even though we only need to solve (3.7), (5.2) and (5.6) for points on the set of g7, the addition of
the 2d? coupled ordinary differential equations (ODE) in (5.6) is a significant increase in computation. For
example, in three dimensions, (5.6) represents 18 coupled ODEs! To avoid solving this considerable number

of ODE, we present a geometric method next which avoids these ODEs completely.

5.2 A Geometric Method

Here we present a method that entirely avoids solving any ODE beyond (3.7) and (5.2). In particular, we will
show that one may use the solution to (3.7) and (5.2) to solve for the vol [Vxg™ (¢, x(t),k(t))] term needed
for evaluating both (5.8) and (5.9).

Just as in Section 3.1, define the Hamiltonian flow Hy(xg,ko) which evolves any point in (xg, k() phase
space forward to time ¢ according the Hamiltonian system (3.7). Also define the pair of coordinates related
by (t,x,k) = (t, Hi(x0,ko)) the determinant of the Jacobian of the transform (¢,xg,ko) — (¢,x,k) is 1.
If one parameterizes the zero set of g7 so that g7(0,x0(s),ko(s)) = 0, then g” (¢, H:(xo(s),ko(s))) = 0
parameterizes the zero set for all time. At a fixed time ¢, denote the Jacobian for the transform H; as D H,.

Then
vs< ’lz ) = (DHt)Vs< ’lig ) (5.12)

(Vo8 (0,%0, ko)]” ) _ r [ [Vxg™(t,%,k)]"
( Vg™ (0x0. o))" ) ~ (P ( [Vieg™ (£, %)) ) (5.13)

and

[Vxg™ (%, k)|
[Vig™ (¢, %, k)]

(Va8 (0, %0, ko))" )

Note that each column vector in Vg < i ) is perpendicular to each column vector in (

[Vio&™ (0,%0,ko)] "
We seek to establish useful relationships between the vectors appearing in (5.12) and (5.13) and to this end
we prove a few linear algebra results which appear in the Appendix. In light of these results, we note that
these sets of vectors seen in (5.12) and (5.13) match the statement of Theorem 8.2 with a = 2d and 8 = d
(see the Appendix). Since det(DH;) = 1, we conclude that

(1) Sl ) o () St ) o
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and that each column vector in Vg ( );0 ) is perpendicular to each column vector in (
0



Then Corollary 8.3 (see the Appendix) establishes that

vol (Vsx) vol (Vi 8" (0,%0, ko)) = vol (Vsxg) vol (Vg™ (¢, x,k)) . (5.15)

Now every term in (5.15) except the term vol (Vg™ (¢, x,k)) may be computed exactly or approximately by
simply solving (3.7) on a grid of points so that we obtain an approximation to vol (Vkg” (¢,x,k)) without
evolving Vig” (¢,x,k) by the ODE system (5.6)!

We start our computation with the initial grid given by x,(0) = {hz : 21, 29, ..., 24 € [- N, ..., N]} so that
the corresponding points for k are given by k,(0) = V.Sy(x,). For each eigenvalue w, define the evolution
of the grid points according to (3.7) to a time ¢ as x7(¢) and k7 (). Next solve for U7 (¢,x7(t), k7 (t)) using
using the ODE (5.2). Then by using the initial conditions for g given in (3.19), (5.15) may be written as

vol (Vgx) x 1 =1 x vol (Vkg" (t,x,k)) (5.16)

so that for each eigenvalue w;, the phase space energy density and phase space flux on the grid x(¢) may
be written as

RO = 5T A(X;(”)vol[%1(;3T§i);’<l;i(ﬁ);)<t>ﬂ> .17
_ PN AGN AC) '
= T ARO) Rt )
and -
NN S (VR 14y (A ’8 SA ()
Filtahia) = g\ P vol[vkg7<t,x;<t>7k;<t>>]) s
N N N CEAGN HO) .
) vol [VsxZ ()]

where U7 is defined by (4.3) and Vsx.(t) here may be approximated as the d x d matrix given by

1 T T T T
W ( x(21+17227---7zd)(t) o X(21—17Z27~--,Zd)(t) o X(21»22,-~72d+1)(t) o X(21,22,<~-72d—1)(t) ) : (5'19)

In summary, for a given eigenvalue w, and by use of Theorem 8.2, 9y, g" (¢, x(t), k(t)) may be approximated
by simply solving the characteristic equations (3.7) on an initial grid x,. But this must be done anyway
to solve U7 (t,x(t),k(t)), thus the approximation to Ok,g"(¢,x(t),k(t)) is obtained for free and without
additional computation. Again, in Section 5.3 we will show how to obtain energy density and flux from these
so called phase space energy density and phase space flux before and after g” forms caustics.

Remark. We observe that some elements of this geometric method relate to those presented in [9] which rely
on the property of conservation of “charge”’, but the equations studied therein are homogeneous scalar Liou-
ville equations whereas here we have introduced a method for coupled systems of inhomogeneous Liouville
equations of the form (3.2) in which “charge” is not conserved. Thus this method is more general than that
in [9].

5.3 Summing Before or After Caustic Formation

We now show how to obtain energy density (2.21) and flux (2.22) from the phase space energy density and
phase space flux defined by (5.17) and (5.18) respectively before or after the formation of caustics.

As in Section 5.2, define an initial mesh x,(0) = {hz : 21, 22, ..., 24 € [-N, ..., N} so that the correspond-
ing points for k are given by k,(0) = V.Sp(x,). For each eigenvalue w, define the evolution of the grid points
according to (3.7) to a time ¢ as xZ(¢) and kZ(¢). Then solving for phase space energy density and flux for
the eigenvalue w; is given by (5.17) and (5.18). The grid at the final time T given by x7(T") and k(7 is
different in general for each 7. Also for each 7, the phase space energy density and flux at final time T" give
by (5.17) and (5.18) are possibly multiple valued. Thus to evaluate the energy density and flux at any x,

11
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Figure 5.1: The left plot shows a triangulation on an initial grid of 5 points at ¢ = 0. The right plot shows
the data set at a later time T° > 0. At the initial time, the three triangles do not overlap whereas at the later
time, the solution has become multiple valued and the triangles do overlap (in particular, 72 lies completely
inside of T'1). To evaluate the energy density, for example, at the point ¢ at time T, observe that the {
lies in triangle T'1 only. Thus use the energy density at the vertices of T'1 to interpolate the value at . To
evaluate the energy density, at the point x at time 7', however, observe that the % lies in triangles T'1, T2
and T'3. Thus one must use the energy density at the vertices of each triangle to interpolate the value at *
three times (once for each triangle) and then sum the results together as indicated by (5.20).

first one must fix 7 and sum (5.17) and (5.18) over all of branches and second one must sum all these results
over 7. A systematic way to compute this summation is described next.

Define a triangulation of the initial grid x7(0) as 7,(0) where each member of 7,(0) is a simplex of
dimension d denoted by its d + 1 vertices which are members of x7(0). Then denote by 7, (t) the collection
of simplices who have the corresponding vertices in x7(¢). Note that for ¢ > 0, 7,(¢) may not be a proper
triangulation since its simplices may overlap one another (see Figure 4.1 for a one dimensional illustration
and Figure 5.1 for a two dimensional illustration). Further note that such an overlap occurs exactly when
g” becomes multiple valued. If a point x falls inside of a simplex S € T, (¢) then since the solution to (5.17)
and (5.18) has been computed at the vertices of S, denote the linear interpolation of phase space energy
density and phase space flux onto the point x relative to the vertices of S as LZ[ET (¢, x7(t), kL (t)),S,x] and
LI[F](t,x5(t),k;(t)), S, x] respectively. Then finally one obtains the energy density and flux at the point
x by

EOTx) =" > LI[E(T,x[(T),k5(T)), S, ] (5.20)
T L{S€T-(t)xeS}
and
FOT,x) =" S LI[FN(TX(T), K (T)), S, %] (5.21)
T L{S€T-(t)xeS}
respectively.

Remark. This triangulation method has been implemented in our numerical examples and some additional
details about this approach can be found in [9].
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6 Numerical Results

The following few examples show the effectiveness of the Eulerian and Lagrangian formulations in one and
two dimensions and are based on two model problems shown below.

6.1 One-Dimensional Model Problem

The following model system is one of the most simple one-dimensional systems which has repeated eigenvalues
of the dispersion matrix as well as a nontrivial coupling matrix.
In reference to (1.1) define D' = I and A(z) where

A~' = RMR" (6.1)
with
a b b
M= b a b (6.2)
b b a
and
cos(f) —sin(d) O
R= sin(f) cos(d) 0 (6.3)
0 0 1

where we assume that 0 < b < a and that a, b, 0 are arbitrary function of z. The eigenvalues and eigenvectors
of the dispersion matrix L orthonormal with respect to (-,-) 4 are

w1 =k(a—b) bl =ya—bRvy;
=va— bRVl,Q (64)
we = k(a+2b) b2 =+/a+2bRvy

where
vig = 5(1,0,-1)
Vi2 = 7( 71) (65)
- 101
- L(1L0).
The coupling matrix for wy is
0 (a—b)6’
1
N' = ( oy {)3 > . (6.6)
V3

Example 1

In this example we demonstrate the convergence of the full solution of (1.1) to the solution obtained via our
new method in the high frequency limit (¢ — 0). We take the following parameters

e 0(z) = 10sin(27x)
e a=2b=1
e domain: x € [—.5,.5]
e boundary conditions: periodic in z and not needed in &
e Initial conditions ug(z) = (6’40“”‘(”)2, 0,0), So(z) =z, e =1/(407) and € = 1/(1007)
e Final time: t; = .05
Remark. Boundary conditions are not needed in k because of the reduction of dimension we derived in

Section 4.

13



Energy Density Energy Flux

o
o
o
o

Our Method
Lax-Wendroff € = 1/(40m)
— — - Lax-Wendroff £ = 1/(100m)

Our Method
Lax-Wendroff £ = 1/(40m)
— — - Lax-Wendroff & = 1/(100m)

o
IS
o
o
&
&

o
IS
o
IS

o
©
&
o
@
&

e
w
o
w

Energy Density
o
o
&
Energy Flux
o
o
&

e
n
o
n

o
o
o
o

o
o

0.051

o
=)
&

0 L L L , 0 .
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 -0.1 -0.05

Figure 6.1: (Example 1) Energy density and energy flux of the one-dimensional model problem comparing
the full solution to our new method’s solution in the high frequency limit.

The full solution on the original system was computed using the Lax-Wendroff scheme and the solution from
our new method was computed in the Eulerian frame using the simplifications outlined in Sections 3 and 4.
The results are shown in Figure 6.1 where the Lax-Wendroff solution is seen to be converging to our new
method’s solution as ¢ decreases.

Example 2
Next we show an example where a, b are no longer constants and take the following parameters:
e (z) = sin(2mx)
e a=2(.5+ 4sin(4rz)), b = (.5 + .4sin(4rx))
e domain: z € [-.5,.5]
e boundary conditions: periodic in z and not needed in k
e Initial conditions ug(z) = (e~40tan(™®)* 0 0), So(z) = x, € = 1/(407)
e Final time: t; = .05

The full solution on the original system was computed using the Lax-Wendroff scheme while our new method’s
solution was computed in the Eulerian frame using the simplifications outlined in Section 3. The results
(which show as good agreement) are shown in Figure 6.2.

Remark. We also computed Example 1 and 2 with the Lagrangian formulation of our method using the
interpolation described in Section 5.3 and we obtained similar results.

6.2 Two-Dimensional Model Problem

The following model system is a two-dimensional analogue of Maxwell’s equations which are shown in [12].
In reference to (1.1) define

Ja 0 0 0 0010 0 0 0 1
[ o 174 0o o0 Ll oo o1 , |0 0o -10
A=l o 0 1w o PP 1000 ] P70 1 0 o0 (6.7)
0 0 0 1/b 0100 1 0 0 0
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Figure 6.2: (Example 2) Energy density of the one-dimensional model problem with non-constant a and b
functions.
where a,b > 0 are arbitrary functions of x. The dispersion matrix is
0 0 ak‘l akg
_ 0 0 —aky ak;
Lol = e ks 0 0 (6:8)
bky bk 0 0

The eigenvalues and eigenvectors of the dispersion matrix orthonormal with respect to (-,-) 4 are

wi = —Vaby/k} +k3 b= f\/m" m \f>
1,2 _
b * = \/>\/k2+k2’\/>\/k2+k27\/770)

(6.9)
wp = Vab\/kl +k3 b = f\/!ﬂ—&-k” \f\/ku-kz’ ’ \/?)
2,2 _ _
b = \/>\/k2+k2’ \[\/k2+k2 ’ [’ O)
The coupling matrix for wy is
0 l\/E L (q, ky — au,k
N = vl (6.10)

b
_%\/;m(%kz—%kl) 0

and N2 = — N1

Remark. When k = 0 in the one and two-dimensional model problems, the multiplicity of the eigenvalues
changes; This violates the assumption we made when we developed our new method. This issue is resolved
by the fact that in solving via our new method, g(¢,x,k) given by (3.19) is initialized with zero set away
from the origin so conservation of energy of Hamiltonian flows guarantees that this zero set stays away from
the origin for all time. Thus even though the origin may be part of the computational domains of (3.18) and

(3.19), it will not be used for evaluating the physical observables via (2.7) and (2.8). [5] also discusses this
issue in further detail.
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Example 3

In this example, we show a solution to the two-dimensional model problem computed with the Lagrangian
formulation of our new method outlined in Section 5. Since our new method is tailored to compute multiple
valued observables, we choose an example where the solution to (3.4) becomes multiple valued; something
that never happens in one dimension. We take the following parameters:

o a(z1,x2) = .5+ .4cos(dmxy)sin(dn(xg)), b(xy,z2) =1

domain: (z1,z9) € [—.5,.5] X [—.5,.5]

boundary conditions: periodic in 1 and xs.
e Initial conditions ug (1, 25) = (e~S(tan(me)* ttan(w(224.05)%) 0 0.0, So(z1, 22) = 21 + 2
e [inal time: t; = .08, .16, .24, .32

The result is shown in Figure 6.3 where we have chosen to plot the energy density. The two components of
the flux for the final time ¢ = .32 are shown in Figure 6.4. A three-dimensional projection of the zero set of
g! corresponding to w; at the final time is shown in Figure 6.5, as well as a contour plot of the same surface.
The contour plot shows the multiple valued regions in the x space which correspond to the caustics appearing
in Figure 6.3. A reference solution with ¢ = 1/(80m) was computed and found to have a good agreement
with our method until time neared the caustic formation time ¢ = .24 which is what we expect. Computing
a reference solution with a standard finite difference method for e = 1/(807) after caustic formation was not
computationally feasible due to heavy diffusion of these methods for this example. Thus we computed, for
sake of comparison, the exact solution for t = .32 and € = 1/(807) using a Gaussian beam type method which
we will introduce in a forthcoming paper. The result may be seen in Figure 6.6 where one sees interference
fringes appearing in the multiple valued region of the solution. As e shrinks, the interference fringes in this
region is expected to limit weakly to the solution shown in Figure 6.3.

7 Conclusion

We have extended the singularity decomposition idea in [5] to the case of high frequency solutions of symmet-
ric hyperbolic systems with repeated eigenvalues of the dispersion matrix in both Eulerian and Lagrangian
frameworks. Such problems arise in many physically important problems such as Maxwell’s equations and
the elastic wave equations. Furthermore we introduce a highly efficient Lagrangian method with a geometric
reduction of computational complexity to the numerical evaluation of the energy and energy flux. Numerical
examples in both one and two space dimensions are given to show the validity of the new computational
methods.

8 Appendix: A Few Linear Algebra Identities

Lemma 8.1. Suppose M is an o x a matriz with det(M) # 0. Write M and M ! in block form as

(A B . (A B
M_<C’D> and M _(C’ D) (8.1)
where A and A are 8 x 8 matrices for some 3 < . Then
det(A) = det(M) det(D). (8.2)

Proof. Examine the two cases:
Case: Assume that det(A) = 0. Then there exists v, # 0 where Av, = 0 so take

<ég><voa>_<cga> (83)
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Energy Density t=.08 Energy Density t=.16

Energy Density t=.24

Figure 6.3: (Example 3) Energy density plotted at different times. Caustics form around ¢ = .24.
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Flux t=.32 (x, Component) Flux t=.32 (x, Component)

-0.2 -0.1 0 0.1 0.2 0.3

Figure 6.4: (Example 3) The two components of energy flux at time ¢t = .32.

Zero set projection of g Zero set projection of g

Figure 6.5: (Example 3) Zero set projection of the g' function corresponding to w;. On the left, the multiple
valued surface is projected into three dimensions by plotting x1, zo versus k1. On the right, the same surface
is represented as a contour plot with axis limits set equal to those in Figure 6.3 and Figure 6.4 for comparison.
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Energy Density t=.32

Figure 6.6: (Example 3) Energy density at ¢ = .32 with ¢ = 1/(807) computed with Gaussian beams.

where C'v,, # 0 since det(M) # 0. Then by definition

A B 0 BCwv, Vg,
(& 5)0en)=(5e)=(%) 60
which implies that det(D) = 0 since C'v, # 0. Thus (8.2) holds in this case.
Case: Assume that det(A) # 0. Then note first that

det( é g ) — det (( é (1). > ( é ngllilB )) — det(A) det(D — CA™'B) = det(M)  (8.5)

where we point out for the sake of the following steps that (8.5) implies det(D — CA~!B) # 0. Then, from
the block matrix inversion formula:

(& 5) (™) -()

In particular D = (D — CA™'B)~! so that

det(M) det(D) = det(M) det((D — CA™'B) ™) = — ( Dde_t(éﬁ_l 5y = det(4). (8.7)

Thus (8.2) again holds. O

Theorem 8.2. Given 8,a € N with f < a, let {v1,...,Vg,Vg11,..., Vo) and {Wi,.., Wz, Way1,..., Wo} be
sets of linearly independent vectors in R where

w,-w; =0 forall i€{1,..,8},je{B+1,...a} . (8.8)
Let M be an a x o matriz with det(M) # 0 and where

vi=Mw; foradl i€e{l,.. 75} (8.9)
and
wj=MTv; foral je{B+1,..a}. (8.10)
Then
vol(v1, ..., vg)vol(Way1, ..., Wo) = |det(M)| vol(vg41, ..., Va)vol(wy, ..., wg) (8.11)
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Proof. Because of (8.8), without loss of generality we may choose an orthonormal basis wherein

%% 0
(W1,...,wWg) = < 01 > and  (Wgy1,..., Wa) = ( W ) . (8.12)
axf 4 ax(a—p3)

where W is a 8 x 8 matrix and Wy is an (o — ) x (o — ) matrix. The matrices M and M ~! may be
written in bock form as

(A B . (A B
where A and A are 8 x 8 matrices. Then from the definitions,
AW1 CTW4
(Vi ..y vg) = ( oW, ) and  (Vg41, ..., Va) = ( prw, ) (8.14)

Next note that

vy = ( Gralore aratomD ) 515)
. e AATE BB ACT 4 BDT
v = (G5 B Ger B ) (8.16)
so that since det(MT M) = det(M)? Lemma 8.1 gives that
det(ATA + CTC) = det(M)? det(CCT + DDT). (8.17)

Then

AW 0
vol(vy, ..., vg)vol(Wgt1, ..., Wq) = Vol( CWi >V01< W, )

= Jdet(WTAT AW, + WICTCOWy) |det(W,)]
= /det(ATA + CTC) |det(Wr)] |det(Wy)|

= |det(M)] \/det(CCT + DDT) [det(Wy)] det ()| (8.18)
= |det(M)| \/det (W CCTW, + WT DDTW,) |det(W))]
cTw, Wi
|vol< DWW, )vol( 0 )
|

vol(Vgi1, ..o, Vo ) VOl (W1, ..., Wg)

(M)
= |det(M)
= |det(M)
which proves the result. O

Corollary 8.3. Let w; and v; be the vectors given in Theorem 8.2. Written in block form they become

W1 W3
(Wi, Wg) = < ) s (W1, W) = ( > 8.19
W axp W ax(a—pB) ( )
and
Wi V3
(Vvi,...,vg) = ( ) s (VBt1se, Vo) = ( ) , 8.20
Va axp Vi ax(a—p) ( )
where Wy and Vi are both B x 8 matrices while Wy and Vy are both (o — B) x (aw — 8). Then
vol(V1)vol(Wy) = |det(M)] vol(Vy)vol(Wy). (8.21)
Proof. By orthogonality
WEW; + Wi W, =0. (8.22)
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If vol(W7) = vol(Wy) = 0, (8.21) holds trivially. Thus assume vol(W7) # 0 so that

Wi
V01(W4)Vol< Wo )

|det(Wy)| /det(WI W, + WL Ws)

= |det(Wa)| [det(Wh)] y/det(I + (W; ) TWE Wal¥y )

= |det (W) [det(Wh)] y/det(I + WoW; (W ) TWT)

= |det(Wy)| \/det(WT Wi + WT Wo Wy (W ) TWEWy) (8:23)
= [det(W)|/det (WE W, + WE W, (W DT W W)

= |det(W1)| /det(WI Wy + WIW3)

_ W3
= vol(Wl)vol< W, >

where the third line of (8.23) follows from Sylvester’s determinant theorem and the fifth line follows from

(8.22). Note that linear independence implies that Vol( vmél # 0 and V01< %3 ) # 0 so that (8.23)
2 4

gives vol(Wy) # 0. Since similar steps give the same result as (8.23) in the case where vol(Wy) # 0, one gets

that vol(W7) # 0 iff vol(Wy) # 0. By first noting that

vi-v; =0 forall ie{l,..,8},je{f+1,..,a} (8.24)

is also guaranteed by the statement of Theorem 8.2, an equivalent result to (8.23) then holds for the v;
vectors so that in summary

W W 1% V:
vol(W4)Vol< W; > :vol(Wl)vol< Wi ) and vol(v4)vol< V; > :vol(Vl)vol< Vi ) . (8.25)

Finally, from Theorem 8.2

vol( % )vol( V”I//z ) - |det(M)|vol( 1‘2 )vol( % ) (8.26)

Multiplying both sides of (8.26) by vol(V7)vol(W,) and using (8.25) gives

vol(Vl)Vol(W4)vol< “2 >v01< % ) = |det(M)|vol(V21)vol(W1)vol< “2 >v01( %z ) (8.27)

which after cancelation gives (8.21). O
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