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Abstract

We propose a two-dimensional asymptotic-preserving scheme for linear transport equations

with diffusive scalings. It is based on the time splitting developed by Jin, Pareschi and Toscani [17],

but takes spatial discretizations on staggered grids. Compared with the previous methods based

on regular Cartesian grids, this method preserves the discrete diffusion limit with a more compact

stencil thus has a better spatial resolution. This scheme requires less unknowns than one could

have naively expected for a method based on staggered grids. We show that the scheme is AP and

we provide a stability analysis to obtain an explicit CFL condition, which couples a hyperbolic

and a parabolic condition. This type of condition is common for AP schemes and guarantees

uniform stability with respect to the mean free path. In addition, we obtain an upper bound on

the relaxation parameter, which is the crucial parameter of the used time discretization. Several

numerical examples are provided to verify the accuracy and asymptotic property of the scheme.

1 Introduction

The linear transport equation models particles interacting with a background medium (e.g.
neutron transport, linear radiative transfer,. . .). In general, the model in scaled variables
can be written as [17]

ε∂tf + v · ∇xf =
1

ε

[
σs
2π

∫
Ω

fdv′ − σtf
]

+ εQ, (1.1)
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where f(t,x, v) denotes the probability density distribution depending on time t, position
x ∈ R2, and direction of velocity v = (ξ, η) ∈ Ω = {(ξ, η) : −1 ≤ ξ, η ≤ 1, ξ2 + η2 = 1}
(two-dimensional flatland model – the extension to three dimensions is straightforward).
Moreover, σt = σs + ε2σa is the total transport coefficient, σs is the scattering coefficient,
σa is the absorption coefficient, and Q is a v-independent source term. It is well known
that the limiting equation (ε→ 0) of this equation (1.1) is the diffusion equation:

∂tρ = 1
2
∇x ·

(
1

σt
∇xρ

)
− σaρ+Q, (1.2)

where ρ(t,x) = 1
2π

∫
Ω
f(t,x, v)dv.

In many applications, the scaling parameter of the transport equation ε (mean free
path) may differ in several orders of magnitude, ranging from the rarefied kinetic regime to
the hydrodynamic diffusive regime. When ε is small, in the diffusive regime, the equation
becomes numerically stiff, which leads to numerical challenges: Straightforward explicit
implementations lead to high computational costs in the diffusive regimes; Fully implicit
schemes could be difficult to implement [6]; Multiscale multiphysics domain-decomposition
approaches, which couple models at different scales, have difficulties in the transition zones,
since they need to transfer data from one scale to another [12]. Thus, it is desirable to
develop schemes which are suitable for all regimes (no domain-decomposition), but do not
require a resolved grid in space and small time compared to the mean free path. This is
the objective of AP schemes.

A scheme is called AP if it preserves the discrete analog of the asymptotic transition
from the microscopic scale to the mascroscopic one [11, 12], namely, in the limit ε → 0,
the discretization of the above transport equation (1.1) should yield a discretization of the
diffusion equation (1.2). Such schemes allow mesh sizes and time steps much bigger than
the mean free path/time, yet still capture the correct physical behavior. The development
of such schemes started with stationary problems of linear transport equations by Larsen,
Morel, and Miller [19] and for boundary value problems by Jin and Levermore [15, 13]. Uni-
form convergence with respect to the mean free path for an AP scheme was first established
by Golse, Jin, and Levermore [9]. For time-dependent problems, AP schemes were first
designed for nonlinear hyperbolic systems with relaxation by Jin and Levemore [10, 14].
There one needs to design both the time and the spatial discretization carefully [14], in
particular, to overcome the stiffness of the source term. AP schemes for time-dependent
transport equations with diffusive scaling started by Jin-Pareschi-Toscani [16, 17] and Klar
[18]. Since then there have been many new developments in the construction of AP schemes
for a large class of kinetic equations (cf. reviews by Degond [5] and Jin [12]). Time dis-
cretizations usually need an implicit-explicit (IMEX) approach [4, 10, 25, 1], exponential
integration methods [7], BGK type penalty methods [8], or micro-macro decomposition
based schemes [21, 22]. See also [23, 28]. One key idea of the schemes is to split the equa-
tion into a non-stiff part, which is treated explicitly, and a stiff part which will be implicit
but can be implemented explicitly. The splitting should be taken in a way such that the
combination preserves the AP property.
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In this paper, we present a two-dimensional AP scheme for the above transport equa-
tion (1.1), based on an AP splitting using the parity equations [17] in combination with
staggered grids [12]. Moreover, we present a stability analysis of the scheme in one dimen-
sion to show uniform stability. Similar to [21, 22], we obtain an explicit CFL condition,
which couples a hyperbolic and a parabolic condition, and guarantees uniform stability.
Beyond that, the stability of the scheme depends on the choice of the relaxation parameter.
This parameter arises from the used time discretization, where the equation is split into a
stiff relaxation and a non-stiff transport step and the parameter balances the terms. For
the choice of this parameter, our stability analysis yields an upper bound, that is more
restrictive than the one that has previously been used [17].

The advantage of the staggered approach, compared with the regular grid approach
in [17], is that in the diffusion limit we approach a compact stencil, as pointed out by
Jin [12]. To be more precise, in one-space dimension, using a regular Cartesian grid, the
discrete diffusion limit of the scheme of [17] approximates the diffusion operator in (1.2)
by (ρi+2 − 2ρi + ρi−2)/(2∆x)2 (for the case σt ≡ 1), while the current scheme gives the
compact discretization (ρi+1 − 2ρi + ρi−1)/(∆x)2 which offers a better spatial resolution.

The remainder of the paper is organized as follows. In section 2, we first derive the parity
equations for the linear transport equation. Then, we describe the numerical method. In
section 3, we show the AP property. We consider the asymptotic limit of the scheme and
we state and prove a stability result, which gives a CFL condition and an upper bound
on the relaxation parameter. Finally, several numerical tests are presented in section 4 to
confirm the AP property of the scheme.

2 The Numerical Method

First, we reformulate the transport equation into a parity equation. Then, we describe the
angular, the spatial, and the time discretization of the method in detail.

We begin with the transport equation in the diffusive scaling (1.1), restricted to two
spatial dimensions x = (x, y). Following [17], we define the even and odd parities

r(1)(ξ, η) = 1
2
[f(ξ,−η) + f(−ξ, η)], r(2)(ξ, η) = 1

2
[f(ξ, η) + f(−ξ,−η)],

j(1)(ξ, η) = 1
2ε

[f(ξ,−η)− f(−ξ, η)], j(2)(ξ, η) = 1
2ε

[f(ξ, η)− f(−ξ,−η)],
(2.3)

and obtain the system

∂tr
(1) + ξ∂xj

(1) − η∂yj(1) = −σs
ε2

(r(1) − ρ)− σar(1) +Q, (2.4a)

∂tr
(2) + ξ∂xj

(2) + η∂yj
(2) = −σs

ε2
(r(2) − ρ)− σar(2) +Q, (2.4b)

∂tj
(1) +

ξ

ε2
∂xr

(1) − η

ε2
∂yr

(1) = −σs
ε2

j(1) − σaj(1), (2.4c)

∂tj
(2) +

ξ

ε2
∂xr

(2) +
η

ε2
∂yr

(2) = −σs
ε2

j(2) − σaj(2), (2.4d)
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where ρ = 1
2π

∫
|v|=1

fdv. Due to symmetry, it is sufficient to consider only positive direc-

tions ξ, η ≥ 0.
The discretization of the angular variable uses Gaussian quadrature points. Let

ξ(λ) = cos(λπ/2) and η(λ) = sin(λπ/2) (2.5)

for every 0 ≤ λ ≤ 1. Then, the density

ρ = 1
2

∫ 1

0

[r(1)(ξ, η) + r(2)(ξ, η)]dλ (2.6)

can be approximated by a Gaussian quadrature, where the quadrature points {λi} are
mapped to {ξi} and {ηi} by (2.5).

2.1 Spatial Discretization

For simplicity, we describe the spatial discretization, while keeping the time t continuous.
First, we define 2-D staggered grids

G1,1 :=
{(

(i+ 1
2
)∆x, (j + 1

2
)∆y

)
: i, j ∈ Z

}
, G1,2 :=

{(
(i+ 1

2
)∆x, j∆y

)
: i, j ∈ Z

}
,

G2,1 :=
{(
i∆x, (j + 1

2
)∆y

)
: i, j ∈ Z

}
, G2,2 := {(i∆x, j∆y) : i, j ∈ Z} ,

(2.7)
and approximate the spatial derivatives in the equations (2.4) by half-grid centered differ-
ences. We start by placing r(1) on the grid G1,1. Then the equation (2.4a) couples r(1) to
∂xj

(1), ∂yj
(1), and ρ. Thus, we place the unknown j(1) on G2,1 ∪ G1,2 and ρ on G1,1. The

next equation (2.4c) couples j(1) to ∂xr
(1) and ∂yr

(1), so the unknown r(1) needs to be given
not only on the grid G1,1, but also on the grid G2,2. As a consequence, we place ρ, r(1), and
r(2) on G1,1 ∪ G2,2, since they are coupled through the definition of ρ, and j(1) and j(2) on
G2,1 ∪G1,2. This leads to a closed system.

Remark 1. We obtain eight semi-discretized differential equations, and each grid point
on G1,1 ∪G1,2 ∪G2,1 ∪G2,2 carries two unknowns.

Let i, j ∈ Z. Then, the parities r(1) and r(2) satisfy the equation (2.4a) and (2.4b),
which on the grid G2,2 and G1,1 are given by

∂tr
(1)
i,j + ξ

j
(1)

i+ 1
2
,j
− j

(1)

i− 1
2
,j

∆x
− η

j
(1)

i,j+ 1
2

− j
(1)

i,j− 1
2

∆y
= −σs

ε2
(r

(1)
i,j − ρi,j)− σar

(1)
i,j +Qi,j ,

∂tr
(1)

i+ 1
2
,j+ 1

2

+ ξ
j
(1)

i+1,j+ 1
2

− j
(1)

i,j+ 1
2

∆x
− η

j
(1)

i+ 1
2
,j+1
− j

(1)

i+ 1
2
,j

∆y
= −σs

ε2
(r

(1)

i+ 1
2
,j+ 1

2

− ρi+ 1
2
,j+ 1

2
)

−σar(1)

i+ 1
2
,j+ 1

2

+Qi+ 1
2
,j+ 1

2
,

(2.8)

4



and

∂tr
(2)
i,j + ξ

j
(2)

i+ 1
2
,j
− j

(2)

i− 1
2
,j

∆x
+ η

j
(2)

i,j+ 1
2

− j
(2)

i,j− 1
2

∆y
= −σs

ε2
(r

(2)
i,j − ρi,j)− σar

(2)
i,j +Qi,j ,

∂tr
(2)

i+ 1
2
,j+ 1

2

+ ξ
j
(2)

i+1,j+ 1
2

− j
(2)

i,j+ 1
2

∆x
+ η

j
(2)

i+ 1
2
,j+1
− j

(2)

i+ 1
2
,j

∆y
= −σs

ε2
(r

(2)

i+ 1
2
,j+ 1

2

− ρi+ 1
2
,j+ 1

2
)

−σar(2)

i+ 1
2
,j+ 1

2

+Qi+ 1
2
,j+ 1

2
.

(2.9)

Similarly, the equations for the parities j(1) and j(2) on the grid G1,2 and G2,1 are given
by (cf. equation (2.4c) and (2.4d))

∂tj
(1)

i+ 1
2
,j

+
ξ

ε2

r
(1)
i+1,j − r

(1)
i,j

∆x
− η

ε2

r
(1)

i+ 1
2
,j+ 1

2

− r
(1)

i+ 1
2
,j− 1

2

∆y
= −σt

ε2
j
(1)

i+ 1
2
,j
,

∂tj
(1)

i,j+ 1
2

+
ξ

ε2

r
(1)

i+ 1
2
,j+ 1

2

− r
(1)

i− 1
2
,j+ 1

2

∆x
− η

ε2

r
(1)
i,j+1 − r

(1)
i,j

∆y
= −σt

ε2
j
(1)

i,j+ 1
2

,

(2.10)

and

∂tj
(2)

i+ 1
2
,j

+
ξ

ε2

r
(2)
i+1,j − r

(2)
i,j

∆x
+
η

ε2

r
(2)

i+ 1
2
,j+ 1

2

− r
(2)

i+ 1
2
,j− 1

2

∆y
= −σt

ε2
j
(2)

i+ 1
2
,j
,

∂tj
(2)

i,j+ 1
2

+
ξ

ε2

r
(2)

i+ 1
2
,j+ 1

2

− r
(2)

i− 1
2
,j+ 1

2

∆x
+
η

ε2

r
(1)
i,j+1 − r

(1)
i,j

∆y
= −σt

ε2
j
(2)

i,j+ 1
2

.

(2.11)

2.2 Time Discretization

For simplicity, we consider again semi-discretized equations. This time, we keep the spatial
variables x and y continuous and apply the time discretization technique from [17]. First,
we rewrite the system of equations (2.4) as the diffusive relaxation system

∂tr
(1) + ξ∂xj

(1) − η∂yj(1) = −σs
ε2

(r(1) − ρ)− σar(1) +Q ,

∂tr
(2) + ξ∂xj

(2) + η∂yj
(2) = −σs

ε2
(r(2) − ρ)− σar(2) +Q ,

∂tj
(1) + φξ∂xr

(1) − φη∂yr(1) = − 1

ε2
[σsj

(1) + (1− ε2φ)ξ∂xr
(1) − (1− ε2φ)η∂yr

(1)] ,

∂tj
(2) + φξ∂xr

(2) + φη∂yr
(2) = − 1

ε2
[σsj

(2) + (1− ε2φ)ξ∂xr
(2) + (1− ε2φ)η∂yr

(2)] ,

(2.12)

with 0 ≤ φ ≤ 1/ε2. The condition φ ≥ 0 is necessary for the hyperbolicity of the left hand
side, whereas the condition φ ≤ 1/ε2 ensures that the bracketed term on the right hand
side has a well-defined limit for ε→ 0.
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Second, we split the equation into two parts, the transport step

∂tr
(1) + ξ∂xj

(1) − η∂yj(1) = −σar(1) +Q ,

∂tr
(2) + ξ∂xj

(2) + η∂yj
(2) = −σar(2) +Q ,

∂tj
(1) + φξ∂xr

(1) − φη∂yr(1) = −σaj(1) ,

∂tj
(2) + φξ∂xr

(2) + φη∂yr
(2) = −σaj(2) ,

(2.13)

and the relaxation step

∂tr
(1) = −σs

ε2
(r(1) − ρ) ,

∂tr
(2) = −σs

ε2
(r(2) − ρ) ,

∂tj
(1) = − 1

ε2
[σsj

(1) + (1− ε2φ)ξ∂xr
(1) − (1− ε2φ)η∂yr

(1)] ,

∂tj
(2) = − 1

ε2
[σsj

(2) + (1− ε2φ)ξ∂xr
(2) + (1− ε2φ)η∂yr

(2)] .

(2.14)

Finally, we apply the explicit Euler method to the first step and the implicit Euler Method
to the second step. Note that the implicit Euler method can be implemented explicitly,
since ρ is preserved in the second step (which can be seen by adding the first two equations).

The fully discrete scheme is just splitting (2.8)-(2.11) into the two steps (2.13)-(2.14).

3 The AP property

In this section, we analyze the AP property of the above scheme in two steps. First, we
derive the discrete asymptotic limit. Second, we analyze stability.

3.1 The Diffusion limit

In the same way as above, we consider the spatial and the time discretization separately.
The limit, as ε → 0, of the time discretization is derived in [17]. Hence, it remains to
investigate the discrete limit of the spatial discretization. To this end, we consider the
diffusive limit ε→ 0 of the semi-discretized equations (2.8)-(2.11).

First, the limit of the equations (2.8) and (2.10) for the parities r(1) and j(1) is given by

r
(1)
i,j = ρi,j ,

r
(1)

i+ 1
2
,j+ 1

2

= ρi+ 1
2
,j+ 1

2
,

j
(1)

i+ 1
2
,j

= − ξ

σt

r
(1)
i+1,j − r

(1)
i,j

∆x
+

η

σs

r
(1)

i+ 1
2
,j+ 1

2

− r
(1)

i+ 1
2
,j− 1

2

∆y
,

j
(1)

i,j+ 1
2

= − ξ

σt

r
(1)

i+ 1
2
,j+ 1

2

− r
(1)

i− 1
2
,j+ 1

2

∆x
+

η

σs

r
(1)
i,j+1 − r

(1)
i,j

∆y
.

(3.15)
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Inserting these equations in (2.8), yields

∂tρi,j −
ξ2

σt

ρi+1,j − 2ρi,j + ρi−1,j

(∆x)2
+

2ξη

σt

ρi+ 1
2
,j+ 1

2
− ρi+ 1

2
,j− 1

2
− ρi− 1

2
,j+ 1

2
+ ρi− 1

2
,j− 1

2

∆x∆y

−η
2

σt

ρi,j+1 − 2ρi,j + ρi,j−1

(∆y)2
= −σaρi,j +Qi,j ,

∂tρi+ 1
2
,j+ 1

2
− ξ2

σt

ρi+ 3
2
,j+ 1

2
− 2ρi+ 1

2
,j+ 1

2
+ ρi− 1

2
,j+ 1

2

(∆x)2
+

2ξη

σt

ρi+1,j+1 − ρi+1,j − ρi,j+1 + ρi,j
∆x∆y

−η
2

σt

ρi+ 1
2
,j+ 3

2
− 2ρi+ 1

2
, 1
2

+ ρi+ 1
2
,j− 1

2

(∆y)2
= −σaρi+ 1

2
,j+ 1

2
+Qi+ 1

2
,j+ 1

2
.

(3.16)
Treating equations (2.9) and (2.11) in the same way as above, we additionally obtain the
following differential equations for ρ:

∂tρi,j −
ξ2

σs

ρi+1,j − 2ρi,j + ρi−1,j

(∆x)2
− 2ξη

σs

ρi+ 1
2
,j+ 1

2
− ρi+ 1

2
,j− 1

2
− ρi− 1

2
,j+ 1

2
+ ρi− 1

2
,j− 1

2

∆x∆y

−η
2

σs

ρi,j+1 − 2ρi,j + ρi,j−1

(∆y)2
= −σaρi,j +Qi,j ,

∂tρi+ 1
2
,j+ 1

2
− ξ2

σs

ρi+ 3
2
,j+ 1

2
− 2ρi+ 1

2
,j+ 1

2
+ ρi− 1

2
,j+ 1

2

(∆x)2
− 2ξη

σs

ρi+1,j+1 − ρi+1,j − ρi,j+1 + ρi,j
∆x∆y

−η
2

σs

ρi+ 1
2
,j+ 3

2
− 2ρi+ 1

2
, 1
2

+ ρi+ 1
2
,j− 1

2

(∆y)2
= −σaρi+ 1

2
,j+ 1

2
+Qi+ 1

2
,j+ 1

2
.

(3.17)
Adding up the equations, the middle terms cancel and we obtain

∂tρi,j −
ξ2

σs

ρi+1,j − 2ρi,j + ρi−1,j

(∆x)2
− η2

σs

ρi,j+1 − 2ρi,j + ρi,j−1

(∆y)2
= −σaρi,j +Qi,j ,

∂tρi+ 1
2
,j+ 1

2
− ξ2

σs

ρi+ 3
2
,j+ 1

2
− 2ρi+ 1

2
,j+ 1

2
+ ρi− 1

2
,j+ 1

2

(∆x)2
− η2

σs

ρi+ 1
2
,j+ 3

2
− 2ρi+ 1

2
, 1
2

+ ρi+ 1
2
,j− 1

2

(∆y)2

= −σaρi+ 1
2
,j+ 1

2
+Qi+ 1

2
,j+ 1

2
.

(3.18)
Integrating over ξ2 + η2 = 1 yields the semi-discretized diffusion equations on the grids
G1,1 and G2,2. Note that integrating the equations (3.16) or (3.17) over ξ2 + η2 = 1, the
middle terms cancel as well and we get the same result.

As expected, the spatial discretization with staggered grids leads to a compact five
point stencil for the diffusion equation (1.2). Together with the results [17] on the limit of
the time discretization (2.13) – (2.14), this also shows that the formal limit of our scheme
coincides with the diffusion equation.
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3.2 Stability

We limit our discussion to the one-dimensional case (see Remark 5 for the two-dimensional
case) and show uniform stability with ε using the von Neumann analysis [27, 26, 21].

In the following, we consider the transport equation in slab geometry and assume that
the cross section σt = σs + ε2σa > 0 is independent of x ∈ R (see Remark 4 for space
dependent scattering). Further, we consider a source-free two velocity model. Then, the
even and odd parities

r(t, x, v) =
1

2
[f(t, x, v) + f(t, x,−v)] and j(t, x, v) =

1

2ε
[f(t, x, v)− f(t, x,−v)] (3.19)

fulfill
∂tr + ∂xj = −σar ,

∂tj + 1
ε2
∂xr = − 1

ε2
σsj− σaj ,

(3.20)

and the numerical scheme has the following update rule: For k = 0, 1, 2, . . .

rk+ 1
2 = rk −∆t(Dxj

k + σar
k) ,

jk+ 1
2 = jk −∆t(φDxr

k + σaj
k) ,

rk+1 = rk+
1
2 ,

jk+1 = ε2

ε2+σs∆t
jk+

1
2 − ∆t

ε2+σs∆t
(1− ε2φ)Dxr

k+1 ,

(3.21)

where Dx denotes the half-grid centered finite difference of the spatial derivative. We place
r on the half grid points (m+ 1

2
)∆x and j on the full grid points m∆x. For a von Neumann

analysis of the scheme, we expand the parities in Fourier series:

r(x, t) =
∞∑

`=−∞

a`(t)e
i`x and j(x, t) =

∞∑
`−∞

b`(t)e
i`x . (3.22)

As no mixing between the Fourier modes occurs during the update of the solution, it is
sufficient to consider the evolution of

r(x, t) = a`(t)e
i`x and j(x, t) = b`(t)e

i`x (3.23)

for some ` and to determine the growth factor matrix of the Fourier coefficients. First, we
note that the staggered grid derivatives can be rewritten as

(Dxr)
(
h
(
m+ 1

2

)
, t
)

= a`(t)
ei`h(m+1) − ei`hm

h
= 2 i

h
sin
(
`h
2

)
ei`h(m+

1
2

)a`(t) ,

(Dxj)(hm, t) = b`(t)
ei`h(m+

1
2

) − ei`h(m−1
2

)

h
= 2 i

h
sin
(
`h
2

)
ei`hmb`(t) ,

(3.24)
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with h := ∆x. To shorten the notation, we define d` := 2i
h

sin
(
`h
2

)
. Then, the first update

step of the Fourier coefficients is given by[
ak
bk

]
(t+ ∆t) =

[
1− σa∆t −∆tdl
−∆tφd` 1− σa∆t

]
︸ ︷︷ ︸

=:G1

[
ak
bk

]
(t)

(3.25)

and in the second step is given by[
ak
bk

]
(t+ ∆t) =

[
1 0

− ∆t
ε2+σs∆t

(1− ε2φ)d`
ε2

ε2+σs∆t

]
︸ ︷︷ ︸

=:G2

[
ak
bk

]
(t) . (3.26)

Thus, the growth factor matrix is

G := G2 ·G1 =

[
1− σa∆t −∆td`

− d`∆t
ε2+σs∆t

(σa∆t(1− ε2φ) + 1) 1
ε2+σs∆t

(ε2(1− σa∆t) + d2
`∆t

2(1− ε2φ))

]
.

(3.27)
For stability, the eigenvalues of the matrix G are of main interest. They can be written as

λ1,2 = g ±
√
g2 − det(G) (3.28)

with g being the half trace and det(G) being the determinant of G:

g = 1
2

1
ε2+σs∆t

(
∆t2d2

`(1− ε2φ) + (1− σa∆t)(2ε2 + σs∆t)
)

and

det(G) = ε2

ε2+σs∆t
((1− σa∆t)2 − φd2

`∆t
2) .

(3.29)

Proposition 1. Let the time step ∆t and the relaxation parameter φ satisfy

∆t ≤ min
{

1
σa
,max{1

2
εh, 1

4
h2σt}

}
, (3.30)

and

0 ≤ φ ≤

{
hσt
2ε3
, hσt ≤ 2ε

1
ε2
, otherwise

. (3.31)

Then, the numerical scheme is L2-stable.

Remark 2. Note that the restriction that has previously been used 0 ≤ φ ≤ 1
ε2

(see above
and [17]) still holds for the new choice of φ. Moreover, the condition hσt ≤ 2ε is satisfied,
if and only if the hyperbolic condition ∆t ≤ max{1

2
εh, 1

4
h2σt} = 1

2
εh holds, i.e. there are

the following two cases:

hσt ≤ 2ε : ∆t ≤ min
{

1
σa
, 1

2
εh
}

and 0 ≤ φ ≤ hσt
2ε3

,

hσt > 2ε : ∆t ≤ min
{

1
σa
, 1

4
h2σt

}
and 0 ≤ φ ≤ 1

ε2
.

(3.32)

In addition, as ε→ 0 the time step restriction becomes ∆t . min
{

1
σa
, 1

4
h2σt

}
, which does

not vanish.
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In the proof of the proposition, we use the von Neumann analysis. A complete overview
of these stability conditions can be found in the lecture notes by Trefethen [27].

Proof. Stability follows from the von Neumann condition, if we can show |λ1,2| ≤ 1 for
λ1 6= λ2 and |λ1,2| < 1 for λ1 = λ2. To show these inequalities, we consider three different
cases: two complex eigenvalues; two real eigenvalues; and one eigenvalue. Since g and
det(G) are real-valued (3.29), the cases are equivalent to: g2 < det(G); g2 > det(G); and
g2 = det(G).

Case g2 < det(G) (two complex eigenvalues): If the eigenvalues λ1,2 are complex, their

real part is g and their imaginary part is ±
√

det(G)− g2. Thus, the stability condition
|λ1,2|2 ≤ 1 is satisfied if det(G) ≤ 1. For the determinant we have the following estimate

det(G) = ε2

ε2+σs∆t
((1− σa∆t)2 − φd2

`∆t
2) ≤ ε2

ε2+σs∆t
(1− σa∆t+ φ4∆t2

h2
) , (3.33)

where we used that −d2
` = 4

h2
sin2( `h

2
) ≤ 4

h2
and the CFL-condition ∆t ≤ 1

σa
. It remains to

show that the last term of (3.33) is bounded by 1. This is equivalent to

ε2φ4∆t
h2
≤ σs + ε2σa = σt , (3.34)

which in turn is satisfied under the condition ∆t ≤ max{1
2
εh, 1

4
h2σt} and the assump-

tion (3.31). This is one of the reasons for the choice of the upper bound of φ in the
assumption (3.31).

Case g2 > det(G) (two real eigenvalues): The determinant of G is always positive
and therefore the eigenvalues are either both positive or both negative, and their sign
changes with the sign of g. Thus, it is sufficient to show λ1 ≤ 1 if g ≥ 0 and λ2 ≥ −1 if
g < 0. In particular, one can show that this is equivalent to

det(G) + 1∓ 2g ≥ 0 . (3.35)

The first inequality is generic

det(G) + 1− 2g = ∆t2

ε2+σs∆t
(σ2

aε
2 + σsσa − d`) ≥ 0 , (3.36)

since d2
` ≤ 0. Whereas, the second inequality requires the CFL-condition (3.30). More

precisely, under the condition 0 ≤ φε2 ≤ 1 and ∆t ≤ 1
σa

, we obtain

det(G) + 1 + 2g > 1 + 2g = 1 + 1
ε2+σs∆t

(
∆t2d2

`(1− ε2φ) + (1− σa∆t)(2ε2 + σs∆t)
)

≥ 1
ε2+σs∆t

(ε2 − 4∆t2

h2
+ σs∆t) . (3.37)

On the one hand, this is obviously non-negative under the condition ∆t ≤ 1
2
εh. On the

other hand, the second term can be rewritten as

ε2 − 4∆t2

h2
+ σs∆t = ε2(1− σa∆t) + ∆t(σt − 4∆t

h2
) , (3.38)

which is non-negative under the condition ∆t ≤ 1
σa

and ∆t ≤ 1
4
h2σt. Together, this yields

the desired inequality det(G) + 1 + 2g > 0.
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Case g2 = det(G) (one eigenvalue): The eigenvalue of G is λ1 = λ2 = g. Thus, we
need to show |g| < 1. But as det(G) + 1 + 2g > 0 and det(G) ≤ 1 (see above cases) already
imply g > −1, it remains to show g < 1. Since σt = σs + ε2σa > 0, at least one of the
terms σa∆t, σs∆t is positive and we obtain

g ≤ 1
2

1
ε2+σs∆t

(
(1− σa∆t)(2ε2 + σs∆t)

)
< 1

2
1

ε2+σs∆t

(
(1− σa∆t+ σa∆t)(2ε

2 + σs∆t+ σs∆t)
)

= 1 . (3.39)

Remark 3. If there is neither scattering nor absorption and the conditions (3.30) and (3.31)
hold, then the relaxation parameter satisfies φ = 0 and the hyperbolic condition is always

satisfied. Further, the determinant, det(G) = 1, and the half trace, g = 1 +
∆t2d2`

2ε2
, coincide

only if d2
` = −h2

4
sin2( `h

2
) = 0, which is equivalent to `h

2
∈ πZ. In most cases, this does not

occur and therefore the case g2 = det(G) does not arise. Then, we obtain g2 < det(G) and
the eigenvalues are distinct and satisfy |λ1,2| = 1, so that stability follows.

Remark 4. If the cross sections are space dependent, the above analysis is not valid. In
practice, the CFL condition is replaced by a worst-case condition. This means that we
replace σa and σt in equation (3.30) and (3.31) by its maximum and minimum,

σa,max = max
x

σa(x) and σt,min = min
x
σt(x) , (3.40)

respectively.

Remark 5. In two dimensions, one can expect that the stability result from Proposition 1
carries over with the following changes. We replace h = min(∆x,∆y) and add a factor of
1
2

in front of the time step to account for the presence of growth rates in each of the two
spatial dimensions.

4 Numerical Results

In this section, we consider different numerical test cases to demonstrate the performance
of our scheme. Since we did not examine boundary conditions, we only consider examples,
where the solution is compactly supported away from the boundary. We implemented
periodic boundary conditions, so that there is no influence of any discretization of boundary
values.

The numerical calculations are performed using the two-dimensional scheme described
in Section 2 with the stability conditions from Section 3.2. This means, we first choose
the number of grid points (N ×N) for the staggered grids corresponding to the test case.
Then, we determine the maximal time step (c.f. Proposition 1, Remark 4, and Remark 5)

∆t := 0.9 · 1
2

min
{

1
σa,max

,max{1
2
εh, 1

4
h2σt,min}

}
, (4.41)
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and define the relaxation parameter

φ :=

{
h
σt,min

2ε3
, hσt ≤ 2ε

1
ε2
, otherwise

(4.42)

with h := 1
N

, σa,max := maxx σa(x), and σt,min := minx σt(x). The angular discretization
uses a Gaussian quadrature with 16 points on the interval [0, 1] for λ. As the quadrature
points are mapped to the directions ξ and η with (2.5), we obtain 16 points per quadrant.
In all test cases, we compare the numerical solution on a grid where the parameter ε is
resolved, to a grid on which it is under-resolved, thus demonstrating the AP property.

In the remainder of this section, we describe the test cases and the numerical results in
detail. We consider four test cases to show different aspects of the AP property. First, we
focus on the ε-dependence and investigate the convergence order in different regimes. In
the second and third test case, there are large spatial differences in the cross-sections. The
second test case is continuous and rotationally invariant, whereas in the third test case the
material cross-sections and the source term are discontinuous. These two test cases intent
to demonstrate the performance in multiscale problems. The last test case investigates the
stability of the scheme dependent on the choice of the relaxation parameter φ.

4.1 Convergence order

We examine the order of convergence with respect to the spatial variable. We expect first or
second order convergence depending on the used CFL condition. If a hyperbolic condition
is used, the time step is proportional to h. As the explicit Euler method is used for the time
discretization, we cannot expect more than first order convergence in h. Whereas, if the
parabolic condition is used, the time step is proportional to h2. Then, the explicit Euler
method predicts O(h2) convergence. Moreover, centered differences, which are used for
the spatial discretization, are as well a second order approximation in h. Thus, we expect
that the error is proportional to O(h) when the hyperbolic condition is used, and O(h2),
respectively, when the parabolic condition is used. To estimate the convergence order, we
compute the `2-error E(N) between the solution computed on a N×N grid and a reference
solution. Using two different values N1 and N2, we then estimate the convergence order by

EN2
N1

= − log(E(N1))− log(E(N2))

log(N1)− log(N2)
. (4.43)

4.1.1 Method of manufactured solutions

For the method of manufactured solutions (MMS), we first choose some function f(t, x, y, ξ, η)
and compute a corresponding source term and an initial condition, so that the chosen func-
tion is a solution of the transport equation. Let

f(t, x, y, ξ, η) = exp(−t) sin(2πx)2 sin(2πy)2(1 + η2) (4.44)

12



with (x, y) ∈ [0, 1]2. Further, let the scattering cross sections be given by σa = 0 and
σs = 1. Then, the corresponding source term is given by

Q(t, x, y, ξ, η) = ∂tf + εv · ∇xf −
1

ε2

[
1

2π

∫
Ω

fdv′
]
, (4.45)

and the initial condition is given by

f(t = 0, x, y, ξ, η) = sin(2πx)2 sin(2πy)2(1 + η)2. (4.46)

We use the source term and the initial condition to compute a solution with the above
scheme. For different grid sizes and different values of ε, we compare the computed densities
with the analytic density

ρ(t, x, y) =
1

2π

∫
Ω

fdv′ (4.47)

at time t = 0.1. The results are shown in figure 1 and table 1. They confirm second order
convergence in the parabolic case. In the hyperbolic case, the convergence order is even
slightly higher than expected.
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−3
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−2
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`
2
-e
rr
o
r

 

 

ε = 1, hyp.
ε = 0.1, hyp.
ε = 0.01, par.
ε = 0.01, hyp.
ε = 0.001, par.
order 1
order 2

Figure 1: Convergence order (MMS): `2-error as
a function of the spatial resolution. Hyperbolic
(filled markers) or parabolic (empty markers) CFL
condition.

E32
16 E64

32 E128
64 E256

128

ε = 1 1.60 1.50 1.35 1.23
ε = 0.1 1.98 1.93 1.86 1.76
ε = 0.01 2.02 2.00 1.99 1.97
ε = 0.001 2.02 2.01 2.00 2.00

Table 1: Convergence order (MMS):
The term EN2

N1
is the convergence rate

when going from N1 × N1 to N2 × N2

grid points for a fixed mean free path
ε. The dashed line indicates the switch
from the hyperbolic to the parabolic
condition.

4.1.2 Gauss test

We consider an example case with a smooth initial condition and isotropic scattering

f(t = 0, x, y, v) = 1
4π·10−2 exp(− x2+y2

4·10−2 ) for (x, y) ∈ [−1, 1]× [−1, 1] ,

Q = 0 , σt = σs = 1 , σa = 0 , and ε = 1, 10−1, 10−2 .
(4.48)

Then, we compute the density ρ at time t = 0.1 for different grid sizes and different
values of ε, so that the CFL condition (4.41) changes form hyperbolic to parabolic. As a
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reference solution, we use a highly resolved solution with 512 × 512 grid points. Table 2
and Figure 2 agree with the above assertion, showing first order convergence when the
hyperbolic condition holds and second order, respectively, when the parabolic condition
holds.
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ε = 0.01, par.
ε = 0.01, hyp.
order 1
order 2

Figure 2: Convergence order (Gauss test): `2-
error as a function of the spatial resolution.
Hyperbolic (filled markers) or parabolic (empty
markers) CFL condition.

E32
16 E64

32 E128
64 E256

128

ε = 1 1.50 1.38 1.36 1.66
ε = 0.1 1.96 1.37 1.15 1.50
ε = 0.01 2.03 2.01 2.09 2.41

Table 2: Convergence order (Gauss
test): The term EN2

N1
is the conver-

gence rate when going from N1 × N1

to N2×N2 grid points for a fixed mean
free path ε. The dashed line indicates
the switch from the hyperbolic to the
parabolic condition.

4.2 Variable scattering

In this test case, we examine the performance of the scheme, when the scattering is space-
dependent. Compared to the previous test case, we fix the scaling parameter ε and modify
the scattering cross section. Let

f(t = 0, x, y, v) = 1
4π·10−2 exp(− x2+y2

4·10−2 ) for (x, y) ∈ [−1, 1]× [−1, 1] ,

ε = 1
100

, Q = 0 , σa = 0 , and

σt(x, y) = σs(x, y) =

{
c4(c+

√
2)2(c−

√
2)2 , c =

√
x2 + y2 < 1

1 , otherwise
.

(4.49)

Note that, the total cross section σt(x, y) can be periodically extended to a C2-function

and σt(x,y)
ε

ranges from 0 to 100. This wide range compared to the size of the domain,
causes strong variations of the solution, which are a challenge for numerical schemes.

We compute the solution up to time t = ε on two different grids. One of the grids
under-resolves the length scale ε = 1

100
(32 × 32 grid points) and the other one resolves

it (512 × 512 grid points). Comparing the solution at different times (t = 1
10
ε, 1

2
ε, ε, see

Figure 3), we observe that the density, computed on the under-resolved grid, matches the
behavior of the density, computed on the resolved grid.
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Figure 3: Variable scattering: Density at t
ε

= 0.1 (first row), t
ε

= 0.5 (second row), and
t
ε

= 1.0 (third row), computed on a 32× 32 grid (first colum) or a 512× 512 grid (second
column). The third column shows the density on a cut along y = 0.
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Figure 4: Two material test: (a): Geometry – source (orange), purely scattering σt = σs =
1 (white and orange), purely absorbing σt = σa = 100 (black). (b) and (c): Density ρ at
t = 1.7, computed on a 64× 64 grid (b), or 512× 512 grid (c). Logarithmic scaling, values
are limited to seven orders of magnitude.

4.3 Two material test

The two material test case is a slight modification of the lattice test, which was proposed
in [3]. It models a domain with different materials by discontinuous material cross-sections
and a discontinuous source term in space.

In this problem, the computational domain is a 5 × 5 square. Most of the domain is
purely scattering, except for some purely absorbing squares of size 0.5, which are distributed
around an isotropic source in the middle of the domain

Q(x, y) =

{
1 , (x, y) ∈ [2, 3]2

0 , otherwise
. (4.50)

In the absorbing spots (c.f. Figure 4a), the absorption coefficient jumps from 0 to 100,
while the scattering coefficient jumps from 1 to 0. Thus, there are diffusive and kinetic
regimes, although the scaling parameter satisfies ε = 1. We obtain a rapid change of the
solution at the transition zones, which may cause difficulties in the numerics.

We compute the density up to time t = 1.7 on a coarse grid (64×64) and on a fine grid
(512× 512). The solutions are shown in Figure 4. Again, we observe that the solution on
the under-resolved grid resembles the solution on a grid that is resolved. In the case of the
resolved solution, the oscillations near the beam edges are due to the angular discretization.
They are the well-known ray effects for finite discrete velocity models (cf. [2] and references
therein, as well as [20, 24]).

4.4 Relaxation parameters and stability

In our final test, we consider different relaxation parameters. Proposition 1 suggests an
upper bound on the relaxation parameter φ, which in the hyperbolic case is more restrictive
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Figure 5: Stability: Density on a cut along y = 0, computed on a 300 × 300 grid up to
time t = 0.36 using different values of φ.

than in the parabolic case. We expect that in certain example cases our scheme becomes
unstable if φ is too large.

Similar to the Gauss test, let

f(t = 0, x, y, v) = 1
4π·5×10−3 exp(− x2+y2

4·5×10−3 ) for (x, y) ∈ [−1, 1]× [−1, 1] ,

ε = 1 , Q = 0 , σt = σs = 1 , σa = 0 , N = 300 , and t = 0.36 .
(4.51)

Then, we compute the density on a N × N = 300 × 300 grid up to time t = 0.36 using
different relaxation parameters

φ1 = hσt
2ε3

= 10
3
× 10−4 and φ2 = 1

ε2
= 1. (4.52)

In the first case, the relaxation parameter satisfies the assumption of Proposition 1 and the
solution is stable (see Figure 5a). Whereas in the second case, the assumption is violated
and the solution starts to blow up (see Figure 5b). As a consequence, the upper bound
on the relaxation parameter in Proposition 1 can in general not be substituted by the less
restrictive upper bound φ ≤ 1

ε2
.

5 Conclusions

In this paper, we have introduced a two-dimensional AP scheme for the linear transport
equation. The linear transport equation has the diffusion equation as an analytic asymp-
totic limit. For AP schemes the discretization has to be chosen, such that the analytic
limit is preserved at a discrete level and the scheme is uniformly stable with respect to
the mean free path. Here, we used a parity-based time discretization combined with a
staggered-grid spatial discretization.
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We have shown for the spatial discretization has the desired asymptotic-preserving
property. In particular, due to the use of staggered grids, a compact five point stencil
can be achieved in the limiting discrete diffusion limit. Furthermore, the parity-based
time discretization is suitable for the use of staggered grids, as the coupling between the
even and odd parities reduces the number of the required unknowns. In addition, we
have presented a rigorous stability analysis for the same scheme in one-dimension. This
provides a condition on the relaxation parameter and a CFL condition. Finally, we have
performed several numerical tests for the two-dimensional scheme, which demonstrate the
AP property. Since staggered grids can easily be extended to three dimensions, there is
a straightforward generalization of our method to three spatial-dimensions. Although we
did not test the method, we expect that it has similar properties.

In the future, it would be worthwhile to investigate the time discretization. Since our
method uses a simple time-integration method (explicit Euler method), the convergence
order is in general limited to one. To maintain a second order scheme, one could use some
higher order implicit-explicit (IMEX) time integration method. Another possible scope of
future wotk is to apply stagged grids in combination with a parity-based time discretization
to other kinetic equations.
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