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Abstract

In this paper we study the stochastic Galerkin approximation for
the linear transport equation with random inputs and diffusive scal-
ing. We first establish uniform (in the Knudsen number) stability
results in the random space for the transport equation with uncertain
scattering coefficients, and then prove the uniform spectral conver-
gence (and consequently the sharp stochastic Asymptotic-Preserving
property) of the stochastic Galerkin method. A micro-macro decom-
position based fully discrete scheme is adopted for the problem and
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proved to have a uniform stability. Numerical experiments are con-
ducted to demonstrate the stability and asymptotic properties of the
method.
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limit, uncertainty quantification, stochastic Galerkin method, polyno-
mial chaos, asymptotic-preserving scheme.
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1 Introduction

We consider the linear transport equation in one dimensional slab geometry:

ε∂tf + v∂xf =
σ

ε
Lf − εσaf + εS, σ(x, z) ≥ σmin > 0, (1)

Lf(t, x, v, z) =
1

2

∫ 1

−1

f(t, x, v′, z) dv′ − f(t, x, v, z). (2)

This equation arises in neutron transport, radiative transfer etc. that de-
scribes particles (for example neutrons) transport in a background media
(for example nuclei), in which f(t, x, t, z) is the density distribution of par-
ticles at time t ≥ 0, position x ∈ (0, 1). v = Ω · ex = cos θ ∈ [−1, 1] where
θ is the angle between the moving direction and x-axis. σ(x, z), σa(x, z) are
total and absorption cross-section respectively. S(x, z) is the source term. ε
is the dimensionless Knudsen number, the ratio between particle mean free
path and the characteristic length (such as the length of the domain). The
Dirichlet boundary conditions are given in the incoming direction by

f(0, v, t) = fL(v, t), for v ≥ 0 ,

f(1, v, t) = fR(v, t), for v ≤ 0 ,
(3)

while the initial condition is given by

f |t=0(x, v, z) = f0(x, v, z). (4)

We are interested in the problem that contains uncertainty in the collision
cross-section, source, initial or boundary data. The uncertainty is character-
ized by the random variable z ∈ Rd with probability density function ω(z).
Thus in our problem f , σ, σa and S all depend on z.
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In recent years, there have been extensive activities to study partial differ-
ential equations or engineering problems with uncertainties. Many numerical
methods have been introduced. In this article, we are interested in the poly-
nomial chaos (originally introduced in Wiener’s work [24]) based stochastic
Galerkin method which has been shown to be competitive in many appli-
cations, see [5, 26, 25]. The stochastic Galerkin method has been used for
linear transport equation with uncertain coefficients [4]. Here we are inter-
ested in the problem that contains both uncertainty and multiscale. The
latter is characterized by the Kundsen number ε, which, in the so-called op-
tically thin region (ε � 1), due to high scattering rate of particles, leads
the linear transport equation to a diffusion equation, known as the diffu-
sion limit [18, 3, 1]. For the past decades, developing asymptotic-preserving
(AP) schemes for (deterministic) linear transport equation with diffusive scal-
ing has seen many activities, see for examples [19, 20, 6, 10, 9, 17, 21, 8].
Only recently AP scheme for linear transport equation with both uncertainty
and diffusive scaling was introduced in [15] (in the framework of stochastic
Galerkin method, coined as s-AP method). See more related recent works
along this line in [7, 12, 13]. A scheme is s-AP if the stochastic Galerkin
method for the linear transport equation, as ε → 0, becomes a stochastic
Galerkin method for the limiting diffusion equation. It was realized in [15]
that the deterministic AP framework can be easily adopted to study lin-
ear transport equations with uncertain coefficients. Moreover, as shown in
[7, 12], kinetic equations, linear or nonlinear, could preserve the regularity
in random space of the initial data at later time, which naturally leads to
spectral accuracy of the stochastic Galerkin method.

When ε � 1, however, the energy estimates and consequently the con-
vergence rates given in [7, 12] depend on the reciprocal of ε, which implies
that one needs the degree of the polynomials used in the stochastic Galerkin
method to grow as ε decreases. In fact, this is typical of a standard numer-
ical method for problems that contain small or multiple scales. While AP
schemes can be used with numerical parameters independent of ε, to prove
this rigorously is not so easy and has been done only in a few occasions [6, 14].
A standard approach to prove a uniform convergence is to use the diffusion
limit, as was done first in [6] in the deterministic case and then in [11] for
the uncertain transport equation. See also the review article [8]. However
such approaches might not give the sharp convergence rate.

In this paper, we provide a sharp error estimate for the stochastic Galerkin
method for problem (1). This requires a sharp (ε-independent) energy esti-
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mate on high order derivatives in the random space for f , as well as [f ]− f
where [f ] is the velocity average of f defined in (5)) which is shown to be
bounded even if ε→ 0. Then the uniform in ε spectral convergence naturally
follows, without using the diffusion limit.

The s-AP scheme in [15] uses the AP framework of [9] that relies on the
even and odd-parity formulation of the transport equation. In this paper,
we use the micro-macro decomposition based approach (see [21]) to develop
a fully discrete s-AP method. The advantage of this approach is that it
allows us to prove a uniform (in ε) stability condition, as was done in the
deterministic counterpart in [22]. In fact, we will show that one can easily
adopt the proof of [22] for the s-AP scheme.

The paper is organized as follows. In Section 2 we summarize the diffu-
sion limit of the linear transport equation. The generalized polynomial chaos
based stochastic Galerkin method for the problem is introduced in Section 3
and shown formally to be s-AP. The uniform in ε regularity of the stochastic
Galerkin scheme is proven in Section 4, which leads to a uniform spectral con-
vergence proof. The micro-macro decomposition based fully discrete scheme
is given in Section 5 and its uniform stability is established in 6. Numerical
experiments are carried out in Section 7. The paper is concluded in Section 8.

2 The diffusion limit

Denote

[φ] =
1

2

∫ 1

−1

φ(v) dv, (5)

as the average of velocity dependent function φ. For each random realization
z, there exists a positive function φ(v) > 0, the so-called absolute equilibrium
state that satisfies [φ] = 1, [vφ(v)] = 0, (from Perron-Frobenius theorem,
cf. [1]).

Define in the Hilbert space L2
(
(−1, 1); φ−1 dv

)
the inner product and

norm

〈f, g〉φ =

∫ 1

−1

f(v)g(v)φ−1 dv, ‖f‖2
φ = 〈f, f〉φ. (6)

The the linear operator L satisfies the following properties [1]:

• [Lf ] = 0, for every f ∈ L2([−1, 1]);

• The null space of f is N (L) = Span {φ | φ = [φ] };
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• The range of f is R(L) = N (L)⊥ = { f | [f ] = 0 };

• L is non-positive self-adjoint in L2((−1, 1);φ−1 dv), i.e. , there is a
positive constant sm such that

〈f,Lf〉φ ≤ −2sm‖f‖2
φ, ∀ f ∈ N (L)⊥; (7)

• L admits a pseudo-inverse, denoted by L−1, from R(L) to R(L).

Let ρ = [f ]. For each fixed z, the classical diffusion limit theory of linear
transport equation [18, 3, 1] gives that, as ε→ 0, ρ converges to the following
random diffusion equation:

∂tρ = ∂x(κ(z)∂xρ)− σaρ+ S, (8)

where the diffusion coefficient

κ(z) =
1

3
σ(z)−1 . (9)

The micro-macro decomposition, a useful tool for the study of the Boltz-
mann equation and its fluid dynamics limit [23], and for the design of asymp-
totic preserving numerical schemes for kinetic equations [16, 2, 21], takes the
form

f(x, v, z, t) = ρ(x, z, t) + εg(x, v, z, t) (10)

where [g] = 0. Introduce (10) into (1), one gets its micro-macro form:

∂tρ+ ∂x [vg] = −σaρ+ S, (11a)

∂tg +
1

ε
(I − [.])(v∂xg) = −σ(z)

ε2
g − 1

ε2
v∂xρ. (11b)

The diffusion limit (8) can be easily seen now. When ε→ 0, (11b) gives

g = − v

σ(z)
∂xρ

which, when plugged into (11a), gives the diffusion equation (8)–(9).
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3 The gPC-stochastic Galerkin approxima-

tion

We assume the complete orthogonal polynomial basis in the Hilbert space
H(Rd;ω(z) dz) corresponding to the weight ω(z) is {φm(z),m = 0, 1, · · · , },
where φm(z) is a polynomial of degree m and satisfies

〈φi, φj〉ω =

∫
φi(z)φj(z)ω(z) dz = δij.

Here φ0(z) = 1, and δij is the Knocker delta function. The inner product
and norm in this space are, respectively,

〈f, g〉ω =

∫
Rd

fg ω(z) dz, ‖f‖2
ω = 〈f, f〉ω . (12)

Since the solution f(x, v, z, t) is defined in L2
(
(0, 1)×(−1, 1)×Rd;ω(z) dx dv dz

)
,

one has the generalized Polynomial Chaos (gPC) expansion

f(x, v, z, t) =
∞∑
i=0

fi(x, v, t)φi(z), f̂ =
(
fi
)∞
i=1

:=
(
f̄ , f̂1

)
.

The mean and variance of f can be obtained from the expansion coefficients
as

f̄ = E(f) =

∫
R
fω(z) dz = f0, var (f) = |f̂1|2 .

The idea of the stochastic Galerkin (SG) approximation [5, 26] is to trun-
cate the above infinite series by

fM =
M∑
i=0

fi φi, f̂M =
(
fi
)M
i=0

:=
(
f̄ , f̂M1

)
, (13)

from which one can extract the mean and variance of fk from the expansion
coefficients as

E(fM) = f̄ , var (fM) = |f̂M1 |2 ≤ var (f) .

Furthermore, we define

σij =
〈
φi, σφj

〉
ω
, Σ =

(
σij
)
M+1,M+1

,

σaij =
〈
φi, σ

aφj
〉
ω
, Σa =

(
σaij
)
M+1,M+1

,
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for 0 ≤ i, j ≤ M . Let Id be the (M + 1)× (M + 1) identity matrix. Σ,Σa

are symmetric positive-definite matrices satisfying [25]

Σ ≥ σmin Id .

If one applies the gPC ansatz (13) into the transport equation (1), and
conduct the Galerkin projection, one obtains [4, 15]:

ε∂tf̂ + v∂xf̂ = −1

ε
(I − [·])Σf̂ − εΣaf̂ − Ŝ (14)

where Ŝ is defined similarly as (13).
We now use the the micro-macro decomposition

f̂(x, v, t) = ρ̂(x, t) + εĝ(x, v, t) (15)

where ρ̂ = [f̂ ] and [g] = 0, in (14) to get

∂tρ̂+ ∂x [vĝ] = −Σaρ̂+ Ŝ, (16a)

∂tĝ +
1

ε
(I − [.])(v∂xĝ) = − 1

ε2
Σĝ − 1

ε2
v∂xρ̂, (16b)

with initial data

ρ̂(x, 0) = ρ̂0(x), ĝ(x, v, 0) = ĝ0(x, v) ,

that satisfy

1

2

∫ 1

−1

(ρ̂(x, 0) + εĝ(x, v, 0))2 dv = ρ̂(x, 0)2 +
ε2

2

∫ 1

−1

ĝ(x, v, 0))2 dv ≤ C .

It is easy to see that system (16) formally has the diffusion limit as ε→ 0:

∂tρ̂ = ∂x(K∂xρ̂)− Σaρ̂+ Ŝ , (17)

where

K =
1

3
Σ−1 .

Thus the gPC approximation is s-AP in the sence of in [15].
One can easily derive the following energy estimate for system (16)∫ 1

0

ρ̂(x, t)2 dx+
ε2

2

∫ 1

0

∫ 1

−1

ĝ(x, v, t)2 dv dx
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≤
∫ 1

0

ρ̂(x, 0)2 dx+
ε2

2

∫ 1

0

∫ 1

−1

ĝ(x, v, 0))2 dv dx .

On the other hand, the direct gPC approximation of the random diffusion
equation (8)–(9) is:

∂tρ̂ = ∂x(Kd∂xρ̂)− Σaρ̂+ Ŝ, (18)

where Kd = (κij), κi,j = 〈φi, κφj〉ω.

4 The regularity in the random space and

a uniform spectral convergence analysis of

gPC-SG method

In this section, we assume σa = S = 0 for clarity. We prove that, under some
suitable assumptions on σ(z), the solution to the linear transport equation
with random inputs preserves the regularity in the random space of the initial
data uniformly in ε. Then based on the regularity result, we conduct the
spectral convergence analysis and error estimates for the gPC-SG method,
and will also obtain error bounds uniformly in ε.

4.1 Notations

We first recall the Hilbert space of the random variable introduced in Sec-
tion 3,

H(Rd; ω dz) =
{
f | Rd → R,

∫
Rd

f 2(z)ω(z) dz < +∞
}
, (19)

equipped with the inner product and norm defined in (12). We also define
the kth order differential operator with respect to z as

Dkf(t, x, v, z) := ∂kz f(t, x, v, z), (20)

and the Sobolev norm in H as

‖f(t, x, v, ·)‖2
Hk :=

∑
α≤k

‖Dαf(t, x, v, ·)‖2
ω. (21)
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Finally, we introduce norms in space and velocity as follows,

‖f(t, ·, ·, ·)‖2
Γ :=

∫
Q

‖f(t, x, v, ·)‖2
ω dx dv, t ≥ 0, (22)

‖f(t, ·, ·, ·)‖2
Γk :=

∫
Q

‖f(t, x, v, ·)‖2
Hk dx dv, t ≥ 0, (23)

where Q = [0, 1]× [−1, 1] denotes the domain in the phase space.

4.2 Regularity in the random space

We will study the regularity of f with respect to the random variable z. To
this aim, we first prove the following Lemma.

Lemma 4.1. Assume σ(z) ≥ σmin > 0, then for any integer k and g ∈ H
we have

−〈Dk(σg), Dkg〉ω ≤ −
σmin

2
‖Dkg‖2

ω +
4k

2σmin

(
max

0≤α≤k
‖Dασ‖2

L∞

)
‖g‖2

Hk−1 . (24)

Proof. Since

Dk(σg) =
k∑

α=0

(
k

α

)
(Dk−ασ)(Dαg) = σDkg +

k−1∑
α=0

(
k

α

)
(Dk−ασ)(Dαg) , (25)

we have

−〈Dk
(
σg
)
, Dkg〉ω = −〈σDkg,Dkg〉ω −

〈 k−1∑
α=0

(
k

α

)
(Dk−ασ)(Dαg), Dkg

〉
ω

≤ −σmin‖Dkg‖2
ω −

〈 k−1∑
α=0

(
k

α

)
(Dk−ασ)(Dαg), Dkg

〉
ω
.

(26)

By Young’s inequality

−
〈 k−1∑
α=0

(
k

α

)
(Dk−ασ)(Dαg), Dkg

〉
ω
≤ σmin

2
‖Dkg‖2

ω

+
1

2σmin

∥∥∥ k−1∑
α=0

(
k

α

)
(Dk−ασ)(Dαg)

∥∥∥2

ω
,

(27)
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and Cauchy-Schwarz inequality∥∥∥ k−1∑
α=0

(
k

α

)
(Dk−ασ)(Dαg)

∥∥∥2

ω
≤
( k−1∑
α=0

(
k

α

)2

‖Dk−ασ‖2
L∞

)( k−1∑
α=0

‖Dαg‖2
ω

)
≤
{ k∑
α=0

(
k

α

)2}
max

0≤α≤k
‖Dασ‖2

L∞‖g‖2
Hk−1 ,

≤ 4k
(

max
0≤α≤k

‖Dασ‖2
L∞

)
‖g‖2

Hk−1 .

(28)

Combining (26), (27) and (28), one obtains

−〈Dk
(
σ ·g
)
, Dkg〉 ≤ −σmin

2
‖Dkg‖2

ω+
4k

2σmin

(
max

0≤α≤k
‖Dασ‖2

L∞

)
‖g‖2

Hk−1 . (29)

This completes the proof of Lemma 4.1.

Now we are ready to prove the following regularity result,

Theorem 4.1 (Uniform regularity). Assume

σ(z) ≥ σmin > 0 .

If for some integer m ≥ 0,

‖Dkσ(z)‖L∞ ≤ Cσ, ‖Dkf0‖Γ(0) ≤ C0, k = 0, . . . ,m, (30)

then the solution f to the linear transport equation (1)–(2), with σa = S = 0,
satisfies,

‖Dkf‖Γ(t) ≤ C, k = 0, · · · ,m, ∀t > 0, (31)

where Cσ, C0 and C are constants independent of ε.

Proof. For σa = S = 0, the kth (0 ≤ k ≤ m) order formal differentiation of
(1) with respect to z is,

ε2∂t(D
kf) + εv∂x(D

kf) = Dk
(
σ(z)([f ]− f)

)
, (32)

where [·] is the average operator defined in (5). Multiplying Dkf to both
sides of (32) and integrating on Q = [0, 1]× [−1, 1], one gets

ε2

2
∂t‖Dkf‖2

Γ(t) + ε

∫
Q

v〈Dkf, ∂x(D
kf)〉ω dx dv

=

∫
Q

〈Dk
(
σ(z)([f ]− f)

)
, Dkf〉ω dx dv .

(33)
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Integration by parts yields

ε

∫
Q

v〈Dkf, ∂x(D
kf)〉ω dx dv =

ε

2

∫
Q×Rd

v∂x(D
kf)2ω dz dx dv = 0. (34)

Notice that ∫
Q

〈Dk
(
σ(z)([f ]− f)

)
,
[
Dkf

]
〉ω dx dv = 0 , (35)

combining with (33) one obtains

ε2

2
∂t‖Dkf‖2

Γ(t) = −
∫
Q

〈Dk
(
σ(z)([f ]− f)

)
, Dk([f ]− f)〉ω dx dv (36)

Energy estimate: We will establish the following energy estimate by using
Mathematical Induction with respect to k: for any k ≥ 0, there exist k
constants ckj > 0, j = 0, . . . , k − 1 such that

ε2∂t

(
‖Dkf‖2

Γ(t) +
k−1∑
j=0

ckj‖Djf‖2
Γ(t)

)
≤


−2σmin

∥∥ [f ]− f
∥∥2

Γ(t)
, k = 0,

−σmin

∥∥Dk([f ]− f)
∥∥2

Γ(t)
, k ≥ 1.

(37)
When k = 0, (36) becomes

ε2∂t‖f‖2
Γ(t) = −

∫
Q

〈σ(z)([f ]− f), ([f ]− f)〉ω dx dv

≤ −2σmin‖[f ]− f‖2
Γ(t) ,

(38)

which satisfies (37).
Assume that for any k ≤ p where p ∈ N, (37) holds. Adding all these

inequalities together we get

ε2∂t

(1

2
‖f‖2

Γ(t) +

p∑
i=1

‖Dif‖2
Γ(t) +

p∑
i=1

i−1∑
j=0

cij‖Djf‖2
Γ(t)

)
≤ −σmin

∥∥[f ]− f
∥∥2

Γp(t)
,

(39)
which is equivalent to

ε2∂t

( p∑
j=0

c′p+1,j‖Djf‖2
Γ(t)

)
≤ −σmin

∥∥[f ]− f
∥∥2

Γp(t)
, (40)
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where

c′p+1,j =


1

2
+

p∑
i=1

ci0, j = 0,

1 +
p∑
i=1

cij, 1 ≤ j ≤ p− 1,

1, j = p.

(41)

When k = p+ 1, (36) reads

ε2∂t‖Dp+1f‖2
Γ(t) = −2

∫
Q

〈Dp+1
(
σ(z)([f ]− f)

)
, Dp+1([f ]− f)〉ω dx dv . (42)

According to Lemma 4.1 with g = Dp+1([f ] − f) and the assumption
‖Dkσ(z)‖L∞ ≤ Cσ, the right-hand side satisfies the estimate

RHS ≤ − σmin

∫
Q

∥∥Dp+1([f ]− f)
∥∥2

ω
dx dv

+
4p+1

σmin

(
max

0≤α≤p+1
‖Dασ‖2

L∞

) ∫
Q

∥∥[f ]− f
∥∥2

Hp dx dv

≤ − σmin

∥∥Dp+1([f ]− f)
∥∥2

Γ(t)
+
C2
σC
′
p+1

σmin

∥∥[f ]− f
∥∥2

Γp(t)
.

(43)

where C ′p+1 = (p+ 1)4p+1. Now we have the estimate

ε2∂t‖Dp+1f‖2
Γ(t) ≤ −σmin

∥∥Dp+1([f ]− f)
∥∥2

Γ(t)
+
C2
σC
′
p+1

σmin

∥∥[f ]− f
∥∥2

Γp(t)
. (44)

Adding this equation (44) with (40) multiplied by C2
σC
′
p+1/σ

2
min gives,

ε2∂t

(
‖Dp+1f‖2

Γ(t) +

p∑
j=0

cp+1,j‖Djf‖2
Γ(t)

)
≤ −σmin

∥∥Dp+1([f ]− f)
∥∥2

Γ(t)
, (45)

where

cp+1,j =
C2
σC
′
p+1

σmin

c′p+1,j . (46)

This shows that (37) still holds for k = p + 1. By Mathematical Induction,
(37) holds for all integer k ∈ N.

Finally, according to (37), we have

∂t

(
‖Dkf‖2

Γ(t) +
k−1∑
j=0

ckj‖Djf‖2
Γ(t)

)
≤ 0, ckj > 0, k ∈ N. (47)
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which yields

‖Dkf‖2
Γ(t) ≤ ‖Dkf‖2

Γ(t) +
k−1∑
j=0

ckj‖Djf‖2
Γ(t)

≤ ‖Dkf0‖2
Γ(0) +

k−1∑
j=0

ckj‖Djf0‖2
Γ(0)

≤ C2
0

(
1 +

k−1∑
j=0

ckj

)
:= C2,

(48)

where C is clearly independent of ε. This completes the proof of the theorem.

Theorem 4.1 shows the derivatives of the solution with respect to z can
be bounded by the derivatives of initial data. In particular, the ‖Dkf‖Γ(t)

bound is independent of ε! This is crucial for our later proof that our scheme
is s-AP. However, this estimate alon is not sufficient to guarantee the whole
gPC-SG method has a spectral convergence uniform in ε (since the projection
error is of O(1/ε2)), which needs a better estimation of [f ]− f . To this aim,
we first provide the following lemma.

Lemma 4.2. Assume for some integer m ≥ 0,

‖Dk(∂xf0)‖Γ(0) ≤ Cx, k = 0, . . . ,m, t > 0. (49)

Then holds:∫
Q

ε〈vDk(∂xf), Dk([f ]− f)〉ω dx dv ≤ σmin

4
‖Dk([f ]− f)‖2

Γ(t) +
C1ε

2

σmin

. (50)

Proof. First note that ∂xf satisfies the same equation as f itself,

ε2∂t(∂xf) + εv∂x(∂xf) = σ(z)([∂xf ]− ∂xf). (51)

Thus according to the Theorem 4.1 and our assumption (49),

‖Dk(∂xf)‖Γ(t) ≤ C, t > 0, (52)
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with C independent of ε. Then by Young’s inequality,∫
Q

ε〈vDk(∂xf), Dk([f ]− f)〉ω dx dv

≤ σmin

4
‖Dk([f ]− f)‖2

Γ(t) +
ε2

σmin

‖vDk(∂xf)‖2
Γ(t)

≤ σmin

4
‖Dk([f ]− f)‖2

Γ(t) +
ε2

σmin

‖Dk(∂xf)‖2
Γ(t)

≤ σmin

4
‖Dk([f ]− f)‖2

Γ(t) +
C1ε

2

σmin

,

(53)

where C1 = C2 is a constant. This completes the proof.

Now we are ready to prove the following theorem.

Theorem 4.2 (Estimate on [f ] − f). With all the assumptions in The-
orem 4.1 and Lemma 4.2, for a given time T > 0, the following regularity
result of [f ]− f holds:

‖Dk([f ]− f)‖2
Γ(t)

≤ e−σmint/2ε
2‖Dk([f0]− f0)‖2

Γ(0) + C ′(T )ε2

≤ C(T )ε2,

(54)

for any t ∈ (0, T ] and 0 ≤ k ≤ m,, where C ′(T ) and C(T ) are constants
depending on T .

Proof. First notice that [f ] satisfies

ε2∂t [f ] + ε∂x [vf ] = 0, (55)

so [f ]− f satisfies the following equation

ε2∂t([f ]− f) + ε∂x([vf ]− vf) = −σ(z)([f ]− f). (56)

As the proof in Theorem 4.1, differentiating this equation k times with
respect to z, multiplying by Dk([f ]− f) and integrating on Q one obtains,

ε2∂t
∥∥Dk([f ]− f)

∥∥2

Γ(t)
= − 2

∫
Q

ε〈Dk(∂x [vf ]− v∂xf), Dk([f ]− f)〉ω dx dv

− 2

∫
Q

〈Dk
(
σ(z)([f ]− f)

)
, Dk([f ]− f)〉ω dx dv

:= I + II.

(57)
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Notice that ∫
Q

ε〈Dk(∂x [vf ]), Dk([f ]− f)〉ω dx dv = 0, (58)

and using Lemma 4.2, we have

I ≤ σmin

2
‖Dk([f ]− f)‖2

Γ(t) +
2C1ε

2

σmin

. (59)

For the second part by Lemma 4.1,

II ≤ −σmin

∥∥Dk([f ]− f)
∥∥2

Γ(t)
+
C2
σ4k

σmin

∥∥[f ]− f
∥∥2

Γk−1(t)
. (60)

So we get the following estimate,

ε2∂t
∥∥Dk([f ]− f)

∥∥2

Γ(t)
≤ − σmin

2

∥∥Dk([f ]− f)
∥∥2

Γ(t)
+

2C1ε
2

σmin

+
C2
σ4k

σmin

∥∥[f ]− f
∥∥2

Γk−1(t)
.

(61)

To prove the Thoerem we use Mathematical Induction. When k = 0 (61)
turns to

∂t
∥∥ [f ]− f

∥∥2

Γ(t)
≤ −σmin

2ε2

∥∥[f ]− f
∥∥2

Γ(t)
+

2C1

σmin

. (62)

By Grönwall’s inequality,∥∥ [f ]− f
∥∥2

Γ(t)
≤ e−σmint/2ε

2∥∥[f0]− f0

∥∥2

Γ(0)
+

2C1t

σmin

ε2

≤ C0(T )ε2, for t > 0,

(63)

which satisfies the (54).
Assume for any k ≤ p where p ∈ N, (54) holds. This implies∥∥[f ]− f

∥∥2

Γp(t)
≤ Cp(T )ε2. (64)

So when k = p+ 1 by (61),

ε2∂t
∥∥Dp+1([f ]− f)

∥∥2

Γ(t)
≤ − σmin

2

∥∥Dp+1([f ]− f)
∥∥2

Γ(t)
+

2C1ε
2

σmin

+
C2
σC
′
p+1

σmin

Cp(T )ε2,

(65)
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which means

∂t
∥∥Dp+1([f ]− f)

∥∥2

Γ(t)
≤ −σmin

2ε2

∥∥Dp+1([f ]− f)
∥∥2

Γ(t)
+ C ′′p+1(T ). (66)

Again, the Grönwall’s inequality yields∥∥Dp+1([f ]− f)
∥∥2

Γ(t)
≤ e−σmint/2ε

2∥∥Dp+1([f0]− f0)
∥∥2

Γ(0)
+ C ′′p+1(T )Tε2

≤ Cp+1(T )ε2, for t > 0,
(67)

where Cp+1(T ) is a constant independent of ε. So by Mathematical induction,
we complete the proof of the theorem.

Remark 4.1. We remark that all the above lemma and theorems are proved
for z ∈ R and σ depending only on z. However, our conclusions and tech-
niques are not limited to these cases. For z ∈ Rd, it is straightfoward to
prove and for σ(x, z) also a function of x, we only need to modify the proof
of Lemma 4.2 by using the same technique as in the proof of Theorem 4.1.

4.3 A spectral convergence uniformly in ε

Let f be the solution to the linear transport equation (1)–(2). We define the
Mth order projection operator

PMf =
M∑
i=0

〈f, φi〉ωφi.

The error arisen from the gPC-SG can be split into two parts rN and eN ,

f − fM = f − PMf + PMf − fM := rM + eM , (68)

where rM = f − PMf is the truncation error, and eM = PMf − fM is the
projection error.

For the truncation error rM , we have the following lemma

Lemma 4.3 (Truncation error). Under all the assumption in Theorem 4.1
and Theorem 4.2, we have for t ∈ (0, T ] and any given integer k = 0, . . . ,m,

‖rM‖Γ(t) ≤
C

Mk
. (69)

Moreover, ∥∥ [rM ]− rM
∥∥

Γ(t)
≤ C(T )

Mk
ε, (70)

where C and C(T ) are independent of ε.
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Proof. By the standard error estimate for orthogonal polynomial approxima-
tions and Theorem 4.1, for 0 ≤ t ≤ T ,

‖rN‖Γ(t) ≤ CM−k‖Dkf‖Γ(t) ≤
C

Mk
, (71)

with C independent of M .
In the same way, according to Theorem 4.2,∥∥ [rM ]− rM‖Γ(t) =

∥∥([f ]− f)− ([PMf ]− PMf)
∥∥

Γ(t)

≤ CM−k‖Dk([f ]− f)‖Γ(t)

≤ C(T )

Mk
ε,

(72)

which completes the proof

It remains to estimate eN . To this aim, we first notice fN satisfying

ε2∂tfM + εv∂xfM = PM
{
σ(z)([fM ]− fM)

}
. (73)

On the other hand, by doing the Nth order projection directly on original
linear transport equation we get

ε2∂t(PMf) + εv∂x(PMf) = PM
{
σ(z)([f ]− f)

}
. (74)

(74) subtracted by (73) gives

ε2∂teM + εv∂xeM = PM
{
σ(z)

{
[f ]− f − ([fM ]− fM)

}}
= PM

{
σ(z)

{
[f ]− f − ([PMf ]− PMf)

+ ([PMf ]− PMf)− ([fM ]− fM)
}}

= PM
{
σ(z)

(
[rM ]− rM

)}
+ PM

{
σ(z)

(
[eM ]− eM

)}
.

(75)

Now we can give the following estimate of the projection error eN ,

Lemma 4.4. Under all the assumption in Theorem 4.1 and Theorem 4.2,
we have for t ∈ (0, T ] and any given integer k = 0, . . . ,m,

‖eM‖Γ(t) ≤
C(T )

Mk
, (76)

where C(T ) is a constant independent of ε.
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Proof. We use basically the same energy estimate as before: multiply (75)
by eM and integrate on Q, notice that∫

Q

〈PM
{
σ(z)

(
[rM ]− rM

)}
, [eM ]〉ω dx dv = 0, (77)∫

Q

〈PM
{
σ(z)

(
[eM ]− eM

)}
, [eM ]〉ω dx dv = 0, (78)

then one gets

ε2∂t‖eM‖2
Γ(t) = −

∫
Q

〈PM
{
σ(z)

(
[eM ]− eM

)}
, [eM ]− eM〉ω dx dv

−
∫
Q

〈PM
{
σ(z)

(
[rM ]− rM

)}
, [eM ]− eM〉ω dx dv.

(79)

Notice the the projection operator PM is a self-joint operator

〈PMf, g〉ω = 〈f,PMg〉ω,

and
PMeM = eM ,

thus

ε2∂t‖eM‖2
Γ(t) = −

∫
Q

〈σ(z)
(

[eM ]− eM
)
, [eM ]− eM〉ω dx dv

−
∫
Q

〈σ(z)
(

[rM ]− rM
)
, [eM ]− eM〉ω dx dv

≤ − σmin

∥∥ [eM ]− eM‖2
Γ(t) +

σmin

2

∥∥ [eM ]− eM‖2
Γ(t)

+
Cσ

2σmin

∥∥ [rM ]− rM‖2
Γ(t)

≤ − σmin

2

∥∥ [eM ]− eM‖2
Γ(t) +

Cσ
2σmin

(C ′(T )

Mk

)2

ε2

≤
(C(T )

Mk

)2

ε2,

(80)

where for the last two inequalities we have used Young’s inequality and
Lemma 4.3. Then by a integral over t we get

‖eM‖2
Γ(t) ≤ ‖e0

M‖2
Γ(0) +

(C(T )

Mk

)2

, (81)

since e0
M = PMf0 − f 0

M = 0 we complete the proof of this lemma.
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Finally, we are now ready to state the main convergence theorem:

Theorem 4.3 (Uniform convergence in ε). Assume

σ(z) ≥ σmin > 0 .

If for some integer m ≥ 0,

‖σ(z)‖Hk ≤ Cσ, ‖Dkf0‖Γ(0) ≤ C0, ‖Dk(∂xf0)‖Γ(0) ≤ Cx, k = 0, . . . ,m,
(82)

Then the error of the whole gPC-SG method is

‖f − fM‖Γ(t) ≤
C(T )

Mk
, (83)

where C(T ) is a constant independent of ε.

Proof. From Lemma 4.3 and Lemma 4.4, one has

‖f − fM‖Γ(t) ≤ ‖rM‖Γ(t) + ‖eM‖Γ(t) ≤
C(T )

Mk
,

which completes the proof.

Remark 4.2. Theorem 4.3 gives a uniformly in ε spectral convergence
rate, thus one can choose M independent of ε, a very strong s-AP property.
If anisotropic scattering, namely σ depends on v, then one usually obtains a
convergence rate that requires M � ε (see for example [12]). In such cases
the proof of s-AP property is much harder, and one usually needs to use the
diffusion limit, see [6] in the case of deterministic case and [11] in the random
case.

5 The Full discretization

As pointed out in [15], by using the gPC-SG formulation, one obtains a vector
version of the original deterministic transport equation. This enables one to
use the deterministic AP scheme. In this paper, we adopt the AP scheme
developed in [21] for the gPC-SG system (16).

We take a uniform grid xi = ih, i = 0, 1, · · ·N , where h = 1/N is the
grid size, and time steps tn = n∆t. ρni is the approximation of ρ at the grid
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point (xi, t
n) while gn+1

i+ 1
2

is defined at a staggered grid xi+1/2 = (i + 1/2)h,

i = 0, · · ·N − 1.
The fully discrete scheme for the gPC system (11) is

ρ̂n+1
i − ρ̂ni

∆t
+

[
v
ĝn+1
i+ 1

2

− ĝn+1
i− 1

2

∆x

]
= −Σa

i ρ̂
n+1
i + Ŝi, (84a)

ĝn+1
i+ 1

2

− ĝn
i+ 1

2

∆t
+

1

ε∆x
(I − [.])

(
v+(ĝn

i+ 1
2
− ĝn

i− 1
2
) + v−(ĝn

i+ 3
2
− ĝn

i+ 1
2
)
)

(84b)

= − 1

ε2
Σiĝ

n+1
i+ 1

2

− 1

ε2
v
ρ̂ni+1 − ρ̂ni

∆x
.

It has the formal diffusion limit when ε→ 0 as can be easily checked, which
is

ρ̂n+1
i − ρ̂ni

∆t
−K

ρ̂ni+1 − 2ρ̂ni + ρ̂ni−1

∆x2
= −Σa

i ρ̂
n+1
i + Ŝi, (85)

where K = 1
3
Σ−1. This is the fully discrete scheme for (17). Thus the scheme

is stochastically AP as defined in [15].
We will also state the following proposition which will be used later.

Proposition 5.1.
[
ĝn
i+ 1

2

]
= 0 for every n.

6 The uniform stability

One important property for an AP scheme is to have a stability condition
independent of ε, so one can take ∆t� O(ε) when ε becomes small. In this
section we prove such a result. The proof basically follows that of [22] for
the deterministic problem.

For clarity in this section we assume σa = S = 0. The main theoretical
result about the stability is the following theorem:

Theorem 6.1. Denote

σij = 〈φi, σφj〉ω, Σ = (σij), Σ ≥ σmin Id .

If ∆t satisfies the following CFL condition

∆t ≤ σmin

3
∆x2 +

2ε

3
∆x, (86)
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then the sequences ρ̂n and ĝn defined by scheme (84) satisfy the energy esti-
mate

∆x
N−1∑
i=0

(
(ρ̂ni )2 +

ε2

2

∫ 1

−1

(
ĝn
i+ 1

2

)2

dv

)
≤ ∆x

N−1∑
i=0

((
ρ̂0
i

)2
+
ε2

2

∫ 1

−1

(
ĝ0
i+ 1

2

)2

dv

)
for every n, and hence the scheme (84) is stable.

Remark 6.1. Since the right hand side of (86) has a lower bound when
ε → 0 (and the lower bound being that of the stability condition of the
discrete diffusion equation (85)), the scheme is asymptotically stable and ∆t
remains finite even if ε→ 0.

6.1 Notations and useful lemma

We give some useful notations for norms and inner products that are used in
our analysis. For every grid function µ = (µi)

N−1
i=0 define:

‖µ‖2 = ∆x
N−1∑
i=0

µ2
i . (87)

For every velocity dependent grid function v ∈ [−1, 1] 7→ φ(v) = (φi+ 1
2
(v))N−1

i=0 ,
define:

‖|φ‖| = ∆x
N−1∑
i=0

[
φ2
i+ 1

2

]
. (88)

If φ and ψ are two velocity dependent grid functions, their inner product is
defined as:

〈φ , ψ〉 = ∆x
N−1∑
i=0

[
φi+ 1

2
ψi+ 1

2

]
. (89)

Now we give some notations for the finite difference operators that are
used in scheme (84). For every grid function φ = (φi+ 1

2
)i∈Z, we define the

following one-sided difference operators:

D−φi+ 1
2

=
φi+ 1

2
− φi− 1

2

∆x
and D+φi+ 1

2
=
φi+ 3

2
− φi+ 1

2

∆x
(90)

We also define the following centered difference operators:

Dcφi+ 1
2

=
φi+ 3

2
− φi− 1

2

2∆x
and D0φi =

φi+ 1
2
− φi− 1

2

∆x
(= D−φi+ 1

2
). (91)
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Finally, for every grid function µ = (µi)i∈Z, define the following centered
operator:

δ0µi+ 1
2

=
µi+1 − µi

∆x
. (92)

We first recall some basic facts. For every grid functions φ = (φi+ 1
2
)N−1
i=0 ,

ψ = (ψi+ 1
2
)N−1
i=0 , and µ = (µi)

N−1
i=0 , one has (see [22]):(

v+D− + v−D+
)
φi+ 1

2
= vDcφi+ 1

2
− ∆x

2
|v|D−D+φi+ 1

2
; (93)

∆x
∑
i∈Z

(
D+φi+ 1

2

)2

≤ 4

∆x2
∆x
∑
i

φ2
i+ 1

2
; (94)

∣∣〈(v+D+ + v−D−
)
ψ , φ

〉∣∣ ≤ α‖|φ‖|2 +
1

4α
‖||v|D+ψ‖|2, ∀α > 0; (95)

∆x
∑
i∈Z

µiD
0φi = −∆x

∑
i∈Z

(
δ0µi+ 1

2

)
φi+ 1

2
; (96)

∆x
∑
i∈Z

ψi+ 1
2
D−φi+ 1

2
∆x = −∆x

∑
i∈Z

(
D+ψi+ 1

2

)
φi+ 1

2
; (97)

∆x
∑
i∈Z

φi+ 1
2
Dcφi+ 1

2
= 0; (98)

If g ∈ L2([−1, 1]), then [vg]2 ≤ 1

2

[
|v|g2

]
. (99)

6.2 Energy estimates

Now we provide the details of the energy estimate. The proof is similar to
that for deterministic problem in [22].

First, multiplying (84a) and (84b) by ρ̂n+1 and ε2ĝn+1, respectively. With
the assumption that σai = 0, Ŝi = 0, and using the fact that Σ ≥ σminId, one
has

1

2∆t

(
‖ρ̂n+1‖2 − ‖ρ̂n‖2 + ‖ρ̂n+1 − ρ̂n‖2

)
+ ∆x

N−1∑
i=0

ρ̂n+1
i D0

[
vĝn+1

i

]
+

ε2

2∆t

(
‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2

)
+ ε

〈
ĝn+1 ,

(
v+D− + v−D+

)
ĝn
〉

≤− σmin‖|ĝn+1‖|2 + ∆x
N−1∑
i=0

[
vD0ĝn+1

i

]
ρ̂ni .
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Combining the second term on the left hand side and the last term on the
right hand side, one gets

1

2∆t

(
‖ρ̂n+1‖2 − ‖ρ̂n‖2 + ‖ρ̂n+1 − ρ̂n‖2

)
+

ε2

2∆t

(
‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2

)
+ ε

〈
ĝn+1 ,

(
v+D− + v−D+

)
ĝn
〉

≤− σmin‖|ĝn+1‖|2 + ∆x
N−1∑
i=0

[
vD0ĝn+1

i

]
(ρ̂ni − ρ̂n+1

i ).

Using the Cauchy-Schwartz inequality,

∆x
N−1∑
i=0

[
vD0ĝn+1

i

]
(ρ̂ni − ρ̂n+1

i ) ≤ 1

2∆t
‖ρ̂n+1 − ρ̂n‖2 +

∆t

2
∆x

N−1∑
i=0

[
vD0ĝn+1

i

]2
.

This gives

1

2∆t

(
‖ρ̂n+1‖2 − ‖ρ̂n‖2

)
+

ε2

2∆t

(
‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2

)
+ ε

〈
ĝn+1 ,

(
v+D− + v−D+

)
ĝn
〉

≤− σmin‖|ĝn+1‖|2 +
∆t

2
∆x

N−1∑
i=0

[
vD0ĝn+1

i+ 1
2

]2

.

We take the following decomposition〈
ĝn+1 ,

(
v+D− + v−D+

)
ĝn
〉

=
〈
ĝn+1 ,

(
v+D− + v−D+

)
ĝn+1

〉
+
〈
ĝn+1 ,

(
v+D− + v−D+

)
(ĝn − ĝn+1)

〉
=: A+B,

where

A =
∆x

2
∆x

N−1∑
i=0

[
|v|
(
D+ĝn+1

i+ 1
2

)2
]
.

B = −
〈(
v+D+ + v−D−

)
ĝn+1 , ĝn − ĝn+1

〉
.

Using the Cauchy-Schwartz inequality,

|B| ≤ ε

2∆t
‖|ĝn+1 − ĝn‖|2 +

∆t

2ε
‖||v|D+ĝn+1‖|2.
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This leads to

1

2∆t

(
‖ρ̂n+1‖2 − ‖ρ̂n‖2

)
+

ε2

2∆t

(
‖|ĝn+1‖|2 − ‖|ĝn‖|2

)
+ ε

∆x

2

N−1∑
i=0

[
|v|
(
D+ĝn+1

i+ 1
2

)2
]

∆x− ∆t

2
‖||v|D+ĝn+1‖|2

≤− σmin‖|ĝn+1‖|2 +
∆t

2
∆x

N−1∑
i=0

[
vD0ĝn+1

i+ 1
2

]2

.

Since |v| ≤ 1,

∆t

2
‖||v|D+ĝn+1‖|2 ≤ ∆t

2
∆x

N−1∑
i=0

[
|v|
(
D+ĝn+1

i+ 1
2

)2
]
,

∆t

2
∆x
∑
i∈Z

[
vD0ĝn+1

i+ 1
2

]2

≤ ∆t

4
∆x

N−1∑
i=0

[
|v|
(
D+ĝn+1

i+ 1
2

)2
]
.

These imply

1

2∆t

(
‖ρ̂n+1‖2 − ‖ρ̂n‖2

)
+

ε2

2∆t

(
‖|ĝn+1‖|2 − ‖|ĝn‖|2

)
≤ −σmin‖|ĝn+1‖|2 +

(
3∆t

4
− ε∆x

2

)
∆x

N−1∑
i=0

[
|v|
(
D+ĝn+1

i+ 1
2

)2
]
.

Note(
3∆t

4
− ε∆x

2

)
∆x

N−1∑
i=0

[
|v|
(
D+ĝn+1

i+ 1
2

)2
]
≤
(

3∆t

4
− ε∆x

2

)
+

∆x
N−1∑
i=0

[(
D+ĝn+1

i+ 1
2

)2
]

≤
(

3∆t

4
− ε∆x

2

)
+

4

∆x2
‖|ĝn+1‖|2,

where (a)+ = max(0, a) denotes the positive part of a. Applying this in (6.2)
then gives

1

2∆t

(
‖ρ̂n+1‖2 − ‖ρ̂n‖2

)
+

ε2

2∆t

(
‖|ĝn+1‖|2 − ‖|ĝn‖|2

)
≤
((

3∆t

4
− ε∆x

2

)
+

4

∆x2
− σm

)
‖|ĝn+1‖|2.
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This means that we have the final energy estimate

‖ρ̂n+1‖2 + ε2‖|ĝn+1‖|2 ≤ ‖ρ̂n‖2 + ε2‖|ĝn‖|2

if ∆t is such that (
3∆t

4
− ε∆x

2

)+
4

∆x2
≤ σmin.

Since σmin > 0, an equivalent condition is (3∆t
4
−ε∆x

2
) 4

∆x2
≤ σmin, which gives

the sufficient condition

∆t ≤ ∆x2σmin

3
+

2

3
ε∆x .

This completes the proof of Theorem 6.1.

7 Numerical Examples

In this section, we present several numerical examples to illustrate the effec-
tiveness of our method.

We consider the linear transport equation with random coefficient σ(z):

ε∂tf + v∂xf =
σ(z)

ε
([f ]− f), 0 < x < 1 , (100)

with initial condition:
f(x, v, 0, z) = 0 ,

and the boundary conditions are:

f(0, v, t, z) = 1, v ≥ 0; f(1, v, t, z) = 0, v ≤ 0.

7.1 Example 1

First we consider a random coefficient with one dimensional random param-
eter:

σ(z) = 2 + z, z uniformly distributed in (−1, 1).

The limiting random diffusion equation for the kinetic equation (100) is

ρt =
1

3σ(z)
ρxx , (101)
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with initial condition and boundary conditions:

ρ(0, t, z) = 1, ρ(1, t, z) = 0, ρ(x, t, z) = 0.

The analytical solution for (101) with the given initial and boundary condi-
tions in the is

ρ(x, t, z) =
3

2
− 1

2
erf

(
x

2
√
σ(z)t

)
. (102)

When ε is small, we use this as the reference solution, as it is accurate with
an error of O(ε2). Hereafter we set ε = 10−8. In addition, the standard
30-points Gauss-Legendre quadrature set is used for the velocity space to
compute ρ in the following example.

To examine the accuracy, we use two error norms: the differences in the
mean solutions and in the corresponding standard deviation, with `2 norm
in x:

emean(t) =
∥∥E[uh]− E[u]

∥∥
`2
,

estd(t) =
∥∥σ[uh]− σ[u]

∥∥
`2
,

where uh, u are the numerical solutions and the reference solutions, respec-
tively.

In Figure 1, we plot the errors in mean and standard deviation of the
gPC numerical solutions at t = 0.01 with different gPC orders. Three sets of
results are included: solutions with ∆x = 0.04 (squares), ∆x = 0.02 (circles),
∆x = 0.01 (stars). We always use ∆t = 0.0002/3. One observes that the
errors become smaller with finer mesh. One can see that the solutions decay
rapidly in N and then saturate where spatial discretization error dominates.
It is then obvious that the errors due to gPC expansion can be neglected
at order N = 4 even for ε = 10−8. The solution profiles of the mean and
standard deviation are shown on the left and right of Figure 2, respectively.

We also plot the profiles of the mean and standard deviation of the flux
vf in Figure 3. Here we observe good agreement among the gPC-Galerkin
method, stochastic collocation method with 20 Gauss-Legendre quadrature
points, and the analytical solution (102).

In Figure 4, we examine the difference between the solution t = 0.01
obtained by the 4th-order gPC method with ∆x = 0.01, ∆t = ∆x2/12 and
the limiting analytical solution (102). As expected, we observe the differences
become smaller as ε is smaller in a quadratic fashion, before the numerical
errors become dominant.
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Figure 1: Example 1. Errors of the mean (solid line) and standard deviation
(dash line) of ρ with respect to the gPC order at ε = 10−8: ∆x = 0.04
(squares), ∆x = 0.02 (circles), ∆x = 0.01 (stars).
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Figure 2: Example 1. The mean (left) and standard deviation (right) of ρ at
ε = 10−8, obtained by the gPC Galerkin at order N = 4 (circles), the stochas-
tic collocation method (crosses), and the limiting analytical solution (102).
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Figure 3: Example 1. The mean (left) and standard deviation (right)
obtained by gPC-Galerkin (circle) and collocation method (cross) at time
t = 0.01
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100

Figure 4: Example 1. Differences in the mean (solid line) and standard
deviation (dash line) of ρ with respect to ε2, between the limiting analytical
solution (102) and the 4th-order gPC solution with ∆x = 0.04 (squares),
∆x = 0.02 (circles) and ∆x = 0.01 (stars).
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7.2 Example 2: mixing regime

In this test, we still set σ = 2 + z. We consider ε > 0 depending on the space
variable in a wide range of mixing scales:

ε(x) = 10−3 +
1

2
[tanh(6.5− 11x) + tanh(11x− 4.5)] (103)

which varies smoothly from 10−3 to O(1) as shown in Figure 5. This tests
the ability of the scheme for problems with mixing regimes, or its uniform
convergence in ε.
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Figure 5: ε(x)

The initial data is

fin(x, v, z) =
ρ0

2

[
exp

(
− (

v − 0.75

T0

)2
)

+ exp
(
− (

v + 0.75

T0

)2
)]

(104)

with

ρ0(x) =
2 + sin(2πx)

2
, T0(x) =

5 + 2 cos(2πx)

20
. (105)

The reference solution is obtained using collocation method with 30 points.
The parameters are set up as the following: the mesh size is ∆x = 0.01, and
the corresponding t direction mesh size is ∆t = ∆x2/3 = 0.00000033. And
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we use the 5-th order gPC-Galerkin method to evolve the equation to differ-
ent time t = 0.005, t = 0.01, t = 0.05, t = 0.1. For the v integral, we use
Legendre quadrature of 30 points.

Figure 6 shows the `2 error of the mean and standard deviation with
respect to the gPC order. We also see the fast (spectral) convergence of the
method.

0 1 2 3 4
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10-5

10-4

10-3

10-2

10-1

Figure 6: Example 2 with initial data (104)–(105). The l2 error of mean and
standard deviation(dash line) respect to gPC order.

7.3 Example 3: random initial data

We then add randomness on the initial data (σ = 2 + z still random).

f(x, v, 0, z) = f(x, v, 0) + 0.2z (106)

where f(x, v, 0) is the same as in (104). This time we set ∆x = 0.01 and
∆t = ∆x2/12 and final time T = 0.01. First we test in the fluid limit regime
ε = 10−8 as shown in Figure 7. Then we test in ε = 1 which is shown in
Figure 8. One can see a good agreement between the gPC-SG solutions and
the solutions by the collocation method.
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Figure 7: Example 3. The mean (left) and standard deviation (right)
obtained by gPC-Galerkin (circle) and collocation method (cross) at time
t = 0.1, ε = 10−8

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0
0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

Figure 8: Example 3. The mean (left) and standard deviation (right)
obtained by gPC-Galerkin (circle) and collocation method (cross) at time
t = 0.1, ε = 1
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7.4 Example 4: random boundary data

For the next example, we then add randomness on the boundary conditions:

fL(v, z) = 2 + z, fR(v, z) = 1 + z. (107)

We also test when ε = 10−8 and ε = 10 as shown in Figure 9 and Figure 10,
again, good agreements are observed between the gPC-SG solutions and the
solutions by the collocation
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Figure 9: Example 4. The mean (left) and standard deviation (right)
obtained by gPC-Galerkin (circle) and collocation method (cross) at time
t = 0.1, ε = 10−8
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Figure 10: Example 4. The mean (left) and standard deviation (right)
obtained by gPC-Galerkin (circle) and collocation method (cross) at time
t = 0.1, ε = 10
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7.5 Example 5: 2D random space

Finally, model the random input as a random field, in the following form:

σ(x, z1, z2) = 1− σz1

π2
cos(2πx)− σz2

4π2
cos(4πx) (108)

where we set σ = 4 and z1, z2 are both uniformly distributed in (−1, 1).
The mean and standard deviation of the solution ρ at t = 0.01 obtained by
the 5th-order gPC Galerkin with ∆x = 0.025, ∆t = 0.0002/3 are shown in
Figure 11. We then use the high-order stochastic collocation method over
40×40 Gauss-Legendre quadrature points to compute the reference mean and
standard deviation of the solutions. In Figure 12, we show the errors of the
mean (solid lines) and standard deviation (dash lines) of ρ with respect to
the order of gPC expansion. The fast spectral convergence of the errors can
be clearly seen.
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Figure 11: The mean (left) and standard deviation (right) of ρ at ε = 10−8,
obtained by 5th-order gPC Galerkin (circles) and the stochastic collocation
method (crosses). The random input has dimension d = 2.

8 Conclusions

In this paper we establish the uniform spectral accuracy in terms of the
Knudsen number, which consequently allows us to justify the stochastic
Asymptotic-Preserving property, of the stochastic Galerkin method for the
linear transport equation with random scattering coefficients. For the micro-
macro decomposition based fully discrete scheme we also prove a uniform
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Figure 12: Errors of the mean (solid line) and standard deviation (dash line)
of ρ with respect to gPC order, with the d = 2 dimensional random input.

stability result. These are the first uniform accuracy and stability results for
the underlying problem.

It is expected that our uniform stability proof is useful for more general
kinetic or transport equations, which is the subject of our future study.
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